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ABSTRACT

This paper presents several general properties of resistive nonlinear n-
ports from a geometric point of view using recent tools from differential topo-
logy. The geometric approach is coordinate-free and hence the results of the
paper do not depend on the particular choice of a tree, a loop matrix, a cut set
matrix, a set of independent variables, etc. ’

Firstly, a classification is given of resistive n-ports into logical
categories such’és weakly regular n-ports, strongly regular n-ports; normal n-
ports etc. Transversality of the internal resistor constitutive relations and
the Kirchhoff space plays an important role in this paper. Secondly, a
structural stability result is given. In this paper, structural stability means

the persistence of the configuration space under small perturbations of the internal
resistor‘constitutive relations. Essentially the result asserts that a resistive
n-port is structurally stable if and only if the internal resistor constitutive
relations are transversal to the Kirchhoff space. Thirdly, two basic

perturbation techniques are given which guarantee the transversality of the -

internai resistor constitutive relations and the Kirchhoff space. The first

technique involves element perturbations, i.e., perturbations of the internal
resistor constitutive relations. The second technique involves network pérturbations;
i.e., by augmenting extra ports to an original n-port. Lastly, coordinate-free
definitions of reciprocity and anti-reciprocity are given in terms of exterior
product and symmetric product of two tensors, respectively, and then some of

their properties are investigated.
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I. Introduction
This paper presents some properties of resistive nonlinear n-ports from
~ a geometric point of view. The geometric approach has the distinct advantage

in that it is coordinate-free, and hence our results do not depend on the parti-

cular choice of a tree, a loop matrix, a cut set matrix, a set of independent |
variables, etc. Therefore, if a property of an n-port, such as reciprocity, is
satisfied in terms of one coordinate system, then it is satisfied in terms of
every other coordinate system. On the other hand,if a property fails to hold
in terms of one choice of coordinates, then whatever coordinates one chooses,
this property is not satisfied. Hence properties and results obtained by a
geometric method are intrinsic to a given nonlinear n-port.

In Section II we review some basic geometric concepts that are needed for

this paper. In Section III we give a classification of resistive nonlinear n-

ports. Here, transversality of the internal resistor constitutive relations and the

Kirchhoff space plays an important role. In Section IV we discuss structural
stability of resistive nonlinear n-ports. Although this important concept has
" not been invoked in uonlinear circuits, we have found it to be of fundamental
importance especially in device modeling. Essentially, the main result asserts
that a resistive nonlinear n-port is structurally stable if and only if its

internal resistor coastitutive relations are transversal to the Kirchhoff space.

In Section V we present two basic perturbation techniques which guarantee that
the internal resistor constitutive relations are transversal to the Kirchhoff

space. The first technique involves element perturbations, i.e., perturbations

of the internal resistor constitutive relations. The second technique involves

network perturbations, i.e., by augmenting extra ports to an original n-port.

In Section VI we first give coordinate-free definitions of reciprocity and anti-

reciprocity of resistive n-ports and then derive various criteria for reciprocity
and anti-reciprocity in terms of a specific choice of coordinates. For these
definitions we need to introduce "exterior product" and "symmetric product" of
two tensors. We also show that reciprocity is closely related to the existence
of potential functions.

Now, in order to motivate and justify the large hierarchy of n-ports to
be introduced in this paper, consider the following examples illustrating how
simple elements when interconnected could lead to complicated constitutive

relations.
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Example 1 Consider the l-port shown in Fig. 1(a). The composite comstitutive
relation of this l-port correponding to eight different combinations of the
"Ynternal" resistor constitutive relations are shown in Fig. l(b)l, where 1

ka Rk) or vkk R?(iRk)’ k =1, 2. Observe that some of the comstitutive
relations of the l-port have self intersections, while some contain disconnected
components.

Example 2 (norator) Consider the l-port shown in Fig. 2(a) where the internal

resistor constitutive relation is given by

1 -1 =0. - - | @

R P

Since the Kirchhoff laws are given by Vo + Ve =0, i iR = 0,

one can easily show that the constitutive relation of this l-port is the whole

space IR (see Fig. 2(b)). This l-port is called a norator [1]. Observe that

in (1), i and i are coupled to each other.

Examgle 3 (nullator) Consider the l-port shown in Fig. 3(a) where the internal

resistor constitutive relations are given byi, -i =0,v, =0.
L) Rl

Since the Kirchhoff laws are v_ + v, =0, v, = VR = 0, iP = 0,

o P R1 P R2

one sees that the only possible value of (V. ,i ) is (0 0), i €., the constitu-

tive relation of this l-port consists of one point only; namely, the origin
(see.Fig. 3(b)). This l-port is called a nullator [1]. |

Example 4 Consider the l-port shown in Fig. 4(a) where the constitutive relations
of R1 and R2 are given by Figs. 4(b) and 4(c), respectively and the constitutive

relation of R3 is given by iR - iR = 0. It is not dlfficult to show that the
3 1

constitutive relation of this l-port includes the shaded area of Fig. 4(d).

Example 5 Consider the l1-port shown in Fig. 5(a) where the internal resistor

constitutive relations are given respectively by iR f (v ) = i - £
Ry Ry R, R
(v, ) =0, v, =0,1i, -41i, =0, v, -1, =0, and f. and £,k are arbitrary
R2 R3 R4 R3 R5 R2 R1 R2
1
C f . = = = -
unctions It is not difficnlt to show that v, iRl le(Vkl), ip iRz

10bserve the polarity of v, is chosen opposite to the usual convention. This
is done to simplify the hypotheses of several theorems in this paper.




£ (v, ). Since v, = v, , we can write this as
Ry Ry R, By

v, =f, (@, 1i,=£f ®,p=v, =v_, ‘ 7_ (2)
PR, PR, R, R,

i.e., the constitutive relation of this l-port admits a global parametric

representation in terms of p. By specifying fR and fR we can realize an ar-
1 2

bitrary l-port whose constitutive relation is of the form (2). See Fig. 5(b),

for example.

Example 6 Consider the l-port shown in Fig. 6(a) where the internal resistor
constitutive relations are given respectively by (v ’iR ) € AR s (v
MR 1 R

hp» g g twg =01 -4

iy ) €
2 Ry

= 0, where and are as given by Figs. 6(b)
AR1 ARZ

2 3 1 4 4 1
and (c) respectively. It is not difficult to show that vp = Vp = ~Vp s
1 2
iP = iR = iR . Hence the constitutive relation of this l-port is the
1 2

intersection of AR1 and Ak as shown in Fig. 6(d).
"2

The preceding examples show that very exotic constitutive relations could
result from interconnecting resistors with simple constitutive relations.
These observations motivate our classifying resistive n-ports into various
logical categories to be defined in Section III.

‘Another important property of n-ports is its structural stability2 to be
defined precisely in Section IV. Roughly épeaking, an n-port made up of

an interconnection of elements is structurally stable if it is persistent under

small perturbations of the internal resigzor ébnstitutive relations. CShsider,

for example, (vi) of Fig. 1(b) where the constitutive relation of the composite

l-port consists of a curve and an isolated point. If one perturbs the consti-
tutive relation of R2 slightly as shown by the broken curve, then the isolated
point disappears and the constitutive relation becomes the union ' of two curves.
Hence a small change of the internal resistor constitutive relation gives

rise to én>abrupt change of the composite l-port. It makes sense therefore to

call this l-port structurally unstable. In contrast to this, the other examples

2Since resistive n-ports do not have dynamics, structural stability in this paper
has a different meaning from that of dynamical systems [2].
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in Fig. 1(b) are structurally stable because small perturbations of the internal
resistor constitutive relations do not essentially change the constitutive
relation of the composite l-port. ,
Consider next Example 2. Let the dependent current source be described

by a C1 approximation f(iP) of the original identity function f(i ) = iP such
~ that f(i ) >1, if 1, > 0 and f(i ) < i, if i, < 0. 1In other words, let the
perturbed" constitutive relation be given by i f(i ) = 0. Then, since
iR # i except at the origin, we see that iP E 0, and the new constitutive

relationéis the v -axis. Since the original constitutive relation is the whole
space R, this 1 poit 1is structuraII’ unstable. o

Consider Example 3. Let f(iR ) be a Cl approximation of the identity

function £(i_ ) = i_ such that
| Ry Ry

(f), - 1>0 for all (3)
iRZ j-Rz

where (Df)i ‘denotes the derivative of £ at-iR . Perturb the constitutive
R,

relation of R2 in such a way that i_ - f(i -) = 0. Then we have
2 . Ry Ry

v=0,i-(f(i)—i)=0. ()
P P R2 Ry
It follows from (3) that the image of f - id contains an open interval of the

ip-axis, where i, is the identity map. Since originally the only possible

d
value of (v p* iP' was (0 0), this l-port is structurally unstable.

Conaider Example 4. Let f(i ) be a C1 approximation of f(iR ) =
1

i, , where %(1R1) > LRl i1f 1, >0 and f(iR ) < iy if 111 < 0. Perturb
1 1

1 1

the constitutive relation of R3 by iR
7 : 3

hence the constitutive relation of the composite l-port coincides with that of

R2 which is a 1-dimensional curve. Hence this l-port is structurally unstable.
* Similarly, we will give a rigorous proof later showing the l-port of Example

5 is structurally stable, while that of Example 6 is structurally unstable. We

will also show that transversality of the internal resistor comstitutive

relations and the Kirchhoff space is crucial for structural stabilitj.

- f(ikl) = 0. Then iRl = iR = 0 and




General Remarks For simplicity, we will sometimes abuse our notation with

regards to the transpose of a vector or a matrix. To avoid wordiness we will
usually refer to the constitutive relation of an n-port instead of the constitutive

relation of a "composite' n-port.

1I. The Coordinate-Free Approach

For the purpose of this paper, a resistive n-port N is assumed to be an
interconnection of "nR" internal coupled 2-terminal resistors and "n" external
terminal pairs which we call ports. We will often view an n-port N as a network

gA’by terminating the ports of N by norators.> Now let v, and Yp denote the

R
voltages of the internal resistors and the external ports, respectively, and let
ip and ip be the currents of the igternal resistors and the external ports,

respectively, so that (yR,i.R) ER R} x R — and (yP,g.P) €R™ x R". Let

v = (yR,gP), i= (:LR,;P) and b = ny4n. Then (v,1i) € RP x RP. Every n-port N
in this paper is assumed to satisfy the following properties:

(a) The linear graph which defines the topology of N is connected.

(b) N is time-invariant.

(c) The internal resistor constitutive relations are characterized by

b b

(v,{) EACR xR (5)

where A is a (2b—nR)-dimensional CI’submanifold.
Remarks 1. There is.no loss of generality in assuming (a) since disconnected

. subgraphs can be hinged together. Connectedness is necessary for a tree to exist.
2, Most of the results of this paper can be easily generalized to time-varying
case under appropriate conditions. We make this assumption simply to avoid
introducing complicated notation.

3. Under assumption (c), resistors can be coupled to each other and they need not
be voltage or current controlled. Even coupling among (gR,gR) and (yr,gP) is
allowed. Equation (1) of Example 2 is a case in point. This includes virtually all
nmodes of representation including hybrid and transmission representations. In
particular, a broad class of dependent sources is covered by this formulation. We
regard independent sources as uncoupled resistors. All multi-terminal elements are
represented as coupled 2-terminal elements. To illustrate why the dimension of

A is chosen equal to 2b—nR, consider (i) of Example 1, where

Observe that since norators impose no constraints on the port voltages v, and
the port currents i,, they only serve to guarantee the current entering one
terminal of each port j is equal to the current leaving the other terminal in the

same port j. The relationship between Yp and gP therefore remains the same as
that of N. -




A= {(v,:l.) € R x 1{3|LRI Rl(v ), :I.R2 = fRZ(vRZ)} .

Then, clearly, A is a 4-dimensional submanifold. Since b = 3, np = 2, one has

4 = 2b—nR. A similar remark applies to all other examples.

4. A resistive n-port can be derived naturally from an RLC network upon replacing
capacitors and inductors by ports. If we let n, and n, be the number of capacitors
and inductors, respectively, the result is a resistive (nC-InL)-port.

Now, for the convenience of the reader, we will briefly describe some geometric
concepts needed in the later sections. Details are found in [3,4]. A subset M in
R" is called an m-dimensional C! submanifold if a neighborhood about each point
of M looks like R™. More précisely, M is an m-dimensional Cl sﬁbmanifold of R
if for each X € M there is a neighborhood U of this point in R™ and there is a cl
diffeomorphism ¢ : M N U + y(MW) C R™. TFor example, each point x of M in Fig. 7
has a neighborhood U such that M N U is diffeomorphic to an open interval in R.
Hence this is a l-dimensional submanifold of Rz. The function ¥ is called a local
coordinate for M at x and Q-l is called a local parametrization for M at x. A pair
(yg,l\fll)is called a local chart for M at x. It should be noted that given a point
x € M, there may be many charts.

‘There is another wéy of defining a C]' submanifold‘ of R™ which is equivalent
to the above definition. A subset M is an m~dimensional Cl submanifold of R if

for each point x € M, there is a neighborhood U of x in R™ and a ¢! function

f:U~>R ™ guch that

M0U== {gel(nlg(g) = 0} ' (6)
and

rank(Df)_ = n-m for all x €M NTU €))

where (Df) denotes derivative of f at x. .
The Tangent space of M at x is a l:l.near approximation of M at x. More

precisely the tangent space TxM is given by
T?.‘H = Ker(?f)g (8)

whére f is in (6) and Ker denotes kernel of a linear map. It turns out that

tangent space is given also by
I M= -1 . | (9
T = I Oy |

an



where y is a local coordinate for M at x and Im denotes the image of a linear map.
It can be shown that T M does not depend on a particular choice of coordinates.
Let M; and M2 be C1 submanifolds onR with dimension oy and m,, respectively.

