
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



X-TREE: A TREE STRUCTURED LSI MODULAR COMPUTER SYSTEM

by

A.M. Despain, D.A. Patterson, and C.H. Sdquin

Memorandum No. UCB/ERL M78/65

11 September 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



X-TREE: A Tree Structured LSI Modular Computer System

Alvin M. Despain, David A. Patterson and C. H. Sequin
Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

The design of a tree-structured general purpose computing system

based on multiple monolithic LSI processor chips is being investigated

at the University of California, Berkeley. This research has been

started to determine how future complex computers can be constructed

in a modular way from only a few types of large scale integrated circuit

(LSI) chips, how this constraint affects computer architecture, and in

return, how architectural issues shape the design of the LSI chips.

Research sponsored by the Joint Services Electronics Program Grant F44620-
76-C-OlOO.



INTRODUCTION

For more than a decade the functional computing power that can be implemented

on a single chip of silicon has doubled every year, and this trend is likely

to continue. Commercially available microcomputers now include the processor,

program and data storage and several 1/0 ports on a single chip. And in the

next decade the capability of such single-chip computers will exceed that of

present-day minicomputers with sizeable main memories (1 Megabit). On the

other hand, packaging technology limits the number of leads that interface to

such a chip to less than about 100; a limit that might expand, at best, linearly

with time. A challenge thus exists to design a computer architecture that takes

these possibilities and constraints into account to provide the most cost

effective computing power.

CONCEPT AND GOALS

We have started to study the design of modular computer systems constructed

from a single type of very large scale integrated (VLSI) circuit chip such

as can be expected around 1985. Taking the Zilog Z8 single chip processor

as a benchmark for 1978, demonstrating the possibility to put a processor,

IK bit of registers, IK bit of RAM, 16K bit of ROM and 32 1/0 lines on a

single chip, one can expect single chip computers with 1 Megabit of RAM

and lOOK bit of ROM will be feasible by 1985.

Such a VLSI chip is taken as the basic building block for a modular computer

system with incremental expandability. In our anticipated design, each

processor is coupled to several other processors through a fast communication

link, typically a parallel bus. Although each node of this system is a self-

contained computer in its own right, the function of a particular processor

chip depends on its location in this computing system and will dynamically

change to best serve the need of the system. Processors near 1/0 devices



(2)

or storage devices will contain programs that act as communication controllers,

memory managersjor disk or tape controllers. Processors in the next higher

levels of the system*s hierarchy (see following section) will mainly be used

for data transmission and to perform the required computational tasks. Finally,

processors near the top of the system's hierarchy are supervising the distri

bution of tasks and monitor overall system performance. Neighboring processors

or "nodes" may interact to share the load for a particular computation - so

the exact number of "individual computers" represented by the system will be

fuzzy and time variant.

An important requirement is that the system should be modular and incrementally

expandable with no limits on size or in the number of input/output devices.

The system should be operational for even a small number of processors so

that the initial capital investment can be matched to the means available.

It should further be upward compatible with new VLSI processors emerging after

1985, so that its overall computational capabilities and performance can be

upgraded without the necessity to replace all the already existing nodes with

newer processors.

From a functional point of view this system should act as a general purpose

mulitprocessing machine. Architecture and hardware should efficiently support

high-level languages and advanced concepts such as concurrent processes,

modules and synchronization signals. Overall the system's architecture should

provide some fault tolerance with respect to the failure of individual nodes

or branches (processors or communication links).

INTERCONNECTION TOPOLOGY

Many different multiprocessor connection schemes have been evaluated within

the framework of these constraints. Bus and Ring connected structures were



(3)

rejected since the bus(es) would represent a serious communications bottleneck

for a large number of processors, and a crossbar arrangement would become

unreasonably expensive. Star-type networks lack individuality and are limited =

in growth by the control power of the central processor. Fully connected

networks or n-dimensional cube arrangements, on the other hand, require more

and more connections per processor as the system grows, conflicting with the

requirement for easy expandability as well as with the pin limitations of the

processor chips. Regular arrays or lattices (othogonal or hexagonal) maintain

a constant number of ports per processor as the system grows, and they can be

easily expanded by adding processors at the periphery. Their main disadvantage

is that the mean distance between processors grows proportional to VtT

for systems with N nodes in n dimensions. Among the various configurations

then, tree structures or cluster bus organizations have appeared to be most suitable

to implement.the modular, expandable computer system outlined above. In a

tree structure the mean distance between nodes grows no more than logarithmically

with the number of nodes. A tree can readily be expanded at its leaves. Further

more the topology of the interconnection graph implies a hierarchical control

organization that can be mapped directly onto the physical structure.

