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Abstract

The ability of learning inArtificial Intelligence systems is the possibility
of modification of the model or knowledge representation of the environment.

The information obtained from the environment is processed in order to
construct a model of it, that in our case is a partition, by successive modi-
fication of some parameters.

In self-learning the system must make decisions by itself, only based
on the past information, we give here three algorithms for sequential self-
learning classification where the knowledge representation model uses fuzzy
and probabilistic concepts. The learning mechanisms consists on the statis-
tical estimation of the parameters defining the membership value for each
class.

Several applications are presented where the quality of the recognition
can be empirically evaluated from the results. .

This type of sequential processing seems particularly useful when the
flow of data is continuous and when an instantaneous representation of the
data already processed is frequently required. Although it has not been
studied here, adaptativity to slow changes in the environment can be easily

- added to those algorithms.

* .
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INTRODUCTION |
'A This report‘consiSts of an introduction and four parts A, B, C, end'D.
It presents two algorithms for the classification df data,fbased on whaf‘we'
call the self-learning approach. |

In part A we examine briefly at the fuzzy approach of Ruspini [36,37,38]
to the problem of pattern classification; from there‘me’set our self-learning
approach and me present the problem of classification as that of estimating
a partition of the data to be classified.

In part B we present. an algorithm for classifying data issued from a
Gaussian environment; the fundamental tool of this algorithm is the use of
numerical filters for estimating a set of parametere which characterize each
class. This algorithm has been applied to the recognition of the components
of a mixture of Normal distributions [30,31].

In part C we present a second algorithm intended to work with qualitative
data. It is very easy to implement and it ha; been applied to the classifi-
cation of solid geometrical objects using an artificial hand [3,30].

Finally, in part D, we present an index of dissimilarity and a metric
between partitions which are useful for comparing the classification obtained

using the algorithmsand the “"true" classification [29,30].

Research sponsored by Naval Electronic Systems Command Contract
N00039 78-C-0013.



" In the field of Pattern C1éssif1cation,-humah behavior is the nearest
referehce model and 1£s Advantages and drawbacks ére the easiest to evaluate
qualitatively. One of the main characteristics comhon to both men and computers,
is tﬁé use of a memory. It can be stated that, although the compufer memory
is more quickTy acceésib1e and stores more data without omission, it reaches
saturation rather quickly when facing a mas§ of hetefogenébus and unclassi-
fied'informations. But man, with a memory far less accurate, and in the same
environment is able to reach conclusions and take admissible decisions.

Two functions, 1inked to one another, are the basis of this flexibility
in behavior: - |

1) Use of a capacity of omission, or réther of summarizing»the infor-

mation by remembering important features and forgetting others.

2) Possibility of establishing associations between ideas and of using

similarity relations. '
In this report, we are going to formulate some of the essential manifesta-
tions of this behavior: the classification by self-learning in the absence
of initial information.

Because of this ability to forget, man is capable of ignoring some
characteristics of an object and can associate it to another object because
of the characteristics he remembers. This enables him to establish pseudo-
equivalences between objects, and, as we will demonstrate it later in this
project, to classify. The mechanisms of forgetting énd associating can be
performgd adaptatively by constant modification of the classification

criteria, according to an algorithm.



0.1 General Aspects of Self-Learning

The young child hears sounds emitted by people around him.‘ This emission
is not a random.one, and a partition emefges from all these séunds. The
classes of this’paftitibn are the phdnemslof the 1ingui$tic system of his
environment. .It'is self-learning, Withbut~teaéher and without a prioff infor-
mation, free self-learning, or self-learning with passive environment. Later,
the child diSCOQers the communication fhnctfon'of language and he enters into
the phase of self-learning with active environmént. Sanctions are given
acco*ding to the degreés of failure of this function. Later, the child's

educators will tell him the "truth” on the phonems of the linguistic system
| which are still obscure for him. It is the type of learning with teacher.
We are trying to“give here a mathematical model of this aspect of self-
learning, called free or with passive environment. ‘

He wi11 notice that this self-learning can'be‘oriented by a "guidef
who, without béing a teacher who.gives sanCtions, can still select the data
order and influenée the transitoryvperiod of learning.

We also notice that free 1earhing,.that - we will call self-
lTearning, is theoretical]y an elementary situation from which we can introduce
oriented self-learning, learning with active environment, and learning with
a teacher.

We claim that if this self-learning function is totally absent, there

is not‘a real self-learning, but a simple "conditioning".

