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ABSTRACT

This paper presents several general properties of resistive nonlinear n-

ports from a geometric point of view using recent tools from differential topo
logy. The geometric approach is coordinate-free and hence the results of the
paper do not depend on the particular choice of a tree, a loop matrix, a cut set
matrix, a set of independent variables, etc.

Firstly, a classification is given of resistive n-ports into logical
categories such as weakly regular n-ports, strongly regular n-ports, normal n-
ports etc. Transversalltv of the internal resistor constitutive relations and

the Kirchhoff space plays an important role in this paper. Secondly, a
structural stability result is given. In this paper, structural stability means

the persistence of the configuration space under small perturbations of the internal
resistor constitutive relations. Essentially the result asserts that a resistive
n-port is structurally stable if and only if the internal resistor constitutive
relations are transversal to the Kirchhoff space. Thirdly, two basic
perturbation techniques are given which guarantee the transversality of the
internal resistor constitutive relations and the Kirchhoff space. The first
technique involves element perturbations, i.e., perturbations of the internal
resistor constitutive relations. The second technique involves network perturbations,
i.e., by augmenting extra ports to an original n-port. Lastly, coordinate-free
definitions of reciprocity and anti-reciprocity are given in terms of exterior
product and symmetric product of two tensors, respectively, and then some of
their properties are investigated.
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I. Introduction

This paper presents some properties of resistive nonlinear n-ports from

a geometric point of view. The geometric approach has the distinct advantage

in that it is coordinate-free, and hence our results do not depend on the parti

cular choice of a tree, a loop matrix, a cut set matrix, a set of independent

variables, etc. Therefore, if a property of an n-port, such as reciprocity, is

satisfied in terms of one coordinate system, then it is satisfied in terms of

every other coordinate system. On the other hand, if a property fails to hold

in terms of one choice of coordinates, then whatever coordinates one chooses,

this property is not satisfied. Hence properties and results obtained by a

geometric method are intrinsic to a given nonlinear n-port.

In Section II we review some basic geometric concepts that are needed for

this paper. In Section III we give a classification of resistive nonlinear n-

ports. Here, transvcrsality of the internal resistor constitutive relations and the

Kirchhoff space plays an important role. In Section IV we discuss structural

stability of resistive nonlinear n-ports. Although this important concept has

not been invoked in nonlinear circuits, we have found it to be of fundamental

importance especially in device modeling. Essentially, the main result asserts

that a resistive nonlinear n-port is structurally stable if and only if its

internal resistor constitutive relations are transversal to the Kirchhoff space.

In Section V we present two basic perturbation techniques which guarantee that

the internal resistor constitutive relations are transversal to the Kirchhoff

space. The first technique involves element perturbations, i.e., perturbations

of the internal resistor constitutive relations. The second technique involves

network perturbations, i.e., by augmenting extra ports to an original n-port.

In Section VI we first give coordinate-free definitions of reciprocity and anti-

reciprocity of resistive n-ports and then derive various criteria for reciprocity

and anti-reciprocity in terms of a specific choice of coordinates. For these

definitions we need to introduce "exterior product" and "symmetric product" of

two tensors. We also show that reciprocity is closely related to the existence

of potential functions.

Now, in order to motivate and justify the large hierarchy of n-ports to

be introduced in this paper, consider the following examples illustrating how

simple elements when interconnected could lead to complicated constitutive

relations.
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Example 1 Consider the 1-port shown in Fig. 1(a). The composite constitutive

relation of this 1-port correponding to eight different combinations of the

"internal" resistor constitutive relations are shown in Fig. 1(b) , where ip

» f (v )orvn = g_ (i_ ), k = 1, 2. Observe that some of the constitutive
\ \ \ \ \

relations of the 1-port have self intersections, while some contain disconnected

components.

Example 2 (norator) Consider the 1-port shown in Fig. 2(a) where the internal

resistor constitutive relation is given by

i - i = 0 <X>iR ip u.

Since the Kirchhoff laws are given by vp + vR = 0, ip - ±^ = 0,
one can easily show that the constitutive relation of this 1-port is the whole

space m2 (see Fig. 2(b)). This 1-port is called a norator [1]. Observe that
in (1), ip and 1 are coupled to each other.
Example 3 (nullator) Consider the 1-port shown in Fig. 3(a) where the internal

resistor constitutive relations are given by i - ip « 0, v s 0.
Rl R2 Rl

Since the Kirchhoff laws are vp + vR =0, vp -vR =0, d^ - iR + iR =0,
1 2 •*•__.

one sees that the only possible value of (Vpjip) is (0»Q)> i.e., the constitu
tive relation of this 1-port consists of one point only; namely, the origin

(see.Fig. 3(b)). This 1-port is called a nullator [1].

Example 4 Consider the 1-port shown in Fig. 4(a) where the constitutive relations

of JSL and R2 are given by Figs. 4(b) and 4(c), respectively and the constitutive

relation of R0 is given by i„ - i„ - 0. It is not difficult to show that the
3 R3 R-l

constitutive relation of this 1-port includes the shaded area of Fig. 4(d).

Example 5 Consider the 1-port shown in Fig. 5(a) where the internal resistor

constitutive relations are given respectively by 1^ - fR (vR ) » 0, iR - fR
J. -L -L £. £•

(v. ) = 0, vB - 0, ip - ip = 0, v_ - i = 0, and f and f are arbitrary
R2 R3 R4 R3 R5 R2 V R2

C functions. It is not difficult to show that vp - ±^ « fR (vr ), ip » iR =

Observe the polarity of v_ is chosen opposite to the usual convention. This
is done to simplify the hypotheses of several theorems in this paper.
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fp (v_ ). Since v = v_ , we can write this as
K2 R2 ^L R2

intersection of A and A_ as shown in Fig. 6(d).

(2)

i.e., the constitutive relation of this 1-port admits a global parametric

representation in terms of p. By specifying fD and f we can realize an ar-
Rl R2

bitrary 1-port whose constitutive relation is of the form (2). See Fig. 5(b),

for example.

Example 6 Consider the 1-port shown in Fig. 6(a) where the internal resistor

constitutive relations are given respectively by (v ,jL ) €= A , (v ,i ) €
Rl Rl Rl R2 R2

^ , v - vR + vR = 0, iR - :U = 0, where A^ and A^ are as given by Figs. 6(b)
2314 41 12

and (c) respectively. It is not difficult to show that v = -v * -v .
P Rx R2>

ip = iR = ir. . Hence the constitutive relation of this 1-port is the

l2

The preceding examples show that very exotic constitutive relations could

result from interconnecting resistors with simple constitutive relations.

These observations motivate our classifying resistive n-ports into various

logical categories to be defined in Section III.
2

Another important property of n-ports is its structural stability to be

defined precisely in Section IV. Roughly speaking, an n-port made up of

an interconnection of elements is structurally stable if it is persistent under

small perturbations of the internal resistor constitutive relations. Consider,

for example, (vi) of Fig. 1(b) where the constitutive relation of the composite

1-port consists of a curve and an isolated point. If one perturbs the consti

tutive relation of R« slightly as shown by the broken curve, then the isolated

point disappears and the constitutive relation becomes the union of two curves.

Hence a small change of the internal resistor constitutive relation gives

rise to an abrupt change of the composite 1-port. It makes sense therefore to

call this 1-port structurally unstable. In contrast to this, the other examples

2
Since resistive n-ports do not have dynamics, structural stability in this paper

has a different meaning from that of dynamical systems [2].
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in Fig. 1(b) are structurally stable because small perturbations of the internal

resistor constitutive relations do not essentially change the constitutive

relation of the composite 1-port.

Consider next Example 2. Let the dependent current source be described
1 Aby a C approximation f(ip) of the original identity function f(ip) = ip such

that f(ip) > i if i> 0 and f(i ) < L if L < 0. In other words, let the
"perturbed" constitutive relation be given by i_ - f(ip) - 0. Then, since

i_ ^ i_ except at the origin, we see that ip = 0, and the new constitutive

relation is the v -axis. Since the original constitutive relation is the whole

space ]R , this 1-port is structurally unstable.

Consider Example 3. Let f(i ) be a C approximation of the identity
R2

function f(i_ ) =» iD such that
R2 R2

(Df), - 1 >0 for all :L O)
R2 2

where (Df), denotes the derivative of f at -i- . Perturb the constitutive
1R 2
*2

relation of F~ in such a way that i - f(i ) = 0. Then we have

vp =0, S-(f(i^) -ij-0. (4)
A

It follows from (3) that the image of f - i, contains an open interval of the

i -axis, where i, is the identity map. Since originally the only possible
P d .

value of (v , i ) was (0,0), this 1-port is structurally unstable.

Consider Example 4. Let f(i ) be a C approximation of f(dL ) =
Rl Kl

ip^ ,where f(i )>ip if iR >0and f(iR )<iR if ip <0. Perturb

the constitutive relation of R3 by iR -f(iR )=0. Then 1^ =iR =0and

hence the constitutive relation of the composite 1-port coincides with that of

R2 which is a 1-dimensional curve. Hence this 1-port is structurally unstable.
Similarly, we will give a rigorous proof later showing the 1-port of Example

5 is structurally stable, while that of Example 6 is structurally unstable. We

will also show that transversal!ty of the internal resistor constitutive

relations and the Kirchhoff space is crucial for structural stability.
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General Remarks For simplicity, we will sometimes abuse our notation with

regards to the transpose of a vector or a matrix. To avoid wordiness we will

usually refer to the constitutive relation of an n-port instead of the constitutive

relation of a "composite" n-port.

II. The Coordinate-Free Approach

For the purpose of this paper, a resistive n-port N is assumed to be an

interconnection of "n " internal coupled 2-terminal resistors and "n" external

terminal pairs which we call ports. We will often view an n-port N as a network

t^M by terminating the ports of N by norators.^ Now let v_ and v_ denote the

voltages of the internal resistors and the external ports, respectively, and let

iR and ip be the currents of the internal resistors and the external ports,

respectively, so that (y-,1,,) € n x R and (v„,i„) € nn x Rn. Let
b hy «= (yR,y ), ia (JR>ip) and b = nR+n' 'Rien (Y»i) e m x m • Every n-port N

in this paper is assumed to satisfy the following properties:

(a) The linear graph which defines the topology of N is connected.

(b) N is time-invariant.

(c) The internal resistor constitutive relations are characterized by

(y,i) e AC Rb xmb (5)

where A is a (2b-n^)-dimensional C submanifold.

Remarks 1. There is no loss of generality in assuming (a) since disconnected

subgraphs can be hinged together. Connectedness is necessary for a tree to exist.

2. Most of the results of this paper can be easily generalized to time-varying

case under appropriate conditions. We make this assumption simply to avoid

introducing complicated notation.

3. Under assumption (c), resistors can be coupled to each other and they need not

be voltage or current controlled. Even coupling among (yR,iR) and (yp,ip) is
allowed. Equation (1) of Example 2 is a case in point. This includes virtually all
modes of representation including hybrid and transmission representations. In

particular, a broad class of dependent sources is covered by this formulation. We

regard independent sources as uncoupled resistors. All multi-terminal elements are

represented as coupled 2-terminal elements. To illustrate why the dimension of

A is chosen equal to 2b-nR, consider (i) of Example 1, where

3
Observe that since norators impose no constraints on the port voltages yp and
the port currents ip, they only serve to guarantee the current entering one
terminal of each port j is equal to the current leaving the other terminal in the

same port j. The relationship between v and ip therefore remains the same as
that of N.
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A-{(v.i) 6K3 x,3,^ _f^)# ^ = }j
Then, clearly, A is a 4-dimensional submanifold. Since b • 3, n. • 2, one has

4 • 2b-np. A similar remark applies to all other examples.

4. A resistive n-port can be derived naturally from an RLC network upon replacing

capacitors and inductors by ports. If we let nfi and n_ be the number of capacitors
and inductors, respectively, the result is a resistive (n^-hO-port.

Now, for the convenience of the reader, we will briefly describe some geometric

concepts needed in the later sections. Details are found in [3,4]. A subset M in

£ is called an m-dimensional C1 submanifold if a neighborhood about each point
of M looks like R . More precisely, M is an m-dimensional C submanifold of H

if for each x £ M there is a neighborhood U of this point in Hn and there is a C1
diffeomorphism J:M HU •* tjj(Mnu) C Rm. For example, each point x of M in Fig. 7
has a neighborhood U such that M n U is diffeomorphic to an open interval in R.

2
Hence this is a 1-dimensional submanifold of H . The function } is called a local

coordinate for M at x and f" is called a local parametrization for Mat x. A pair

(j,*Tti) is called a local chart for Mat x, It should be noted that given a point

x £ M, there may be many charts.

There is another way of defining a C submanifold of R which is equivalent

to the above definition. A subset M is an m-dimensional C submanifold of IR if
n 1

for each point x € m, there is a neighborhood U of x in 1 and a C function

f:U •*• mn~m such that

m nu - {x e Kn|f(x) - 0} (6)

and

rank(Df) = n-m for all x e m O U (7>
— ?

where (Df) denotes derivative of f at x.
— 5

The Tangent space of M at x is a linear approximation of M at x. More

precisely the tangent space T M is given by

TM » Ker(Df) (8)
X ""• x

where f is in (6) and Ker denotes kernel of a linear map. It turns out that

tangent space is given also by

-1, (9)T?M -Im(D$ -)$(;)
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where \j> is a local coordinate for M at x and Tm denotes the image of a linear map.

It can be shown that T M does not depend on a particular choice of coordinates.

Let M, and M« be C1 submanifolds of S. with dimension m, and nu, respectively.

A function F : M, '-»• M« is said to be C if for each x £ M- there is a chart

(i|),Mnn) for M, at x and there is a chart (^.M^) for VL^, at F(x) such that
F(ftAj) CmHv and such that the function $°f ° $~ ' {(M^iu) •* j(M Hy) is

C . The derivative (dF) :TM. -> Tw vML of F at x is a linear map defined as
A ~~ ? * x -L t^Sv -1 A

follows. For ££ T^ let £ be defined by £ = (D$ ^(x)|' Since ty is a
diffeomorphism, it follows from (9) that such a £ exists and is unique. Then we

define (dF)x§ =tj where n«(8l"\.F(x)3» D"(?$°?°i~1)]|,(x)l- Hence WPX
has the following representation in terms of coordinates (see Fig. 8):

(d?)?= <?r\.F(5)(?*»?'<f\(s)(?*>;- <10>
It can be shown that (dF) is independent of the choice of coordinates.

