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Abstract

The ability of learning in Artificial Intelligence systems is the possibility

of modification of the model or knowledge representation of the environment.

The information obtained from the environment is processed in order to

construct a model of it, that in our case is a partition, by successive modi

fication of some parameters.

In self-learning the system must make decisions by itself, only based

on the past information, we give here three algorithms for sequential self-

learning classification where the knowledge representation model uses fuzzy

and probabilistic concepts. The learning mechanisms consists on the statis

tical estimation of the parameters defining the membership value for each

class.

Several applications are presented where the quality of the recognition

can be empirically evaluated from the results.

This type of sequential processing seems particularly useful when the

flow of data is continuous and when an instantaneous representation of the

data already processed is frequently required. Although it has not been

studied here, adaptativity to slow changes in the environment can be easily

added to those algorithms.

* Research sponsored by Naval Electronic Systems Command Contract N00039-78-C-0013



ON SELF-LEARNING PATTERN CLASSIFICATION*

by

Ramon L. De Mantaras

Computer Science Division
Department of Electrical Engineering and Computer Science

and the Electronics Research Laboratory
University of California, Berkeley

INTRODUCTION

This report consists of an introduction and four parts A, B, C, and D.

It presents two algorithms for the classification of data, based on what we

call the self-learning approach.

In part A we examine briefly at the fuzzy approach of Ruspini [36,37,38]

to the problem of pattern classification; from there we set our self-learning

approach and we present the problem of classification as that of estimating

a partition of the data to be classified.

In part B we present an algorithm for classifying data issued from a

Gaussian environment; the fundamental tool of this algorithm is the use of

numerical filters for estimating a set of parameters which characterize each

class. This algorithm has been applied to the recognition of the components

of a mixture of Normal distributions [30,31].

In part C we present a second algorithm intended to work with qualitative

data. It is very easy to implement and it has been applied to the classifi

cation of solid geometrical objects using an artificial hand [3,30].

Finally, in part D, we present an index of dissimilarity and a metric

between partitions which are useful for comparing the classification obtained

using the algorithmsand the "true" classification [29,30],
_
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In the field of Pattern Classification, human behavior is the nearest

reference model and its advantages and drawbacks are the easiest to evaluate

qualitatively. One of the main characteristics common to both men and computers,

is the use of a memory. It can be stated that, although the computer memory

is more quickly accessible and stores more data without omission, it reaches

saturation rather quickly when facing a mass of heterogeneous and unclassi

fied informations. But man, with a memory far less accurate, and in the same

environment is able to reach conclusions and take admissible decisions.

Two functions, linked to one another, are the basis of this flexibility

in behavior:

1) Use of a capacity of omission, or rather of summarizing the infor

mation by remembering important features and forgetting others.

2) Possibility of establishing associations between ideas and of using

similarity relations.

In this report, we are going to formulate some of the essential manifesta

tions of this behavior: the classification by self-learning in the absence

of initial information.

Because of this ability to forget, man is capable of ignoring some

characteristics of an object and can associate it to another object because

of the characteristics he remembers. This enables him to establish pseudo-

equivalences between objects, and, as we will demonstrate it later in this

project, to classify. The mechanisms of forgetting and associating can be

performed adaptatively by constant modification of the classification

criteria, according to an algorithm.



0.1 General Aspects of Self-Learning

The young child hears sounds emitted by people around him. This emission

is not a random one, and a partition emerges from all these sounds. The

classes of this partition are the phonems of the linguistic system of his

environment. It is self-learning, without teacher and without a priori infor

mation, free self-learning, or self-learning with passive environment. Later,

the child discovers the communication function of language and he enters into

the phase of self-1earning with active environment. Sanctions are given

according to the degrees of failure of this function. Later, the child's

educators will tell him the "truth" on the phonems of the linguistic system

which are still obscure for him. It is the type of learning with teacher.

We are trying to give here a mathematical model of this aspect of self-

learning, called free or with passive environment.

We will notice that this self-learning can be oriented by a "guide"

who, without being a teacher who gives sanctions, can still select the data

order and influence the transitory period of learning.

We also notice that free learning, that we will call self-

learning, is theoretically an elementary situation from which we can introduce

oriented self-1earning, learning with active environment, and learning with

a teacher.

We claim that if this self-learning function is totally absent, there

is not a real self-1earning, but a simple "conditioning".

0.2 Different Aspects in Pattern Classification

The activities developed in pattern classification have been directed

mainly to:

— either obtaining a best representation of experimental data in order

to enable the human being to interpret it



— or finding identification functions resulting in the classification

of data into disjoint classes

We will consider this last asp-ct of Pattern Classification, considering the

problem of classification as the process of assigning to each data point a

certain degree of belongingness to each class C^Cgf**^; then the C.. 's

can be considered as fuzzy sets in the sense of Zadeh [45], However with

our approach these fuzzy sets have a strong probabilistic meaning.

Fuzzy sets as a theoretical basis for pattern classification were first

suggested by Bellman, Kalaba, and Zadeh [6]. Subsequently, the papers of

Flake and Turner [24], Gitman and Levine [26], Ruspini [36-38], Dunn [20-22],

and Bezdek [7-9] concerned various theories of fuzzy pattern classification

and fuzzy clustering.

Tamura, Higuchi and Tanaka [41] described for the first time a hier

archical partitioning scheme generated by one parameter family of equivalence

relations on a data set representing fuzzy similarity values. At the same

time, the notion of similarity relation was developed by Zadeh [46]; subse

quently Yeh and Banz [44] suggested the application of fuzzy graphs to clus

tering analysis.

Some attempts to apply fuzzy automata and fuzzy grammars to Pattern

Recognition have been made by Thomason [42], De Palma and Yau [15], and

others but we think that a ^ery important problem to consider in the gramma

tical approach is that of automatic grJa#iatical inference.