A function F: Mi - M is said to be C if for each x € M1 there is a chart

(¢»Mf\U) for Ml at x and there is a chart (Q,Mfﬂv) for M2 at F(§) such that

E(Man) Cc M, NV and such that the function ¢ o F o ?-1 : \g(Man) > ?(M Nv) is

Cl. The derivative (dF) Tle Q'TF( )M2 of F at x is a linear map defined as

followsfi For g €T M1 let E be defined by g = (DQ )?( )E Since ? is a
diffeomorphism, it follows from (9) that such a g exists and is unique. Then we

define (dF) £ 4 n where n = (D¢~ )¢°F( )n, : (D¢oFo¢ )?( )g Hence (gg)x

has the following representation in terms of coordinates (see Fig. 8):
(QE)g = (D¢ )Qog(g)(9Q°E°w )w(z)(P?)§° (10)

It can be shown that \dF) is independent of the choice of coordinates.
Since the derivative is a linear map its rank is defined. A C1 function
F: Ml + M, is called an immersion if

rank(g§)§ =m

I - - —————

for all x € M (11)

ﬁhéé; m, is the dimension of Ml' _

Note that the image of an immersion can have self intersections. For example, the
set T of Fig. 9(a) is the image of the circle S1 under some immersion. Since T' has
a self intersection it is not a C1 submanifold, i.e., at point y, there is no
neighborhood U such that T N U is diffeomorphic to an open interval. Even the
image of an injective immersion may not be a submanifold. Consider, for example,
the function F taking the half infinite interval (-a,=) into T' of Fig. 9(b), where
F(x) approaches y as x tends to . Although I' does not have self intersection,

the point y cannot have a neighborhood U such that I N U is diffeomorphic to an

1

open interval. Clearly, the class of C- functions which are immersions is very

large. In order to guarantee the image of a function to be a submanifold, one
needs the stronger concept of an embedding. A function F: Ml > Mé is said to be
a C1 embedding if it is an immersion and if it maps Ml diffeomorphically onto its
image E(Ml) C:Mé, where the topology of E(Ml) is the induced.topology. Nameiy,
open subset of E(Mi) is defined by E(Ml) N U, where U is an open subset of M,.
The function F of Fig. 9(b) is not an embedding. To see this let Ya €T be a
sequence of points following the arrow and approaching the arrowhead y. But

F-l(yn) diverges to «, Hence F-1 is not continuous at y and therefore F cannot be a

4Wé use the symbol dF when the domain of F is a general manjifold while we use
DF when the domair is an euclidean space.

-8-




diffeomorphism onto its image. This implies that F is not an embedding.
Now, recall (5). We now consider several important special cases where A

can be represented in various special forms. Suppose that (yR,g.R) and (YP,:LP)

_are not coupled to each other and suppose that (YR’:.':R) must satisfy

(vpoip) € Ay (12)
R R

wherg AR is an nR-dimensional 'Cl submanifold of R x R . Define

A A {(Y’é:) c Rb " RbI(YR":':R) = AR} . o (13)

Then, since the Zn variables ( ,:LP) are free, (13) is a (2b—n.R)-dimensional
submanifold. In this paper, whenever we discuss AR’ we always assume that (v ,i )
and (v iP) are not coupled to each other.
Definition 1. A submanifold AR is said to be

(1) locally hybrid if there is a C function f nR x RnR > RnR such that
A = fk @ | | | (14)
c
det ((ng)é‘-\.)(YR’i-R) # 0 for all (Y‘R’ER) AR (15)
for some fixed ZnR x np matrix A, where each column of A has either of the following
forms:
; ‘A T
(0,.00,0’1,0’0700’0,0’0looooaoooooo,o)
(0 0,0,00250,1,0,...,0)7
\’........OODUI’J,\’.I.’ ’ ’ ’0. ’9

~" 7

l:l.R I\R

(11) locally voltage controlled (resp., locally current controlled) if (14) holds
and (15) is replaced by '

rank(D = np, (resp., rank(D f ) nR) (16)

iR~ (VR Y
for all (yR‘,;LR) €A ) |

where D !RgR (rgsp.,ggkgk) denotes the derivative with respect to ip (resp.,Vp)s

(1ii) globally parametrizable if AR is diffeomorphic to RnR. In this case we

write _ , e o R




n

A -1
(r@tp@) S¥ @, p€® " an
"R

where Ill thp > R is a global coordinate,
(iv) represented by generalized port coordinate if Ay is represented by

YR a b ‘.S.—

i ¢ di|n
where a, b, ¢ and d are n, x matrices, 2 b is nonsingular, and F: RDR > RnR

i - < ~ R nR c d ~ :
is a C* function,
(v) globally hybrid if AR is represented by

y = h(x) (19)

~ ~ o~

where y = (yl,...,yn ), x = (xl,...,x ) and if Yy is the current (resp., voltage)
of the k~-th resistor§ then X is the :gltage (resp., current) of the k-th resistor.
If Yy is the current {resp., voltage); then the k-th resistor is called voltage

controlled (resp., current controlled),

(vi) globally voltage controlled (resp., globally current controlled) if in (19),

Y =ip % =vp (resp., y = vp, x = ip).

Remarks 1. The matrix A of (15) interchanges columns of ng. Note that the
matrix ((QQR)Q) cannot contain columns corresponding to the voltage and the current
of the same resistor.

2. The following is an example of a locally current controlled AR which is not
globally current controlled. Let AR be described by

v \'
i, - e R1cos v, =0, i e Rlsin v, =0
. - - .
& R R, R,

This is globally voltage controlled and locally current controlled but not
globally current controlled. To see this consider

v, le 7
-e cos V. e gin v
(Pv gR)v = v R2 v R2 ¢
~R  ~R R1 .

-e sin v -e cos V.

e R2 v RZ_« V
2 " R
va , , i

Since det(lgv gR)v =e 1 # 0 the inverse function theorem tells us that locally
R 7 R

~10-



R © g(%R) at each point of AR. But it is easy to see that the function

V. V.

!

RI,VRZ) + (e “cos vR2,e sin vR2) is not a global diffeomorphism. Hence there

is no global representation g = g(gR);

.3. Let R = Rl’vR ), i i, = (gRl,QRQ) and let

YR Ry RZ'
2
k
be the global hybrid representation of A where vRl Rl , 1R2 € R .

Then, in terms of the generalized port coordinate representation, (20) can be
expressed as follows:

o, 0 0 o, 0
a=|® 7 alz—%k o , - Okl

0 1 0 0

? Cogk ® Cngk P gk
E = (iR]_’sz), n (YR]_’éRz)’ E = t_}’

where the subscripts % and ank denote the size of matrices.
4. An example of generalized port coordinate is the scattering representation;

a= diag(fgz;...,frnR?, b= diag(/;I,...,VrnR?,
¢ = diag 1 secss 1 » d = diag|- - seesy ™= 1
T e e i
: oy %

where rl,...,r are real normalization numbers. In this case g and n are called

incident voltages and reflected voltages, respectively.

The submanifold A describing the internal resistor comstitutive relations has been _‘

defined in a coordinate-free manner. There is another constraint that must be
satisfied by a network; namely, the Kirchhoff laws. Since we would like to

-11-



describe our results in a coordinate-free manner, we need a coordinate-free
description of the Kirchhoff laws. This can be found in the circuit theory
literature. See‘, for example [5] among others. Here, it is emough to know that
the set K of all (v,i) satisfying KVL and KCL is a b-dimensional linear subspace

of Rb X ]Rb and K does not depend on a particular choice of a tree, a loop

matrix, or a cut set matrix. We call K the Kirchhoff space.

III. Classification and Characterization of Resistive n-ports

Recall A ané K. Since (v,i1) must satisfy the internal resistor conmstitutive

relations and Kirchhoff laws simultaneously, the following must hold:

(v,1) €ET A A N K. (21)
' b b n n

We call T the configuration space of an n-port N. Let EP tR xR >R x R
be defined by the projection map
Let the inclusion map 1 : I + IRb X IRb be defined by

1(v,1) = (v,1) (23)
and let

T, ATpe 1 (24)

Then the set

R A 1,(2) (25)

is called the comstitutive relation of the n-port N. Clearly, the variables
(YP,gP) must satisfy

(vprip) ER . (26)

The set@is the projection of I onto the (YP’!.-P)‘SP3°3~

The definitions of I andcpare coordinate-free. If I is empty, it

means that the internal resistor constitutive relations and Kirchhoff laws
cannot be satisfied simultaneously. Consider, for example, two independent
voltage sources with different voltages connected in parallel. Clearly, then,
the constitutive relations disagree with KVL and hence & = A NK is empfy.

In the following, we study some important properties of I and CQ We will
see that even if A and K are perfectly well-defined C1 submanifolds,

their intersection I and hence its projection@need not be submanifolds

and in fact could turn out to be rather complicatéd if not bizarre geometric

objects. 7'!.‘he following is the first category of n-ports in our classification.

-1la-



Definition 2 A resistive n-port N is said to be quasi-weakly regular if

= V)
El ZZU... Uz.?,

where I, is a k,-dimensional ct submanifold, 0 < k, < b, k, # kj and
):inzj=¢1f1¢j.
Observe that since dim K = b and since I = A N K, the dimension of

Zi cannot exceed b.

Example 7 All the l-ports of Example 1 are quasi-weakly regular. To see
this consider, for example, case (iv). Then this l-port is described. by

1R1 Rl(vR ) = iRz - fRz(VRz) =0, sz + le + v, =0, -
B 1R2-1R1=0, fy, = 1p = 0- | -
By eliminating 1R1 and 1, we have |
i, - fRI(vR ) =0, (23)
i, - fRz(vR:z) = 0, (29)
v, +v, +v_ =0, ' (30)

R2 R1 P
We first look at (28) and (29). Observe that each defines a 2-dimensional

surface in the (iP,vR sVp )-space. By drawing these two surfaces in the
1 2

3-dimensional space, one can see that the intersection of (28) and (29)
consists of two connected compdnents as in Fig. 10. Finally, (30) does not
change this intersection since (30) does not contain iP.,Therefore the
intersection of (28) and (29) gives the configuration space I. Since I is a
union of two connected l-dimensional submanifolds (in the 4-dimensional
space ]Rh) this is a quasi-weakly regular l-port. A natural question which
arises at this point is how are the port constitutive relations shown in

the right hand side of Fig. 1(b) related to I? The answer is that

they are simply the 2rojection<12 = Tp () defined by (25). To see this
consider (30). Given a value v_, (30) defines an affine submanifold in

P
the (vR »Vp )-space. So if we vary p € (-w,»), then we have a family
1 72 ‘
- of affine submanifolds. Since v_ is represented by v, = -v_ - v_ , this .
_ P P R1 R2
means that if we take the vP-axis as in Fig. 10 and look at I from the

(iP,v )-plane, we would obtain the curve shown in the right hand side of

-12-



Fig. 1(b). Notice that whileCIZis not a submanifold, I is a perfectly well
defined submanifold. The other cases are essentially the same.

Definition 3 A resistive n-port N is said to be weakly regular if I is a
k-dimensional C1 manifold, 0 < k < b.

Clearly, every weakly regular n-port is quasi-weakly regular. The
converse is not true, however, as deomonstrated by the following example.
Example 8 Consider (vi) of Example 1. Here, I consists of a point and a
curve. (Fig. 11). Hence I is the union of a 0-dimensional submanifold - an
isolated point - and a l-dimensional submanifold. They are disjoint. Therefore
this l-port is quasi-weakly regular but it is not weakly regular.

The strange object I of (vi) in Example 1, stems from the fact that the

local maximum of £ at v coincides with the local minimum of £  at
T Ry
Ve and hence the two surfaces meet tangentially at this particular point.
20

So to avoid this situation, we need a nontangential condition for the two

submanifolds A and K. More precisely, we want A and K to be transversal — a
basic concept that will play an important role in this paper.

Definition 4 The internal resistor constitutive relations A are said to be
transversal to the Kirchhoff space K, and is abbreviated by A 7ﬁ K, if>

K=TR" xR for all (v,i) € z. (31)

T

A+ .
T, (v,1)

Remarks 1. If I is empty, the transversality condition is of course
trivially satisfied. However, from the circuit theory point of view, this

situation is not meaningful. Consequently, some of our suhsequent perturbation

results will demand I to be nonempty after perturbation.

2. Transversaility is essentially a non tangency condition. For example, in
Fig. 12(a), Aﬂi K while in Fig. 12(b), A% K. Since T(v i)A is a linear
~’~
approximation of A at (v,i) and since T(v i)K = K, (31) requires that locally,
~’~

the internal resistor constitutive relations and Kirchhoff laws do not overlap

each other.

3. Observe that (31) is symmetric in the sense that

T * 1w, 0° = Tw, 0¥ * T, 1)

~7 ~7

A.

Hence one can also say that K is transversal to A or A and K are transversal.

The following theorem shows that transversality is a sufficient condition
for weak regularity.

An elementary introduction to the transversality concept can be found in

[6]1.

-13-



Theorem 1 If A 76 K and if A NK # ¢, then N is weakly regular. In fact

2 = ANK is an n-dimensional submanifold of le X 1Rb, where n is the number |

of ports.

Proof If Aiﬁ K then I is a submanifold [3,4] and
codim £ = codim A + codim K

where codim denotes the complementary dimension of a submanifold. Since

codim A = 2b - (2b-np) = np, codim K = 2b - b = b we have’

d1m2=2b-(b+nR)=b-nR=n. n
We will next give a simple way of checking (31). Recall that(Nis

a network obtained by terminating the ports of N by norators. (See Section II)

Pick any treegfor LN Let v and i be partitioned as v = (Yeivy), 1= (ig iig),

where'gand ge denote tree and cotree, respectively. Let B and Q be the
fundamental loop and cut set matrices associated with 9’, respectively. It
is known that B and Q assume the following form:

B=[1iByl, Q= [-Byill . . (32)

Since A is a Cl submanifold of dimension 2b-nR, for each point (Yo,go) €A,

there is a neighborhood U C IRb X IRb of this point and there is a ct

n
function £ : U+ IR R such that (see (6) and (7))

anv=£Y@ (33)

and
rank(Df) (, ) = T for all (v,1) €ANT. | (36)

Since the Kirchhoff space is represented by K = Ker B x Ker Q,
the set £ N'U is leccally represented by

By =0, 01 =0, £(v,1) = 0. (35)

Proposition 1 Aiﬁ K if and only if for each (v,1i) € I,

rank q(y,i) = ny ' (36)

where | .
T, A D £ £)B.iD, £+(D, DB (37)
et —tw* Ve U g s "i:f“](g,p. -

Proof It follows from Fact A of APPENDIX 1 and (35) that A{.ﬁ K if and only if
for each (v,1) ErNy

“14-



B. 0
rank Q 9 =b + n.R . (38)
D,f D4f _
b ~ T (v,1)
More explicitly, this matrix has the following form:
1 By & 0 o ]
0 0 : -1}% 1 (39)
b, £ D, £ 1D £ D £ |
Y2t Yy - R 97 (v, .

By elementary bperations, one can show that this matrix has rank

b'l-nR if, and only if, (36) holds. ]
Remark It is important to note that transversality of A and K is a coordinate-
freé condition. Hence if (36) holds in terms of a particular tree gthen it holds
in terms of every other tree. Conversely, if (36) fails to hold in terms of one
tree, then no matter which tree one chooses, (36) does not hold. Therefore one

needs to check (36) in terms of only one tree.