Since the derivative is a linear map its rank is defined. A C function

F : M- -*• M« is called an immersion if

rank(dF)x = m1 for all xG M1» (11)

where m. is the dimension of M...

Note that the image of an Immersion can have self intersections. For example, the

set r of Fig. 9(a) is the image of the circle S under some immersion. Since T has

a self intersection it is not a C submanifold, i.e., at point y, there is no

neighborhood U such that r H U is diffeomorphic to an open interval. Even the

Image of an injective immersion may not be a submanifold. Consider, for example,

the function F taking the half infinite interval (-a,°°) into V of Fig. 9(b), where

F(x) approaches y as x tends to °°. Although r does not have self intersection,

the point y cannot have a neighborhood U such that r H U is diffeomorphic to an

open interval. Clearly, the class of C functions which are immersions is very

large. In order to guarantee the image of a function to be a submanifold, one

needs the stronger concept of an embedding. A function F : ft. -*• M« is said to be

a C embedding if it is an immersion and if it maps M1 diffeomorphically onto its

image F(M,) C m«, where the topology of F(M^) is the induced topology. Namely,
open subset of F(M~) is defined by F(Mj) H u, where U is an open subset of M2*

The function F of Fig. 9(b) is not an embedding. To see this let y G T be a

sequence of points following the arrow and approaching the arrowhead y. But

F (y ) diverges to ». Hence F~ is not continuous at y and therefore F cannot be a

We use the symbol dF when the domain of F is a general manifold while we use
DF when the domain is an euclidean space.
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diffeomorphism onto its image. This implies that F is not an embedding.

Now, recall (5). We now consider several important special cases where A

can be represented in various special forms. Suppose that (YR»iR) a*"1 (YP>£p)

are not coupled to each other and suppose that (yR,iR) must satisfy

*rU? e ar (12)
1 ^ ^Rwhere A_ is an n^-dimensional C submanifold of R x H Define

A^{(v,i)eRbxBb|(vR,iR)eAR}. (13)
Then, since the 2n variables (yp,ip) are free, (13) is a(2b-nR)-dimensional
submanifold. In this paper, whenever we discuss AR, we always assume that (yR,iR)
and (vp,ip) are not coupled to each other.
Definition 1. A submanifold Ap^ is said to be „ „
(i) locally hybrid if there is aC1 function fR: * ** -* such that

AR=f-(0)

det ((?Sr)a)(Vr4r) +0 for all (y^) eAR (15)
for some fixed 2nR xi^ matrix A, where each column of Ahas either of the following
forms:

T
(0,...,0,1,0,...,0,0 ,0)

T
(o, ,oAo,...,o>i>o>-">9>

nR °R

(ii) locally voltage controlled '""T 1™»-»"T current controlled) if (14) holds
and (15) is replaced by

rank(D. fp) -n*, (resp., rank(D fR) j =V (16)
^ (YR»iR> ~r (ViR}

for all (YR»V G *R

where D4 fB (resp.,D fp) denotes the derivative with respect to iR (resp.,vR),
"¥R ~YR

(lii) ftlnhallv narametrizable if AR is diffeomorphic to 1 .In this case we
write
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(vR(p),iR(p)) =f1^), pem n
R

n.

where $ :Ap -»• H is a global coordinate,

(iv) represented by generalized port coordinate if AR is represented by

?R

LRJ

a b

c d

C "-J

, C = F(n)

(17)

(18)

where a, b, c and d are i^x i^ matrices,
i

is a C function,

a b

c d
is nonsingular, and F : K. -»• K.

(v) globally hybrid if A is represented by

y = h(x) (19)

where y « (y,,...»y ), x « (x. xn ) and if y, is the current (resp., voltage)
of the k-th resistor? then x, is the voltage (resp., current) of the k-th resistor.

If y, is the current (resp., voltage), then the k-th resistor is called voltage

controlled (resp., current controlled),

(vi) globally voltage controlled (resp., globally current controlled) if in (19),

* = iR' ? " ?R (resp" Z" -R' ~= iR)#
Remarks 1. The matrix A of (15) interchanges columns of DfR. Note that the
matrix ((Df )A) cannot contain columns corresponding to the voltage and the current

~~R ~

of the same resistor.

2. The following is an example of a locally current controlled A which is not

globally current controlled. Let AR be described by

v V

\ Rl
i„ - e cos vB = 0 , i_ - e sin v =0.
*1 R2 R2 R2

This is globally voltage controlled and locally current controlled but not

globally current controlled. To see this consider

V*
-e cos v_ e sin v„

*2 R2
v v

-e sin v„ -e cos v
R, ^J

2v
*R

R,

Since det(D £„) = e ^ 0 the inverse function theorem tells us that locally
~v ~R v
YR * YR
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yR " g(iR) at each point of A^. But it is easy to see that the function

X X(y-o »vD ) •*• (e cos vB ,e sin v- ) is not a global diffeomorphism. Hence there

is no global representation v_ « g(i„)•
~R -. ~R

3. Let yR - (y ,yR ), iR = (iR ,1^ ) and let

\i
(20)

lVi
= h(Yp .i» )

be the

-k

global hybrid representation of A where v- , L 6 J , v« , L 6 JR -^ -R1 ~R2 -R2

Then, in terms of the generalized port coordinate representation, (20) can be

expressed as follows:

a. b

0, 0
~k

0 1 V
L~ ~VkJ

b o
Ik , c =

1, 0 "1 o, 0 ~]
~k

> 4 =
~k

0 0 v 0 vJ0 0 .

5 - (ip ,y ), n « (v ,i ), F - h,

where the subscripts k and Op-k denote the size of matrices.

4. An example of generalized port coordinate is the scattering representation;

a=diag(/r^,..., ^r~),b»diag(*^rY ^*tl)'
R ».

g = diagf-— ,..., ], d = diagf- —: ,..., - -• )

where r.,...,r are real normalization numbers. In this case g and n are called
"p. ~ ~

incident voltages and reflected voltages, respectively.

The submanifold A describing the internal resistor constitutive relations has been

defined in a coordinate-free manner. There is another constraint that must be

satisfied by a network; namely, the Kirchhoff laws. Since we would like to
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describe our results in a coordinate-free manner, we need a coordinate-free

description of the Kirchhoff laws. This can be found in the circuit theory
literature. See, for example [5] among others. Here, it is enough to know that
the set K of all (y,i) satisfying KVL and KCL is a b-dimensional linear subspace
of Hb x]Rb and K does not depend on a particular choice of a tree, a loop
matrix, or a cut set matrix. We call K the Kirchhoff space.

III. Classification and Characterization of Resistive n-ports

Recall A and K. Since (y,i) must satisfy the internal resistor constitutive

relations and Kirchhoff laws simultaneously, the following must hold:

(y,i) e Z4 AOK. (21)
b b _ n _ n

We call Z the configuration space of an n-port N. Let irp :It * & + JR x JR

be defined by the projection map

7p(Y>i) =<yP>y- (22)
he inclusion map i : Z -• It x IR be defined by

i(v,i) = (v,i) (23)

and let

Ip 4 Up o i. (24)

Then the set

qj4Hp<z) (25)
is called the constitutive relation of the n-port N. Clearly, the variables

(yp»ip) must satisfy

<Yp.ip> e<$ • (26)
The setHcis the projection of Z onto the (yp,ip)-space.

The definitions of Z and^K.are coordinate-free. If Z is empty, it

means that the internal resistor constitutive relations and Kirchhoff laws

cannot be satisfied simultaneously. Consider, for example, two independent

voltage sources with different voltages connected in parallel. Clearly, then,

the constitutive relations disagree with KVL and hence Z = A H K is empty.

In the following, we study some important properties of Z and^kc. We will

see that even if A and K are perfectly well-defined C submanifolds,

their intersection Z and hence its projectionH2*ieed not be submanifolds

and in fact could turn out to be rather complicated if not bizarre geometric

objects. The following is the first category of n-ports in our classification.
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Definition 2 A resistive n-port N is said to be quasi-weakly regular if

Z= z1 u z2 U ... U z£

where Z± is a k -dimensional C submanifold, 0 £ k.<_ b, k. ^ k and
Z± O Z = $ if i^ j.

Observe that since dim K = b and since Z « A H K, the dimension of

Z. cannot exceed b.

Example 7 All the 1-ports of Example 1 are quasi-weakly regular. To see

this consider, for example, case (iv). Then this 1-port is described by

VV\) =0'VV\)=0*VVV> , (27)
*R -1\

- o, v - ip = o.

By eliminating i^ and d_ we have

s - VV =°- (28)

s-vV0, (29)
v,, + v_ + v^ = 0. (30)

c2
R« ^ P

We first look at (28) and (29). Observe that each defines a 2-dimensional

surface in the (i,j»v ,v )-space. By drawing these two surfaces in the
P R1 R2

3-dimensional space, one can see that the intersection of (28) and (29)

consists of two connected components as in Fig. 10. Finally, (30) does not

change this intersection since (30) does not contain ip. Therefore the

intersection of (28) and (29) gives the configuration space Z. Since Z is a

union of two connected 1-dimensional submanifolds (in the 4-dimensional

space It ) this is a quasi-weakly regular 1-port. A natural question which

arises at this point is how are the port constitutive relations shown in

the right hand side of Fig. 1(b) related to Z? The answer is that

they are simply the projection H? = np(E) defined by (25). To see this
consider (30). Given a value v , (30) defines an affine submanifold in

the (v ,v )-space. So if we vary v_ €= (-00,00), then we have a family
Rl R2 P

of affine submanifolds. Since v is represented by v = -v - v , this .
p P R1 R2

means that if we take the v -axis as in Fig. 10 and look at Z from the

(ip»vp)-plane, we would obtain the curve shown in the right hand side of
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Fig. 1(b). Notice that while^Q is not a submanifold, Z is a perfectly well
defined submanifold. The other cases are essentially the same.

Definition 3 A resistive n-port N is said to be weakly regular if Z is a

k-dimensional C manifold, 0 £ k <_ b.

Clearly, every weakly regular n-port is quasi-weakly regular. The

converse is not true, however, as deomonstrated by the following example.

Example 8 Consider (vi) of Example 1. Here, Z consists of a point and a

curve. (Fig. 11). Hence Z is the union of a O-dimensional submanifold - an

isolated point - and a 1-dimensional submanifold. They are disjoint. Therefore

this 1-port is quasi-weakly regular but it is not weakly regular.

The strange object Z of (vi) in Example 1, stems from the fact that the

local maximum of f at v coincides with the local minimum of f at

Rl R10 2
v and hence the two surfaces meet tangentially at this particular point.

R20
So to avoid this situation, we need a nontangential condition for the two

submanifolds A and K. More precisely, we want A and K to be transversal — a

basic concept that will play an important role in this paper.

Definition 4 The internal resistor constitutive relations A are said to be

transversal to the Kirchhoff space K, and is abbreviated by A (\\ K, if^

T/ .vA + T, .,K = IRb x]Rb for all (v,i) € Z. (31)
(y,i) (y,i)

Remarks 1. If Z is empty, the transversality condition is of course

trivially satisfied. However, from the circuit theory point of view, this

situation is not meaningful. Consequently, some of our subsequent perturbation

results will demand Z to be nonempty after perturbation.

2. Transversaility is essentially a non tangency condition. For example, in

Fig. 12(a), a/Sk while in Fig. 12(b), A/K K. Since T, ±*A is alinear
approximation of A at (y,i) and since T, vK = K, (31)"requires that locally,

the internal resistor constitutive relations and Kirchhoff laws do not overlap

each other.

3. Observe that (31) is symmetric in the sense that

T, ,.A + T, .xK = T. .vK + T, ..A.
(y,i) (y,i) (y,i) (y,i)

Hence one can also say that K is transversal to A or A and K are transversal.

The following theorem shows that transversality is a sufficient condition

for weak regularity.

An elementary introduction to the transversality concept can be found in
[6].

-13-



Theorem 1 If A (\\ K and if A O K ^ 4>, then N is weakly regular. In fact

Z = A O K is an n-dimensional submanifold of It x It , where n is the number

of ports.

Proof If A/i\ K then Z is a submanifold [3,4] and

codim Z = codim A + codim K

where codim denotes the complementary dimension of a submanifold. Since

codim A = 2b - (2b-nR) = nR, codim K = 2b - b = bwe have
dim Z- 2b - (b+t^) =b-t^ = n. n

We will next give a simple way of checking (31) . Recall thatch) is
a network obtained by terminating the ports of N by norators. (See Section II)

Pick any tree^for Jv. Let yand ibe partitioned as y= (y^. :y^ ), i= (ijC:t#>

whereofand S£ denote tree and cotree, respectively. Let B and Q be the
fundamental loop and cut set matrices associated with xi, respectively. It

is known that B and g assume the following form:

B=[1:B<~], Q- I-bIjsI] • (32>

Since A is a C1 submanifold of dimension 2b-iu, for each point (y0»i0) e A»
h h 1there is a neighborhood U C It x m of this point and there is a fr

function f :U -> Et R such that (see (6) and (7))

Anu = f^CO) (33)

and

rank(Df), ., - n_ for all (v,i) G A n u. (34)

Since the Kirchhoff space is represented by K = Ker B x Ker Q,

the set Z Hu is locally represented by

By = 0, Qi = 0, f(y,i) = 0. (35>

Proposition 1 Afl\ K if and only if for each (y,i) € Z,

rank ^ (y,i) = n^

where

^(v,!) 4^ f-(D„ f)B«:D, f+(D f)B«
_ ** ~

Proof It follows from Fact A of APPENDIX 1and (35) that A^Kif and only if
for each (v,i) e z n u

(36)

(37)

-14-



rank

D f D.f
-vt ~i~

<Y»i>'

= b +
°R •

More explicitly, this matrix has the following form:

*-V

"5*
1

-U - ~ly (v,i) .

(38)

(39)

By elementary bperations, one can show that this matrix has rank

b+n^ if, and only if, (36) holds.
Remark It is important to note that transversality of A and K is a coordinate-

free condition. Hence if (36) holds in terms of a particular tree cJthen it holds
in terms of every other tree. Conversely, if (36) fails to hold in terms of one

tree, then no matter which tree one chooses, (36) does not hold. Therefore one

needs to check (36) in terms of only one tree.