Bremmerman [12] introduced the ide% of using prototypes for defining the

pattern classes, in such a way that theidegree of membership of a given

object in a certain class could be defitted in terms of the amount of defor

mation to be imposed on the prototype df=fthat class, so that the deformed

prototype matches as much as possiblev^e given object. Moreover the method

**;••



of deferrable prototypes is an effective way to determine the numerical values
of the fuzzy membership functions. This problem is central to the fuzzy set
approach to empirical problems and has often been discussed, although not

very satisfactorily, in literature,

Bezdek and Harris [10] introduced a new definition of transitivity for

fuzzy relations that links the triangle inequality to convex decompositions

of fuzzy similarity relations in amanner which may generate new techniques

for fuzzy clustering,

Finally, the work of Zadeh [47-49] places the connection between fuzzy

sets and pattern recognition in a sharp perspective and provides the basis

for the application of the fuzzy linguistic approach to the problem of

pattern classification.

Our approach is close to that of Ruspini [36-38] in the sense that we

look at the problem of classification as the breakdown of the probability

density function of the data set into aweighted sum of the probability den

sities of the component clusters. These densities are interpreted to repre

sent the degree of belongingness of each point to each cluster. Although

the concept of fuzzy set is not probabilistic in nature, in this particular

case each fuzzy set has a probabilistic meaning and our rules of operation

are those of probability.

Ruspini [36] suggested the minimization of a meaningful functional

defined over all possible fuzzy classifications as a possible technique for

decomposing the data set density function into clusters.

Ruspini's approach assumes that the number of classes is known "a priori"

and that the data set is available "a priori".

Our approach minimizes the probability of error and is based on the idea

of "self-learning";that means that the algorithm "learns" and classifies



simultaneously (there is no training period before the algorithm starts to

classify as in the case of unsupervised learning). Consequently the algorithm

itself sets the classes and the differences between the data; there is no

external information which would enable the algorithm to discriminate the

data "a priori". Furthermore neither the number of samples nor the number

of classes is known "a priori" [2,3,30,31].

0.3 General Model

UQxfi
M

I
Pattern Environment

or

Universe of Objects

Set of

Measurement

Procedures

Feature

Extraction
Classification

peur xGU

(.features)

The corresponding mapping diagram is:

(p.oi) (x) (F) (C)

f = I0E0M

Let me give you before some definitions and notations used in the

general model above:

0.3.1 Universe Model

(classes)

Let the pair (U xft,A) be the universe model where U is the universe

of objects to be classified (U ={p1»...»p }), ft is the space of perturba

tions and A is a a-field such that (U xft,A) is a measurable space. The

space of perturbations enables us to take into account the defects of the

objects as well as the defects of the sensors at the perception level.



0.3.2 Perception Model

Our perception model will be assumed to be atriple (M,U,B) where U
is the space of mathematical (measured) objects. The pair (U,B) is a
measurable space and M is the measurable function:

M: U°xft -> U .

0.3.3 Feature Extraction Model

The feature extraction model will be the pair (E,F) where F is the

space of features and E is the mapping:

E: U ^ F .

We assume that card(F) « card(U).

The methods used for decreasing the dimensionality of the problem are:

- Multivariate Data Analysis methods (principal components, etc.)

- Transform Techniques (Fourier, Karhunen-Loeve, etc.)

- Heuristic procedures taking into account the structural properties of U

0.3.4 Classification Model

The classification model will be the pair (f,C) where C is the

space of classified objects or "names" or "classes", and f is a mapping

from U° to C such that one pi eU° corresponds to one Ci eC

f: U° + C .

The goal is to find an identification function I (mapping from F to C)
*

such that the "answers" of f and I are equivalent.

*This is similar to the concepts of opaque algorithms and transparent
algorithms defined by Zadeh in [49],



An algorithm that realizes such identification functions is a recogni

tion algorithm (transparent algorithm in the sense of Zadeh). This does not

imply that the classification is significant; we can say that the classifi

cation is correct only when the interpretation provided by the algorithm

coincides with the human interpretation (humans employ an opaque recognition

algorithm in their interpretations).

The experience shows that there are roughly two types of identification

functions: the characteristic functions and the recursive functions.

0.4 Identification by Characteristic Functions

Let U. be the set expressed by:

U. = {x|M(p.,co) =x and w covering ft}

If U.nu. = 0 we are in the presence of a deterministic problem and

the ideal algorithm which realizes the identification function I should

be such that

if xe u1 then (I°E)(x) = C1

If U. nu. f 0 one can define a membership function for each object:

y.: U -* R

In this case the recognition algorithm should be such that

if y.(x) >yk(x) , Vk

then (I©E)(x) = C.

This membership function can be grouped into four families:

- Discriminant functions (Rosenblatt 1956) [35]

- Probability measures or density functions (statistical classification)
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- Fuzzy membership functions (Zadeh 1965) [45]

- Fuzzy measures (Sugeno 1973) [40]

As has been pointed out earlier, Ruspini's approach regards density

functions as fuzzy membership functions. Our approach does the same. There

fore in this case the second and third family are the same. The basic assump

tion underlying this approach is that there exists amultivariate probability

distribution for each class. Members of a pattern class are then treated

as population samples which are distributed in a n-dimensional feature space

according to the distribution associated with that population. Therefore,

for a two-class problem, an observation x is treated as coming from one

of two distributions. Then the membership function yc (x) becomes the
i

probability density function associated to the class C...

In this context we can define an optimal procedure, the Bayes procedure.

When U = R we call Pr(C.|x) the a posteriori probability of observ

ing an object of the class Ci knowing the measurement x of this object.

If these probabilities are known the decision rule at xe R is

xe C. if Pr(C.|x) = max[Pr(C.|x)]

By the Bayes rule we have

J J j

p(x|C.)Pr(C.)

Pr(ciix) =—m~^

where Pr(C.) is the "a priori" probability of C.. and p(x) is the data

set density function.

Assuming that the "a priori" probabilities Pr(C.) are equal for all i,

the strategy at x e R becomes

xG C. if p(x|C.) = max[p(x|C.)]
j i

where p(x|C.) is the conditional density function of x knowing C...
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Usually these density functions are not known so they must be estimated.