We will next give various special cases of (36) corresponding to
several common representations of A. Suppose that (YR,:}R) and (YP,:L.P) are

not coupled to each other and A is givennby (13). Then f of (33) is
n ~

‘independent of (YP’;"P)' Let UR AUNTR R x IR R and we define

n

R .
-f'R : UR + R simply by
fp(vpsip) A £(vp,ip) - _ (40)

b b R

Next, let n{'{: R xR -+ R x IR~ be the projection map

' = 41
12 (Vs1) = (vp,ip) (41)
and let
TpATpel (42)

where 1 is the inclusion thap defined by (23). Finally, decompose v and i as

Y = (YRL ’YPi: YR,:, ’YPU ), :"i'. = (i-Ri ,}Piz Ei-:R.J ,éPq) (43)
where R and P denote resistors and ports, respectively, and gand g‘edenote

tree and cotree, respectively. Decompose gg of (32) accordingly:

Br  Bre
I | (44)
~PR ~PP '
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Corollary 1 Suppose that A is given by (13). Then Aiﬁ K if and only if for
each (YR,QR? € ER(Z),

rank gR(YR,}R) =np - (45)
where
' QJ%‘YR’gR) 4 l'?v ng(gv ' gR)ERR :-(Pv fR)QRP :
"'Rg ~Ry "‘R_t
D, £ + (D, £)B. (D, £)B. (46)
~i_ =R ~ip ~R'*RR- =i “R'~PR 1) ,
“Re "Ry Ry (vprdp

Proof Observe that

~Y ~Y ~ ~ ~v ~ -vY "'R
p, £=[p, £ 01,D, £=1[p, £ 0.
dyt o TR, R T TRet g, R

Substituting these and (44) into (37), we obtain (46). Since (YR’YP’ék’iP) €z,
. R ‘A
the vector (gR,gR) must belong to ER(Z).

Consider, next, the generalized port coordinate (18) and let

a b| 7t [9 8 :
N |
¢ v ol 47)

Then AR is represented by

gR(YR’ER) = Y% + QiR - E(!Yg+§§R) = 0. (48)
Recall the partition Vg = (YRJE YR.;;)’ 1’R = (1'R££ iR'J) and partition
¢,8,y and § accordingly;

= : = : = : = : . 49

¢ = [a, a0, B=1[8,:8,], y=1[y 7,05 §=108:8)] (49)

Then we have the following:
Corollary 2 Let AR admit a generalized port coordinate representation. Then

gR(YR’iR) = [«52'(9?)!2)'(91"(DE)!1)§RR§ -(91-(22)!1)91{9 §

T T
(8,-(P)8;) + (B,-(DE)8,)Beg : (B~ (RD)? )§PR] (50)
(Vpsip)

=16~



In particular, if AR is globally voltage controlled, then

N EE R
Fplvpotp) =| @) . : (0F) o Lz Bl (51)
~J- = J-LrrJ- LR
~R
and if AR is globally current controlled, then
EUIEEE NE 9
Felepoty) - L i, reR) p |men | g (52)
1 J:Lo J: Br Bon i .
Proof It follows from (48) that
f = - = -
PYR £ (@Dy;s D, £ =¢, - (DD,
2 "Ry
D f_ = - = -
i RSl D¢, Dy £ = 8, - (B)G,.
£ Ry

Substitution of these into (46) yields (50) If AR is globally voltage

controlled, then gl = wagz =0, §1 =0, §2 = 0 and

1 0 1 0
B, = s B, = s Y1 = s Yy = .
<1 0 ~2 1 -1 0 ~2 1

This gives (51). Similarly, if AR is globally current controlled, then
By =2 8,=0 73 =05y, =0and

e
o

=
o

L, = ’g_
~1 0 2

I
-
1O
n
-
(=]
[}
.

by
[ X o]
?
N
=

This gives (52).

Remark Using (45), (46), (50)-(52), one can give several sufficient conditions
for transversality by inspection. Suppose that AR is locally hybrid (see '
Def. 1) with '

det[]gv £.1 QiR gR] # 0 for all (YR’iR) (S AR. (53)
“'Rg ~Rzp (YngR)

Assume also that the resistors:hngfform loops exclusively with ports or
equivalently, the resistors inqarform cut sets exclusively with ports. Then
gRR = 0 and (53) implies (45) and hence Aiﬁ K. 1If AR is globally voltage

controlled and it (QE)V is positive definite at each Yp» then it is easy
~R _ _ ,
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to show that the follgying submatrix of (51) is positive definite:
ERI:I: 1
1

B

(oF) .

RRV
~R

and (45) holds. Therefore A.m K. A similar statement holds for the globally

current controlled case.

-~

Let us give several examples.

Example 9 For the l-ports (i)-(v), (vii), (viii) of Example 1, l\f“ K. To
prove this choose '%)'= {Rl’RZ} to be our tree. Then }ERR = ¢,6 §RP = ¢,

§PR = [1 1], §PP =14>. Let
: _ fR(gR,;R) i - £ (VR1)
= 1 1
fp(vpsip) = A .
RR -5121(1’11’53) 1, - £, (v )
e 2 2 2
Then
1 1 — -
ﬁ)"n 0 % Df 0
f_ = 1 2 = , D f_ = ¢
“Yg,, R 2 2 “Yp, R
g D £ D f 0 -Df 4
vR R vR RZ
1 2
— - - J

and similarly

[1 0]
D £ = D £ =9 .
~1 ~R 0 1) = ~R
"'Rq 1~Ri

Hence (46) is given by

-DfR 0

o | 1
< (Y ’i) =
<RRR 0 -pf,

(54)

2

If one checks (i)-(v), (vii) one sees that for all (YR,:LR) € gR(Z), Dle and

DfRz do not vanish simultaneously and hence rank C‘-}’R(YR’:LR) = 2 for all

_(gR,gR) € To(Z). Therefore A/\\K and I is a l-dimensional submanifold. One

can use a similar argument to show that for (viii), Aiﬁ K also. In contrast

to these exaniplea, we claim that for (vi) of Example 1, A/A\ K. To prove this

observe that for the value iﬁ in (vi) of Fig. 1(b), we have i%* = fR (v, ) = fR (vR )

R Ry Ryg 2 Ry
= = 0, int
and (DfR],)VR (DfRz)vR 0. It is clear that the poin
10 20 . ~
A , _ _
'(YRO’!RO) = (VRlo.szo,iﬁ,:Iﬁ) belongs to ER(E)" Therefore ra“k.gR(YRo’iRo) .1 < 2

-~ and hence A%K.

6We denote a OxC matrix by ¢.
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Example 10 Computing g(v 1) or qR(v i ) one can show that for Examples
2,3,4 and 6, A% K, whereas for Example 5, A f-ﬁ K. We will prove this for
Examples 5 and 6. 1ilet us first check Example 5. Choose':r= {R4,R5,P} as our

tree. Then

V. V. V.
R, 5 P
0
gRR = 1 ? QRP = _l ’ §PR ¢’ PP ¢
-1 1
V. V. V. V. V.
Ry R, R, R, R,
-
-Df o 0] [0 o]
R
1
- 0
0 DfR2 0 0
D f_ = , D £ =
~V. ~R ~V. ~R
Ry 0 0 1 Ry 0 ]
0 0 0 0 0
G 0 0 0 1
L. -t . -
i i i
R iRz Ry R, iRs
~ r n
1 0 oT 0 0
0 1 0 0 0
D £ = » D £ =
”311‘, R 0 0 0 ind R 0 0
0 0 "'l l O .
0 -1 0 0 0
S J e -
Therefore
£ -
Df o -+ o -1 0 0
R . .
1 : :
DEf Df . Df ‘0 1 0
R . -
2 Ry Ry
Feef =l 0 1 ! a1 o 0 o
0 o : 0 :1 1 -1
0 1 ° 0 0 -1 0|vg.
- J R

|
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It is easy to show that rank<;;£(YR,gR) = 5 for any Cl functions fR and fR .

1 2
This implies A ﬁ\ K.

To examine Example 6, choose §3’= {R,,R,,P} to be our tree. Then

3’ 4’
V. V.
R3 R4 Vp
0 0 1
§ = ’B = ’§ =¢’§ =¢.
RR |, ,|’-®e 0 PR PP

The constitutive relations AR and AR corresponding to the portion A of
1 2

Fig. 6(d) are locally given by iR -1=20 and iR - 1 = 0 respectively. Hence,
1 2
locally we have

R, R, R, R,
C 0 0'1 [0 0
*”R fR = 0 0 ’ PY gR = 0 0
£ , Ry
-1 0 1 1
LO 0_j 0 O.J
i 1 i
R, R, iRs R,
(1 0] [0 0
P!R gR = 0 1 ’ Pij:R gR = 0 0
i v
0 o0 0 o
L 0 L0 1) -
Therefore
0 0: 0 0]
. . 1
Falopotp = |° 01 0
- 1 1:1:0 0
0: 0:- 1§

&
Clearly, we have rank qR(yR,i.R) = 3 < 4 and hence A J( K.

1f AR is parametrized by p, a different criterion is required. Recall
the notation (YR(E)’gR(E)) of (17).
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Proposition 2 Suppose AR is globally parametrized by ¢ as in (17). Then

n
A ml( if and only if for each p € R R vith (YR(Q),QR(Q)) € TjR(Z),

rank g*(g) = np

where
Dy + Bpg @Qup )i -Bop 0
A L 7.
g*(e) = T ( ): T |
~ Di_ -B__ (Di, ): O B
~~Ry ~RR ""R.;C. ~ ~PR p -

Proof Let o 4 (Q,YP,EP) . Then A is globally parametrized by o;

A
v(g) = (v, (p),vy, v, (p),v, )
a "Rz 2 "By 1 -Rg Py

TORNCNNOR N fp, @ lp,,)-

It follows from (9) that
Dv
T(Y’?':)A = Im Di

Recall that Kirchhoff space is parametrized by (yg 1 x) :

Y‘QTY'J’ §=§Té;;-

- This implies that

e}

B
It follows from (59), (61) and (31) that Afﬁ K if and only if

Dv| Qg 0
Im + Im =R x IR .

-~

This, in turn, holds if and only if

Dv

-~

* 00 a0
R

rank

This matrix is given more explicitly by

-21-
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(57)

(58)

(59)

(60)

(61)

(62)

(63)



- ——
r QY L4 . L] ) -B —B . . -
) R 2 | ~RR ~RP
]
. .]: . . . : gPR . —gPP . .
P’gRg . . . . ) 1_ . . .
! (64)
. . 1. . . : . } . .
1
D . . L] ] 1] [} . 1 L4
~ o L . ~
1
L] . L] 1 L] ] [ ] L] L l
~ ‘ ~
. !
D . . . . | . . BT BT
* R, | \ » PR
]
T T
. . . . \ . .
| 1' pl §RI’ §PP

where °* denotes a zero submatrix of appropriate size. By eiementary
_operations, one can show that this matrix has rank 2b if and only if (55) holds.

_ a
. Remark Formula (55) holds even if AR is locally parametrized by p at each point.
- In fact (55) holds if and only if rank J = ZnR where J is the matrix defined

by Desoer and Wu [7].
If AR admits a generalized port coordinate, then it is globally parametrized

by n;
(vp (M1 (0)) = (2F(n)+by,cE(n)+dn). I (65)
Partition a,b,c and d in accordance with (Ysz YR:') and (1.R"': ;Rv):
a= .%l. , b = .%l. y € = .%%. s g = .%l. .
122 1Py ¢ d,

By direct substitution we can show the following:
Corollary 3. Let AR admit a generalized port coordinate. Then (56) is given by:

: [
?1‘1 (913)+131+§RR(§2 (QE) 'H.’Z) i ’I,pr 9
Fw-| e T )
: 91(Q£)+§1-§RR(92(DE)+QZ) : 9 I}-P n
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It is important to hote that transversality of A and K is only a
sufficient condition for N to be weakly regular. The following example shows

that it is not a necessary condition.

Example 11 Consider the l-port of Fig. 13 where AR is given by vR1 - RliRl = 0,
3 2
-1 + 2i - 2i, = 0. Since K is described by v, + v, + v, =0,
iR2 Rl Rl R1 _P Rl R2
- = 0, - = 0, we have
R, " R, " p
z = {(v,1)] =i =4i_=v_ =0,v, + v, =0}
LR, TR, T T Ry R, P
v {(Y,g)liR = iR =i, = 1, Ve SR, vp v 4 R, = 0}
1 2 1 2
A
= v
g, VI, . (67)

Since I is a l-dimensional submanifold consisting of two connected components,

it follows that N is weakly regular. We claim that each point of I, is a point

2
of nontransversal intersection of A and K. To show this choose

%]’= {Rl’Rz} to be our tree. Then gRR = ¢’§RP = ¢, §PR = [11], QPP = ¢,

i 0
D, £ = » D, fo=¢
Ry ® |0 o TR
(-, 0
EN =" 2 ’QER I
o 31, “H4i -2 1 L
R
1 1
. i) €
Hence at each (yp,i) € m.(z,),
(1 0:
rank CJ’R(YR,gR) = rank .1 9
~ 0 0 . -31i +41R -1
R S
: 1
~
1 0. -R1
= rank . =1< 2,
0 0. 0
L

Therefore A ﬁ( K.

We next discuss the di@gnsion of a weakly regular n-port.
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Definition 5 A weakly regular n-port N is said to have d:l.mens:I.on7 m if

rank(ggp) (v,1) = m for all (v,i) €I (68)

where Tp is defined by (24).