While some details of the tree structure are still being investigated and open

to discussion - therefore the project name X-TREE - other design parameters

have become firmed up: A binary tree seems most advantageous. It needs the

least number of ports per node to form the basic tree structure. It has the

further advantage that node addresses (node numbers) can be associated in a very

simple and straightforward way with the location of a node in the tree. This

simplifies the routing algorithms for node to node communication, which can

consist of only a few very simple local checks. Input/output devices, except



(4)

for some operating system control inputs at the root, will be restricted to the

leaves of the tree in order to preserve full modularity and recursive formulation

of hierarchical control programs. There are never more than two I/O devices

connected to the same tree, and these addresses of I/O devices are also given

by their position in the tree. The number of bits in the address, starting

to count with the leading one, readily indicates the level in the tree to which

the particular node or I/O device belongs. Dropping bits from the right readily

gives the addresses of the chain of antecedents all the way to the root of the

tree, which itself carries address "1".

Additional communication links are included in the binary tree to provide

redundant paths between nodes that make the system fault tolerant with respect

to the removal of individual nodes or branches. In addition those extra links

yield a more uniform message traffic destibution throughout the tree. The

optimum set of these redundant branches has yet to be determined. Half-ring

and full-ring interconnection schemes are reasonably good contenders. They

compare favorably to other interconnection schemes in static evaluations of
2

the mean distances between arbitrary nodes as a function of tree-size.

They are now being subjected to dynamic message traffic evaluations in a simu

lator that randomly generates messages of various lengths, and then routes

them to different nodes according to certain user-defined statistics. More

complicated interconnection schemes for the redundant branches (such as

threading, shuffles or multiple interleaved trees) sometimes perform somewhat

better in these simulations but this advantage is offset by the more complicated

routing algorithms. These trade-offs are currently being studied.



(5)

COMMUNICATION BETWEEN NODES

As long as X-TREE is of reasonable size so that it can be housed

in a single room or small building, the communications links between nodes

are parallel busses (8 bit data or address, plus control lines for

asynchronons handshake operation). X-NODE, the VLSI processor located at

each node of X-TREE, requires 4 or 5 complete Bus-Ports for the half-ring

or full-ring interconnection scheme, respectively. Limitations in the

width and number of the busses connecting to X-NODE are primarily given by

the limited number of pins available on a single IC package.

Routing algorithms will be based on a local evaluation of the destination

address of the message. Dependent on the outcome of this evaluation the

message will be routed to one of the nearest neighbors. Should the communi

cation link or the neighbor itself be defective, a second and third choice

for a routing direction are contained in a look up table that implements the

local routing algorithm, and the message is thus sent on a detour. In the

presence of a large number of missing links or nodes, a sequence of such de

tours can lead to closed loop paths and the message will never arrive at its

destination. A detour counter field is therefore included in the message header,

which permits to determine when more than a tolerable number of detours

have been encountered. Special action can then be taken, such as purging

the message or returning it to the originator.

To minimize the delay associated with the communication between distant

nodes and reduce interaction between different traffic streams, multiple

streams of messages must be able to flow simultaneously through one node

without interference and, for most cases, without local processor interaction.

Message destination address decoding, routing, and buffering control should

then be implemented in firmware, possibly using a separate controller on the



(6)

same chip. Complicated trade-offs exist between "path switching" and "message

packet routing". To have the best of both worlds, five different types of

message headers are introduced. The first type is suitable for short messages

and will cause a routing of the corresponding message packets without leaving

a permanent trace. Another type sets up a permanent communication path along

which subsequent data will flow without the need for repeated address decoding.

After a whole block of information has been transmitted, the set up path is

torn down by yet another special message header. A special header is also

introduced for broadcasting messages to all nodes in the whole tree. This

format is useful for start-up and for overall systems control.

SOFTWARE STRUCTURE

A common, very large virtual address space (48-64 bits) is shared by the whole

system. The memory on the VLSI chip that constitutes X-NODE functions mainly

as a large cache 1 Megabit) within this virtual memory. The actual storage

devices are attached to the leaves of X-TREE. The address of an individual

word or item is thus composed of the leaf-address to which the storage device is

attached and an address defining the location inside the storage device indicated

The operating system is also primarily resident at the leaves, except for the

small part that is necessary to start up the system, which is permanently stored

in firmware at each node. Parts of the operating system, programs, and data

will be paged into the local memory of a processor when needed at that location,

and processes will run independently of the particular location where they

are executed. In general, the system will try to minimize the transmission

of bits between nodes. Rather than repeatedly moving a rather bulky block of

data to a distant processor, the program, which in many applications is consi-

dorably smaller than the data, will he moved towards the data. Therefore, in

data-base applications the actual data manipulations will be performed in the

nodes close to the leaves to minimize the number of bits transmitted between



(7)

nodes.