We will next give various special cases of (36) corresponding to

several common representations of A. Suppose that (yR»iR) and (Yp»ip^ are
not coupled to each other and A is given by (13). Then f of (33) is

nR nR
independent of (v_,i_). Let U_ A U n f x 3R and we define

nR ""P ~p K
f : U -> It simply by
~R R

IrCy^) 4 f(Yj.Ir)

;i<y.i> = <YR>iR>
and let

HR 4 ;i • i

Next, let Trf:Itbxm -> It x3R be the projection map
* ~R

(40)

(41)

(42)

where i is the inclusion map defined by (23) . Finally, decompose y and i as

v - (v_ ,v_ : v_ ,y ), i = (i ,dL : i ,JL> ). (43)
~R*- ~P;T ~Rtf p3 R£ =*£• ~Ry ^

where R and P denote resistors and ports, respectively, and <jand y.denote

tree and cotree, respectively. Decompose B^ of (32) accordingly:

59

?RR

?PR

?RP

?PPJ

(44)

-15-



Corollary 1 Suppose that A is given by (13) . Then A M^ K if and only if for

each (Vp^) e ?R(Z) ,

rank(9FR(yR,iR) =n^ . (45)
where

S^ViR* A- [\ ?R"(Bv •?r>5rr':-(5Vp Uhv':

?i_ ?R+(?i„ ?R>5RR:.(?i„ ?R>5PR
~R. ~R, -R,

Proof Observe that

% -= % !r 9L V =[\/r 91
l\ ?r gi-.st «-id ?R el.
~R« -*• -Rjc

<vV
(46)

Substituting these and (44) into (37), we obtain (46). Since (yR»YP»iR»ip) e 2»
the vector (v »i_) must belong to *&_,(£). - >

**R *"R *"R

Consider, next, the generalized port coordinate (18) and let

-1 r
a b

c d Y «
(47)

Then A^ is represented by

!r<VV = SWa + 6*a - ?(TYr+51r) - »• <48>
Recall the partition v_ = (v_ I v_ ), i_ = (i_ ; i_ ) and partition

~R "^J* ~R«^ ~R "*Ry» **R?7
a,B,Y and 6 accordingly;

a = [a. :aj, 0 = [B, :BJ, Y - [y, =Y91, § « [«, :«J. (*9>

Then we have the following:

Corollary 2 Let A^ admit a generalized port coordinate representation. Then

1V!rp !

<Sr<5P5i> +<§2-(??)«2)5rr: <§2"<B!)22)4r] (v )± )(50)
~R'-R'

-16-



gfR(YR,iR) -
nB n

~RR M
"1 ~

_ -1
0 "]

(??>
-1

: (df)

-9 BT L?prJ

and if A^ is globally current controlled, then

"?RR

?R

?R(W = :-(df)

L-~RR-

(DF)
BT

Proof It follows from (48) that

~Rs;

?ip Sr - Si " <W>«r 2, !R - §2 - (?p){2.
~RV ~R^

(51)

(52)

Sr

Substitution of these into (46) yields (50). If A is globally voltage
R

controlled, then a. = 0, a = 0, 6. =0, 6? = 0

§1 =

1 0

<— —

1 0

• 8?- • Ii = • 12 =
0 1 0 1

-T J •J" — _~_i _~ J_

and

This gives (51). Similarly, if A is globally current controlled, then
K

§1 = 9» ?2 = ?' Y3 = 0, y2 = 0 and

°1 =

1 "o^
— —,

1 0

0
» «2 =

1
•5i"

0
•«2 = 1

_ — —*" - L J

This gives (52). n

Remark Using (45), (46), (50)-(52), one can give several sufficient conditions

for transversality by inspection. Suppose that A is locally hybrid (see
R

Def. 1) with

det[\ h\ \ h\ ' °for a11 (ViR> gV (53)

Assume also that the resistors in 3L form loops exclusively with ports or

equivalently, the resistors in xJform cut sets exclusively with ports. Then
B^ = 0 and (53) implies (45) and hence An\ K. If A^ is globally voltage
controlled and if (DF) is positive definite at each v , then it is easy

~~ YR ~R

-17-



to show that the following submatrix of (51) is positive definite:
"i

(DF)
?RR
-1 !L

*R

i and (45) holds. Therefore A./T\ K. A similar statement holds for the globally
current controlled case.

Let us give several examples.

Example 9 For the 1-ports (i)-(v), (vii) , (viii) of Example 1, a/Kk. To
prove this choose *xj = {R ,R?} to be our tree. Then B__ = <J>,6 B__ =$,

x t* **RR ~RP

BpR = [1 1], Bpp = <{,. Let

Sr(Tr'Sr>
VVV -"

Ur(VJrU
Then

D f*-y -R
Rt7

and similarly

"D *l D fr
VT? R VP R

Rl R2
2 2

v R v R
R! R2

R " fR (VR >Rl Rl h

R2 R2 R2

-Df 0

Rl

-Df.

p. o]
> D4 f T> =

4 Hence (46) is given by

-Df.

?R<ViR>
0 -Df.

?R

~YP -R y
R*

(54)

If one checks (i)-(v), (vii) one sees that for all (v_,i_) € tt_(Z), Df_ and
-^ ~R ~R ~R Ri

Df do not vanish simultaneously and hence rank7j_(y,i ) = 2 for all
R2 3T ~ " **(Yj^*^) e HR(Z)» Therefore A(\\ K and Z is a1-dimensional submanifold. One

can use a similar argument to show that for (viii), A (\\ K also. In contrast

to these examples, we claim that for (vi) of Example 1, A/llK. To prove this

observe that for the value i* in (vi) of Fig. 1(b), we have i* = f_ (v_ ) = fw (vD )R R K± R1Q Ro R
20

and (DfR )y - (DfR )y
1 R10 2 R20

- 0. It is clear that the point

(Ytj »ip > = (vp »vw »i§»iS) belongs to ir_(Z) . Therefore rank ^(y ,i ) = 1 < 2
R0 ^0 R10 R20 * * R -R 0 R0

and hence A $(k.

We denote a 0x0 matrix by <J>.
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Example 10 Computing ^(y,!) or ^^Y^i-g) one can show that for ExamPles
2,3,4 and 6, A$K, whereas for Example 5, A(\\ K. We will prove this for
Examples 5and 6. Let us first check Example 5. Choose 9) ={RA»R5,P} as our
tree. Then

v,
R,

1 0

§RR = 1 1

Lo -1

-Df.

> §RP

0 -Df,

\ -R =R£

VP

"0

-1

LU

0

0

1

0

\ ±R2 ±R3

?i ?R =
^ R

Therefore

10 0

0 10

0 0 0

0 0-1

-1

Df.

• ?pp = ♦. 5PP = *pp

\ ~R =

'?iR !RRtf

R,

n

R4 ^5
r

0 0

0 0

0 0

1 0

fcv=

Df 0

Rl

DfR DfRK2 R2

0 1 -1

10 0

0 10

ooo

11-1

o-io

0 0

V
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It is easy to show that rank93Fp(yp,ip) » 5 for any C1 functions fD and fB .
This implies A fl\ K.

l/R ~R'~R

To examine Example 6, choose ^f ={R3,R ,P} to be our tree. Then

\ \ VP

"o 0
f- 1

1

B m
~RR

-1 1
' ?RP =

0

, B = <b, B = A .* ?pR v» 5PP <P

The constitutive relations A^ and A^ corresponding to the portion A of

Fig. 6(d) are locally given by i -1=0 and i -1=0 respectively. Hence,
Rl R2

locally we have

~YR ~R
R«£

Di SR s

Therefore

v v

Rl R2

"0 (

0 0

-1 0

0J

i_ i_

Rl R2

0 1

0 0

* ~v„ ~R
•v

'5*r !r
7

V V

R3 R4

0 0

0 0

1 1

0 0

i_ i_

R3 R4

0 0

0 0

?r<vV •

~Q 0 : ° :: i
—«

0

0 0 : ° :: ° 1

1 1 ;: 1 :[ 0 0

0 0 ]: ° : -l 1

Clearly, we have rank Yjt>(yR»iR) =3<4and hence A/f\K.
If A^ is parametrized by p, a different criterion is required. Recall

the notation (yR(p) ^(p)) of (17).
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Proposition 2 Suppose A^ is globally parametrized by p as in (17)

A/^K if and only if for each pGl"11 with (y_(p) ,iIJ(p)) e^(Z),
"* **R ** "*R "* ""R

rank<3P*(p) =^
where

<3T*(p) *
DvD + B__ (Dv„ )

Di - B (Di )

-B
~RP

0 BT
-PR

P •

Proof Let a = (p,v ,i ). Then A is globally parametrized by a;

v(0) A(vR^ (p) ,y% ;vR^ (g) ,yp^)

It follows from (9) that

Dv

T, ,NA = Im
Di

Recall that Kirchhoff space is parametrized by (y^ »iy ):

rtT
Y " 9 YtJ > 1

This implies that

T T

Y " 9 YtJ > 1 " ! *£ •

T, .vK = Im
(y»P

T
Q 0

0 B

It follows from (59), (61) and (31) that A (\\ K if and only if

Im

— -

r t
—

Dv 9 0

+ Im
Di «T

a 0 B
_ .j ~

—
~ _

= mbx ir\

This, in turn, holds if and only if

.T

rank

Dv

Di

0

= 2b.

B'

This matrix is given more explicitly by

-21-
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(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)



ip ip *R.

<*R. •5rr

•5pr

Kr.

PJr.

?-V

L ' P L

?p„

-RP

•?pp

i* ip-R/. ~P<#-.

• 1

BT
~rr

BT
-PR

BT?RP BT
~PP

(64)

where • denotes a zero submatrix of appropriate size. By elementary

operations, one can show that this matrix has rank 2b if and only if (55) holds.

Remark Formula (55) holds even if A^ is locally parametrized by p at each point.

In fact (55) holds if and only if rank J = 2il where J is the matrix defined

by Desoer and Wu [7].

If A^ admits a generalized port coordinate, then it is globally parametrized

by n;

(vB(i|),lB(n)).» (aF(n)+bT),cF(Ti)+dn).

Partition a,b,c and d in accordance with (v :v ) and (i ;i ):
~ ~ * • - ~R^ ~Rrj R*. R»J

Sl *1 Sl
a - .... > \ =

• • • •

» 9 =
« • • •

?2 b-?. ?2
L J L. -J ^- -J

. 4

d
-1

» • •

*2

(65)

By direct substitution we can show the following:

Corollary 3. Let A^ admit a generalized port coordinate. Then (56) is given by:

<3F*(n)
ax(DF)+b1+BRR(a2(DF)+b2)

kC1<DF)+41-BRR(c2(DF)^2)
-5rp 9

-22-
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It is important to note that transversality of A and K is only a

sufficient condition for N to be weakly regular. The following example shows

that it is not a necessary condition.

Example 11 Consider the 1-port of Fig. 13 where A^ is given by v - R i = 0,
R R-i x R-

3 2
i_ - i_ + 2i_ - 2i_ =0. Since K is described by v_ + v_ + v_ =0,
Rrt K.. R* R-i " R.. R«

^ • lj « 0, lj - ip = 0, we have

*- «Y..9\ •\ •S •\ =°' VR2 +vp =°}

u«!'9\ - \ - S • x» \ • V vp +vr2 +Ri •0}

= h u h •

Since Z is a 1-dimensional submanifold consisting of two connected components,

it follows that N is weakly regular. We claim that each point of Z„ is a point

of nontransversal intersection of A and K. To show this choose

<XJ= {R1,R2} to be our tree. Then B =f.B =<f>, B =[11], B =(J),

"Yr^ ~R

\ !r =Rtf

ri (P

0 0

-R. 0

'3\+'\~2 X-
Hence at each (yR»jR) G 2R(E2^'

1 0 I -R.
rank^3TR(yR,iR) =rank

0 0 ! -3i *+4i -1
Rl Rl J

1 < 2.

Rl
1 o :

—<

-R!
= rank

1

0 o : 0

Therefore A/P|K.

We next discuss the dimension of a weakly regular n-port.

-23-
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Definition 5 A weakly regular n-port N is said to have dimension m if

rank(dTTp). ±. « m for all (y,i) € Z (68)

where yp is defined by (24).
Remark In order to check (68), in general, one has to check it in terms

of coordinates. Let Of,Z n u) be a local chart at (y,i). Then (68) holds

if and only if

-1,rank(Dir ©\{' ) « m for all (v,i) £ z

where *Ky>i) = x» If Afl\ K, then a more explicit formula can be obtained.
Proposition 3 Let N be a weakly regular n-port with A (\\ K. Then N has
dimension m if and only if for each (y,i) € Z

rank Q(y>i) -m+ n^ -n

where

~ ' 0

>T

§PR

Q(Y..J) *
5V H5y„..?>l
*YR £

-RR

?rp

*R* *R-~ ^(v,

(69)

(70)

(71)

i)

Proof Let 0|>,Z H u) be a local chart for Z at (v,i) . We rewrite (35) as

z n u « g"1(o)

where

g(v,i) S

By '

9i

f(v,i)

-1 -1Since it ° $ (x) «• tt' © i ° ^ (x) (see (24)) we have

rank(DVf1)5 - dim Im (Dirp) (v,i)(<?i>(v,i) CB*"1),
It follows from (8) and (9) that

ImCDj"1^ =Ker(Dg)(vi).

(72)

(73)

(74)

(75)

7This definition is a coordinate-free version of the one defined by Chua
and Lam [8].
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Next, recall that the linear map (DO ( .. maps any complement of
Ker(DTr'), * onto its image space [9].~ Since (di) ( ^ is a linear inclusion
map, we have from (74) and (75) that

rank^TTpCMj,"1^ =dim Im (Dirp)( ±) (D<jT )x

=dim ImdJip"1) - dimflm(Dij>"1)x OKer (Dirp, ±J

=dimKer(Dg)(Vji) - dim/Ker(Dg) ( j nKer(D7rp) ( ^
= (2b-rank(Dg), A - ( 2b-rank

= rank
'Dg

Dirl
L.—PJ

(y,i)'

- rank(Dg) ±) . (76)

'(Y»i>

It follows from transversality assumption and (38) that

rank(Dg)(v ±. =b +i^. (77)

By elementary operations one can show that

f9il nrank t = b + n + rank y(y,i) (78)

(y,i)

where Q(y,i) is defined by (71). Hence (76)-(78) imply

rank(Dj °t|i ) =n+ rank Q(v,i) -n_. (79)

Therefore N has dimension m if and only if for each (v,i) € z,

n- n_ + rank Q(y,i) = m. This gives the result.
If (yp»ip) and (yp>ip) are not coupled to each other, the condition is

simplified in the following manner.