0.2 Different Aspects in Pattern Classification

The activities déveloped in pattern classification have been directed
mainly to:
-- either obtaining a best representation of experimental data in order

to enable the human being to interpret it



- or'findtng identificatioh functions resulting in the classification
of data into disjoint classes _ |
We will consider this last asprct'of'Pettefn Classification, considering the
problem of classification as the proceés'of assigning to each data point a
cértein degree of'belohgingness toveachxclass C],CZ,...,CN;' then the Ci's
can be cohsidered as fuzzy sets in theiQEhse of Zadeh [45]. However with
- our approach‘theee fuzzy sets have a strong pfobabiliétic meaning.

Fuzzy sets as a thebretica]‘basis for pattern clessification were first
suggested by Eellman, Kalaba, and Zadeh [6]. Subsequently, the papers of
Flake and Turner [24], Gitman and Levine [26], Ruspini [36-38], Dunn [20-22],
and Bezdek [7-9] concerned Various theories of fuzzy pattern classification
and fuzzy clustering. |

Tamura, Higuchi and Tanaka [41] described for the first time a hier-
archica1 partitioning scheme generated by one parameter family of equivalence
relations on a data set representing fuzzy similarity values. At the same
time, the notion of similarity relation was developed by Zadeh [46]; subse-
quently Yeh and Banz [44] suggested the application of fuzzy graphs to clus-
tering analysis.

Some attempts to apply fuzzy autompta and fuzzy grammars to Pattern
Recognition have been made by Thomason [42], De Palma and Yau [15], and
others but we think that a very important problem to consider in the gramma-
tical approach is that of automatic gﬂaﬂﬁat1ca1 inference.

Bremmerman [12] 1ntroduced the 1de& of us1ng prototypes for defining the
pattern classes, in such a way that thesdegree of membersh1p of a given
object 1n a certa1n class could be defiﬁed in terms of the amount of defor-
mation to be imposed on the prototype df that class, so that the deformed

prototype matches as much as poss1b1ey€§e g1ven obaect Moreover the method
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of deformableprototypes is an effective way to determine the numerical values
of the fuzzy membership functions. This prob]em is central to the fuzzy set
approach to empirical problems and has often been discussed, although not
very satisfactorily, in 1iterature,

Bezdek and Harris [10] introduced a new definition of transitivity for
fuzzy relations that 1inks the triangle inequality to convex decompositions
of fuzzy similarity re]atioﬁs in a manner which méy generate new techniques
for fuzzy clustering,

Finally, the work of Zadeh [47-49] places the connection between fuzzy
sets and pattern recognition in a sharp perspective and provides the basis
for the application of the fuzzy linguistic approach to the problem of
pattern classification,

Our approach is close to that of Ruspini [36-38] in the sense that we
look at the problem of classification as the breakdown of the probability
density function of the data set into a weighted sum of the probability den-
sities of the component clusters. These densities are interpreted to repre-
sent the degree of belongingness of each point to each cluster. Although
the concept of fuzzy set is not probabilistic in natuke, in this particular
case each fuzzy set has a probabilistic meaning and our rules of operation
are those of probability.

Ruspini [36] suggested the minimization of a meaningful functional
defined over all possible fuzzy classifications as a possible technique for
decomposing the data set density function into clusters.

| Ruspini's approach assumes that the number of classes is known "a priori"
and that the data set is available "a priori".

Our apbroach minimizes the probability of error and is based on the idea

of "self-learning"; that means that the algorithm "learns" and classifies



simultaneously (there is no training period before the algorithm starts to
classify as in the case of unsupervised learning). Consequently the algorithm
jtself sets the classes and the differences between the data; there is no

. external information which would enable the algorithm to discriminate the

data "a priori". Furthermore neither the number of samples nor the number

of classes is known "a priori" [2,3,30,31].

0.3 General Model

okl M E
Pattern Environment Set of Feature I
or —| Measurement |— Extraction | 1 Classification [—
Universe of Objects Procedures I I I
pEU0 x€U F C
(features) (classes)
The corresponding mapping diagram is:
TLEOY, JRLLNNETIN Sy 0 S,
(p,w) (x) (F)  (cC)
T = IoEoM

Let me give you before some definitions and notations used in the

general model above:

0.3.1 Universe Model

Let the pair (UOxQ,A) be the universe model where U0 is the universe
of objects to be classified (U0=={p],...,pn}), Q 1is the space of perturba-
tions and A is a o-field such that (onQ,A) is a measurable space. The
space of perturbations enables us to take into account the defects of the

objects as well as the defects of the sensors at the perception Tevel.



0.3.2 Perception Model

Our perception model will be assumed to be a triple" (M,U,B) where U
is the space of mathematical (measured) objects. The pair (U,B) is a

measurable space and M is the measurable function:

0

M: U"x@ > U .