Therefore, the classification problem becomes a density estimation problem.

There are two approaches for estimating density functions:

(i) The non-parametric approach: in this case the functional forms

of the distributions do not need to be known.

(ii) The parametric approach: in this case the functional forms of

the distributions are known but some finite set of parameters characterizing

the distribution needs to be estimated (e.g. the mean and the covariance

in the case of normal distributions).
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PART A

CLASSIFICATION AND ESTIMATION OF A PARTITION

A.l Classification and Estimation of a Partition

The problem of classification can be regarded as the problem of estimat

ing a partition of the data [30]. Similarly the problem of fuzzy classifica

tion can be regarded as that of estimating a fuzzy partition. The works of

Ruspini, Bunn and Bezdek all presume a common algebraic framework for fuzzy

partitions while our approach does not require that the classes form a fuzzy

partition because we think that this condition is too strong when we have

noise in the data. In fact with our approach we obtain a partition of the

data to be classified, assigning the point to the class to which the degree

of membership is the maximum.

The self-learning process consists in building a partition of the data,

this partition being modified as long as new data are classified.

Let ft be a set of elements having the structure of measurable space.

A data picked up from ft will be the observation of an element x^ of ft.

Asequential S. is a time ordered set of data (xt ,...,xt ) from
u0

t« to t..

E. is the subset of ft (Ei c a) observed at the time t.., i.e. Ei

is the set of elements which appear in S...

Si is formed by a set of sets {S.}1=0 such that S^ is the set
consisting of the first j elements of S...

A self-learning algorithm is the following set of operations which is

repeated after incrementation of the index i: at t.. we are given

- the ordered set, S.

- the subset of ft, E..
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-a partition of E^, P.,-

- a new element to be classified, xi+1 e n

Using adecision (or recognition) rule R, x1+l is classified into a

class C ep.. A transformation A is applied to ElV and it becomes E1+1

The partition P. of E. becomes the partition Pi+1 of Ei+1, and t.

becomes t.+,.

Remark 1. A partition Pi can be represented in different ways:

non parametric without selection (the complete list of elements forming

the classes of the partition is used to represent the partition),

non parametric with selection of the elements of Si which are the

most useful to the decision rule,

parametric. In this case a set 6. of parameters represents the

partition.

Remark 2. Let P0 be the set of all possible partitions of ft and

let P. be a partition of E. c n. Then P* =P^^E.} is a partition

of ft.

A.2 Self-Learning Process of Estimation of a Partition [30]

Let us state the problem of classification as that of estimating a

partition. For that we provide the set Pfi with ametric d [see part C].
Therefore (Pfi,d) is a metric space.

Let us define a probability measure over ft characterized by the

following density:

p[x|ft] Vxefi

Let us define a partition Ptn|e which is the "true" partition of the

data, and the set {p[x|Ck]}r ep such that
K uk rtrue
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PW«]=HaTdWcipp[xlCk] Vxefi'
v uk rv

Then, a partition P*, built from the sequence S. and extended to ft, is

called an estimator of Py. The distance d(P*,Py) is called the estimation

error.

Our goal is to obtain asequence {P^}]!! of estimators based on the
0

sequence {x.}i=* of observations such that the estimation error decreases
i i=t0

when t increases. We call this a self-learning process.

A.3 Parametrization of a Partition [30]

a) Canonical parametrization

A partition P induces a decision rule R that is a mapping from ft

to P
R: ft + P

such that R(x) =C iff xec. The equivalence relation E associated

with P has the following expression

x E y iff R(x) = R(y)

Definition. Let A =Ur v(0) be the set of characteristic functions
S*

of the classes C. e p. Then the partition P is equivalent to the set A

associated with the following decision rule:

*(x)=Ca,

a being such that Xp =max[Xc (x)] .
a i i

We call A a canonical parametrization of P and the associated decision

rule will be noted R(x|A).
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b) Fuzzy parametrization

Replacing the characteristic functions Xr (x) e {0,1} by continuous

membership functions yr (x) e [0,1] we can define a new decision rule

R(x|M) = C
a

where M= {yc (")>cep and a being such that
i 1

yc =max[yc (x)] .
a i i

Clearly, we can choose M such that the partition PM induced by R(x|M)

be exactly P (there exists at least the solution of taking M = A).

Similarly every partition PM induced by adecision rule R(-|M) nas

a canonical parametrization.

c) Parametrization by kernels

According to the capacity of omission alluded to in the introduction we

try to find for each class C. ep a finite number n.. of real numbers,

composing the vector 9. e R such that the class C^ can be characterized

completely by these numbers according to the decision rule R.

Let us call 0 = {9.} the set of parameters corresponding to the classes

C. e P. 0 is, therefore, a finite set of real numbers and we shall refer

to 0 as the set of kernels in the sense of Diday [16].

We denote R(x|0) the decision rule associated with 0. Clearly if the

set M in the fuzzy parametrization can be completely characterized by the

set 0 and if 0 can be partitioned into a set of 9..'s such that each 9..

determines uniquely the membership function yr (x), then R(x|0) is equiva-
ui

lent to R(x|M).
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Definition. If for a given P we know that R(x|M) is equivalent to

R(x|0), then we shall claim that P is parametrizable by kernels.

Proposition. A partition P of ft parametrizable by kernels is equi

valent to the following pair:

{0,R(-|9)>

where 0 is the set of kernels and R(-|0) is the associated decision rule.

Proof. We have seen that a partition is equivalent to the pair

{A,R(-|A)}. Then there exists at least one fuzzy parametrization M such

that P is equivalent to {M,R(-|M)} and since we know that R(•|M) is

equivalent to R(*|0) because it is parametrizable, then we have that P

is equivalent to C0|R(•|0)>.