Corollary 4. Let A be given by (13) and let A (\\K. Then N has dimension

m if and only if for each (v,i ) £ it (Z),
~R ""R ""R

rank QR(yR»iR) sm+\ "n (80)

where ttr is defined by (42) and
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9r(V*r>

?PR
0

D f -(D fn)BnT>
~yr ~R -y^ ~R -*a

t- Rs R£

o

bt
~RP

~Ri ^ J(V*R)-
Corollary 5 Let A admit a generalized port coordinate. .Then

0

.T

?PR

Qr^r'V
0 ?RP

(81)

<Zz-<E>v2>-lS1-<E)yfhii (|1-(Pf)«1)+(?2-(??)«2)BRR

(82)

where a,§,Y and 6 are as in (49). In particular, if /L is globally voltage

controlled, then

r5pR

9r(vV -
(DF)

?RR

0

BT?RP
"l "

BT
~RR (YR'V

and if A^ is globally current controlled, then

9R(vV - *

B„ : °

—

-PR
: T

Q • B„„
: ~rp

r~ -n ~~\ . f* - ~^-B„^ i
~RR

•-(??>
BT

1 .. SRR
k_ -J h

(83)

(84)

The following gives.a criterion when AR is globally parametrizable.
Proposition 4 Let A^ be globally parametrized by PG ]R Rand let A(\\ K.
Then N has dimension m if and only if for each p with (y (g)>ip(p)) e HR(S)»

" *>'R IS. ~

rank Q*(p) =m+ n_ -n (85)
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where

9*<e> 4

B^^r, }5rr

% -<K»< >?RR

" <?V§RP
Proof Recall (59) and (61). Since A/ft K, we have [4]

Dv

ImtDiff1) = T, ..(/OK) = T, ..A OT, ..K = Im
~x ? (yfi) (y»i) (y»y Di

(v,i)

(86)

n Im

B

(87)

where (y,(g),i(c)) is as in (57) and (58). It follows from (74) and the first

two lines of (76) that

rank(D7rp°i|r ) = dim Im(D$~ )

- dim(Ker(DO / ,% n I*I ~~P (y,i)

It is clear that

Dv

n Im

~"T
Q

—•

g

Di
— —

q
0

where ir' is defined by (41) . It follows from (64) and (89) that
~R

Ker(D7rp)(Vji) Him
Dy

Di

= Im(DTr')T .v H Im~~R'(y,i)

Dy

Di

(88)

(89)

- Im[Dy 0 Dy 0 Di 0 DL 0] Alm(E) .
Rj ** "~a.^4 " ""Kj ~ "'"ts.a-j ** O — " O

Equations (88) and (90) imply that

rank(DiT_<'^"1) =n - dim llm(E) O Im
~~P ~ x \ - o

-27-
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It follows from (91) and formula (which is easy to verify)

dim (Im(E) O im
~ a

fT —< \ rT r t -j

Q 0 \ 9 0 :qt 0

•J
J = rank(E) + rank

,/r
- rank

~ 0.» T
0 B / s 0 B :Q B

that the following holds:

-1
rank(DTr_°il; ) = n - rank(E) - rank

~~P Z x ~ a

Finally it is easy to show that

T
Q 0

0 B

"" T
Q 0

rank(E) =
" a

•

i^, rani

r—m —I—I

Q 0

T

0 B

rank

ft

T
0 B

= n + il

= b and

+ rank

•

•

FT "1
Q 0

(e) :
~ g.

—

T
0 B

_

where Q*(e> is defined by (86). This and (93) imply the result
Corollary 6 If A admits a generalized port coordinate, then

R

?PR

Q*(n)
a1(DF)+b1+BRR(a2(DF)+b2)

0

T

RP

T

B

S1<?P«rlte<S2<8?)+?2)
-•n

(92)

(93)

(94)

(95)

where a,b,c and d are as in (66).

Definition 6 A weakly regular n-port N is said to be regular if its

dimension is n.

Remark? 1. It is clear that in order for N to be regular it is necessary

that dim Z > n.
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2. Recall the remark after Corollary 2. If h^ is locally hybrid as in (53)
and if the resistors in 9l forn* loops exclusively with ports, then we saw that

A(\\ K. It is clear that rank QR(yR> ip^) an^ and hence Nhas dimension nand is
therefore regular. Similarly if h^ is globally voltage (resp. current) controlled
and if (DF) (resp., (DF) )is positive definite at each point, then N is re-

~R ~~ ~Tt

gular.

Example 12 Consider (i)-(v) and (vii) of Example 1. Choose &f = {R^R-} to
be our tree. Then (81) is given by

9r(Yr.Jr>

1

-Df

*1

1

0

-Df.

2-J
Yr

Since Df_ and Df never vanish simultaneously, rank Q (v ,LJ =2holds.

Since n^ =2, n=1, we have m=rank QR(yRJiR) +n-nR«a2 +l-2 =l.
Hence this 1-port has dimension 1 and is~ therefore regular.

Example 13 (Weakly regular 1-port which is not regular) Consider Example 2.

The associated configuration space Z is a 2-dimensional submanifold since it

is parametrized by(vp,ip); (vR,vp,iR,ip) = (-vp,vp,ip,ip).

Recall (69). Since irp •ifVp.ip) »(vp,ip), we have rank (DTTpO^"1)^
[1 01 P>^

1=2. Hence this is a 2-dimensional 1-port and therefore is not
0 lj

regular. Consider Example 3. Clearly Z = {0} and this is a weakly regular

1-port. But since dim Z= 0 < 1 = n, it cannot be regular.

Proposition 5 If A(\\ K and if jp is an immersion, then N is regular.
Proof By Theorem 1, 7. is an n-dimensional submanifold. Since j is an

immersion* rank (d7rp), ±. » n for all (y,i) e Z ., which shows that N has dimension
n. h

An n-port can be regular without satisfying the transversality condition

alluded to earlier. The following example is a case in point:
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Example 14 Consider the 1-port of Example 11. For Z- and Z„, v serves as a
-1 -1 ^

coordinate. For Z.,, *r o * (v ) = (v_,0) and hence (Dtt-,0^ ) = [10]

-1 -1which has rank 1. Similarly for Z9, ir o^ (v) = (v_,l) and hence (Dir_o^ x) =
^ ~r ~ P r r* ~ vp

[1 0]. Therefore this 1-port is regular even though A u[\ K as shown earlier in

Example 11.

Definition 7 A regular n-port N is said to be strongly regular if ^f< = irp(Z)
is an n-dimensional submanifold of 1 x IR .

Example 15 (Regular 1-port which is not strongly regular) Consider Xi) - (v)

of Example 1. As was shown in Example 12 each is a regular 1-port. But since He
has a self intersection, it is not a submanifold. Hence they are not strongly

regular.

This example shows that*-|2 could be a rather complicated object even if
Z is a perfectly well defined submanifold. This is understandable because

Z lies in IR6 while^ is the projected image of Z onto IR . If one projects
6 2

a geometric object in It onto It , one naturally loses some "information" concerning

that object.

A sufficient condition for strong regularity is the following.

Proposition 6 If A(\\ K and if tt is an embedding, then N is strongly regular.
Proof By transversality condition, Z is an n-dimensional submanifold. By

definition, the image of a submanifold under an embedding is a submanifold of

the same dimension. Hence He™ Yp(£) is an n-dimensional submanifold. n

Definition 8 A strongly regular n-port N is said to be globally strongly regular

if(Q is globally diffeomorphic to 3Rn.
The following proposition gives a sufficient condition for N to be globally

strongly regular.

Proposition 7 Let Z be globally diffeomorphic to It and let J :Z -»• It be

a global coordinate. If

(i) lim Htt oijf^x)!! =co
flxO -• » ~p ~ -

t,ii) TTp o i|> is injective

(iii) rank(D'ir1>o^"1) =n for all x€ Kn

the N is globally strongly regular.
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Proof Condition (i) is equivalent to saying that tt ° ty is proper, i.e.,

preimage of any compact set is compact [3]. Therefore (i)-(iii) imply that
-1

!p ° 1» is an injective proper immersion. Such a map is clearly an embedding

[3]. Hence^
Example 16 The 1-ports of (vii) and (viii) of Example 1 are globally strongly

regular.

Definition 9 A globally strongly regular n-port N is said to be normal if

it admits a generalized port coordinate;

SP
—1 r> r»

^ (IR ) is a diffeomorphic copy of IR ,

r— —^

?P

ip
=

5P <?P

SP dp

V
h = W

n
where a_,b ,c and d are nxn matrices and F : 3R

Example 17 The 1-port of (vii) of Example 1 is normal because it is globally

voltage controlled. The 1-port of (viii) is not normal because no linear

combination of v and i can be a global coordinate for ^Q.
Sometimes we can choose n among the 2n variables (y ,:L) as a global

coordinate for Z, In this case tt is a global diffeomorphism and henceH2

is also globally diffeomorphic to TR . In fact N turns out to be normal.

This sometimes happens when an n-port is derived from an RLC network. For example,

consider the n-port seen by the capacitors and inductors of an RLC network.

If the capacitor voltages and inductor currents are chosen as global coordinates

for the configuration space Z,thenHe of the derived n-port N is globally

diffeomorphic to ]R . This means that the n-port as seen by the capacitors

and inductors, is a nice n-dimensional submanifold which is gobally diffeo-

morphic to IR ". We formalize this observation as follows:

Proposition 8 Let z £ It be a subvector of (y ,i_). Let ir*

be defined by Tr!.(y,i) = z and let tt : Z + ]Rn be defined bv

A

IR is a C function.

IT
~Z

Tf © I

mb xmb m
n

(96)

where \ is the inclusion map defined by (23) . If tt is a global diffeomorphism,

i.e., z serves as a global coordinate for Z, then

(i) Tjp :Z -»-HBis a global diffeomorphism,

(ii) TT ©
~Z

restriction of tt_ to

(Up rC) is a global coordinate for ^|2, where irp |^]2 denotes the

(iii) N is normal.

Proof Let us write

<R,

YP = (Ya'Yb>» ip = (ia4b)> 5 = (Ya4b>
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By assumption z globally parametrizes Z. Hence (y,i) e z is expressible as
a C1 function of (v ,ij. In particular (v.,!,,) is expressible as a C function

~a ~D r r

(yp,ip) =Up ô (Ya^) =(Ya'|(Ya'ib>^(Y-ib>^> (98)
where gand hare C1 functions. It is clear that Tjp ©tt~ is aglobal
diffeomorphism. Hence Tjp is aglobal diffeomorphism and TTp •ijz is aglobal
parametrization for Q. Finally (98) gives (yb»ia> =(^Ya'V >^a>h^
which means that ^ admits a global hybrid representation. n

In table 1 we summarize the various classifications of n-ports given

in this section. .

IV. Structural Stability of Resistive n-ports

In this section we give a structural stability result for resistive n-ports.
By structural stability here we mean the persistence of the configuration space
Zunder small perturbations of A. The result essentially says that aresistive
n-port is structurally stable if and only if AAk. Hence, transversality of
A and K, again, plays a crucial role.

We first give aprecise definition of perturbation. Let Mbe aC submanifold
of *n and let C^M,**) °e the set of all C1 functions from Minto Kn. Let

.1... -nF £ C (M,It ) and consider

qjl(?;e(-)) A jG:M-Itn

ge c1(M,mn)

llF(x)-G(x)H + H(dF) - (dG) B < e(x)

for all x S M (99)

where e(x) is an arbitrary continuous function from Minto the^set of
all positive numbers. The Whitney C1 topology or the strong C,
topology on C^M,*") is generated by sets of the form (99), i.e., CU(F,e(.)) is
aneighborhood of Fand any open subset of cW) is expressible as aunion of
sets of the form (99). Observe that if aneighborhood q|(F;*(•)) is small and if
GeqA(F;e(.)) ,then »F(x)-G(x)0 +B(dF)x -(dOj -0as BxB •* -. (See Fig. 14)
This is the reason why the strong C1 topology can-control the behavior of functions
over anonimpact set. We need this property since our Ais generally unbounded.
One of the greatest advantages of the strong C1 topology is that the set
ErnbVu11) of all C1 embeddings of Minto 11° is open withrespect to this
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topology [3]. If M is aC1 submanifold of Itn then the inclusion map iM is an
embedding. Hence there is aneighborhood ^V(jM) of iM such that all elements of
C\j(i ) are embeddings.
Definition 10. AC1 perturbation Mof Mis defined by M»G(M), where G<=C\j(iM).

1
Making the neighborhood small, one can obtain arbitrarily small C perturbations

of M,

Remark The set of embeddings of M into St is not open in the weak C topology

which is generated by sets of the form;

Gg c1(M,mn)

Qlw(?;e) ^ <G:M+Itn lF(x)-G(x)ll+ «(dFV - (dG) II < e

^ j for all x G M

where e > 0 is a constant. In order to see that the set of embeddings is not open
2

in this topology, consider the 1-dimensional submanifold M C u. as shown in

Fig. 15, where the two "tails" get closer and closer to each other. Since M is

a submanifold, the inclusion map tM is an embedding. Now, in an arbitrary
neighborhood of iM with respect to the weak C topology, one can find a map G

such that G(M) has "tails" touching each other. Such a map is certainly not an

embedding. On the other hand in the strong C topology, if one chooses e(-) in

an appropriate manner, then all the elements of the neighborhood are embeddings.

We are now ready to state our structural stability result. In the following we

assume that A is closed. This assumption of course entails no loss of generality

for electrical networks.

Theorem 2. Given a resistive n-port N assume that A is closed and A H K $ <J>.