Remark ' In order to check (68), in general, one has to check it in terms
of coordinates. Let (¢,Z N U) be a local chart at (v,i). Then (68) holds
if and only if |

rank(Dm M,‘v-l)x = m for all (v,i) €I (69)

where y(v,1) = x. If Aiﬁ K, then a more explicit formula can be obtained.
Proposition 3 Let N be a weakly regular n-port with A (T\ K. Then N has
dimension m if and only if for each (v,i) €I

rank g(y,g) “m+n-n | (70)
where
[ By : 9 ]
: T
Guw.» & 9 : 2re (71)
~ . T .
£-(Dy, £)B . : D, £+, DB .
L “‘Rg g TR !R:L i'Rg = (v,1)

Proof Let (y,Z NU) be a local chart for I at (v,i). We rewrite (35) as

TNys= g’l(g) | (72)
where
[ By .
gv.d) £ 01 (73
£(v,1)|.
-1

°1° ‘2-1(1_5) (see (24)) we have
=1 -1
rank(Rryed *), = din In (Qfﬁ)(y,;)(él)(g,g)(gT Vg (74)

"It follows from (8) and (9) that

Im(nw'l) = Ker(ng)(’ iy : (75)

7'1‘his definition is a coordinate-free version of the one defined by Chua
_and Lam [8].
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Next, recall that the linear map (Qgé)(v 4) maps any compliement of
M’-U

Ker(1p) (y,1)

onto its image space [9]. Since (gl)(v 1) is a linear inclusion
map, we have from (74) and (75) that T

-1, _ ' -1
rank(D7, oy );5 = dim Im (Drp) (v,1) (Dy )§

]

dim Im@g,‘l)x - dim(Im(lgng'l)xﬂ Ker (D1p) (, 1))

dim Ker(gg) (v,1) - dim(l(er(lgg) (Yai-) n Ker(Q‘E{,) (Y’i'))

(Zb-rank(lzg) -, i)) - (2b-rank GEI,’] )
i **BJ(v,1)

rank| 28 - rank(Qg)(v 1) * (76)
Drs -
(v,1)

It follows from transversality assumption and (38) that

rank(l)g)(v 9 = b+ np. (77)
~’~
By elementary operations one can show that
Dg | -
rank -, = b + n + rank g;(y,i) (78)
(v,1)

where g}(y,é) is defined by (71). Hence (76)-(78) imply
-1
rank(pgp°? )§ = n + rank ga(g,i) - fp. (79)

Therefore N has dimension m if and only if for each (v,i) E.Z,
n -0 + rank g}(y,g) = m, This gives the result.

1f (YR,gR) and (yP,}P) are not coupled to each other, the condition is
simplified in the following manner. .
Corollary 4. Let A be given by (13) and let A ﬂiK. Then N has dimension
m if and only if for each (yR,gR) € ER(Z)’

rank QJR(YR’iR) =m+n, -n (80)

where 7, is defined by (42) and
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g

Bor : 0
: T
A 0 : B
QR(YR’}R) : “RP .
- . \
%, Iy fR)]}RR 2y fR+(91R g
L "Ry “Rg “Re “Rdg - (vpo1g) -

Corollary 5 Let A admit a generalized port coordinate. . Then

[~ Ber

- 0
Gptvprty =
L(_‘l_‘z"(l.?g) Y,) (2, =(DF) v )Bop

0

T
2re

s e e 000

(8- D8 +(Ey- DY, YBre

' (81)

_J

where a,8,y and § are as in (49).. In particular, if AR is globally voltage

controlled, then

. 7
r.]-éPR . 9
< T
g 0 : Bre
(Y sl ) = .
IrVpoip Ben | [ 1
(DF) : BT
L I JIURRJ] (yp»ip)

and if AR is globally current controlled, then

Bor 0 i
« T
0 : B
(v,>i,) = ~ _ . *~RP
Guwrt) | . 1 "
t-@B)| o
i L ]}RR__.]LR'

(83)

(84)

The following gives a criterion when AR is globally parametrizable,
Proposition 4 Let AR be globally parametrized by p € R "R and let A m

Then N has dimension m if and only if for each ¢ with (YR(Q) »1p(0)) € 1 (3),

rank g*(g) =m + n, -0

«26~-

(85)

YR’i-R)

- (82)



where

- b
PYRi-'-@YRg)BRR
g A @*'Rg)BPR . 56)
*(p) = - T '
v~ PéRg (QiR;)BRR
- (D ) .
e Je
Proof Recall (59) and (61). Since A fT\K, we have [4]
1 Dv o
= = = ﬂ = n - "
Im(Dy )g T(Y,%)(AﬂK) T(Y’i)A T(Y’é)K Im o Im o 4l
~ (V,:L) o ~

(87)

. where (v,(0),1i(c)) is as in (57) and (58). It follows from (74) and the first
two lines of (76) that
-1 -1
rank(l}lrpw )ZS = dim Im(]g!k )}5
T (88)

]
<
O
)

- dim Ker(D‘n')( i) ) N Im

lU
=4
o
1=

It is clear that

Ker (D'rr Im(D'n

™2 (v, 1) 1 (v1) | -89

where 131'{ is defined by (41). It follows from (64) and (89) that

Dv Dv

~a ~

Ker(Dn ) = Im(Dm, N Im

~

Q

(90)

Equations (88) and (90) imply that
T oo

_ Q
rank(DﬂP“tp 1) =n -dim {Im(E) O Im|~ ~ (91)
~~P 2 X ~ag 0 .BT .
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It follows from (91) and formula (which is easy to verify)

T 0 T T

. 0 . 0
dim {Im(E) N Im|~ ~ = rank(E) + rank | - rank |(E) 7 °
~'qg T ~ ~‘g.
® loo® : 0 B S
(92)
that the following holds:
T Ll
-1 ¢ 0 19" o
rank(Dr,°p 7)) = n - rank(E) - rank + rank [(E) |~ ° (93)
-~ "‘O' T "0- T
& ? 0 B o 8-
Finally it is easy to show that
g 0
rank(g)o = np, ran Tl = b and
: 0 B
. gT 9 .
rank (g)o: ol [= 0+ g + rank g;*(g) (94)
~_Q § ~
where g}*(g) is defined by (86). This and (93) imply the result. H
Corollééx 6 If AR admits a generalized port coordinate, then
~ : ) : 7
I:"PR : 9
G*m = | 0 : B (95)
R : . T ,
. - d
L?l(QE)+@1+§RR(§2(QE)+EZ): El(gg)+gl §RR(92(QE)+~21 n

where a,b,c and d are as in (66).
Definition 6 A weakly regular n-port N is said to be regular if its

dimension is n.
Remarks 1. It is clear that in order for N to be regular it is necessary

that dim I > n.
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2. Recall the remark after Corollary 2. If AR 18 locally hybrid as in (53)

and if the resistors in Sf form loops exclusively with ports, then we saw that

A m K. It is clear that i'ank QR(YR’!‘R) = np and hence N has dimension n and is
therefore regular. Similarly if AR is globally voltage (resp. current) controlled
and if (l}g)YR (resp., (DF), )is positive definite at each point, then N is re-

Ir

gular.
Example 12 Consider (i)-(v) and (vii) of Example 1. Choose %]'- {R1 R,} to
be our tree. Then (81) is given by

1 A
-Df :
Oelvple) = |7 R
0 H -Df
L Rz_Jv .
YR

Since Dle and Df, never vanish simultaneously, rank QJR(Y ,iR) = 2 holds.

R

Since n = 2, n =1, we have m = rank S;R(y ,iR) +n - n, = 2+1-2=1.
Hence this l-port has dimension 1 and is therefore regular.

Example 13 (Weakly regular l-port which is not regular) Consider Example 2.
The associated configuration space I is a 2-dimensional submanifold. since it

is parametrized by (v i ); (vR, P’ R,i ) = (- ~VpsVps Psi ).

" Recall (69). Since Tp © ¢ -1 V. iP) = (V. iP), we have rank (Dﬂ °¢ )( iP)
P’

= rank [1 0] = 2. Hence this is a 2-dimensional l-port and therefore is not

regular. Consider Example 3. Clearly I ='{0} and this is a weakly.regular
l-port. But since dim I = 0 <1 =n, it cannot be regular.

Proposition 5 If A {-ﬁ K and if Tp is an immersion, then N is regular.

Proof By Theorem 1, 7 is an n-dbmensional submanifold. Since 7, is an

~P
immersion, rank (dn )( ,1) = n for all (y,i) € I , which shows that N has dimension

n. ) =

An n-port can be regular without satisfying the transversality condition

alluded to earlier. The following example is a case in point.
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Example 14 Consider the l-port of Example 11. For El and 22, vp serves as a

coordinate. For I.,, 7w _ o Ib-l(v ) = (v_,0) and hence (Dn od!-l) = {1 0]
1> .p - ~ P P ~~P ~ Vp
WhiCh has rank 1. Smilarly for 22’ 'EPO‘E—]-(VP) = (VP’l) and hence (P!Po‘k—l)v =

[L 0]. Therefore this l-port is regular even though A ﬁ\ K as shown earlier in
Example 11.

Definition 7 A regular n-port N is said to be strongly regular if CP = EP(z)
~is an n-dimensional submanifold of R" x TR".
Example 15 (Regular l-port which is not strongly regular) Consider (i) - (v)
of Examble 1. As was shown in Example 12 each is a regular l-port. But sincecp
has a self intersection, it is not a submanifold. Hence they are not strongly
regular;

This example shows thatCQ could be a rather complicated object even if
I is a perfectly well defined submanifold. This is understandable because
2 lies in IR6 whileCQ is the projected image of I onto IRZ. If one projects
a geometric object in 1R6 onto IR2 , one naturally loses some "information" concerning
that object.

A sufficient condition for strong regularity is the following. _
- Proposition 6 If A (:B K and if Tp is an embedding, then N is strongly regular.
Proof By transversality condition, I is an n-dimensional submanifold. By
definition, the image of a submanifold under an embedding is a submanifold of

the same dimension. Hence CQ== ‘LrP(Z) is an n-dimensional submanifold. H

Definition 8 A strongly regular n-port N is said to be globally strongly regular
1f R 1s globally diffeomorphic to R". |

The following proposition gives a sufficient condition for N to be globally
strongly regular.

Proposition 7 Let I be globally diffeomorphic to R" and 1let R g R™ be
a global coordinate., If

W lm eyl =e
“1{[‘ + -

(i1) Tp © xk-l is injective
(1i1) rank(l};rp%k-l)x =n for all x € R"
the N ié globally strongly regular.

/ ' o o _ B
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Proof Condition (i) is equivalent to saying that T ° ?-1 is proper, i.e.,
preimage of any compact set is compact [3]. Therefore (i)-(iii) imply that

° w is an injective proper immersion. Such a map is clearly an embedding
[3] HenceCIZ* Tp © w (IR ™ is a diffeomorphic copy of r" "
Example 16 The 1-ports of (vii) and (viii) of Example 1 are globally strongly

regular.

Definition 9 A giobally strongly regular n-port N is said to be normal if

it admits a generalized port coordinate;

v a b
~P ~P ~P P -

o %) %)

where éP’EP’EP ane gP are nxn matrices and Fp :R" > R" is a C1 function.
Example 17 The l-port of (vii) of Example 1 is normal because it is globally
voltage controlled. The l-port of (viii) is not normal because no linear
combination of Vo and iP.can be a global coordinate for<12.

Sometimes we can choose n among the 2n variables (v iP) as a global
coordinate for I. 1In this case Tp is a global diffeomorphism and hence<12
is also globally diffeomorphic to R". In fact N turns out to be normal.

(Laad

(=]

This sometimes happens when an n-port is derived from an RLC network.. For example,
consider the n-port seen by the capacitors and inductors of an RLC network.

If the capacitor voltages and inductor currents are chosen as global coordinates
for the configuration space Z,then<120f the derived n-port N is globally
diffeomorphic to R™. This means that the n-port as seen by the capacitors

and inductors, is a nice n-dimensional submanifold which is gobally diffeo-
morphic to R, | We formalize this observation as follows:

Prop031t10n 8 Let z er® be a subvector of (vP iP) Let w 'z ]Rb X ]Rb + RY

(Y 5) = z and let T, L r" be defined by

-~ . ————— - . e

be defined by y

'
Z
~

A
w_=Tm_o°

1

(96)
is the inclusion map defined by (23). If T, is a global diffeomorphism,

-~

N
N g

where 1
' i.e., z serves as a global coordinate for I, then

(i) EP: I +CI215 a global diffeomorphism,

(ii) T, ° (m 1F12) is a global coordinate for‘clz where “P |C12 denotes the
restriction of n to CQ
(iii) N is normal.

Proof Let us write

Yp =7(Ya’Yb)’ L= (pdp)s 2= (v,.1)- 7
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By assumption z globally parametrizes I. Hence (v,i) € I is expressible as

1
a C~ function of (ya,ib) . In particular (yP,j,P) is expressible as a ¢l function
of (y,,1)3

-1 '
(Ypodp) = Tp o I, (v 1) = (v,.8(y,,1) oh(v_,1),4,) (98)

where g and h are Cl functions. It is clear that Tp © 17—1 is a global

diffeomorphism. Hence Tp is a global diffeomorphism and Tp © 'rr-l is a global

parametrization forcp Finally (98) gives (~ i) = (g(v ,1 ) h(v ib))

which means that CQ admits a global hybrid represzntation. H
In table 1 we summarize the various classifications of n-ports given

in this section.

IV. Structural Stability of Resistive n-ports

In this section we give a structural stability result for resistive n-ports.
By structural stability here we mean the persistence of the configuration space
I under small perturbations of A. The result essentially says that a resistive
n-port is structurally stable if and only if A H\K. Hence, transversality of
A and K, again, plays a crucial role.

We first give a precise definition of perturbation. Let M be a ¢! submanifold
of R" and let Cl(M,Rn) be the set of all’Cl functions from M into R?. Let

FE Cl(M,Rn) and consider
¢ € cta,r™
,CU(E;e(~)) dlg:u->r" | lE®-c@I + “(413),5‘ @) I < et

- for all x €M o (99)
where e(x) is an arbitrary continuous function from M into the set of

all positive numbers. The Whitney C1 topology or the strong C

topology on C (M,R ) is generated by gsets of the form (99), i.e., CU(E‘,:_:(-)) is

a neighborhood of F and any open subset of C (M,]Rn) is expressible as a union of
sets of the form (99). Observe that if a neighborhood CU(F e(- )) is small and if
G GCU(F-e( )) , then IF()-6()1 + @B - (d6) I >0 as Ixl > =. (See Fig. 14)
This is the reason why the strong Cl topology can control the behavior of functions

over a noncompact set. We need this property gince our A is generally unbounded.
One ‘of the greatest advantages of the strong C]' topology is that the set
Emb M,R ) of all C embeddings of M into R" is open with respect to this
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topology [3]. If M is a C1 submanifold of R™ then the inclusion map 1y is an
embedding. Hence there is a neighborhood‘:U(LM) of 1oV such that all elements of
Cv(l ) are embeddings.

R 1 ~ . . A
Definition 10. -A C~ perturbation M of M is defined by M = G(M), where G eC\)(EM).