Concluding Remarks

We have presented the problem of classification as that of estimating

a partition. We have also discussed three different ways of parametrization

of a partition. In the algorithms that we present in this report we use the

fuzzy parametrization in which the membership functions are probabilities.

This is similar to Ruspini's approach but the main difference is that we

don't obtain a fuzzy partition but a hard partition. The fuzzy partition

approach is interesting when there is no noise in the data, because with
N

the fuzzy partition assumption that Y yr (x) = 1 where N is the total
i=l S

number of classes will give a high degree of membership of a noise point to

at least one of the classes, when, in fact, a noise point whould have a very

low degree of membership to each class.



17

Our approach does not require the sum of the membership functions to

be one. Therefore we avoid this problem of noise points. Another important

difference between our approach to the classification problem and other

existent approaches is the concept of self-1earning. This new concept allows

the algorithm to start classifying with little "a priori" information.
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PART B

DESCRIPTION OF THE ALGORITHM FOR CLASSIFYING GAUSSIAN DATA

Our algorithm uses the parametric approach because we assume that the

probability density functions associated with the classes are Gaussian.

The samples to be classified may be viewed as the outcomes of trials

governed by a mixture of k probability densities:

k

F(x;A) = I Pr(C.)p(x|C.)
i=l

The "mixing parameters" Pr(C..) satisfy

k

0 < Pr(C.) < 1 and I Pr(C.) = 1 .
1 " i=l n

Since we assume that all the Pr(C.)'s are equal we have

i kF(x;A) -i- I p(x|C.)
K i=l ^

where A is the composite parameter vector:

A = {6 ,6 ,...,6 }

and 61 ={mean of p(x|C..) =x1, covariance of p(x|C.) =Sn} .

We call 61 the "kernel" of the class Ci [16].
In this case the classification problem becomes a problem of estimating

the parameters of 61 for each class C..

We shall use a Kalman filter [34] for estimating the kernel 61 of

each class. In order to apply this technique we modelize the classes as

follows.
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Mathematical Model of the Classes

Let us assume that at instant t the algorithm has created N classes
n

(C,,C2,...,0, and that at instant t +, a new sample is presented to

the algorithm. Let us assume that this sample is put into the class C..

The structure of this class will therefore be modified, since absorbing a

new element modifies its mean and its covariance, i.e. the kernel of the

class C.. So we can say that a "dynamics" is associated to each class,

taking into account its evolution as the class acquires new elements. For

this reason, we denote by x? and S? the mean and the covariance of the
Ki Ki i

class C. at "instant" k^. The kernel of C.. will be denoted 6k .

The evolution of the mean x? of any class C. is modelized by the
k. i

following equation:

xk =xk +vk • xk GK" (1)
•1+1 Ki Ki Ki

where x? is the value of the mean of the class C. when k.. elements

have been absorbed by C. x? is the mean of C. after absorbing onei Ki+1 1

more element and v? is a sequence of independent random Gaussian variables
Ki

with . . .T ,
E[vJ ]=0, E[vJ v. T] =Q^. * .

Ki Ki Ji KiJi

Now we assume that the mean x? is imperfectly observed. Then
Ki

yt =4 +wj , ye Rn (2)X K. K1

where vt\ is a sequence of independent random Gaussian variables with
Ki

E[wh =0 , E[wjw^ T] =R1^. .
Ki Ki Ji KiJi

and we have the additional hypothesis:

-"v vv «»{»JT] • °
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- In order to construct a recursive algorithm we assume that the initial

state xl is normally distributed with

E[xJ] =0 and E[xjx* T] =PQ

- The initial state xj is uncorrected with v^ and wj^ :

E[xjvjT] =0, E[xJwJ/] -.0 , Vk.

We see that y and x! are Gaussian because they are linear combinations
Ki

of Gaussian variables.

Estimation of the Kernel: 6,1 ={x?, ^S? } of Each ClassKi Ki-i<i
We know that the mean of the class C1 after absorbing k1 elements

•

is x? .
Ki
Because the observed data agree with the equation

yt = xk.+wk.

the covariance, which reflects the scattering in the class C.. after absorb

ing k. elements is

then

Si =E[(y-xj )(y-xnk )T] =E[w{ wj T] - rJ
ki Ki ki Ki Ki Ki

5t. = (x. ,R., } .K. K. Ki

We shall estimate x? and R^ recursively because the data are observed
1 I • • • •«•

sequentially. We shall also estimate Q? =E[v? vj" ] because in most
Ki Ki Ki

practical situations it is not known.
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Having modelized the classes following the equations (1) and (2) our

problem becomes a problem of estimating the state of the system, described

by the equations (1) and (2), together with the covariances Q and R .

A recursive solution to this problem is given by a suboptimal adaptive

filter based on a Kalman-Bucy filter, in which the unknown covariances Q.

i 1and R? are recursively and simultaneously estimated with the state xk .

The estimators of Qk and R^ are the following.
i

k

Estimation of Q|;: Qk =^~y I.faj-fyfaj-fy

where ^k =kJ qj
j *

and qj=5j/j-Vl/J-l '

xv. A estimation of the state at instant j, having observed the
sequence {y-j,...,y.}

x.,,._, A estimation of the state at instant j-1, having observed the
sequence {y1,... ,y. -j}

Estimation of RR: RR =^ I ^-f^)(rj-rR)
j *

1 kwhere r. = -j- J r.k k j=1 j

xv. ,A estimation of the state at instant j having observed the
sequence {y,,... ,y.^}

Remark 1. It can be proved that if lim P. ,. = 0 then the estimators
— k-*~ K/K

0. and R. are asymptotically unbiased [30] where Pk is the covariance

of the estimation error in the Kalman-Bucy filter defined as [34]

pk/k =E[(xrt/k)(xkVTl •



22

So, under this condition, we can say that we are making an asymptotic

estimation of the "true" classification of the data.