(i) If A ffl K, then N is structurally stable in the sense that for any small C

perturbation A of A, the configuration space Z = A n k persists to be an n-

dimensional submanifold. In fact, Z is diffeomorphic to Z.

(ii) If A/nK, then N is structurally unstable in the following'sense:

(a) If Z is not an n-dimensional submanifold, then there is an arbitrarily small
i a a

C perturbation A of A such that Z is an n-dimensional submanifold.

(b) If Z is an n-dimensional submanifold, then there is an arbitrarily small
1 A *C perturbation A of A such that Z contains an (n+k)-dimensional submanifold

for some k > 0.

Remarks 1. Recall from Theorem 1 that if A l\\ K then Z is an n-dimensional

submanifold.
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2. When Ay(\ K, there are two cases which could happen; (a) Z is not a submanifold
of dimension n as in (vi) of Example 1, and (b), Z is a submanifold of dimension

n as in Example 11. Statement (ii-b) of Theorem 2 says that if (b) happens, then

one can perturb A in such a way that A H K contains a higher dimensional sub-

submanifold. To see this, recall Example 11. Observe that the constitutive

relation f2(iR ,i )=i -i^+2i^-2i =0and KCL iR =iR =ip imply

ip(ip-l) - 0. Next look at the graph of the function g(ip) = i (ip-1) .

It is clear that one can give a small C perturbation to f2 in such a way that
the corresponding graph of the perturbation g(ip) of g(ip) has a flat portion
[a,b] as in Fig. 16. Then the perturbation Z2 of Z2 is given by

12 J\ , > (100)vR + vp + a^ = 0,a G [a,b]s2 = <(Y>i)

This set contains a 2-dimensional submanifold because it is parametrized by (a,v );

(vVvR 'VSl'V'V =(a^>-VaRi,Va,a,a)' vp G3R» aG [a,b3*
Hence, even though Zis asubmanifold of the correct dimension, A/ftK implies
structural instability.

3. Structural stability as used in Section I was vague not only because the term

"perturbation" was not defined rigorously, but also because we looked at Z through

the projection^while discussing concepts of persistence and abrupt changes.
Sometimes it might be more appropriate to consider the persistence ofHerather than

the persistence of Z. To do this, however, one might have to assume thatHe is a
submanifold, a more stringent condition.

For the proof of Theorem 2we need the following four lemmas whose proofs
are given in APPENDIX 2.

Lemma 1. Let ^ and ^ be C1 submanifolds of **. Then one can obtain an arbitrarily
small C1 perturbation \ of ^ such that ^ ffi M^. (\ Ĥ may be empty).
Remark Aserious drawback of Lemma 1is that one cannot guarantee ^M^*
even if ^ O1^ f <J». To be specific, let H± =Aand M2 =Kbe chosen such that
AHK* <f>, i.e., the configuration space is nonempty. After perturbation, we
may end up with Afil Kbut AHK- <J>. For example, consider the situation shown in
Fig. 17(a). By giving an arbitrarily small C1 perturbation to 1^, one can pull
the two submanifolds apart as in Fig. 17(b). Hence transversality is trivially
satisfied in_this case but serves no useful purpose. However, there is another
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small C1 perturbation of ^ as in Fig. 17(c) where ^ (\\ M2 and ^ nM2 ^<|>.
This latter perturbation is what we would like to have and the following lemmas

characterize such perturbations.

Lemma 2 Let X and Y be two linear subspaces of IR with dim X = ^, dim Y = n^

and

n^. + iLy >n. (101)

Then there is a nonsingular nxn matrix A such that the matrix norm

flA-lfl is arbitrarily small (See Fig. 18) and

X + A(Y) - Stn, X fl A(Y) t *. (1°2)

i.e•»

xfiU(Y), Xn A(Y) * +. (103>

Lemma .? Let fand g:3tn -+• Itn be C functions with f(xQ) = g(xQ) and
(P£) - (Dg) for some point xQ £ Itn. Then there are neighborhoods U^ and U2
of x~°with U~C U« where U- is the closure of l^, and there is aC function
g : H •+• It such that

(i) pfon^

(ii) g = g off U

(iii) g is arbitrarily close to g in the strong C topology. (See Fig. 19).

Lemma 4 Let A be an nxn matrix such that Da-IO is arbitrarily small. Then there

are neighborhoods Ux and U2 of the origin with u^ C u2 and there is a diffeomorphism
G of E such that

(i) G = A on Ux
(ii) G = i, off U9

(iii) G is arbitrarily close to the identity map i-d in the strong C topology.

To prove Theorem 2^ we also need to define the transversality of- a function to a

manifold.

Definition 11. Let M1 and ^ be C1 submanifolds of »n and let F:̂ -> Itn be a
C function. Then F is said to be transversal to M2 and is abbreviated by

Fffij^ if

Im(dF).. +TF(x)M2 =*n (104)
»—'X

for all x satisfying F(x) G M^
RomarV Transversality of a function is a generalization of transversality of two
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submanifolds. Take F = u., the inclusion map of H,, then Im(dF) = T M-.

Hence (104) is reduced to transversality of M- and M«. Therefore, if F : M- -»• It

is an embedding transversal to M2, then F(M-) (\\ ML.
Proof of Theorem 2 (i) Assume AHk^ and A /|\K. Since A is assumed to be

closed and since K is closed, the set of all C functions from A into IR x K.

which are transversal to K is open [3]. Let i. : A ->• It x]R be the inclusion

map. By assumption i. (\\ K. Hence there is a neighborhood £{J(l») of l» in
C (A,It xlt ) such that all elements of Qj((iA) are transversal to K. On the other

1 ~ 1 Kb
hand, since the set of all C embeddings is open in C (A,I xR ), there is a

neighborhood (-V(iA) whose elements are embeddings. Set ^lA/(iA) s*-{jI(1a) ^Q/CJa)"
Then QJU(Ja) is a neighborhood of i. consisting of embeddings of A which are
transversal to K. For any G £ Ol/(i ) set A « G(A). Then, as in the proof of

L«*tmna 1 we have that A is a (2b-n_)-dimensional submanifold and A (\\ K. Hence

Z = A H K is an n-dimensional submanifold. The proof of the fact that Z is

diffeomorphic to Z is technically involved. It is given in APPENDIX 2.

(ii-a). Let (y,i) 6 A H K be a point of nontransversal intersection, i.e.,

T(v,i)A +T(v,i)K **b **"' (105)
In order to simplify notation assume, without loss of generality,that (v,i) is

the origin of ItD x ]R . For the general case one can simply translate the origin

to (v,i). Recall that dim A « 2b-nn and dim K = b so that dim T, .;A + dim T, .vK =

dim A + dim K = 30-n,, > 2b. Hence Lemma 2 is applicable with X = T, .*K, Y = T, ,J
R— rr (v,i) (v,i)

and we have .

A(T, 4.A) + T, ..K o Itb xmb (106)

where A is a 2bx2b nonsingular matrix such that llA-lll is arbitrarily small. Let
b b .

C|Jl(i ) be a small enough neighborhood of the identity map id of K. x "R such
that elements of QJl(id) are diffeomorphisms of It K R . It follows from Lemma 4
that there is a diffeomorphism G- G £\J(j[id) such that for some neighborhoods 1^
and U2 of (y,i) with U1 C U2, the following hold:
(a) Gx »Aon l^ (107>

(b) G1 »id off U2 (108>

(c) G1 is arbitrarily close to id in the strong C topology.

Now let G2 be the restriction of G^ to A;

g2 *g|a . <109>
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b b
Since G, is a diffeomorphism of It x R , G, is an embedding and hence G9(A)

-l l
is a (2b-np)-dimensional C submanifold. The function G2 locally perturbes A on
U, in such a way that (106) holds at (y,i) and leaves AO (m xi -u2) unchanged.

Therefore there is a neighborhood U_ of (y,i) such that

Cg2(a) nu3) (f\ (KPU3) . (110)

It follows from (107) that G2(y,i) = (y,i). Since (y,i) G AOK* <f>, we have

(G2(A) nu3) n(K0U3) t <J>. (U1)

Now, although we have eliminated the particular nontransversal intersection (v,i)
there may be some more nontransversal intersections remaining, or by applying
G9, we might have created new nontransversal intersections. We now apply
Lorn™* 1with M- =G2(A), M2 «Kand obtain asmall C perturbation Asuch that

AS K. (112>

By (110) and (111) we know that G2(A) nU3 and KOU3 have nonempty transversal
intersection. Hence if A is close enough to <?2(A), then local nonemptiness is
not destroyed. Namely, there is a neighborhood U^ C u3 of (y,i) such that

(AOJ4) n(KHU4) * (f.. (113)

Hence A H K ^ (J>. This, (112), and Theorem 1 imply the result. By choosing
neighborhoods small enough, one can make A arbitrarily close to A.

(ii-b) Let (v,i) be a point of nontransversal intersection. Then (105) implies

dim (T(Y4)A +T(y>J)0 =2b-k di*)

for some k > 0. The following is an elementary fact in linear algebra:

dim(T(Y>i)A HT(Yfi)K) -dim T^A +dim T^K-dimtf^A +T^yK).

This and (114) imply

dim(T(v ±)A nT(v>i)K) =2b-nR+b-(2b-k) -n+k (115)
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for some k > 0. The number k is the extra dimension due to nontransversality.

Applying Lemma 3 we push A onto T, ..A locally. To this end recall that any
•^Y* 1'

submanifold is locally expressibleas the graph of a function. In particular,

there is a neighborhood U of (y,i) in It x It and there is a C function

F~ xT(v,J)A nu+(T(y,i)A)i nU
such that

A n U = graph F

={(x,y) €(T( J}A) x(T( jA)1 nu|y -F(x) }

where (T. ±\^X is tne orthogonal complement of T, ^A In 1 xlt . Without
loss of generality one can assume that (v,i) is the origin. Therefore we have

F(0) = 0. (116)
2b-n^ n^ 2b-n n^

Since T, JNA « 3R , (T, ^h) = It , we think A lies in 3R x ]R .
(y,i) (y,i)

Now let V be another neighborhood of (v,i) with V C U. Take f = 0 and g = F

~2b-nR
in Lemma 3. Then there are neighborhoods U and U2 of 0 in It with

2b-n_ •, . 2b-n^ n
U C \j C m Rflv and there is a C function F : It Hv + l H v

such that

(a) F =• 0 on l^

(b) F = F off U2

(c) F is arbitrarily close to F in the strong C topology.

Let G: (graph F) n v -* V be defined by

G(x,y) =(x,F(x)) (117)

2b"nR "R •
and let H : A -*• TR xlt be defined by

H(x,y) - X(x,y) G(x,y) +(1"x(?»y>)(x»?)

where X : It x It •> [0,1] is a C1 function satisfying

1 on V

X(?»Y) °\o Off U.
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Set

A A H(A). <119>

Now H is the inclusion map off AH U. On the other hand H locally flatters A
2b-nR i^

onto T, JXA so that there is a neighborhood W of (v,i) in K. x It such
(Y»P ~ ~

that

ahkhw^t, .xAHt, .jhw, (120)
(y,i) (y,i)

It follows from (115) that the set (120) is an (n+k)-dimensional submanifold.

If all the neighborhoods and perturbations are small enough, then A will be a
1 a

small C perturbation of A.

Remark Our reason for requiring A to be closed is as follows. Let M- and M^ be

submanifolds of Itn with M, and fck closed. We used the fact that the set of all

functions from M- into Itn transversal to M2 is open. If M^ is not closed, this
is not true. Suppose, for example, that K, = {(x,,x2)|x2 = 0, x- £ (0,1)} and
that t^ is as in Fig. 20. Note that (0,0) £i (M^ H^ and iM j\\ M2- It is
clear that given any neighborhood of i.. , one can find an embedding G of M- such

that G(M1) meets ^ tangentially near the origin, i.e., there is a 1-dimensional
submanifold it, =&(%) which is close to M- and touches M2 in a tangential manner
near the origin. Hence G(M.) WHL. Therefore closedness of M^ cannot be relaxed.

V. Constructing Weakly Regular n-ports via Perturbation

Given aresistive n-port Nwith A$(k, we ask if it is possible to perturb
A A. /» TT

A in such a manner that the perturbed n-port N has A with A/|\K. We will show

that the answer is affirmative. Moreover, we will give a second method for

transversalizing A and K by creating extra ports instead of perturbing A. The

first method is called element perturbation and consists of perturbing the

existing constitutajve relations A. The second method is called network perturba-

tion and consists of creating extra ports by "pliers-type entry" or "soldering-

iron entry." Note that element perturbation gives rise to a new A but it keeps
b+n

K unchanged, while network perturbation gives rise to anew ambient space TR
x It1*11 and hence a new A and a new K, where n is the number of extra ports created.
Recall that the norator of Example 2 imposes no constraint in so far as the

constitutive relation is concerned. Therefore network perturbation is equivalent

to inserting norators by pliers-type entry or soldering-iron entry.

Remark In the case of RLC networks, network perturbation usually consists of

addition of parasitic capacitors and inductors at appropriate locations. In
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particular, we augment the network by adding arbitrarily small linear inductors
and arbitrarily large linear capacitors by pliers-type entry, and arbitrarily
large linear inductors and arbitrarily small linear capacitors by soldering-iron
entry. Hence in the limit we recover the original network.

We first give a transversalization result via element perturbation.

Theorem 3 Given a resistive n-port N suppose AHK t <*> and A/fjjC. Then we can find
a perturbation Aof Aarbitrarily close to Asuch that AHK^ <f> and A(f\ K. Hence
the perturbed n-port N is weakly regular and structurally stable.

Proof The proof of (ii-a) of Theorem 2 is applicable here because it does not

use the fact that Z is not an n-dimensional submanifold. It uses only the fact
that A^K. H

We give next another transversalization result obtained by network pertur

bation. Recall that the network vjv is obtained by terminating the ports of N
by norators and thatoM has b =» n '+ n_ branches.

Theorem 4 Given a resistive n-port N let AHK >f 0 and A/fiK. Let uT be an
arbitrary tree for oM and let Sl be its associated cotree. Create an extra port
in parallel with each branch of z) and create an extra port in series with each

branch of ££ . Then the perturbed N is an (n+b)-port and it has the following

properties: (i) An K ^ <(>, (ii) A(l\ k. Moreover N is weakly regular and
structurally stable, where A and K are the constitutive relations and the

Kirchhoff space of N, respectively.