On the other hand, complicated iterative algorithms on a piece of data small

enough to fit inside one processor can be performed almost anywhere in X-TREE. -

If the large data or program memory is too small to hold all information

pertinent to such a calculation, a cluster of N neighboring processors will

share the load, thus multiplying available memory space by a factor of N.

Of the N available data processing units in such a cluster of N nodes the

processing will be done in the ALU and in the process registers on the same

chip with the memory that holds the program part that is currently being executed.

Again this is done to minimize inter-node communication and to maximize execution

speed. In such applications X-NODE functionally looks like an "intelligent

memory" with on-chip — and therefore fast — processing capability.

The nodes at the top of the hierarchy (near the root) will mainly serve

in supervisory functions. They monitor the operation of the whole system,

and depending on the state of affairs (message traffic density, number of de

fective nodes or links) they may broadcast guidelines to all nodes concerning

routing strategies, the presetting of the detour counters, and algorithms for

task sharing among neighboring nodes.

To alleviate some of the software problems typical for multiprocessor systems

we intend to design the hardware of X-NOLE to provide maximum support for ad

vanced software concepts such as proceeses and data abstraction. Rather than

3 ' A
inventing a new language, we intend to adopt MODULA or concurrent PASCAL

which have these features built in.

IMPLICATIONS ON HARDWARE

The organization of this tree structured computer system and the novel approach

of dealing with movable operating systems and program parts will dramatically



(8)

affect the design of "X-NODE", the processor that forms the modular building

block of this system.

A considerable amount of memory is required at each node so that each

processor can execute sizable tasks completely within a single LSI chip,

thus enhancing computation speed and reducing power consumption. In the

envisioned VLSI implementation of X-NODE, all of the local memory will be

implemented in silicon technology on the same chip as the processor, and

therefore will be inherently fast. Nevertheless speed differences too big

to be neglected exist between high density, dynamic single-transistor-cell

memories and static memories using more power and more area. There will thus

be a hierarchy of memories even on the same silicon chip, consisting of a

dynamic program memory, a fast, static writeable control store and a fast ROM

microprogram store for the basic and often used operations.

A writeable control store is important for the described dynamic computer

system. To serve efficiently in the various different functions imposed by

the location in the hierarchy of X-TREE and by the dynamically changing systems

needs, X-NODE must be able to change its"personality". Depending on the task

to be performed, the most suitable instruction set is loaded from main memory

into the control memory. Since the relative needs for control memory change

as a function of time, the possibility is explored to combine several of these

storage functions in one and the same physical structure with multiple-access

capability.

In a single-chip VLSI processor memory space will always be at a premium, and the

controller may occupy a smaller and smaller fraction of the total chip area.

Thus other means to increase the effective amount of storage on a chip have to

be found. Is the storage density difference between serial memories (CCDs)

and RAMs sufficient to warrant yet another level in the memory hierarchy on



(9)

one and the same chip? Is it worthwhile to use automatic on-chip data

compression schemes not only for data but also for programs and even microcode?

At the same time, suitable data compression would also reduce the number

of bits that have to be transmitted between processors. These ideas are

currently being investigated.

CONCLUSION

X-TREE is at an early stage of research. Many basic issues concerning the

interconnection topology, the communications protocol and the operating

system have to be resolved before we can think about starting an actual

hardware design. Obviously, the concept would first be tested with a

processor built from commercially available MSI and LSI parts. However,

the real pay-off from such a modular LSI approach to a general purpose

computer can only be consummated when indeed X-NODE is realized as a single-

chip LSI processor.

So far, X-TREE has proven to be an exciting project that attracts the interest

of faculty members with quite different backgrounds, and to-date has stirred

up many fundamental questions in graph theory, computer architecture, communi

cations, integrated circuit design, operating systems and high level languages.



REFERENCES

1) R.N. Noyce, "Microelectronics", Scientific American, Vol.237, No.3, pp.62-69,

Sept. 1977.

2) A.M. Despain and D.A. Patterson, "X-TREE: A Tree Strucured Multi-Processor

Computer Architecture". 5th Symposium on Computer Architecture, Palo Alto,

April 5, 1978.

3) N. Wirth, "Modular A Language for Modular Multiprogramming", Software -

Practice and Experience, Vol. 7, pp.3-35, 1977.

4) P.B. Hansen, "Concurrent Programming Concepts", Computing Surveys, Vol. 5,

No. 4, pp.223-245, Dec. 1973.



root X-node

data path

X - node —•

X-node

I/O Device


	Copyright notice 1978
	ERL-78-65