The algorithm of the suboptimal adaptive filter is the following

k=k+l

"a priori" data: k =1

V P0' V V r =0, q=0

A Vk-r^k-i/k-i
fyW'-*Vl/k-T*T +Qlc-l

rk=yk"Hxk/k-l

~ k-lA IT
Rk ="1TRk-l +krkrk

xk/k/xk/k-l +Vk
Pk/k =Pk/k-l +KkHpk/k-l

qk~xk/k"*xk-l/k-l
n - k-lft . 1 „T

Remark 2. We see that we have one filter for each class but the

"evolution instants" are not synchronous because each filter progresses by

one step only when its corresponding class accepts one more element.
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Progressing by one step is equivalent to updating the estimators from

*k/k-l t0 *k/k and from ^k/k-1 to ^k/k using the e(luatlons of tne
filter, i.e. the kernel of the class is modified in order to take into

account the new element accepted by this class and that is what we call

"learning".

Degree of Membership of One Sample to a Class. Decision Rule

The data observed at any instant t agree with the equation

't = xk.+wk.

where i is to be determined between the existant classes at instant t.

The decision rule for determining the class C. to which y. belongs is

y4.ec. if p(y.|C.) = max [p(yt|C.)] >a
z 3 z 3 i=1to N z 1

and we use the suboptimal adaptive filter described before, for estimating

the probability density functions:

rty^)

for i = 1 to N, where N is the number of existant classes at instant t.

The threshold a is introduced in order to avoid taking decisions

based upon a small probability and at the same time it enables us to increase

the number of classes because if:

max [p(yt|C.)] < a
1=1to N z n

a new class CN+1 is created and we decide that:

y+ect "N+l
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and the initial values of the "kernel" 6N+1 of this class will be:

N+l

xl = yt

SN+1 = RSl R0

and RQ is assumed to be known.

Initialization

The algorithm starts by putting the first observation y1 in the class

C,, so the kernel of C, is:

61 = {yl 'R0} •

This kernel will be modified each time that C, will accept one more element.
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N - 0 t - 0
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Observe: yt

Yes
N
S^ No
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i - 1

1

_

»
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l

•

i-i* I

i i
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and find:

«naxlp(ytlC.)]« P<ytlCj>

for i - 1 tD N
exceptfor i - j
do: (
Ai •*!

*k /k " *k /kV i x-l' i-1

Vki-Pk /k1 *• Ki-r i-i

Qk. " Qk. ,
Ai Ai
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Application to the "Mixture Resolution" Problem

First Example: 150 points picked up from a mixture of 3 Gaussian

densities of parameters (see Fig. 1)

s1-
' 4 V-7

1.7 1

-'•[si- M!]« *3=ra
» s2 =

"0.25 0 "

0 0.25.
, s3 =

"4 -1.7

_-1.7 1

The estimation results are:

S' =

.1 r-o.o5i o2 _ r°-°7i ?3 - r4-54i
x =L °-34J' "!3-39J • " L3-11]

r2.5 0.811 7 f 0.51 -0.10
s =

-0.10 0.23

*3

0.81 0.44

2.71 -1.46

-1.46 1.08

In this example all the points have been correctly classified.

Second Example: 150 points picked up from a mixture of 3 Gaussian

densities with parameters (see Fig. 2)

•[!•?]S1 = S2 = s3

In this example 6 points have been misclassified. The results concerning

the estimation of the kernel of each class are the following:

-1 ro.24l q2 _ r3.42] -3 _ [3.161
x = L3.29J * X " L0.38J • X " L3-58J

§] =
0.67 -0.22

-0.22 0.66

~2
S^ =

1.07 -0.39

-0.39 1.15

^3
0.64 -0.03

-0.03 1.23
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Concluding Remarks

The self-learning approach leads to good results in the "Mixture

Resolution" problem even when the clusters corresponding to the different

distributions are close.

The results concerning the classification itself are better than those

concerning the kernel estimation. The last point could be improved by

using more elaborated estimators of the covariances.

Our approach is particularly interesting when the "a priori" information

is poor (unknown number of classes and unknown number of samples), and

when the data are sequentially observed. Because the data are sequentially

treated we have at any instant a partition of the data already observed.
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PART C

CLASSIFICATION OF QUALITATIVE DATA

In this part we present another algorithm based on the self-learning

approach. The decision rule will be the maximum likelihood [3,30].

The probability of an element belonging to a class is estimated by

counting; this implies the existence of a similarity measure between quali

tative data which gives the possibility of comparing groups of qualitative

data.

We have applied this algorithm to the tactile recognition of geometric

solid objects using the angular information supplied by potentiometers placed

on the finger-joints of an artificial hand [3].

C.l Probability Estimation by Counting

We consider three types of estimation by counting:

- estimation by natural counting

- estimation by statistical counting

- estimation by weighted counting

For simplicity we are going to consider a vector X having a component

quantified into two levels (v = 2, i.e. E = {0,1}) of non equiprobables

(the probability of having the level 1 is p and the probability of having

level 0 is q =' 1-p).

i) Estimation by Natural Counting. Let X,,X2,...,X be a set of

independent observations. The estimation of the probability P[x=i] (i e {0,1})

is computed by means of the relative frequency. For example, if n, is the

number of l's observed among the first n observations, then the estimator

of P[x=l] is:

1 n
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n1
and we obtain pp = —

for the X -j observation

_n . 1
pn+l " n+Tn n+lxn+l

n,+l

We have Pn.i = ttt If x +1 = 1n+1 n + 1 " An+1

nl
'n+1 = n+T lf xn+l

nland pn,n = -rr if xn+1 = 0

This estimator is unbiased. It converges almost surely and in quadratic

mean. However, it presents the problem of considering zero the probability

of an event which has not been observed. For example, if the first n

observations are 0, then pn =0 and qn =1. This is undesirable when

these estimators are used in a product as we shall see later.