Proof (i) Let \J- denote the branches representing the extra ports inserted in
parallel with <J and let atl denote the branches representing the extra ports

p. X A

inserted in series with st^. Let^\|be the network obtained from N by terminating
ports by norators. Then 9T =££ U ^J is a tree for cAI and *& =*& uSPi is
its associated cotree. Let

be the variables of <^|. Now let (Y0tiJ eAnK^ $• We claim that with

we have

(y0,i0) e K . (121)
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This follows from the fact that (y0»iQ) corresponds to open circuiting tj^
and short circuiting ^j* and the fact that such situation is certainly con-

X a A

tained in the Kirchhoff space K. Next, since no resistors are added, A is given

by

A- {(v,i)|(y,i) € A} (122)

and hence (vn,in) G A . This and (121) imply (i).
~U ~U <* AAA A

(ii) We compute vx(y>i) ^or N* Observe that the main part B^ of the fundamental

loop matrix B of (^\j assumes the following form:

U\

B =

0 -1 Yg
(123)

- X

where B is the main part of B for u\|. The signs of the identity matrices are
chosen just for convenience and such choice of signs involves no loss of gen-

A A A

erality. Next observe that f(y,i) = f(y»i) and that

D- f = [D f:0], D- f = [D f:0], D? f = [D, f:0], D- f = [D. f:0].

-*o ~Y*"~ ~Y* ~Y:r'~ ~~f ~~-^'~ ~~*~_ "V"
Substituting these and (123) into (37) we obtain

<3f(y4) =iB^fiS^jSijjD^fl^.i) •<K>(v.i)-

It follows from (34) that this matrix has rank n^ for all (v,i) G A. It follows
A A A A **• •» «•

from (122) that for any (v,i) £ A H K, the subvector (v,i) must belong to A.
A "T" A ~» "*

By Proposition 1, A (\\ K. n

Remarks 1. Theorems 3 and 4 say that given any constitutive relations A pro

vided that it is a (^b-np)-dimensional C submanifold, one can always transver-
salize A and K by either element perturbation or network perturbation.

2. In the proof of Theorem 4 we took advantage of the fact that transversality is

a coordinate-free property and hence we need to check it in terms of only one

particular tree. _.
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3. Recall that the transversality condition (31) requires the vector space It

x m be spanned by the algebraic sum of T, .J and T> .*K. The augmentation

procedure of Theorem 4 is to provide more vectors for T, .J and T. ..K so

that their algebraic sum spans the ambient space.

Observe that In Theorem 4 the number of extra ports provided was b. We will

show, next, that if A has simpler forms, then the number of extra ports can

be reduced.

Proposition 9 Given an n-port N let A ^K j <£, A/fiK and let A be described by

(13). Let ^J be an arbitrary tree for <^A| , the network obtained by terminating
the ports of N by norators, and let §l be associated cotree. Decompose J and

9l as ^ =R« U P- and *£ «Ry U Eg, respectively, where Rand P
denote resistors and ports, respectively. Create an extra port in parallel with

each branch of R„ and create an extra port in series with each branch of R^ .

Then the perturbed N is an (n+nR)-port having properties (i) and (ii) of Theorem 4.
Hence N is weakly regular and structurally stable.

Proof Let y, be the branches of the extra ports created in parallel with R^
and ££- be the branches of the extra ports created in series with R^ . Then
xS ARjt upj u ^i is atree foreAJand St 4Ra UP^ U<£± is its associated
cotree. Let

be the variables ofoW. The proof of Property (i) is similar to that of Theorem

_4. To prove (ii) observe that

Yr X
->

o 0 -l *R
A

?3 = 0 5pp ?PR w~v.
1 ?RP ?RR V-t

fR-!R.IBR-9.ttt-I8--ll--B*R-W 1]

D- L = D f„, D- f_ = D f^v ~R ~vD -R* ~v ~R -v ~R
-R^ ~R.» ~R^ K<i3
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where the submatrices B BpR B and Bpp are those ofeAl (see (44)).
stituting these into (46) we have

?r(VV • k ih "(\ !r>I9 -II:?, V^ V[9 i:
L~R£ ~Rs ~R$ ~R*

It follows from (34) and (40) that

rank <B!R>Cv j^) =*R for a11 (^R, V G*R '

(Yr»V-

Sub-

(124)

(125)

Let ttr be the projection for N defined by (42). Then, since *„(£) c \ and
A A

since (yp,ip) = (yR ip), (125) implies that the matrix of (124) has rank n_. for
AAA A *J* /v

all (vp^ip^) S ttr(Z). By Corollary 1, A(\\ K.

Proposition 10 Given an n-port N let AHk^ <j>, A/fl K and let Ap^ be locally
voltage controlled (See Def. 1). Create an extra port In parallel with each

branch of the tree resistors R^ . Then the perturbed N is an (n+n^ )-port and

it satisfies (i) and (ii) of Theorem 4, where.il- is the number of branches in

R_ . Hence N is weakly regular and structurally stable.
•o

Proof The proof for (1) is similar to that of Theorem 4. (ii) It is clear that

y AP. u ^ is atree for^AI and 9! 4Ra uR* uP^ is its associated
cotree, where yl denotes the ports created. It is easy to show the following:

?p. -3,

-1
V

hm 5rp ?rr ?R
i.

?PP ?PRu Xl_

-1

?RR = ♦• B~RP
l?RP ?RRJ

» 5pp - ?pp» ?pp' ~pp ?PR

d~ f = <j>, Da f = d f , d: f = <j>, d; f = p f
YR R YR ~R YR R ~R_ R h^ R %R ]

a
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Substituting these equations into (46) we obtain

(126)

Since A_ is locally voltage controlled (16) implies that the matrix of (126)
R A A *

has rank n_ for all (vR,ip) G\« Since (VrjIj.) ° (Yr»Jr^ and since £r(^ C
A Y ^

Aj., condition (45) of Corollary 1is satisfied. This implies h(l\ K. a
Example 18 Consider (vi) of Example 1. In Example 9 we showed that A/tTk.
Choose ^J = {R2»P} as our tree. Create extra port P in parallel with R2 as in
Fig. 21. Then y = {P,P} is the tree chosen in Proposition 9. Since

?rp

1 -1

0 1

we have from (126) that

^Yr'Jr) -L-(?vrV?rp:VR
(VV

-Df Df.

*1 h
0 -Df„

1 0

0 1

V

A TT A

This matrix has rank 2. This implies A f\\ K.

A dual argument to Proposition 10 gives the following:

Proposition 11 Given an n-port Nlet AHK^ $, A^fK and let Ap^ be locally
current controlled. Create an extra port in series with each branch of the cotree

A

resistors R^ . Then the perturbed N is an (n-H^ )-port and it satisfies (i)
and (ii) of Theorem 4, where np is the number of branches in R^ . Hence N

is weakly regular and structurally stable.

Remark A natural question that arises at this point is: Suppose A n\ K an$

A H K ^ <|> and hence Z is an n-dimensional submanifold. Is this n-port struc

turally stable under network perturbation in the sense that after creating an

extra port, the configuration space Z = A H k of the perturbed N is an (n+1)-

dimenslonal submanifold? The answer is negative as demonstrated by the following

example.
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Example 19 Consider the 1-port of Fig. 22 where the constitutive relations

of Rn and R9 are given by (vi) of Example 1 and the constitutive relation of R3
is given by i_ = fR (v ). Choose £f = {p»R;,} as our tree. Then B^ =

v3 "3

-PR ~PP
[1 0]T, B^ =[0 1]T, Bpp =Bpp =*and

R.
-Df

0

0

0

-Df.D !pbv ~R

R3

, D f =
-Yn ~R

Rrf
0 -DfT

r.

Xf*= *X hR*

0
—

0

1 0

0 1

Substituting these into (46) we have

^(Yp.ip) ==Rv~R'm

It is clear that

"DfR o ;

DfRR2
o ;

0 DfR :R3 •

1 0

1 0

0 1

Yr

3 J

v =v =i — i — 0. v — —v«

Rl R2 Rl R2 P R3
Z=/(v,i) <= It4 xir4

i = f (v ), v e R
R3 R3 R3 R3

and therefore tt maps Z onto ^k diffeomorphically. It is clear that
rank Of-(0,0,v_ ,0,0,i ) = 3. Therefore Afl\ K and Z is a 1-dimensional

t£ R Ra R«j

submanifold. Now let N be the 1-port consisting of the port P

and R- and let N2 be the 0-port consisting of R- and R2» Then the 1-port
N of our interest consists of N and N« hinged together. Next, insert an extra
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** A

port P by pliers-type entry between R^ and R2. The resulting 2-port N consists of N1
and the 1-port (call it Nj of (vi) in Example 1, hinged together. We saw, in

Example 9, that the configuration space of N? is not a 1-dimensional submanifold.

It is clear, then, that the configuration space of N is not a 2-dimensional

submanifold. Hence N is not persitent under network perturbations.

VI. Reciprocity and Anti-Reciprocity

Our objective in this section is to generalize the definition of "reciprocity"
[13,11] and "anti-reciprocity" [8] for the more general classes of resistive n-ports

considered in this paper.

In order to define these two basic circuit-theoretic concepts [17] in a

coordinate-free manner, let us briefly review some properties of "differential
2

forms" and "induced maps". A differential 1-form or simply 1-form n on 1 is a
2collection of functions given at each (x-,x2) ^ It by

D(Xl,x2) "VXl'x2)dxl +*2(Vx2)dx2
where f- and f2 are real-valued functions, and dx^ =[10] and dx« = [0 l] are
1x2 row vectors. Hence the values of n, v at [l 0] and [0 l] are given

respectively by n(xifX2)([l 0]T) =VX1'V'!!(Xl,x2) ([0 l]T) =f2(xl'x2>-
Therefore r\ can be thought of as a vector-valued function (f.,f„). If

y = f(x-,x2) where f is a real-valued function, then

dy = D f dx. + D f dx? . (127)
X- X x« z

The exterior product a of two 1-forms has the following property. If

T) a f1dx1 +f2dx2, £ = g1dx1 +g2dx2, then

2A£o (flg2-f2g1)dx1 Adx2 (128)

and

dx-Adx. = dx Adx2 » 0, dx Adx, = -dx2 Adx. . (129)

Exterior product of two 1-forms is a 2-form [4]. Special caution must be exer

cised when one discusses 1-forms on general manifolds instead of on euclidean spaces,

because manifolds are generally nonlinear. See [4] for details. Next, let n be a 1-fon
2 k 2 1

on It and let F: TR -*• It be a C function where, k j> 1. Then F induces a 1-form

Con mk by the formula 5(u)(w) =Dp(u)(0?V' ~€**» uGmk • We write this as
K« F*n and we call F* the "induced map of F. A similar argument holds for 2-forms also.

Again, care must be taken when we discuss 2-forms on general manifolds. We are

now ready to define reciprocity.
i

Definition 12. A weakly regular n-port N is said to be reciprocal if

l*(EdiP AdVp ) = 0 (130)
~ k=l k rk "•
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where l* is the induced map of the inclusion map \ defined in (23).

Remarks: 1. We need weak regularity of N because the differential 2-form (130)

must be well defined.

2. Observe that ^ di^ Advp is defined on IR xTR . However, the map \ pulls
k=l k k

this 2-form back to Z and defines it on Z.

n

3. Although ^ di Advp is related only to the exterior port variables, condi-
k=l Pk Pk

tion (130) depends on the internal resistor variables through l . In fact the

following holds.

Proposition 12. A weakly regular n-port N is reciprocal if and only if

*R
i*(Vdi_ AdVp) = 0 . (131)

Proof. Using Tellegen's theorem we obtain [l0,ll]

Up

i*(Eipdv + Eipdvp) =9
k=l \ \ k=l rk *k

which implies

•k

.b _b

Q

Taking exterior derivative d [4] of both sides of (132) we have

i*(Edip Advp) =-i*(Edip Advp) • (133>
*" k=l \ \ ~ k=l k k

This shows that the 2-forms (130) and (131) must vanish simultaneously. n

The importance of reciprocity lies in the fact that it is closely related

to the existence of potential functions.

Proposition 13. Let N be weakly regular and let 3 be any 1-form on Z satisfying

n

d0 = X*(£dip AdVp ) . (134)
~ ~ k=l rk rk

If N is reciprocal and if Z is simply connected [4], then there is a function

P: Z -»• It such that

$ - dP . (135)

If n=gdh is a1-form, then dn =dg Adh +gd2h =dgA dh since d2h =0[4].
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Remark. For a real-valued function P, the exterior derivative d and the ordinary

derivative d coincide [12]. Hence there is no inconsistency.

Proof. By reciprocity and by (134), we have d$ = 0, i.e., $ is a closed 1-form

[4] on Z. Since Z is simply connected, it is exact [4]. Hence there is a real-

valued function P satisfying (135). n

In RLC networks reciprocity plays an important role in the sense that the

dynamics gives rise to a gradient dynamical system [ll]. Observe that our reci

procity definition (130) is coordinate-free. We will next give a method for check

ing reciprocity in terms of some specific coordinates. Of course we need to

check it in terms of only one convenient choice of coordinates.

Proposition 14. Let N be weakly regular with dim Z = m and let (ip,Znu) be a

local chart at (v,i) for Z. Then N is reciprocal if and only if for each

(y,i) £ Z, the following mxm matrix is symmetric:

where

(yp(x),lp(x)) 4TTp0^1^) (137)
and tt is defined by (24).

Proof. It follows from (127) and (129) that in terms of the coordinate i|>, the

2-form on the left hand side of (130) is expressed by
4 ^

(rfV(£ <* adv )=±(iirwdxj a(XJl^Wd*,
k«l k k k=l\j=l j JJ V&=1 I J

3d_ 3v 3:L 3V,,
A A f *k Pk Pk Pk )
Si j<^3xj - 3x* ~ 3xa ~ 3xj -J 3 (13*)

It is easy to show that this 2-form vanishes if and only if the following mxm
T Tmatrix is a zero matrix: (Dv ) (Di ) - (Di ) (Dvp) . But this is equivalent

******Jr x ******t X *v^*j7 x ******ir x

to saying that the matrix in (136) is~symmetric. ~ n

Using Proposition 11 we can check reciprocity in terms of the internal

resistor variables. The following can be proved in the same way as that of

Proposition 14.