Making the neighborhood small, one can obtain arbitrarily small C1 pérturbations
of M,

Remark The set of embeddings of M into R® is not open in the weak C1 topology
which is generated by sets of the form;

¢ €claL,R™)
Al (Fse) E{g:m~+R™ | Irpe-cl+ @M, - COMIER
for all x €M

where € > 0 is a constant. In order to see that the set of embeddings is not open
in this topology, consider the l-dimensional submanifold M C 1{2 as shown in
Fig. 15, where the two "tails" get closer and closer to each other. Since M is

a submanifold, the inclusion map 1, is an embedding. Now, in an arbitrary

neighborhood of 1y with respect tonfhe weak C1 topology, one can find a map G
such that G(M) hes "tails" touching each other. Such a map is certainly not an
embedding. On the other hand in the stromng C1 topology, if one chooses e(*) in
an appropriate manner, then all the elements of the neighborhood are embeddings.
We are now ready to state our structural stability result. In the following we
assume that A is closed. This assumption of course entails no loss of generality
for electrical networks.

Theorem 2. Given a resistive n-port N assume that A is closed and A NK # ¢.

(1) 1f A.ﬂiK, then N is structurally stable in the sense that for any small C1
perturbation A of A, the configuration space I=ANK persists to be an n-
dimensional.submanifold. In fact, & is diffeomorphic to I.

(1) If A m K, then N is structurally unstable in the following sense:

(a) If I is not an n-dimensional submanifold, then there is an arbitrarily small
Cl perturbation A of A such that £ is an n-dimensional submanifold.

(b) If ¢ is an n-dimensional submanifold, then there is an arbitrarily small

C1 perturbation A of A such that I contains an (n+k)-dimensional submanifold

for some k > O.

Remarks 1. Recall from Theorem 1 that 1if A n\K then £ is an n-dimensional
submanifold.
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2. When A % K, there are two cases which could happen; (a) I is not a submanifold
of dimension n as in (vi) of Example 1, and (b), I is a submanifold of dimension
n as in Example 11. Statement (ii-b) of Theorem 2 says that if (b) happens, then
one can perturb A in such a way that A NK contains a higher dimensional sub-

submanifold. To see this, recall Example 11. Observe that the constitutive

relation £, (i  ,i_ ) =1 -13 +212 -2i, =0and KCL i, =41 = i_ dmpl
2R Ry TR RTUR TRy Ry~ R, R

> M

2
iP(iP-l) = 0. Next look at the graph of the function g(iP)

i (1,1

It is clear that one can give a small C1 perturbation to f2 in such a way'that
the corresponding graph of the perturbation é(ip) of g(iP) has a flat portion
[a,b] as in Fig. 16. Then the perturbation 22 of Z, is given by

ig =iy =1 =9 R, ° Ry

5 1 2
Ly, = (D

+vp + Ry = 0,0 € [ab] [ . (100

2

This set contains a 2-dimensional submanifold because it is parametrized by (a,vp);

(le’vRZ’vP’iRl’iRz’iP) = (agl’-vP-aRl’VP’a’a’a) ’ V.P €ER, 0. € [a,b].

Hence, even though I is a submanifold of the correct dimension, AAAKK implies

structural instability.

3. ‘Structural stability as used in Section I was vague not only because the term

"perturbation" was not defined rigorously, but also because we looked at I through
the projectionczzwhile discussing concepts of persistence and abrupt changes.
Sometimes it might be more appropriate to comnsider the persistence ofclzrather than
the persistence of I. To do this, however, one might have to assume thatclzis a

submanifold, a more stringent conditiom. e

For the proof of Theorem 2 we need the following four lemmas whose proofs
are given in APPENDIX 2.
Lemma 1. Let M1 and Mé be C1 submanifolds of R®. Then one can obtain an arbitrarily
_srt;all'c1 perturbation ﬁl of M such that ﬁl iﬁ M2 (M]_. N M, may be fmpty) .
Remark A serious drawback of Lemma 1 is that one cannot guarantee M1 f'IM2 )
even if M1 F\Mz # . To be specific, let Ml_= A and M2 = K be chosen such that
ANK ¢ ¢, i.e., the configuration space is nonempty. After pertu?bation, we
may end up with Rm Kbut ANK= ¢. For example, consider the situation shown in
Fig. 17(a). By giving an arbitrarily small C1 perturbation to Mi, one can pull
the two submanifolds apart as in Fig. 17(b). Hence transversality is trivially

gatisfied in this case but serves no useful purpose. However, there is another
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small Cl perturbation of M, as in Fig. 17(c) where ﬁll_h M2 and ﬁl N M, # ¢
This latter perturbation is what we would like to have and the following lemmas
characterize such perturbations.

Lemma 2 Let X and Y be two linear subspaces of R" with dim X = Oy, dim Y = ny

and

ny + n, > n. (101)

—- —

Then there is a nonsingular nxn matrix A such that the matrix norm
la-1l is arbitrarily small (See Fig. 18) and

X + A(Y) = RrRE, xN AQY) # ¢. (102)

i.e.,

xMaw, xnam # ¢ (103)

Lemma 3 Let f and g :R™ > R" be ¢! functions with £(xy) = g(}_go) and

(pf) = (Dg) for some point X, € R™. Then there are neighborhoods Uy and U2
of Owith U
oF %o TR 1
g: R > R"” such that

(1) g=£on U

(1) g = g off U,

(i11) g is arbitrarily close to g in the strong Cl topology. (See Fig. 19).
Lemma 4 Let A be an nxn matrix such that lA-1l is arbitrarily small. Then there

c U2 where U, is the closure of Ul’ and there is a Cl function

1

are neighborhoods Uy and U2 of the origin with Ul - U2 and there is a diffeomorphism
G of R" such that
(1) G=Aon U1
(ii) ¢ = id off U2
(1ii) G is arbitrarily close to the identity map i, in the strong Cl topology.
To prove Theorem 2, we also need to define the transversality of' a funmction to a
manifold.
Definition 11. Let M, and M, be C" submanifolds of R" and let F:1; > R" be a
Cl function. Then F is said to be transversal to M, and is abbreviated by

e Mo, s¢

In(dp)_ + TFkx)Mz =R" (104)

for all x satisfying F(x) € MZ

Remark Transversality of a function is a generalization of transversality of two
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submanifolds. Take F = 1, , the inclusion map of M, then Im(dF) xM]_
Hence (104) is reduced toM}ransversality of and M,. 'l‘herefore, if F: M, » r®
is an embedding transversal to MZ’ then E(Ml) Mz.

Proof of Theorem 2 (i) Assume A NK # ¢ and A mK. Since A is assumed to be

- closed and since K is closed, the set of all Cl functions from A into ZIRb X Rb

which are transversal to K is open [3]. Let 1 1 A > Rb X Rb be the inclusion

map. By assumption 1 iﬁ K. Hence there is a neighborhood CU(t ) of 1 19}
c (A,bell ) such that all elements of Cu& ) are transversal to K. On the other
hand, since the set of all C1 embeddings is open :I.n C (A, beR ), there is a

in

neighborhood C\}( 1 A) whose elements are embeddings. Set CWQ A) = CUQ A) N C\)(l A)

Then CW(I A) is a neighborhood of 1 19) consisting of embeddings of A which are

transversal to K. For any G € Cu}(l ) set R = G(A). Then, as in the proof of

Lemma 1 we have that Ais a (2b-n.R)-d:lmensional submanifold and A ﬂ.\ K. Hence
é A N K is an n-dimensional submanifold. The proof of the fact that £ is

diffeomorphic to I is technically involved. It is given in APPENDIX 2.

(ii-a). Let (y,:j,.). € A NK be a point of nontransversal intersection, i.e.,

b b
T A+T K#R x R . - : 105
ot P Tkt R (105)
In order to simplify notation assume, without loss of generality,that (v,i) is
the origin of RD x Rb. For the general case one can simply translate the origin
to (v,1). Recall that dim A = 2b-n; and dim K = b so Fhat dim T(Y’:DA + dim T(, K
dim A + dim K = 3b-nR > 2b. Hence Lemma 2 is applicable with X =
and we have .

K, Y=T A
T(Y:%) ’ (Y’é)

A +7T K=RP x RP (106)

AT (v,1)

(v,1)

where A is a 2bx2b nonsingular matrix such that lA-1l is arbitrarily smail.)l. Let
- b

"CU(id) be a small enough neighborhood of the identity map i, of R x R such

that elements of C'U(i d) are diffeomorphisms of Rb X Rb.

that there is a diffeomorphism ¢, € CU(:L d) such that for some neighborhoods Uy

It follows from Lemma 4

and U, of (y,1) with U; CU,, the following hold:

(8 g =AonTU; | - aon
- 108

(b) Gy = 14 off U, (108)

(c) 91 is arbitrarily close to i 4 in the strong C:L topology.

Now let 92 be the restriction of gl to A;

G

¢, 2 ¢ln . (109)
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b b

Since G; is a diffeomorphism of R~ x R, G, is an embedding and hence gZ(A)

is a (2b-—nR)-dimensiona1 Cl submanifold. The function §2 locally perturbes A on
; b, .. b

Uy in such a way that (106) holds at (v,i) and leaves A N (R xR -Uz) unchanged.
Therefore there is a neighborhood Uy of (v,i) such that
(g, N Uy M oy (110)

It follows from (107) that 92(\1,1.) = (v,1). Since (y,1) €4 NK ¢ ¢, we have
(G, (1) N Uy N (KWUy) # ¢. (111)

Now, although we have eliminated the particular nontransversal intersection (Y’i':)
there may be some more nontransversal intersectioms remaining, or by applying

)

Lemma 1 with Ml = G ), My = K and obtain a small Cl perturbation A such that

, we might have created new nontransversal intersections. We now apply

Ak (112)

By (110) and (111) we know that 92(“ N U3 and KN U3 have nonempty transversal

intersection. Hence if A is close enough to QZ(A), then local nonemptiness is

not destroyed. Namely, there is a neighborhood u, c U3 of (v,1i) such that

(Arw,) N ®W0,) # 6. (113)

Hence A N K # ¢. Thiss (112), and Theorem 1 imply the result. By choosing
neighborhoods small enough, one can make A arbitrarily close to A.

(1i-b) Let (v,1) be a point of nontransversal intersection. Then (105) implies

K) = 2b-k (114)

dim (T A+T(

(v,1) »1)

for some k > 0. The following is an elementary fact in linear algebra:

e - . . ——

= A hand T K .
dim(T dim T(V’i) + dim T(Y’px dim(T(Y’j:)A + (v,1) )

~ 7~

w00 " Ty, P

This and (114) imply

dim(T(Y’ %)A NnT (v, pK) Zb—nR-!-b—(Zb-—k) = ntk (115)

-37-



for some k > 0. The number k is the extra dimension due to nontransversality.

Applying Lemma 3 we push A onto T L v i)A locally. To this end recall that any

submanifold is locally expressible as the graph of a function. In particular,

there is a neighborhood U of (y,:}) in Rb X Rb and there is a Cl function

F:T ntnu

T(y,1)

such that

N
ANU > (T(Y’p

ANU

graph F

]

L
{(EE:Z) € (T(Y»i-)A) x (T(Y’i)A) N UIZ = F(x) }

b Without

loss of generality one can assume that (v,1) is the origin. Therefore we have

i b
in R R
where ( (v, i)!\) is the orthogonal complement of '1‘( i)A n x

F(0) = 0. (116)
T - 2b-nR 2b-n
I | R "R
Since T(Y’!:)A R . (T(Y’i-)A) =R , we think A lies in R xR .
Now let V be another neighborhood of (v,i) with VCU. Take £ = 0 and g=F
2b—nR
in Lemma 3. Then there are neighborhoods U1 and U2 of 0 in R with
2b- 2b-
I-IICUZCIR l:)RnVa'ndthere:l.saC functionF R anV+]RRnV
such that
(a) :g‘ = 0 on Ul
(b) F=Foff U,
(c) i‘ is arbitrarily close to F in the strong Cl topology.
Let G: (graph F) NV =V be defined by
A .
G(x,y) =(15,‘r;‘(!5)) (117)
A 2b-- )

and let H: A >+ R R x ZlRl.LR be defined by 7 .

B(x,y) & aGx,y) Glxy) + (1->~(§,g))(§,3j) | . (118)

- 2b- ,
where A: R °r x I{DR + [0,1] is a (.‘.l function satisfying
1 onV

Axy) =\o off U.
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Set

A8 aw. (119)
Now H is the inclusion map off A N U, On the other hand H locally flatters A
Zong o
onto T(v i)A sq that there is a neighborhood W of (v,i) in R x R such
~’~
that
ANKNW=T ANT KNW. (120)

(v,1) (v,1)

It follows from (115) that the set (120) is an (n+k)-dimensional submanifold.
If all the neighborhoods and perturbations are small enough, then A will be a
small Cl perturbation of A. R

Remark Our reason for requiring A to be closed is as follows. Let M1 and M, be
submanifolds of R " w;i.th Ml and M, closed. We used the fact that the set of all
functions from M1 into R™ transversal to M2 is open. If Ml is not closed, this
is not true. Suppose, for example, that My = {(xl,xz)lx2 = 0, X, € (0,1)} and
that M2 is as in Fig. 20. Note that (0,0) & 1 (Ml) ﬂMZ and v fT\ Mz. It is

, one can find an embedding G of Ml ‘such
that G(Ml) meets M, tangentially near ::‘?ie origin, i.e., there is a l-dimensional
submanifold M = G(Ml) which is close to L and touches M, in a tangential manner

2
near the origin. Hence G(Ml) ﬁ( M2 Therefore closedness of Ml cannot be relaxed.

clear that given any neighborhood of 1

V. Constructing Weakly Regular n—ports via Pertuﬂ)ation
Given a resistive n—port N with A d{ K, we ask if it is possible to perturb
A in such a manner that the perturbed n-port N has A with A(T\ K. We will show

that the answer is affirmative. Moreover, we will give a second method for
transversalizing A and K by creating extra ports instead of perturbing A. The

first method is called element perturbation and consists of perturbing the
existing constitutive relations A. The second method is called network perturba-

tion and consists of creating extra ports by "pliers-type entry" or "soldering-
iron entry." Note that element perturbation gives rise to a new Rbut it keeps

K unchanged, while network perturbation gives rise to anew ambient space R

X IRb+n and hence a new 11 and a new f(, where n is the number of extra ports created.
Recall that the norator of Example 2 imposes no constraint in so far as the
constitutive relation is concerned. Therefore network pérturba_tion is equivalent
to inserting norators by pliers-type entry or soldering-iron entry.

Rémark_ In the case of RLC networks, network perturbation usually consists of

addition of parasitic capacitors and inductors at appropriate locations. In
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particular, we augment the network by adding arbitrarily small linear inductors
and arbitrarily large linear capa'.citorgu by :pligrs-type entry, and arbitrarily
large linear inductors and arbitrarily small linear capacitors by soldering-iron
entry. Hence in the limit we recover the original network.