To compensate this drawback we can take:

P* = P if 3i: x. 7*0
n n i

= e « 1 if Vi: xi =0

e is called the "learning threshold".

ii) Estimation by Statistical Counting. Let X^,X2,...,Xn,Xn+1,..

be a set of independent observations. The estimation of the probability

P[X=i] (i e {0,1}) is also computed by means of the relative frequency,

but in this case we assume that pQ = p[XQ=l] =-. Then if n1 is the

number of Vs observed among the first n observations, we have:

n n.
1

Pn =v+n .^Xi =i=l ' v+n

When the observation of Xn+1 is added, we have:

Pn+1 =v^^n+v^n+TXn+l ' n.3S°»1»---
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1
ct_ =

n v+n

l an
we obtain P _,_. = t-^-p +ttil-X ., .n+1 l+a„Hn 1+a n+1

n n

Later on, we shall refer to otn as "statistical a". This estimator is

unbiased. It converges to almost surely and also in quadratic mean. We can

see that in this case that the "learning threshold" is

e = a = —:— .
n n v+n

Therefore, the "learning threshold" depends on n and converges to zero

when n -*• ».

iii) Estimation by Weighted Counting. In this case a subjective constant

value a is assigned to <xn and we shall prove that the estimation of the

probability P[X=i] has an indeterminate bias which is a function of the

sequence {XS}J?=.|.
In order to estimate P let us assume that the observations are inde

pendent and that PQ is known (for example, we can take pQ =- as previously)

Let X^,X2,...,Xn>Xn+1,... be a set of independent observations. The

recursive estimator of P is given by

pn+l =T+apn+T+^xn+l ; n = °,l,...

In this case the "learning threshold" e is given by

En =o^)"'7,
We can see that each observed event artificially modifies its own probability

and the greater a, the more important this effect is. Then we can say that

this is a subjective method. We shall refer to this a as "subjective a".
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We have that P strongly depends on the observation Xn for n>1

Then P is a random variable,
n

Setting 6 = 1+a, we have

P0 +(6-1)[X1+6X2+62X3+-••+6n"1Xn]
Pn =_ ^ "

P is a random variable that can take 2n values. Let us compute the
n

expectation of Pn-

Pn +(M JUCXj-hSE^J+62E[XJ+-••+6n"1E[X ]]
rrp 1 = J> ! 1 2 U—

n 6n

Pn +(«-l)P(1+,5+62+---+6n"1)
E[PJ --g

Pn +P(6n-D

then

6"

1.1m E[P ] = p
n-*»

independently of pQ and a (if a>0). Unfortunately the variance does

not converge to zero:

Pn +p(l-p)(6n-l)

and

Var[pJ = °
n 6n

lim Var[Pn] =p(l-p) (if a>0)
n-x»

It can be shown [13] that p is estimated with a bias that depends on the

sequence {X$}"=1, on a and on PQ.
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This estimator presents the advantage of keeping its adaptativity nature

independently of the number of observations that have been made because each

new observation has a constant weight (a is constant), while with the

"statistical a" this weight tends to zero.

We use the "statistical a" for estimating the probability of an element

belonging to a class, in the first version of the classification algorithm

that we present in this paragraph. In a second version of the same algorithm

we use the "subjective a".

C.2 Description of the Patterns

We have applied this algorithm to the tactile recognition of geometric

solid objects using the angular information supplied by potentiometers placed

on the finger-joints of an artificial hand. If we have m potentiometers,

this information is represented by a vector X of m components X,,X2,...,X

(Vi, X. € R ). We know the maximum and the minimum values that each compo

nent can take, which enables us to normalize these components and to quantify

the interval in v levels. Then, the pattern to be classified becomes a

vector H of m components, each of which can take v values.

This can be represented by a matrix with v rows and m columns. A

pattern will represented by this matrix in which each column has only one

entry different from zero. For example, let m = 4

max

x =

r*l1 "3.2 '

x2

x3
=

7.0

1.3

x4 _4.2 m

10.5
8.2

2.4
6.0

mm

0.0

5.0
0.2
0.5

m
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and if v = 3 we have

H = X(quantified) =

and the matrix corresponding to this pattern will be

h. = 3 -•
j X

hj.,2- X
h. = 1 - ¥ ¥ h^

C.3 Characterization of the Classes

A class C. will be characterized by the probability of the occupation

of each entry f.(h.,j) in the corresponding matrix F.. It can be seen
i j i

that the sum of the probabilities in the same column is

I f,(h.,j) = 1
,=1 1 J

C.4 Degree of Belongingness of a Pattern to a Class

Assuming that the components of the vector X are statistically inde

pendent, we can calculate the probability that X belongs to C. as follows

j=m j=m
P. = Pr[X|Xec.] = n Pr[x.|X€EC.] = n f.(h.,j)
1 \ j=l J 1 j=l 1 J

and X will be classified into the class C. if and only if
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P. = Pr[x|xec.] =max[P1]

This is called the maximum likelihood decision rule. P1 is the degree of

belongingness of X to the class C,-.

C.5 Self-Learning Estimation of the Elements of the Matrices F^

In order to consider the recursivity of the classification process we

shall index by n. (number of elements classified into the class C^ the

values F. and P.. Then we have F^n^, P^). Similarly we index X

by nt (total number of elements already classified). Then nt = Yn..

where N is the number of classes that have been created, so X becomes

X(nt). When an element X(nt) is assigned to aclass Ci we modify the
corresponding matrix F.(n.). This modification consists in increasing the

elements f.(h.,j,n.) on a certain value a, i.e.
• j • •

f^h^J.n.+l) =f.(h..,j,n1)+a

and we normalize the column in such a way that

I f,(h.,j,n.) = I f.(h.,j,n.+l) = 1
h.=l 1 J 1 h.=l 7 J J
j j

This is equivalent to the estimation of the probability

Pr^n^lXtn^ec.]

by counting (see paragraph C.l). a can be chosen arbitrarily constant or

as afunction of n. or n^.. Choosing a=J- the estimation is equivalent
to what we called estimation by statistical counting in paragraph C.l.