Proposition 15. Let N be weakly regular with dim Z = m and let 0/>,Znu) be a

local chart at (v,i) for Z. Then N is reciprocal if and only if for each

(v,i) £ Z, the following mxm matrix is symmetric:
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(BVx<5Vx
where

-1(v_(x),i_(x)) A 7T_o1p-1(x)

and IT- is defined by (42).
A.K.

(139)

(140)

If N is normal the following holds.

Corollary 7. Let N be normal, i.e., Z and^-R are globally diffeomorphic to Itn
and K admits a generalized port coordinate. (See Def. 9). Then N is reci

procal if and only if the following nxn matrix is symmetric for each n. :

[ep(5Ep)np +5p]T[Sp(P!p)np+dp] (141)

Proof. In this case we can choose x = np as a global coordinate for E and

^p^ ='•2p<5JPn +5p3T» (Pip)n =[Sp(?Vn +£p]* Hence the result follows
from Proposition 14. n

Corollary 8. Let N be normal and let^ admit a global hybrid representation,
i.e., let vp = (va,vb), ip = (ia,ib), rjp =(v^), §p =(i^) and |p = Fp(r,p).
Let

<?Vnp
Sn 5i2

J- ?21 ?22 -*n
(142)

~P

where the matrix partition corresponds to those of £ and r\ . Then N

is reciprocal if and only if, for each r\ , the following hold:

<5ii>np =<5ii>v (522>np "<522>y ^u\ ' -<?2i>y
In particular, if K is globally voltage controlled or globally current controlled,
then N is reciprocal if and only if (DF ) is symmetric for all r\ G ]Rn.

~~lr Up ^.F

Proof. In this case

a . Tool ri oi _ fiQl . Tool
~? LSiJ* ~p"[qqJ' Sp-lqoJ' ~p=[oiJ

and the matrix of (140) becomes

Sii h2^2in
?22 J Up

The result follows from the symmetry of this matrix. n

If A is represented by (13) we can derive a sufficient condition for reci

procity in terms of 7L instead of E.
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Proposition 16. Let N be weakly regular and let A be described by (13). If A_

satisfies

Ir £dVd\j
where

nR "r1R: 7L + It xTR *

is the inclusion map, then N is reciprocal.

Proof. Let 1- and l« be inclusion maps defined by

E-=2+ a -?h- mbxitb .

Then

l =* il°i2 *

It follows from this t

f°R ,
I* £di Adv

We claim that

il

r°R %

l£dVd\J

* *

-2^1

= 0 .

2 dip Adv

To prove this we first locally parametrize Ap;

(vR,iR) = (v^P),!^))

where p varies over an open subset of It . Then we locally parametrize A by

2 = (B'Yp4p);
(yR,yp,iR,ip) =(y^p),^,!^),^) . (150)

Using an argument similar to the proof of Proposition 13 one can show that (148)

holds if and only if the following matrix is symmetric:

<5?R>a(5iR>a - [(Vr}p 2 ?JT[(Vr>p 2 °J

»pSr>Wr>p 2 2
0 0

0 0
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Similarly, (143) holds if and only if the following matrix is symmetric:

VrW^p
(152)

By assumption, (152) is symmetric and hence (151) is symmetric. This implies

(148). But since [12]

1*(0) = 0 , (153)

(153) and (148) imply (131). n

If A_ admits a generalized port coordinate then we have the following:

Corollary 9. Let Ap admit a generalized port coordinate. Then Ap^ satisfies
(143) if and only if for each X] G It , the following matrix is symmetric:

[a(DF) +b]T[c(DF) +d]. In particular, if A_ is globally voltage controlled or
a. —, n ~ ~ ~~ n ~ k

globally current controlled, then it is reciprocal if and only if (DF)n is sTDr'
metric for all r|.

Condition (143) is sufficient for N to be reciprocal but not necessary as

the following example shows.

Example 20. Consider the 1-port of Fig. 1(a) where A^ is given by

Vp -gp (ip ,ip ) = 0, v -g (i ,i ) = 0 . (154)
Rl Rl Rl R2 R2 R2 Rl R2

Since Ap is globally current controlled, it satisfies (143) if and only if the

following matrix is symmetric for all (i ,1., ):
Rl R2

\\ \\"
(155)

^ ^ \>2'Rl 2 (iR »** )
Rl R2

Hence if the matrix of (155) is not symmetric at some point, then (143) does not

hold. Next, it is easy to show that A n\ K for any C functions g„ and g .
1 K2Therefore E is a 1-dimensional submanifold. Since ip serves as a coordinate

and since ip = i_ = 1 , we have

D v =ip?R
"\vv*2"

• w[i]-

-51-

e for E,



This implies that (d v )? (D ip). is a scalar and hence symmetric. Therefore N
ip~R ip ip~R ip

is reciprocal for any C1 functions gR and gp^ whereas (143) is not satisfied if the
1 ? 2

matrix of (155) is not symmetric. Finally, if 3 = i*(£ v di ) then, in terms
k=l K. K

of the coordinate ip, we have 0=(gR (ip,ip)+gR (ip,ip))dip. Hence there is a
jl «

f±Ppotential function; 0«dP(ip) where P(ip) •J (gp (ip,ip)+gR (ip,ip)Jdip and
i is arbitrary. *q
0 Simple connectedness of E cannot be relaxed as the following example shows.

Example 21. Consider the 2-port of Fig. 23 where

*R-- (2r'Jr>
2 T-„2^2,n

\*-zT2-°> \-T3~ '\V1 vp +vp 2 v -Wp 1 ^
Rl R2 Rl R2

(156)

2 2
This is a 2-dimensional submanifold of It xB. which is not simply connected.

It is easy to show that Afi\ K. The space Eis essentially the same as K^ and is
parametrized by x = (v ,v ). One can easily show that (Dip)x is symmetric
and therefore N is reciprocal. Let

V vp.
pA^ipdv g 2 2dvP " 2 2dvP •~ k=Pk pk v;4v; pi v;-w; p2

Pl F2 *1 *2

2

Then d0 = £ d:L Adv s °' But it: is known t12^ that there is no functlon p
~ k=l Pk Pk

satisfying 3 = dP.

Corollary 10. Let Ap be uncoupled, i.e.,

where JL isa 1-dimensional submanifold, k = 1,...,il. Then (143) holds and

hence N is reciprocal.

Proof. Each di Adv„ is a 2-form on a 1-dimensional submanifold AR . The only
possible 2-form on a^dimensional submanifold is 0[12]. This implies (143>. H

Remark. Definition of reciprocity in terms of a 2-form was first given by

Brayton [13] and used by Matsumoto [ll] to give a necessary and sufficient condi
tion for the dynamics to be a gradient dynamical system.
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We next define "anti-reciprocity" which sometimes plays important roles in the

theory of n-ports [14,17]. In order to define anti-reciprocity in a coordinate-

free manner, we introduce symmetric product of two symmetric tensors instead of

exterior product of two forms. A formal definition is given in APPENDIX 3. Here

we will give an example showing the operation of symmetric product. Let

y, =f(xrx2), y2 =g(xn,x9) and let n^dy, =D^ fdx, +Dy fdx2 and
= D

— ' z. X- " x x« t.

of n and £ is defined By the following formula:

ri ® £ = (D f)(D g)dx, @dx. + (D f)(D g)dx ® dx
~* •»» X« X- X x x« x,» £ £

£ ^ dy~ = D g dx, +D g dx„ be associated 1-forms. Then the symmetric product
~ J2 x, ° 1 x«° 2

+ ((D f)(D g) + (D f)(D g))dx ®dx .
xl x2 x2 1

In particular

dx. ® dx« = dx„ ® dx .

(157)

(158)

The set of symmetric tensors is closed under the operation © of symmetric

product [15]. Since any 1-form is trivially symmetric, we used 1-forms in (157).

Of course higher order forms are not closed under the symmetric product operation.

Conversely, for higher order symmetric tensors, exterior derivative is not well

defined.

Definition 13. A weakly regular n-port N is said to be anti-reciprocal if

n

i Edip ®dv.

k=l

= 0 (159)

This1 definition is, of course, coordinate-free. We will give next a method fdr

checking anti-reciprocity in terms of local coordinates.

Proposition 17. Let N be weakly regular with dim E = m and let (i|j,Enu) be a

local chart at (v,i) for E. Then N is anti-reciprocal if and only if for each

(v,i) €: E, the matrix of (136) is skew symmetric.

Proof. In terms of the coordinate ip, the left hand side of (159) can be recast

with the help of (157) as follows:

r n

(lofV Vdi ® dv = £ £
k=i *k V ffilj=iw-j

91T>n ( m P.
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n m DiP
k, v 1,

x)-

3v,

3v,

2 Z -tor^^rM dxi ® dx*
ffi j,%idxj ~ 3x* j
m n Pk ""Pfc

• £ Zlx7(x)lx7(x) dxj ®dxj
j-l k-l j

m ii r r

j<Jl k=l

j
3v, 3i, 3v,

[lx7(x>lxf«+lx7«lx7(x>J dxj® dxil'
In order for (160) to vanish, each coefficient must vanish:

n 9iP, 3v~
^-^^-(x)-^—(x) =0, j = l,...,m
£l3xj ~ 3XJ ~
n ( P.

k*ll
:(x)-^(x) +

31.

3Xj ~ 3x£ - 3xA (x)-3x^"(x)k = 0, 1 £ j < £ < m.

(160)

These conditions are equivalent to saying that the matrix of (136) is skew

symmetric. n

Results corresponding to Propositions 12, 14-16 and Corollaries 7-10 hold

also for anti-reciprocity, by merely replacing the word "symmetry" with "skew

symmetry" and the symbol A with ®.

Acknowledgment. The authors are indebted to Prof. M. W. Hirsch of the University

of California for discussions on the structural stability result.
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APPENDIX 1

Let M. be m.-dimensional C submanifold of It , 1 = 1,2. For each xn € M OM0,
ii n 1 n~n4 -1 l

there are neighborhoods U. of xn in It and C functions f.: U. -»• H such that
i ~U ~i i

Minui =?i1(2)
rank(Df ) = n- m., for all x € n Hm,.

~~i x i i i

The following fact can be proved in an essentially the same manner as in the

APPENDIX of [16].

Fact A. ML^ (\\ M2 if and only if for each xGILOl

rank

APPENDIX 2

5?i
P!2

= n-m1+n-m2 . (A.l)
x

1 nProof of Lemma 1. Let K^ and M2 be C submanifolds of It . Then every neigh
borhood of the inclusion map 1 :*L -* Itn contains an embedding G such that
G^. Hence either G(M2) Hm2 is empty or for xem with G(x) GM., we have

WW+W^*"-
We claim that

WW " TG<5> W* • (A-2)
To see this, let ip be a local coordinate for *L . Then Goij; is a local coordinate

for M« since G is an embedding. Therefore

WW* • ImW(5f%(x) <A-3>
and

T^ =Tm<Bf\w • (A.4)
Equations (A.3) and (A.4) imply (A.2) and hence

TG(x)(5(Ml))+TG(x)M2 =mn • (A.5)
Let i^ £G^). Then (A.5) implies M^ M2. a
Remarks. 1. Note that the intersection G(tt.)nM may be empty.

2. Perhaps, we should mention here that the term "embedding" in [3] is slightly
different from the one used in [4]. The definition in [3] is the same as the
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one given in this paper, whereas in [4], a map is called an embedding if it is

a proper injective immersion. The former is weaker than the latter in the sense

that embedding in the former sense plus the "proper" condition imply embedding

in the latter sense. In fact, an embedding in the former sense is proper if and

only if its image is closed as a subset of the range space. Theorem 2.4 of [3]

which we used in the proof of Lemma 1 uses the weaker definition. It is easy,

however, to obtain the same result with the stronger definition of embedding

provided that M. is closed. Since we are assuming that A is closed, there is no

confusion.

Proof of Lemma 2. Let {f_,...,f } and {g-,...,g } be bases for X and Y, respec-
a ~nX "^tively, and let Z i span{f_,... ,f ,g..,...,g }. Let dim Z A n__ +k and without-1 ~n^. ~1 -ny a I

loss of generality assume Z = span{f_,...,f ,g_,...,g, }. Let Z be the ortho

gonal complement of Z and let {e„,...,e , ,, *} be its orthonormal basis. Define
~1 ~n-(n +k)

ii =§i"-"ik =§k
§k+l =§k+l+~l §n-nx -§n-nx+~n-(nx+k)
ln-i^+1 =In-n^l''" ^ ~^ '

We first claim that

span{f-,...,f ,g_,... ,g } = IR (A.6)~1 ~nx -1 -iiy

i.e., the vectors in the bracket of (A.6) are linearly independent. To

this end let

a f +...+a f +$.£. + •-. + B g =0
l~l ny-ny x~l n-n__~n—nY ~

i.e.,

al!l+ -'+anx£nx+3lil+ *•• "^^Ik+̂ l^-fl^+- +en-nx(ln-nx+!n-(nx+k))
= 0 . (A.7)

Since {e-i,...,e , ,, *} C z and since e.fs are orthonormal, taking inner product~i -n-(nJC4k) ~i
of (A. 7) with e-, we have

Bk+1 =° * (A,8)
Similarly, taking inner product with e«,...,e , +vv we nave

\+l ^'°- (A-9)
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Equations (A. 7)-(A. 9) imply

OLf- + ••• +<x f = 0 . (A.10)1-1 n^tix -

But since {f.,...,f } was assumed to be linearly independent, (A.9) implies~l ~nx

a = ••• =a = o . (A.11)

x
This together with (A.8) and (A.9) imply (A.6). Next let Y A span{g-,...,g }.