We first give a transversalization result via element perturbation.
Theorem 3 Given a resistive n-port N suppose A NK # ¢ and A m K. Then we can find
a perturbation A of Aarbitrarily close to A such that A NK # ¢ and A {ﬁ K. Hence
the perturbed n-port N is weakly regular and structurally stable.
Proof The proof of (ii-a) of Theorem 2 is applicable here because it does not
use the fact that I is not an n—dimensional submanifold. It uses only the fact
that A k. 2

We give next another transversalization result obtained by network pertur-
bation. Recall that the network J’ is obtained by terminating the ports of N
by norators and that(N has b=n + oy branches.
Theorem 4 Given a resistive n-port N let A NK # 0 and Aﬁ{K. Let g be an
arbitrary tree for (N and let S-,e be its assoclated cotree. Create an extra port
in parallel with each branch of g and create an extra port in series with each
branch of i Then the perturbed N is an (n+b)-port and it has the following

properties: (i) A f'\ K # ¢, (ii) A{-f\ K. Moreover N is weakly regular and
structurally stable, where ;\ and K are the constitutive relations and the
Kirchhoff space of ﬁ respectively.

Proof (i) Let gl denote the branches representing the extra ports inserted in
parallel withq and let ‘C’el denote the branches representing the extra ports
inserted in series with ge Lethbe the network obtained from N by terminating

ports by norators. Then 9' %,e 9' is a tree forgN and ‘Ei’ ‘J US.-Q is
its associated cotree. Let

¥ = (Yg 'V £ 15 Vr » Ygl i= (ij sl q ity slqg )

be the variables of . Now let (‘:'0’1:0) €ANK# ¢. We claim that with

Yo & (v » Q% vou "’071) 104 oy *L0Lq og 09
we have
(‘:’o’i ) €K, | (121)
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This follows from the fact that (v i ) corresponds to open circuiting SJ'

and short circuiting gfl and the fact that such situation is certainly con-
tained in the Kirchhoff space K Next, since no resistors are added, A is given

by

A= (D@D €1

(122)

and hence (v i ) E A . This and (121) imply (1).

(11) We compute tz;(v i) for N. Observe that the main part B

loop matrix B of assumes the following form:

v,V
F 4 71
0 -1} vq
B = (123)
|t B3| Y

where ES’ is the main part of B forLJU. The signs of the identity matrices are
chosen just for convenience and such choice of signs involves no loss of gen-
erality. Next observe that f(Q,i) = f(v,i) and that

D, £ = [p, £:01, D; £ = [D £:01, D £ = [D; £:01, D; £ = [p, £:01.
~Y0 Y.1~. 4 Y.;_ Vg™ e 1.3 i'-f . 1.1 1’3~'~

It follows from (34) that this matrix has rank n, for all (V 1) € A. It follows

from (122) that for any (v i) € A N K the subvector (v i) must belong to A.
By Proposition 1, A m K. n

Remarks 1. Theorems 3 and 4 say that given any constitutive relations A pro-
vided that it is a Cu;—nR)-dimensional C1 submanifold, one can always transver-
salize A and K by either element perturbation or network perturbation.

2. 1In the proof of Theorem 4 we took advantage of the fact that transversality is

a coordinate-free property and hence we need to check it in terms of only one
particular tree.

P e ——
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3. 1:leca,ll that the transversality condition (31) requires the vector space IRb
x R™ be spanned by the algebraic sum of T I i)A and T, ( i) The augmentation
~’

procedure of Theorem 4 is to provide more vectors for T(v 1)
—— ~’~

that their algebraic sum gpans the ambient space.

A and T(Y’i)K 80

Observe that in Theorem 4 the number of extra ports provided was b. We will
show, next, that if A has éimpler forms, then the number of extra ports can
be reduced. :
Proposition 9 Given an n-port N let A NK # ¢, A ﬁ{ K and let A be described by
(13). Let ‘J be an arbitrary tree forw , the network obtained by terminating
the ports of N by norators, and let g@ be associated cotree. Decompose ’{l’ and
2 as CJ = R:3 U PJ and 5,8 = R,t U B> respectively, where R and P
denote resistors and ports, respectively. Create an extra port in parallel with

each branch of R and create an extra port in series with each branch of R 2 .
Then the perturbed N is an (n-l-n.R)-port having properties (i) and (ii) of Theorem 4.
Hence N is weakly regular and structurally stable.

Proof Let ?J' be the branches of the extra ports created in parallel with R

and gﬁ be the branches of the extra ports created in series with R, -« Then

AR, UP 3 U 9' is a tree forﬂand Q AR, UP Ug;e is its associated
cotree. Let

13 a2

;\r = s V. Vv ’~ )
~ (" ~P£’~£1 Rx P 31

- ( £ RERE BE I i’J)

be the variables ofd’. The proof of Property (i) is similar to that of Theorem
4. To prove (ii) observe that '

R, Yp, 77
o o -1 i YR,
By=| 0 Bpp Bpp 2,
Ll- Brp I}RR_J Ytl
. . oI
£ = fp> Bpp = O Bpp = [0 -11, Bpg = 10 1




where the submatrices BRR BPR Bep and BPP are those ofJ’ (see (44)) Sub--
stituting these into (46) we have

F o) = [Y 1 ~(R, 0 LD i, L0 11] N (124)
L Ry g L (Vg»ig)

It follows from (34) and (40) that

rank (Ofg) , 4y =y for all (g L) € by - (125)

Let m, be the projection for N defined by (42). Then, since 'rrR(Z) - A; and
singe (v ’i”R) = (YR,:}R), (125) implies that the matrix of (124) has rank np for
all (YR’}R) € 'LrR(Z). By Corollaryl, Am K.

Proposition 10 Given an n-port N let A NK # ¢, A ﬁ( K and let AR be locally
voltage controlled (See Def. 1). Create an extra port in parallel with each

branch of the tree resistors R, . Then the perturbed N is an (n-l-an)-port and

it satisfies Si) and (ii) of Theorem 4, where:nRJ is the number of branches in
R3 . Hence N is weakly regular and structurally stable.

Proof The proof for (i) is similar to that of Theorem 4. (i1i) It is clear that
‘3 A P v ‘J is a tree fordu andge A RyUR, UP, is its associated

cotree, where CJl denotes the ports created. It is easy to show the following:

V. v
"'Pa ~gl
0 -1 i Yr
) 7
897 %e Pmr| W
B B V.
PP -PR| -P,
0 -1
Ber = ¢ Bpp = » Bpr = Bpp» Bpp = Bpp
B B
R -
9{} §R = ¢, P{} gR‘z PV gR’ Pi ftR T 9 D f'-R = ].?j_ fR'
R, 'R, Yp R, *R




Substituting these equations into (46) we obtain

G (i) = -, Sty I G 1. (126)

Since AR is locaily voltage controlled (16) implies that ﬁhe matrix of (126)
has rank ny for all (Y-R’!'R) e'I\R. Since (yR,g.R) = (Y-R’:»‘«R) and since er(i:) C

Ags condition (45) of Corollary 1 is satisfied. This implies Rf-ﬁ K. u
Example 18 Consider (vi) of Example 1. In Example 9 we showed that A ﬁ( K.
Choose g = {Rz,g} as our tree. Create extra port f’ in parallel with R2 as in
Fig. 21. Then ?J' = {P,_I;} is the tree chosen in Proposition 9. Since

1 -1

>

R 19 1

we have from (126) that

g'(v ’iR) =[‘(D £ )ﬁ :D f] = Rl R]. :
~R"~R"~ ~y ~R’~RP:~1i ~R A .
R R I ply) G W 01
: VR *

This matrix has rank 2. This implies R/.ﬁ lﬁ(

A dual argumént to Proposition 10 gives the following:
Proposition 11 Given an n-port N let A NK # ¢, Aﬁf K and let AR be locally
current controlled. Create an extra port in series with each branch of the cotree
resistors R, . Then the perturbed ﬁ is an (ni‘nRt )-port and it satisfies (i.)
gnd (11) of Theorem 4, where nR.t is the number of branches in Ri . Hence N
is weakly regular and structurally stable.
Remark A natural question that arises at this point is: Suppose A iR K and
ANK ¢ ¢ and hence I is an n-dimensional submanifold. Is this n-port struc-

turally stable under network perturbation in the sense that after creating an
extra port, the configuration space‘Z = A N R of the perturbed N is an (n+l)-
dimensional submanifold? The answer is negative as demonstrated by the following
example.
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Example 19 Comsider the l-port of Fig. 22 where the constitutive relations
of Rl and R2 are given by (vi) of Example 1 and the constitutive relation of R

3
is given by :l.R3 = fR (VR ). Choose g = {P’Rl} as our tree. Then B =

3 3
i o)%, s._=p101]%, B, =B__ = ¢ and
> LRP > <PR ~PP
—
“pf, 0 o
1
D, fg=| © ., D, fg=|-Dfy 0 ,
Ry 'R, 2
0 0 —DfR
— 3—4
M 0 0]
D.f=l0,Df=10.
i =R ~i_ *R
Ry |0 "R, 0 1
Substituting these into (46) we have '
— . f '-"
—Dle 0 1 0
{ 1
Tty = = S
1 1]
0 DfE. + 0 1
) : R, | Jw -
It is clear that
v. =v_ =1i_ =41 =0, v = -v_
. . Rl R2 Rl R2 P R3
:={((v,i) ER xR
Vsl _ c
iR fR (vR ), Ve R

3 3 '3 3

and therefore To Waps I onto deiffe'omorphically. It is clear that

rankg (0,0,v_ ,0,0,i_ ) = 3. Therefore Aﬂ-\ K and ¥ is a 1-dimensional
< R R3 R3

submanifold. Now let N1 be the l-port consisting of the port P

and R3 and let N2 be the O-port consisting of R1 and Rz, Then the l-port

N of our interest consists of I\I1 and N2 hinged together. Next, insert an extra
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port P by pliers-type entry between R1 and RZ' The resulting 2-port N consists of N1
and the l-port (call it Nz) of (vi) in Example 1, hinged together. We saw, in
Example 9, that the configuration space of N2 is not a l-dimensional submanifold.

It is clear, then, that the configuration space of N is not a 2-dimensional

submanifold. Hence N is not persitent under network perturbationms.

VI. Reciprocity and Anti-Reciprocity

Our objective in this section is to generalize the definition of "reciprocity"
[13,11] and "anti-reciprocity" [8] for the more general classes of resistive n-ports
considered in this paper.

In order to define these two basic circuit-theoretic concepts [17] in a
coordinate-free manner, let us briefly review some properties of "differential
forms" and "induced maps". A differential l-form or simply 1-form n oni!R2 is a

collection of functions given at each (xl,xz) € IR2 by

Dexy yxy) = E1 (k%) dxy + £, 0x,%5)dx,
where f, and f, are real-valued functions, and dxj = [1 O] and dx, = [0 1] are
1x2 row vectors. Hence the values of N (x1.%,) 2F [1 O]T and [0 l]T are given
T AR R2 T

respectively b = =

P Y DY Dy gy [ 01D = £ Grpuxydy ney oy ([0 11 = £ Gy xy).
Therefore n can be thought of as a vector-valued function (fl’fZ)' If
y = f(xl,xz) where f is8 a real-valued function, then

dy =D_£dx +D_f dx, . _ (127)
: 1 2

The exterior product A of two l-forms has the following property. If

n= fldx1+f2dx2, E = gldx1+gzdx2, then

B,Ag = (flgz-fzgl)dxll\ dx, | | (128)
and

dxll\dxl = dx2 A dx2 =0, dxll\ dx2 = -dx, A dxl . (129)

Exterior product of two 1-forms is a 2-form [4]. Special caution must be exer-

cised when one discusses l-forms on general manifolds instead of on euclidean spaces,

because manifolds are generally nonlinear. See [4] for details. Next, let p be a 1-forrt
on Rz and let F: R IIR2 be a ¢ function where, k > 1. Then F induces a 1l-form

Z on ]Rk by the formula &(w) (w) g nF(u)((DE)w), w € IRk, u € &K . .We write this as

4 & g*g' and we call F* the induced n;al; of,?.? A similar argument holds for 2-forms also.

Again, care must be taken when we discuss 2-forms on general manifolds. We are

now ready to define reciprocity.

Definition 12. A weakly regular n-port N is said to be reciprocal if

n .
(a1, Advy ) =0 (130)
k=1 "k kT
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where 1* is the induced map of the inclusion map 1 defined in (23).

Remarks: 1. We need weak regularity of N because the differential 2-form (130)
must be well defined.

2. Observe that Zd:.P /\dv is defined on ]R.b x]Rb. However, the map 1* pulls
k=1 k ~
this 2-form back to I and defines it on I.

Py

tion (130) depends on the internal resistor variables through l*. In fact the
following holds.

n
3. Although diP Adv_, 1s related only to the exterior port variables, condi-
f:=:1 4

Proposition 12. A weakly regular n-port N is reciprocal if and only if

l*(Edi Adv, ) = 0. (131)

Rt

Proof. Using Tellegen's theorem we obtain [10,11]

*(ZiRk Rk+ Ei dvk) = 0

which implies

n ,
*
1 (2 1deka) = -1 (2} i, dvy ) . (132)
k=1 "k "k
Taking exterior derivative d [4] of both sides of (132) we have’
. R o &
(A /\dka) ~17(Q5 diy Advy ) . (133)
k=1 k=1 k k

This shows that the 2-forms (130) and (131) must vanish simultaneously. K&

The importance of reciprocity lies in the fact that it is closely related
to the existence of potential functioms.

Proposition 13. Let N be weakly regular and let B be any 1-form on I satisfying
N :
= 1%
dg = 1%(3 di, Advy, ) . | (134)
k=1 "k k

If N is reciprocal and if I is simply connected [4], then there is a function
P: Z -+ R such that

B=dp . (135)

2

1f N = gdh is a 1-form, then dr~] = dgA dh + gth = dgA dh since d“h = 0 [4].
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Remark. For a real-valued function P, the exterior derivative d and the ordinary

derivative d coincide [12]. Hence there is no inconsistency.

Proof. By reciprocity and by (134), we have dB8 = 0, i.e., B is a closed l-form
- [4] on Z. Since I is simply connected, it is exact [4]. Hence there is a real-
valued function P satisfying (135). =

In RLC networks reciprocity plays an important role in the sense that the
dynamics gives rise to a gradient dynamical system [11]. Observe that our reci-
procity definition (130) is coordinate-free. We will next give a method for check-
ing reciprocity in terms of some specific coordinates. Of course we need to

check it in terms of only one convenient choice of coordinates.

Proposition 14. Let N be weakly regular with dim £ = m and let (Y,ZNU) be a
local chart at (X’i) for L. Then N is reciprocal if and only if for each
(v,i) € I, the following mxm matrix is symmetric:

T
(PYP)E(P}P)f o : (136)
where
(vp (), 1,G) & moy ) (137)
and m, is defined by (24).