Choosing a arbitrarily constant we do an estimation by weighted counting

(paragraph C.l).
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C.6 Growing the Number of Classes

An empty class C. is prepared in such away that the elements of its
1corresponding matrix FR (nk =0) are given the same value fk(h..,j,0) =-.

If anew element X(nt+1) to be classified is such that

Vi P^n.) <Pk(nk=0)

then we assign X(nt+1) to the empty class Ck. Therefore the structure of
C. is modified by increasing the elements fk(h.,j,0), of the matrix Fk(nk=0)

by a certain value a, i.e.

fk(hj,j,1) =fk(hj«j*0)+a

and renormalizing the columns.

At this moment we have one more class with one element in it, and we

prepare one empty class CR+1 with the elements of its corresponding matrix

Fk+1(0) equal to ^.
We see then that an element will be classified into a non-empty (exis

tant) class with a degree of belongingness greater than that of the empty

class, i.e. greater than (I)"1. Then if there exists j such that
p.(n.) =max[P.(n.)] >(»-)m we classify the element into the existant (non-
JO A

empty) class C and therefore the number of classes is not increased.

C.7 Initialization Without Initial Information

The algorithm starts with just the empty class 0, in memory. This

class is characterized by the corresponding matrix F^n^O) and the elements

of this matrix have the same value, i.e.

^Oyj.O) =7 Vj .



37

The first element X(nt=l) is classified into the empty class Cj.

Therefore the corresponding matrix F,(n,=0) is modified, as described in

paragraph C.5, and becomes F,(n,=l) and the empty class C2 characterized

by Mn2=0^ ^ prepared.

Remark. If the probabilities were estimated by natural counting instead

of weighted counting, the elements f-|(h.,j,l) of the matrix F^n^l) would

be either 0 or 1 so that the algorithm could not evoluate any more. We

avoid this by:

1) The existence of an empty class that has a probability different

from zero of accepting an element.

2) The weighted counting of favorable events.

C.8 Flowchart

There exist two program versions of this algorithm depending on the

character of a:

Subjective a: The entries are the element H to be classified and the

index i,. Learning will be used depending on the value of this index.

The output is the number of the class to which the element has been

classified.

Other parameters of the program are the matrices F^n..), the vector

P-v(n.), the number k of classes already created, the coefficient a

(constant), the number of levels v, the number of components m, and an

index i that indicates whether or not an empty class exists,
c

Statistical a: It has the same parameters as the subjective a except

the coefficient a, since in this case this coefficient is computed statis

tically and is different for each class, because its value depends on the

number of elements classified in its corresponding class.
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These two versions can be represented by the following flowchart

H(t)

ffj
\'

a m v.

1

i

I

Yes

I

L

No Is there anyempty class?
i .• O 7
c

Yes

Creation of an empty
class:

K=K+1

i Computation of the degree of
belongingness ofthe element
to each class

P, = n f.(h.,j)
1 j=l 1 J

I

K = .s.ax

_1fK(k.,j,0)=^-

L
GROWING

I
i -i
e

Yes

No

No

Find the maximum degree of
belongingness: P. =max P.

j • i *

_J

I , v I
I Attributionof HtoG* I1
1' "l" 1'-J 1
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V1

Has the empty class been used?
j = K ?

LEARNING

No

Yes

i - o
c

L
Modification of the F-j's

MM "1 '4 |7
_s
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C.9 Application to the Tactile Recognition of Solid Geometrical Objects

We have studied the possibilities of our self-learning algorithm in

recognizing solid geometrical objects using the partial and reduced infor

mation supplied by an artificial prehensile organ which has four fingers

with three finger-joints each. A linear potentiometer supplying angular

information has been placed in each finger-joint.

C.9.1 Measurement Conditions

The different objects that we have considered are:

- a cube

- a sphere

- a tetrahedron

The size of these objects is such that they can be completely embraced by the

organ. The objects are positioned in such a way that each phalanx touches

the object. 30 measurements for each object are available.

C.9.2 Analysis of the Results

We have considered two cases, either using the information of the four

fingers, or using the information of two symmetrical fingers. In the first

case the vector H has 12 components whereas in the second case H as 6

components.

Table 1 summarizes the results obtained in the "subjective a" case for

different values of a and considering either four fingers or two fingers,

the value D is the index of dissimilarity between the classification

obtained and the "true" classification. This index of similarity is viewed

in detail in Part C of this report.

Table 2 summarizes the results obtained with the "statistical a", also

considering either four or two fingers and we have also computed the
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dissimilarity between the true classification and the classification obtained

by the algorithm.

In Table 3 we see what the output listing of results looks like.

CIO Conclusions

Our goal was to illustrate our algorithm of self-learning classification

and the results appear to be good.

Although the number of classes in the true classification is 3 (cubes,

spheres and tetrahedrons), we see that the algorithm creates more than 3

classes. This is because the cube and the tetrahedron can be positioned in

different ways in the artificial prehensile organ. This is why we can say

that its corresponding classes are multimodal and a multimodal class is

interpreted as several classes by the algorithm.

In the case of the sphere we find the 30 corresponding measurements in

the same class. This is because the sphere shape is invariant by rotation.

Then its corresponding "true" class is unimodal.

For the above reasons we consider good a result that gives a partition

of the objects in more than 3 classes if this partition is finer than the

"true" 3-class partition, and in this case the index of dissimilarity will

be zero.

Summarizing we can say that our approach is interesting when the "a

priori" information is poor and the data are observed sequentially. Further

more, the partition of the data already observed is available at any time.
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D = 0.1877

7 classes created

very good recognition. 14 objects misclassified out of 90 (4
tetrahedra into the class of the sphere, and 10 tetrahedra into
the classes corresponding to cubes)

D = 0.1684
8 classes created

Using 4 yery good recognition. 13 objects misclassified out of 90 (3
nngers tetrahedra into the class of the sphere and 10 tetrahedra into

the classes corresponding to cubes)

TABLE 2
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PART D

METRICS BETWEEN PARTITIONS BASED ON THE INFORMATION THEORY

In this part we present an index of dissimilarity and a metric between

partitions based on the mathematical theory of information [29]. These

distances are useful in analyzing the results of classification algorithms

because they are a tool for comparing the partition obtained with the "true"

partition or classification.