—x ^ ~ny
If e > 0 is small enough, then He. II,... ,Be , .A < e imply that dim Y = n^
because small perturbations do not destroy linear independence of vectors. Hence

X+Y = Itn . (A.12)

Finally it is clear that Y = A(Y) for some matrix A and if e > 0 is small enough,

then BA-lll can be arbitrarily small. Since any linear subspace contains the

origin, XHa(Y) t 0. This and (A.12) imply (102). «

Proof of Lemma 3. Let Q|(f;e(-)) be an arbitrarily small neighborhood of f in
C (It ,m ) as defined by (99). Since e(x) > 0 for all x e Itn, there is a neigh

borhood U={x£]Rn| Nx-xJI <6}for some <SQ >0and there is an 6>0such that

e(x) _> e for all x G u . (A.13)

Next recall Taylor's formula;

f(x) -g(x) = f(x )-g(x )+((Df) -(Dg) )(x-xn) +nx-xnllR(Qx-xft(l) (A.14)

where the remainder term satisfies R(llx-xQ0) •*• 0 as llx-x0ll -*- 0. Choose 6 > 0
in such a way that

sup |R(I|x-x B)| <| . (A. 15)
0«oH6i

Choose 6« > 0 in such a way that

sup 11 (Df) -(Dg) II <"| (A. 16)
[|x-x0[|<(S2 ~~ x ~~ x J

and let 6 4 min{60,6 ,62>. Set

U2 A{xGmn| Dx-x0ll<6} . (A.17)
Then there is a neighborhood D^ of xQ and a C function y: Itn -> [0,1] such that

(a) Ux C u2 (A. 18)
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1 onU.

(b) y(x) ={ X (A-19>
0 off U2

(c) ll(Dy)xll <Ifor all xGlRn . (A-20>
Such a function is called a bump function [3]. (See Fig. 24.) Set

|(x) 4U(x)f(x) +(l-y(x))g(x) . (A-21>

Then

| « f on TI1

and

(A.22)

| = g off U2. (A. 23)

We claim that g is inQjl(f;£(•)) • To this end we compute the following:

Ug(x)-g(x)ll+Q(Dg) -(Dg) II

< y(x)[|f (x)-g(x)ll +y(x)ll(Df) -(Dg) 11 +II(DU) illlf(x)-g(x)ll

<(y(x)+ll(Du)j)llf(x)-g(x)i+y(x)tl(Df)x-(Dg)xll . (A.24)
Since y(x) =0off U2,~the right hand side of (A.24) is zero off U2- Now for
Ilx-xJ < 6 we have, using (A.14)-(A.17), (A.20),

(y(x) +0(Du)xH)!lf(x)-g(x)tl +u(x)ll(Df)x-(Dg)xll
< (1 +|)Hx-xJR(Ilx-xJ) +11 (Df) -(Dg) II

<U+f>«f+f - («+2)f+f <§+f <c~.
It follows from this and (A.13) that gbelongs to<U(f;e(0). Hence | is close
to g in the strong C topology.

Proof of Lemma 4. The proof is similar to that of Lemma 3. Let Ql(id;e(0) be
an arbitrarily small neighborhood of the identity map id in C (m ,It ). Let U
and e >0 be defined as in the proof of Lemma 3. Let A satisfy IJA-lll < j and
let 6£min{60,|-} where 6Q >0is as in the proof of Lemma 3. Define
U A{xemn| llxll <6>. Then there is aneighborhood V± of the origin and there
is aGl function y: TR* + [0,1] satisfying (A.18)-(A.20) . Let
G1W .ft y(x)Ax+(l-y(x)).x. Then G± «Aon U^ g1 =±d off U£. We claim that
G i^Jl(ld;e(-)). Since~y(x) =0off U2, we need to check it only on 1^;
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|JG,(x)-xn+U(DGn) -IB < y(x)llAx-xU+y(x)HA-lll +(Dy) llAx-xtl

< (y(x)+(Dy) )UAx-xil +y(x)HA-ltl

< (l +2-4)IlxIllA-lll+llA-lll

14-K - £ <e •
Hence G, eQi(iJ;e(-)) and therefore G- is close to G in the strong C topology.

~1 d .1

Proof of (i) of Theorem 2. In order to prove that Zand £ are diffeomorphic we
first define a family of C maps Gt: A ->• It xR by

Gt(y,i) A(l-t)iA(v,i)+tG(v,i)
where t e B and G is obtained in the proof of the first half of_(i). Define

the map Y:Ax.]R-*.]RxjLx:Rby

Y(y,i,t) -(Gt(y,i),t).

Since Gt(y,i) -JA(y,i) -t(c(y,i) -iA(v,i)) and since Y(y,i,t) -(iA(y,i),t)
=(g (v,i)-iA(y,i),o), we see that if Gis close enough to iA in the strong
C1 topology, then there is anumber e>0 such that Gfc is an embedding transversal
to K for all t€ I=(-e,l+e), and Z = Y|(AxI) is an embedding transversal to K x I.

By the same reasoning as that of the proof of Theorem 1 we see that M =* Z(AxI)

H (Kxl) is an (n+1)-dimensional submanifold. Now, let

Mfc AZ(Ax{t»n(Kx{t}).

Then M = UM and M is naturally identified with G (A) Hr. Hence Z = Mn and
tjEi t t ^ ^ -t v

E = M-, where E = AHK and £ = A^K. We next construct a diffeomorphism between
1 jn g

Mn and Mn. To this end let (0,-£) 6T/n , ,JAx I) be the vector field on Ax I
0 1 ~ at vy,x,t;

along the t-axis. Let Gt(y,i) Ax. Then^ since T(x t)M =T(x>t)Mte V^ we can
decompose the vector <S>(Vflft)((0,£)> as (£)(Vfi[t) =?i(x]t)0 (£>t where
Xw ts ^ T, ,J. Next,~let P, .: T, .Z(Axttl) + T, ~M be the ortho-
~l(x,t) (x,t) t ~(x,t) (x,t)~ Wit' t
gonal projection and set

X, ... AP *, „x+(£)«. . (A-25>
~(x,t) ~(x,t)~l(x,t) dt t

^A vector field X on a manifold M is a function such that for each x €= M, the
value X at x belongs to T M. The vector field d/dt has the property that

(^)t =~1 for all t.
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We first show that Xis aC1 vector field on M. For (x,t) £Mchoose alocal
coordinate f%:Z(A*I) nB +8 °R for ?(AxI) in 8Uch fl.^ that
(^'••••yn+l'0''***0)- Without loss of generality assume

that the basis (ftfe1)^). k-1,.. .^b-x^+l, for T(x>t)Z(Axi) ls orthonormal.
It is clear that with respect to this basis, the projection P is represented
by the following (2b-nR+l) x(2b-nR+l) matrix: ~?>

n+l{

b {

1 0

0 0

n+1 b

This is true for all x€z(Axi) nU. Hence ?(x,t)?1(x,t) is C1. Clearly
^t is C and therefore X defined by (A.25) is C1. We next show that if G
is close enough to *A in the strong C1 topology, then for each (xQ,0) GM,
the trajectory J»(xQ,t) generated by X is defined for all te [0,1]. To prove
this suppose that the maximal interval of existence of $(x ,t) is [0,6), where
0<0<1, i.e., either $(xQ,t) -> yf Mor H(xQ9t)^ •> »as t•> 3. We first
claim that the first case is impossible. Since Z is an embedding and since
A is assumed to be closed, Z(Axl) is a closed subset of Bb x »b x i. Therefore
M=Z(AxI) H(Kxl) is aclosed subset of Kb x]Rb xi. Hence, if $(x ,t) •* y
as t •*• 3, then we must have y^M, In order to prove that the second case is~
also impossible notice that if G is close enough to i in the strong C1
topology, then dZ is close to d(iA,id) and hence ^ is small. Since P.
is aprojection, ?(x>t) ^(x^) is also small. Now let g:Itb xRb xf\ i
be the orthogonal projection. It follows from (A.25) that Q X, N = (4-) .
Hence X generates a solution 4>(x_,t) on M such that Q <f>(xn,t) =~t. Next, since
J(x0,t) is acurve in It xr xi, we can wc±te J(x ,t) »(f^x ,t),...,
2b \ ~ ~* fe0.t),t). Similarly, we have X^ -(xjx>t),.. .,X^t))l). It follows
from the above argument that there ii'a number~L >0such~that \x* J <Lfor
all^t e[0,0). Integrating X^t) with respect to t, we have ^x^-Ax^O)
"Jo %(*0'a)*8) ^ Hen°e '♦k(50»t>-*k<?0»°>l 1L* for all t€[0,3).
Therefore, the second case is also impossible. Since $(xQ,t) is well defined
for t€= [0,1], we have Q $(xQ,l) » 1. it follows from a property of solution
of differential equations [3, p. 150] that $(MQ,1) *K± and the map *(-,!): MQ +M,
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is a diffeomorphism. Therefore Z and Z are diffeomorphic.
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APPENDIX 3

Let X A nnx.. .xjRn and let f be a p-linear function on X, i.e., for any
p times

(x1f...,ij"1,xj+1,...,;p) eeV^^, the function f(x1,... ,xj_1,-,xj+1,... ,xP):
(p-1) times

]Rn •* It is linear for all j = l,...,p. The set of all p-linear functions on X

is a vector space X*. Let f be a p-linear function on X and let g be a q-linear

function on Y A mnX" »xltn. Then one can naturally define a product of f and g
q times

by the following formula:

f(x ,...,xp)g(y ,...,yq) .

This is called the tensor product of f and g and denoted by f®g. Let G be the

set of all permutations of (l,...,p) and let o G G . For any f€ X* and any
(x1,...^) € X, define

(af)(x\...,xP) Jf(xa(1) i°(p)) .

If of = f for all a G G , then f is called a symmetric p-tensor. The set of all

symmetric p-tensors X* is a linear subspace of X . Let

sf5 of .

For any symmetric p-tensor f and symmetric q-tensor g define

It can be shown that f© g is, again, a symmetric (p+q)-tensor, i.e., the set of

symmetric tensors is closed under the operation of © which we call symmetric
product. We can define symmetric tensors on manifolds. Let M be a manifold.

Then U) is said to be a symmetric p-tensor field on M if for each z G M, the value

0) of a) at z is a symmetric p-tensor on T M x...x TM. Let M- and M« be two
~z ~ ~ z z • .

^ * 2
- p times

manifolds and let F: M, •> M0 be C . Let w be a symmetric p-tensor field on M?.
1 2 *•

Then F naturally pulls U) back to M_ and induces a symmetric p-tensor field on M^

(F*u>) (x\...,xP) Am rzJ(dF) (x1),...,(dF) (xp))
where zG Mn and (x1,... ,xP) G TM-x ••-xT M-. The map F* is called the induced

<v 1 ~ *»» Z X Z X

p times

map of F. Next, for a € Gp let
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t -1 if a is an odd permutation.

If f E X* satisfies af = e f for all a E G , then f is called an alternating

p-tensor. A differential p-form is simply an alternating p-tensor field on a

manifold. Hence formally we should have used different notation from di_ and

dv in (159). But any 1-tensor field is trivially alternating and symmetric.

Hence there is no inconsistency in defining symmetric product of two 1-forms.

For more on this subject, see [15].

f 1 if a

I -1 if a

is an even permutation
A J
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Definition Classification

Sufficient

Condition

z= zx U...U z£
Z. : k -dimensional

submanifold

quasi weakly
regular

1
*mh 1 weakly regular aJRk

1 r

rank(dir_) f .,. = n
~-P (y,i)

regular

A^ K
ir_: immersion

1 '

^hJJ : n-dimensional
submanifold

strongly
regular

aA\k
Tjp: embedding

\ '

<£» mn

globally
strongly
regular

Z * It

7rp: embedding

J
J!p = W

* normal

Table 1. A summary of definitions, classifications, and sufficient
conditions of different categories of resistive n-ports.



Figure Captions

Fig. 1 Examples demonstrating resistors with simple constitutive relations

when interconnected could give rise to complicated constitutive rela

tions in the composite 1-port.

(a) The circuit diagram.

(b) Constitutive relations of R., R« and the composite 1-port.

Fig. 2 A 1-port (norator) whose constitutive relation consists of the entire
2

plane (It ) .

(a) A norator circuit realization.

(b) Constitutive relation of the norator.

Fig. 3 A 1-port (nullator) whose constitutive relation consists of a single

point.

(a) A nullator circuit realization.

(b) Constitutive relation of the nullator.

Fig. 4 A 1-port whose constitutive relation consists of all points within a
2

bounded region in It .

(a) The circuit diagram.

(b) Constitutive relation of R..

(c) Constitutive relation of R2.

(d) Constitutive relation of the composite 1-port.

Fig. 5 A 1-port whose constitutive relation consists of a parametrizable

curve in It .

(a) The circuit diagram.

(b) Constitutive relation of the composite 1-port.

Fig. 6 A 1-port whose constitutive relation consists of all points belonging

to the intersection between the constitutive relations of the internal

resistors.

(a) The circuit diagram.

(b) Constitutive relation of R..

(c) Constitutive relation of R„.

(d) Constitutive relation of the composite 1-port.
2

Fig. 7 A 1-dimensional submanifold of It .

Fig. 8 A commutative diagram showing the relationship between the derivative

(dF) of F at x and its equivalent expression via local coordinates.



Fig. 9 Examples of immersions which are not embeddings.

(a) An immersion which is not injective.

(b) An immersion which is not a diffeomorphism onto its image.

Fig. 10 Configuration space of the composite 1-port of Fig. 1(a) with the

internal resistor constitutive relations given as in (iv) of Fig. 1(b).

Fig. 11 Configuration space of the composite 1-port of Fig. 1(a) with the

internal resistor constitutive relations given as in (vi) of Fig. 1(b).

Fig. 12 Illustration of transversality between A and K.

(a) A is transversal to K.

(b) A is not transversal to K.

Fig. 13 A weakly regular 1-port with A/HK.
Fie. 14 A function G close to F in the strong C topology.

Fig. 15 An example showing the set of embeddings is not open in the weak C

topology.

Fig. 16 Perturbation of the function g(ip).
Fig. 17 Two possible transversalization of M., and M2»

(a) M. is not transversal to M«.

(b) kjh M2, M1HM2 =0.
(c) M^ M2, M1HM2 f 0.

Fig. 18 Transversalization of X and Y.

(a) X is not transversal to Y.

(b) X is transversal to A(Y).

Fig. 19 Perturbation of the function g.

Fig. 20 An example showing the set of functions transversal to M2 is not open

if M- is not closed.

Fig. 21 Transversalization of A and K by network perturbation.

Fig. 22 An example of an n-port which is not structurally stable under network
perturbations.

Fig. 23 A reciprocal 2-port whose configuration space is not simply connected.

Fig. 24 A bump function u(x).
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