‘Proof. It follows from (127) and (129) that in terms of the coordinate ?, the
2-form on the left hand side of (130) is expressed by

. n (m ovp
Qoy )*(E‘ di, Adv, ) = Zl (x)dx J [z = (x)dx]
= R T 5 ) *L
n om BiP avP 31P v,
= ——(x) ( ) - ( r5(x) |dxy A d
‘g”%[ax T ; ~“XJXj (123)

It is easy to show that this 2-fotm vanishes 1f and only if the following mxm
matrix is a zero matrix: (Dv ) (Di ) -(DiP) (Dv ) But this is equivalent
to saying that the matrix in (136) is symmetric. "

Using Proposition 11 we can check reciprocity in terms of the internal

resistor variables. The following can be proved in the same wéy as that of
Proposition 14. v

Proposition 15. Let N be weakly regular with dim £ = m and let ($,ZNU) be a
local chart at (v,i) for I. Then N is reciprocal if and only if for each

(v,i) € Z, the following mxm matrix is symmetric:
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(Dv) (DL (139)

where
(e (0,1 () & moyl(x) (140)

and = is defined by (42).

If N is normal the following holds.

Corollary 7. Let N be normal, i.e., I andclz are globally diffeomorphic to r"
and C]Q admits a generalized port coordinate. (See Def. 9). Then N is reci-
procal if and only if the following nxn matrix is symmetric for each QP:

T
[fP(PfP)gPHBP] [gp(ggP)D;gP] . (141)

Proof. In this case we can choose x = N, as a global coordinate for I and

T _ T -
(B-YP)T]P = [EP(PE)QP+13P] . (gzp)np [SP(PEP)QP+9P]' Hence the result follows

from Proposition 14; L)

Corollary 8. Let N be normal and letclz admit a global hybrid representation,

l.e., let v, = (v ,v), i, = (1 ,1,), Np = (v»1), &, = (1_,v,) and &p = Fp(npy).
Let
H., H
(oF,) = | ~11~12 (142)
~~P'Np H,. H
<21 <22 4n
~P
where the matrix partition corresponds to those of Ep and Np- Then N
is reciprocal if and only if, for each nP, the following hold:
W)y = En s W) = Gy)T L W), = -0 .
~P ~P ~P ~P ~P ~P

In particular, if<12 is globally voltage controlled or globally current controlled,
then N is reciprocal if and only if (DFP)n is symmetric for all Ny € R".

~P
Proof. 1In this case
oo _[10 _ 107 _looa7
i‘P'LQL]’ PP‘[QQ]’ 00 Tl
and the matrix of (149) becomes
T
[1’11 I312‘“’321}
0 B Jy
The result follows from the symmetry of this matrix. n

If A is represented by (13) we can derive a sufficient condition for reci-
procity in terms of AR instead of I.
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Proposition 16. Let N be weakly regular and let A be described by (13). If AR
satisfies

R
1*[ ai Adv ]=o (143)
2y dtn, MO | < 0
where
n
18 AR+memnR o (144)

is the inclusion map, then N is reciprocal.

Proof. Let 1, and 1, be inclusion maps defined by

1
) 1 bbb
L =% A =2 ROxR® . (145)
Then
=% - (146)

It follows from this that

1*[%@ A dv. ].= 1*1*[n2Rdi Adv, ] . . (147)
~ a1 Ry ~2-1E3 R |

We claim that

]
*
1 [Edi A dv ] =0. (148)
To prove this we first locally parametrize AR;
(vpodp) = (W(@)+1(e)) . (149)

where p varies over an open subset of R ~. Then we locally parametrize A by

~

0 8 (p,vpsip)s
(Y-R’YP’ER’%P) = (YR(E) ’XP’}R(E) ,}P) . (150)

Using an argument similar to the proof of Proposition 13 one can.show that (148)

holds if and only if the following matrix is symmetric:

T _ T
(BXk)g(PER)g - [(PEYR)E 9 9] [(BBER)B 9 9]
T
0 0
= 0 9 9 . (151)
0 00
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Similarly, (143) holds if and only if the following matrix is symmetric:

et ° as)

By assumption, (152) is symmetric and hence (151) is symmetric. This implies
(148). But since [12]

l*(g) =0, (153)

(PpYR)

(153) and (148) imply (131). | n
If AR admits a generalized port coordinate then we have the following:

Corollary 9. Let AR admit a generalized port coordinate. Then AR satisfies
(143) if and only if for each n € R, the following matrix is symmetric:
[g(gg)n+E]T[s(Bg)n+g]. In particular, if AR is globally voltage controlled or
globally current controlled, then it is reciprocal if and only if (gg)n is sym-

-~

metric for all n.

Condition (143) is sufficient for N to be reciprocal but not necessary as

the following example shows.

Example 20. Consider the l-port of Fig. 1(a) where AR is given by

Ve~ 8 (iR »ip ) =0, Ve ~ 8 (iR ,iRz) =0. (154)

1 1 71 2 2 2 1
Since AR is globally current controlled, it satisfies (143) if and only if the
following matrix is symmetric for all (iR ’iR ):
5

D D
:I.ngRl 1R23R1 |
) (155)

)
)

Dinlng Diazgkz

(i ,i
R1

Hence if the matrix of (155) is not symmetric at some point, then (143) does not
hold. Next, it is easy to show that A,ﬂiK for any Cl functions gr and 8g.*
Therefore I is a l-dimensional submanifold. Since iP serves as a coordina%e for I,

and since iRl = iRz = iP, we have

Dy &g +D; gy
D v = R, 1 R, 2 0oy o1
e 1|

1
P~ D +D, g
R iy, R



This implies that (D is a scalar and hence symmetric. Therefore N

17001, Py

is reciprocal for any C1 functions 8 and gR whereas (143) is not satisfied if the

1
matrix of (155) is not symmetric. Finally, if B =1 (2:\r di_ ) then, in terms

= B R

of the coord;natg 1,, we have B = (gRl(iP’iP)+gR2(iP’iB))diP Hence there is a
iP
potential function; B = dP(iP) where P(iP) = siP(gPl(iP,iP)+gR2(iP,iP)]diP and

i_ 1is arbitrary.

P 0

0 Simple connectedness.of T cannot be relaxed as the following example shows.

Example 21. Consider the 2-port of Fig. 23 where

VR le
2 2
= o1 +———=0, 1, -———5=0, v, +v £0%Y . (156)
AR ~R iR1 v +vR R vi +v§ Rl R2
l 2 1 2

This is a 2-dimensional submanifold of l{2><]R2 which is not simply connected.
It is easy to show that A n%K. The space I is essentially the same as AR and is

parametrized by X = (v p.sVp ). One can easily show that (DEP)x is symmetric

and therefore N is recl%rocgl Let
P

Vp
2 1
88 3up dvy = Lyrivy ~ ity
k=1 "k P vp +vr 1 Vo +VP )
1 2 1 "2

Then dB = Edip /\dv = 0. But it is known [12] that there is no function P
satisfying B = dP.

Corollary 10. Let AR be uncoupled, i.e.,

Ay = ,iR)|( )eARk k=1,...,n}

where AR is a 1-dimensional submanifold, k = 1,...,n,. Then (143) holds and

hence N is reciprocal.

Proof. Each di, Adv, 1is a 2-form on a l-dimensional submanifold ARk. The only
possible 2-form on a l-dimensional submanifold is Q [12]. This implies'(143). n

Remark. Definition of reciprocity in terms of a 2-form was first given by
Brayton [13] and used by Matsumoto [11] to give a necessary and sufficient condi-
tion for the dynamics to be a gradient dynamical system.
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We next define "anti-reciprocity" which sometimes plays important roles in the
theory of n-ports [14,17]. In order to define anti-reciprocity in a coordinate-

free manner, we introduce symmetric product of two symmetric tensors instead of

exterior product of two forms. A formal definition is given in APPENDIX 3. Here
we will give an example showing the operation of symmetric product. Let

= = A =
yq = f(xl,xz), Yy g(xl,xz) and let 0 £ dyl Dx f dxl+D f dx2 and

X
g A dy2 = Dx g dx1+Dx g dx2 be associated 1-forms. Then tﬁe symmetric product

~

of n and § i% defined %y the following formula:
©®

g = (Dx ) (Dx g)dxl @)dx:L + (DX £) (Dx g)dx2 ® dx2

H

1 1 2 2
+ ((o, £H(D_g)+(D_£)(D_g))dx; @ dx, . (157)
1 2 2 1
In particular
dxl ® dx2 = dx2 © dxl . (158)

The set of symmetric tensors is closed under the operation © of symmetric
product {15]. Since any 1-form is trivially symmetric, we used 1-forms in (157).
0f course higher order forms are not closed under the symmetric product operation.
Conversely, for higher order symmetric tensors, exterior derivative is not well
defined.

Definition 13. A weakly regular n-port N is said to be anti-reciprocal if

n
*

1[2& ®adv, | =0 . (159)
NP A T N .

This definition is, of course, coordinate-free. We will give next a method for

checking anti—reciprocify in terms of local coordinates.

Proposition 17. Let N be weakly regular with dim £ = m and let ($,ZNU) be a
local chart at (X,:j:) for L. Then N is anti-reciprocal if and only if for each
(X,i) € I, the matrix of (136) is skew symmetric.

Proof. In terms of the coordinate ¥, the left hand side of (159) can be recast
with the help of (157) as follows:

di. ® 4 } > [zm:
V. =
P Pk =]

1 "k

oi v

"k ] ® (Zm: I ]
=1 axj =77 =1 axl ~ 2,.

n
(10113-1)*[
. k=
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avr

n m
= (x) (x) dx, ® dx
kgl j ,; 3x 3 3

m 1> "P

n
= 2 2 . (x)—a';‘-—(x) dx, ® dx

e I R B TR B
% i [aipk BVPk BiP 8VP
+ ———(x)——(x)-i- (x) (x)] dx, @ dx, . (160)
{2 L\ 3%y -7 9%y > 9%, 3 v
In order for (160) to vanish, each coefficient must vanish:
8:[_P BvP
kz_%_axj (x)—ax—(x) =0, j=1l,...,m
zn: |(B:LPk avpk aiPk aka
(x) (x) + (x) (x)] =0, 1<3j<&<m.
AT T A T » 12382

These conditions are equivalent to saying that the matrix of (136) is skew
symmetric. "

Results corresponding to Propositions 12, 14-16 and Corollaries 7-10 hold

also for anti-reciprocity, by merely replacing the word "symmetry" with "skew
symmetry" and the symbol A with ®.

Acknowledgment. The authors are indebted to Prof. M. W. Hirsch of the University

of California for discussions on the structural stability result..
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APPENDIX 1

Let Mi be mi-dimensional Cl submanifold of Rn i =1,2. For each X € MlﬂM

there are neighborhoods Ui of x. in R® and Cl functions £ :I.. Ui -+ ]R such that
-1
N =
M, NU, = £7(0)
= n- NnM .
rank(?f )x n-m, for all x € Ui M:i.

-~

The following fact can be proved in an essentially the same manner as in the
APPENDIX of [16].

Fact A. M1 fT\ M2 if and only if for each x € Mlan

Df1

~

APPENDIX 2

Proof of Lemma 1. Let Ml and M2 be Cl submanifolds of R". Then every neigh-

borhood of the inclusion map 1, : Ml + R" contains an embedding G such that
N

G /T\Mz Hence either g(MZ) M,"is empty or for x € Ml with G(x) € M), we have

n
(gg)x(TxM1)+TG(§)M2 =R .
We claim that

(g§)§(T§Ml) = 'rg(g) (c(my)) . , (A.2)

To see this, let Y be a local coordinate for Ml Then Goy is a local coordinate
for M2 since G is an embedding. Therefore

-1
and
TM = In(Dy )w() | (A.4)
Equations (A.3) and (A.4) imply (A.2) and hence
G(x)(c(nl))+'1.‘c( W = RrR" . (A.5)
Let Ml G(Ml) Then (A 5) implies Mlm M,. n

Remarks. 1. Note that the intersection G(Ml) ﬂMZ may be empty.
2. Perhaps, we should mention here that the term "embedding" in [3] is slightly
different from the one used in [4]. The definition in [3] is the same as the
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one given in this paper, whereas in [4], a map is called an embedding if it is

a proper injective immersion. The former is weaker than the latter in the sense
that embedding in the former sense plus the "proper" condition imply embedding
in the latter sense. In fact, an embedding in the former sense is proper if and
only if its image is closed as a subset of the range space. Theorem 2.4 of [3]
which we used in the proof of Lemma 1 uses the weaker definition. It is easy,
however, to obtain the same result with the stronger definition of embedding
provided that M1 is closed. Since we are assuming that A is closed, there is no

confusion.

Proof of Lemma 2. Let {fl""’fn } and {gl,..., } be bases for X and Y, respec—
tively, and let Z 8 span{fl,...,f x,gl,...,g }. Lét dim z 4 ny +k and without

loss of generality assume Z = span{gl,...,g ,gl,...,gk}. Let Zl be the ortho-

gonal complement of Z and let {el,...,en } be its orthonormal basis. Define

-(nxfk)
gl é gl’...’-%k é §k
~ A A A
B4l = §k+1+sl"°"§n-nx = gn—nx+'sn-(nx+k)
A . A A
gn-nx"'l = gn-nx"'l’...,g% é gnY .
We first claim that
~ A n .

Span{f ’ooo’f ’g ,ooo’g } = ]R ) (A'6)

~1 ~ny =1 ~ny

~ i.e., the vectors in the bracket of (A.6) are linearly independent. To
this end let

o g =0

+e+ee+0 £ +8B
1 x Tk

151 oot B1:1-1'1X§n—nx
i.e., |

{
o fy et “nxfnx +Big o B By (g te) ot Bn‘“x(gn'“xfs“' (“x+k))

= 9 . (A.7)

Since {el,...,en_( +k)} C ZL and since e,'s are orthonormal, taking inner product

of (A.7) with e, we have

= .8

Bg1 = 0 - (A.8)
Similarly, taking inner product with €pseees® _(nx+k), we have

= e e = Aog

Bk+2 Bn— 0. (A.9)

x
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Equations (A.7)-(A.9) imply

se =0, A.10
o, f, + +oznxf.nx 0 (A.10)
But since {fl""’f } was assumed to be linearly independent, (A.9) implies
X
o, =***=0_ =0, ' (A.11)
1 ng

This together with (A.8) and (A.9) imply (A.6). Next let ¥4 span{gl,...,g 1.