D.l Mutual and Conditional Information

Let us consider the following partitions of a set ft: P^, of which

the classes will be denoted C1,C2,...,C.,...,C and Pp, of which the

classes will be denoted F1,F2,...,F.,...,Fr. Let us consider the following

probabi1ity-measures:

Pi = P(Ci)

Pj -P<FJ>

Clearly, we have:

P.. = P(C.nF.)

p. = I P..
i h u

p. = y p..
j \ ij

I Spij =]
i j J

The average information of P~ is

H(PC) = -I P. log2 P.

Similarly: R(Pp) = -£ P. log2 P.
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The mutual average information of Pc and Pp is:

R(PC and PF) =-I Pi;j log2 P.j
1 »J

It can be shown [29] and [30] that

H(PC and Pp) <H(Pc)+R(Pp)

The expression

P..

H(Pp/Pc) =H(PC and Pp) -R(PC) =-J P.. log^-^)
l ,j i

is the conditional information of Pp knowing ?c or the supplementary

information supplied by Pp when Pc occurs. It can be easily seen that

R(Pp/Pc) < R(Pp) .

D.2 The Conditional Information as an Index of Dissimilarity

Between Classifications [29]

A classification can be seen as a partition of the set ft of data to

be classified.

Example. Let ft be {x1,x2,x3,x4,x5,x6,x7,xg,xg}. Let Pp be the

partition of ft in four classes F], F2, F3, F4 sharing the data as follows

F1 ={x1,x2>, F2 ={x3»x4»x5'x6^» F3 =^x7»x8>» F4 ={xg* and let us
consider another classification of the same set ft, defined by:

PC =^ctC2'C3,C4,C5,C6^ '

the elements of each class being Cj ={Xg}, C2 ={xg,x7>, C3 ={x3,x4>,

c4 =*x5'x6*' C5 =*x2*' C6 =*xl}* Let us define a matrix M(CIF)» tne
elements of which are

card(C. OF.)

ij card (ft)
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i.e. P.. is an estimation of the probability P(C. hf.)

In the example above we obtain the following matrix:

F,

cl 0 0 0 1/9

C2 0 0 2/9 0

C3 0 2/9 0 0

C4 0 2/9 0 0

C5 1/9 0 0 0

C6 1/9 0 0 0

Clearly, we have I P.. =1. It is easy to prove that M(F/C) =MT(C/F)
— <2 ' tJ

1,J
where T stands for transpose.

Remark. Let us assume that we have another classification of ft

represented by

where

Pn ~ {G-j >G2,G3,G»}

Gl ={x7'x8}
G2 = {xg}

G3 ={x3'X4,X5,X6}
G4 = {x^Xg}

card(F. HG.)
Let us compute the matrix M(F/G) with P.. =—Card(ft) We obtain
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gj
Fi\ Gl G2 G3 G4

Fl 0 0 0 2/9

, F2 0 0 4/9 0

F F
h3 2/9 0 0 0

F4 0 1/9 0 0

We deduce the following:

Property. If two classifications (partitions) are equal (modulo a permu

tation of indices) the corresponding matrix is a square matrix that has only

one element different from zero in each row and each column. We shall call

this matrix "quasi-diagonal".

Remark. In the matrix M(C/F) of the above example we have the follow

ing property:

Adding the rows 3 and 4 as well as the rows 5 and 6, we obtain a "quasi-

diagonal" matrix; a matrix having this property will be called "quasi-

diagonalisable".

Definition. A partition (classification) Pp having less classes

than another partition (classification) P« is compatible with Pc, if and

only if Pc is finer than Pp. In this situation the corresponding matrix

is "quasi-diagonal!*sable".

Similarly if the matrix if "quasi-diagonalisable", the partition having

less classes is compatible with the other partition.

Now we are going to define an index of dissimilarity between partitions

(classifications) that will be zero if and only if the matrix formed with
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these partitions is: diagonal, "quasi-diagonal" or "quasi-diagonalisable",

i.e. if the partitions are: equal, equal modulo an index permutation or

compatible. In any of these three situations, this index of dissimilarity

should be zero. The conditional information measure has such properties.

Then the distance between two partitions Pp and Pc is:

Id(PF,Pc) -H(Pp|Pc) =-JPij log2(^f) .
i»J 1

D.3 Properties of the Index of Dissimilarity

It can be shown [30] that the index of dissimilarity Id(Pp»Pr) nas the

following properties into the set PQ of partitions of ft:

Dl_ (positivity): VPpePfi and W^P^ we have Id(Pp»Pc) >0.

D2: VPpGPfi and VPc6Pfi, if PQ c Pp then Id(PF.Pc) « 0.

D3: Id(Pp,Pc) f Id(Pc>PF) in general.

^ VPFGVVPCGPft' VPGePft wehave: ^F^^d'VV^^F^

Remark. We will use the following normalization of the above index of

dissimilarity

Id(PF,Pc)
IN(PF,PC) =H(Pp and ?Q)

in such a way that IN(Pp»Pc) e [0,1]. It can be shown [30] that the properties

Dl to D4 are preserved.

D.4 A Metric Between Partitions

Let us now define a metric between partitions that will be zero if and

only if the corresponding matrix is "quasi-diagonal" or diagonal, i.e. if
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the partitions are either equal or equal modulo an index permutation.

This metric can be easily defined by symmetrization of the previous

distance, i.e.

d(PF,Pc) = H(Pp/Pc)+H(Pc/Pp)

because symmetry is the only property that does not hold in the case of the

index of dissimilarity for being a distance.

Remark. This metric can be normalized as follows

R(PP/PC)+R(PC/PP)
dN(PF*PC} = rTfPprT

such that dN(Pp»Pr) G CO*1! and it can be shown [30] that all the metric

properties are preserved.
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