If € > 0 is small enough, then llelﬂ,...,ﬂ |l < € imply that dim ¥ = n,

e
~n-(n+k)
because small perturbations do not destroy linear independence of vectors. Hence

X+¥ = " . (A.12)

Finally it is clear that ¥ = A(Y) for some matrix A and if € > 0 is small enough,

then flA-1] can be arbitrarily small. Since any linear subspace contains the
origin, XnA(Y) # @. This and (A.12) imply (102). m

Proof of Lemma 3. Let CU(f 3€(*)) be an arbitrarily small neighborhood of fin
C (R , R ) as defined by (99). Since E(x) > 0 for all X € IR there is a neigh-
borhood U = {xG]R | llx-—x l <6 } for some 6 > 0 and t:here is an € > 0 such that

€(§) > € for all X evuv. (A.13)
Next recall Taylor's formula;

£(x) - g(x) = £(x,) - g(xy) + ((Pf’xo‘(l’é)xo] (x-x0) + Iz-x IR(Iz-x,01)  (A.14)
where the remainder term satisfies R(lx-x,l) + 0 as lx-x I > 0. Choose §, >0
in such a way that

sup  |R(Ix-x,1) | <§ . ' (A.15)
ﬂx'x0ﬂ< -

Choose 62 > 0 in such a way that

€ .
[lx-:ulﬂ)<6 “(Pf)i‘-(gg)l‘“ <3 (A.16)
and let 6§ A min{Go, 1,6 }. Set
U, & {x€R"| Ix-x,1 <6} . | | (A.17)

Then there is a neighborhood U1 of X and a C1 function yu: R" [0,1] such that

(a) U, Cu

12 | 4 (A.18)
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1l on Ul

() u@x = (A.19)°
0 off 02
© 1o <2 sorant xe . | (4.20)
Such a function~is called a bump function [3]. (See Fig. 24.) Set |
§(x) & NEEG) + (L-u@E)gk) . (a.21)
Then
§=fonl : (A.22)
and
g =8 off Uz. ' (A.23)
" We claim that § is inQU(£3e(+)). To this end ve compute the following:
130-g Gl +1 08, ~0g), I |
< HEIEE-g 1 +uE 1D - @) 1 +10W 11£x-gx)]
< (u(x>+n(nu) ll)uf(x)-g(x)u+u(x)[|(nf) —(Dg) I . (A.26)

Since u(x) = 0 off UZ’ the right hand side of (A 24) is zero off Uz Now for

llx—xoﬂ < & we have, using (A.14)-(A.17), (A.20),

(e + 1w DIEE-g@ 1 +uE) 1@, -9y I

< (1+6)ﬂx X llR(llx X 1)) +[](Df) -(Dg) [

2 €E,E_E €
<(1+6)G—-+ ((S+2)9 32 3-!-3 €

It follows from this and (A.13) that g belongs to CU(f s€(*)). Hence g is close
to g in the strong C1 topology.

~

Proof of Lemma 4. The proof is similar to that of Lemma 3 3. Let CU(id,e( )) be
an arbitrarily small neighborhood of the ident:l.ty map 1 4 in C (]R R ) Let U
and € > 0 be defined as in the proof of Lemma 3. Let A satisfy {lA-l[I < - and
let § & min{G } where 6 > 0 is as in the proof of Lemma 3. Define

U, A {i{e anl “:jll <§}. Then there is a neighborhood Uy of the origin and there
is a C* function u: Rr® + [0,1] satisfying (A.18)-(A.20). Let

G (x) u(x)Ax-l-(l—u(x))x. Then G1 =Aon Ul’ gl = id off U2. We claim that
G GCU(id,e( )). Since u(x) = 0 off UZ’ we need to check it only on Ul '
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16, Ge)-xl + 0 (06D _~11 < W(x) IAx—xl +u(x)IA-11 + (DW), JAx—x|

(uG0+@W), ) IAx-x] +u(o 1A-11

IA

< (L+204) Izl 1a-10 +1a-10

le e 13
2Tty T T S €

Hence G GCU(id,e( )) and therefore Gl is close to G in the strong Cl topology.

Proof of (i) of Theorem 2. In order to prove that Z and £ are diffeomorphic we

b
first define a family of Cl maps G : A > ]RbXR by

G, (v,1) & (1-t)1, (v, D) +£G(v, 1)
_where t € R and G is obtained in the proof of the first half of (1). Define

themapY:Ax]R +1Rb>< ]RbXJR by

Y(v,1i,t) = (Gt(v,i) t)

Since G (v,1) - 2 (v,i) = t(G(v 1) - (v i)) and since Y(v,i,t) - (lA(Y’j«')’t)
(G (v i)-1i (v,i) 0), we see that if G is close enough to 1 19\ in the strong

C™ topology, then there is a number € > 0 such that G is an embedding transversal

to K for all t€E I = (-e 1+€), and Z = Yl(AXI) is an embedding transversal to K x I.

By the same reasoning as that of the proof of Theorem 1 we see that M A Z(AxT)

N (KxI) is an (n+l)-dimensional submanifold. Now, let

M, i\ z(Ax {eh N(kx{t}h.

Then M = :8 M and M is naturally identified with G (A) NK. Hence I = MO and

f= Ml, where Z A’\K and § = AﬂK We next construct a diffeomorphism between

9
MO and Ml' To this end let (O’Bt) € ‘1‘( vo1,t) (Ax I) be the vector field on Ax1I

along the t-axis. Let G (v, i) 2 X. Then, since T( eTtI, we can

ot T(;g,t)Mt

decompose the vector (dZ)( i, t)((o’at)) as (dZ) (v,1,t) ~1(x, £) ® (-§E-)t where
~1( t) (x t) . Next, let P( t) ( t:)Z(AthT) > T( t)Mt be the ortho-
gonal projection and set
A 9
)-S(f,t) = B(g,t)}fl(lc,t) +(3t)t ‘ . (Af25)

9a vector field X on a manifold M is a function such that for each x € M, the
value Xx at x belongs to T M. The vector field 3/3t has the property that

(at ¢ = ~1 for all.t.
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We first show that Xis a Cl vector field on M. For (x,t) € M choose a local
2b-n_+1 -
coordinate ?Z :Z(AxI) NU »> R R for Z(AxI) in such a manner that wz(g)

= (yl, cos ,yn_'_l,O, «++50). Without loss of generality assume

that the basis (ngl) (a~3—), k = 1,...,2b-n.R+1, for T Z(AXI) is orthonormal.
~" k

(x,t)
It is clear that with respect to this basis, the projection P
by the following (2b-nR+1) x (2b-nR+1) matrix:

(x,t) is represented-

bl {{1 0
b ({0 0
nl b

This is true for all x € Z(AXI) NU. Hence lg(x t)gi(x t) is Cl. Clearly
~’ ok 4

(ait-) ¢ 18 ¢! and therefore X defined by (A.25) is ct. we next show that if G

is close enough to 1, in the strong Cl topology, then fo:; each (:50,0) €M,

the trajectory g(:so,t) generated by X is defined for all t € [0,1]. To prove
this suppose thgt the maximal interval of existence of Q(go,t) is [0,B), where
0<B<1, i.e., either $(xpot) *y EMor "?(go,t)" *ast>B. We first
claim that the first case is impossible. Since Z is an embedding and since

A is assumed to be closed, Z(AxI) is a closed subset of Rb x Rb x I. Therefore
M = Z(AxI) N (KxI) is a closed subset of R® x RP xI. Hence, if ?(go,t) >y
as t > B, then we must have y € M. 1In order to prove that the second case is
also impossible notice th;t if G is close enough to 17\ in the strong Cl
topology, then dZ is close to <16 Al d) and hence }_(1 is small.b Sincg 1‘3(1:, t)

is a projection, g(x,t) gl(x,t) is also small. Now let Q: R xR xI=~>I

9

be the orthogonal projection. It follows from (A.25) that Q ;{(x ) = (37:') £
ik 4

Hence X generates a solution ¢(§6,t) on M such that Q ?(go,t) = t. Next, since

Q(go,t) is a curve in IRb X Rb x I, we can write Q(go,t) = (¢1(§0,t),...,

2b ) ' - ' 2b )
¢ (§O.F),t + Similarly, we have ‘)'{(?E’t) (xl(.g,t)""’x({;,t),l .k It follows
from the above argument that there is a number L > 0 such that |X

all t € [0,8). Integrating Xl((x k
Sy

(x,t)l < L for

t (g £)-6"(x4,0)
= IO x?i(i‘o’s)’s) ds. Hence |¢k(§0,t)-¢k(‘§o,0)| X LB for all t € [0,B).

Therefore, the second ‘case is also impossible. Since Q(:Eo,t) is well defined

t) with respect to t, we have ¢

for t € [0,1], we have Q ?(50,1) = 1. It follows from a property of solution ,
of differential equations [3, p. 150] that @(Mo,l) = Ml and the map $(51): Mo + Ml
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is a diffeomorphism. Therefore I and % are diffeomorphic..
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APPENDIX 3

Let X A r® xe o o XRD and let f be a p-linear function on X, i. e., for any
p times

1 j-l j+1

oy 1, ey,

seeesX p)elR x---xR the function f(xl,...,x 3 *sX seeesX
(p-l) times - ~ ~
R > R is linear for all j = 1,...,p. The set of all p-linear functions on X

is a vector space X*. Let f be a p-linear function on X and let g be a q-linear

function on Y Q R"x:++xR". Then one can naturally define a product of f and g
q times - -
by the following formula:

1 1
f(zj ,...,}_Sp)g(z ,...,zq) .

This is called the tensor product of £ and g and denoted by f@g. Let Gp be the

set of all permutations of (1,...,p) and let 0 € Gp. For any f € X* and any
(%, ...,xP) € X, define

(0 .. 0xP) & £TD, L 10y

If of = £ for all 0 € Gp, then f is called a symmetric p-tensor. The set of all

symmetric p-tensors X';is a linear subspace of x*. Let
s £4 of .
~P~ Tgeg, "~

For any symnetrié p-tensor f and symmetric q-tensor g define

40} g (f@g) .

(o) ! +q)!
It can be shown that £ ® g is, again, a symmetric (p+q)-tensor, i.e., the set of
symmetric tensors is closed under the operation of @ which we call symmetric
product. We can define symmetric tensors on manifolds. Let M be a manifold.

Then w is said to be a symmetric p-tensor field on M if for each z € M, the value
wz of w at z is a symmetric p-tensor on TZM XKoo eX TzM. Let Ml and M2 be two

-~ .: -~
p times

manifolds and let F: Ml > M2 be Cl. Let w be a symmetric p-tensor field on MZ'

Then F naturally pulls w back to Ml and induces a symmetric p-tensor field on Ml;

F*w) (x5, .0,xP) A o )(<dF> 1), en0s (@) (xP))

where z € Ml and (x seee ,xp) ET Mlx eeexT Ml The map F* is called the induced

2.

p times

—— . — ——

map of F. Next, for o € GP let
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e 4

{ 1 if 0 is an even permutation
o

-1 if o is an odd permutation.

If f € X* satisfies GE = eof for all g € Gp, then f is called an alternating
p-tensor. A differential p-form is simply an alternating p-tensor field on a
manifold. Hence formally we should have used different notation from diP and
va in (159). But any l-tensor field is trivially alternating ggg_symme%ric.
Henge there is no inconsistency in defining symmetric product of two l-forms.

For more on this subject, see [15].
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Definition

= U..'U
z Zl 22

Zi: ki-dimensional
submanifold

Classification

quasi weakly
regular

l

weakly regular

Sufficient
Condition

rfx

. rank(de)(v 1)

1,

afh x

cI?: n-dimensional
submanifold

L=k (gP)

regular EP: immersion
strongly A ﬁ\ K
regular nP:embedding
globally a
strongly I* R
regular Tp? embedding
normal

Table 1. A summary of definitions, classificationms, and sufficient
conditions of different categories of resistive n-ports.




Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7
Fig. 8

A l-dimensional submanifold of R.

Examples demonstrating resistors with simple constitutive relations
when interconnected could give rise to complicated constitutive rela-
tions in the composite l-port.

(a) The circuit diagram.

(b) Constitutive relations of R,, R, and the composite l-port.

s
A l-port (norator) whose constitutise relation consists of the entire
plane (1R2) .

(a) A norator circuit realization.

(b) Constitutive relation of the norator.

A l-port (nullator) whose constitutive relation consists of a single

- point.

(a) A nullator circuit realization.

(b) Constitutive relation of the nullator.

A l-port whose constitutive relation consists of all points within a
bounded region in ]RZ.

(a) The circuit diagram.

(b) Constitutive relation of Rl'

(c) Comstitutive relation of Rj.

(d) Constitutive relation of the composite l-port.

A l-port whose constitutive relation consists of a parametrizable
curve in RZ.

(a) The circuit diagram.

(b) Constitutive relation of the composite l-port.

A l-port whose constitutive relation consists of all points belonging
to the intersection between the constitutive relations-of the internal
resistors.

(a) The circuit diagram.

(b) Constitutive relation of Rl'

(c) Consti;utive relation of R2.

(d) Constitutive relation of the zcomposite l-port.

A commutative diagram showing the relationship between the derivative

'(dF)x of F at x and its equivalent expression via local coordinates.

~



Fig.

Fig.
Fig.
Figf
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

10

11

12

13

14

15

16
17

18

19

20

21
22

23

Examples of immersions which are not embeddings.

(a) An immersion which is not injective.

(b) An immersion which is not a diffeomorphism onto its image.
Configuration space of the composite l-port of Fig. 1(a) with the
internal resistor conmstitutive relations given as in (iv) of Fig. 1(b).
Configuration space of the composite l-port of Fig. 1(a) with the
internal resistor constitutive relations given as in (vi) of Fig. 1l(b).
Illustration of transversality between A and K.

(a) A is transversal to K. .

(b) A is not transversal to K.

A weakly regular l-port with A ﬁ\ K.

A function G close to F in the strong Clvtopology. _

An example showing the set of embeddings is not open in the weak C1
topoldgy.

Perturbation of the function g(iP).

Two possible transversalization of Ml and M2.

(a) M,
by ¥, wy, O, = 9.

@ i, M, ¥ oM, # 0.
Transversalization of X and Y.

is not transversal to MZ’

(a) X is not transversal to Y.

(b) X is transversal to é(Y).

Perturbation of the function g-

An example showing the set of functions transversal to'M2 is not open

if Ml is not closed. v .

Transversalization of A and K by network perturbation.

An example of an n-port which is not structurally stable under network
perturbations.

A reciprocal 2-port whose configuration space is not simply connected.

A bump fuhction u(x).
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