0.3.3 Feature Extraction Model

The feature extraction model will be the pair (E,F) where F is the

space of features and E 1is the mapping:
E:U->F .
We assume that card(F) << card(U).

The methods used for decreasing the dimensionality of the problem are:
- Multivariate Data Analysis methods (principal components, etc.)
- Transform Techniques (Fourier, Karhunen-Logve, etc.)

- Heuristic procedures taking into account the structural properties of U

0.3.4 Classification Model

The classification model will be the pair (f,¢) where C is the

space of classified objects or "names" or "classes", and f 1is a mapping

0 0

from U~ to C such that one P; € U~ corresponds to one Ci eC

0

f: U" +C.

The goal is to find an identification function I (mapping from F to )

such that the "answers" of f and I are equivalent.*

*This is similar to the concepts of opaque algorithms and transparent
algorithms defined by Zadeh in [49].




An algorithm that realizes such identification functions is a recogni-
tion algorithm (transparent algorithm in the sense of Zadeh). This does not
imply that the classificatiqn is significant; we can say that the classifi-
cation is correct only when the interpretation provided by the algorithm
coincides with the human interpretation (humans employ an opaque recognition
algorithm in their interpretations).

The experience shows that there are roughly two types of identification

functions: the characteristic functions and the recursive functions.

0.4 Identification by Characteristic Functions

Let Ui be the set expressed by:
U, = {le(pi,aﬂ =x and w covering Q}

If Uif'\Uj = P we are in the presence of a deterministic problem and
the ideal algorithm which realizes the identification function I should
be such that

' if x € Ui then (I°E)(x) = Ci

If UiﬂUj #D one can define a membership function for each object:

H.: U >R

In this case the recognition algorithm should be such that

if uj(x) > (x) , Yk

then (IoE)(x) = Cj

This membership function can be grouped into four families:
- Discriminant functions (Rosenblatt 1956) [35]

- Probability measures or density functions (statistical classification)
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- Fuzzy membership functions (Zadeh 1965) [45]

- Fuzzy measures (Sugeno 1973) [40]

As has been pointed out earlier, Ruspini's approach regards density
functions as fuzzy membersﬁip functions. Our approach does the same. There-
fore in this case the second and third family are the samé. The basic assump-
tion underlying this approach is that there exists a multivariate probability
distribution for each class. Members of a pattern class are then treated
as population samples which are distributed in a n-dimensional feature space
according to the distribution associafed with that population. Therefore,
for a two-class problem, an observation x is treated as coming from one
of two distributions. Then the membership function uci(x)v becomes the
probability density function associated to the class Ci’

In this context we can define an optimal procedure, the Bayes procedure.

When U= R we call Pr(Ciix) the a posteriori probability of observ-
ing an object of the class ‘Ci knowing the mea;urement x of this object.
If these probabilities are known the decision rule at x € R is

x € C, if Pr(C.|x) = max[Pr(C.|x)]
J J j 1

By the Bayes rule we have

p(x|C.)Pr(C;)
p(x)

Pr(Cilx) =

where Pr(ci) is the "a priori" probability of Ci and p(x) is the data
set density function.
Assuming that the "a priori" probabilities Pr(Ci) are equal for all i,

the strategy at x € R becomes
x € C, if p(x|C;) = max[p(x|C;)]
J J j i

where p(xlC{) is the conditional density function of x ‘knowing Ci'
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Usually these density functions are not known so they must be estimated.
Therefore, the classification problem becomes a density estimation problem.
There are two approaches for estimating density functions:
(i) The non-parametric approach: in this case the functional forms
of the distributions do not need to be known.
(ii) The parametric approach: in this case the functional forms of
the distributions are known but some finite set of parameters characterizing
the distribution needs to be estimated (e.g. the mean and the covariance

in the case of normal distributions).
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PART A
~ CLASSIFICATION AND ESTIMATION OF A PARTITION

A.1 Classification and Estimation of a Partition

The problem of classification can be regarded as the problem of estimat-
ing a partition of the data [30]. Similarly the problem of fqzzy classifica-
tion can be regarded as that of estimating a fuzzy partition. The works of
Ruspini, Bunnvand Bezdek a11'bresume a common algebraic framework for fuzzy
partitions while dur approabh does not require that the classes form a fuzzy
partition because we think that this condition is too strong when we have
noise in the data. In fact with our approach we obtain a partition of the
data to be classified, assigning the point to the class to which the degree
of,membershipAiS'the maximum.

The self-learning process consists in building a partition of the data,
this partition being modified as long aé new data are classified.

Let @ be a set of elements having the structure of measurable space.

A data picked up from Q@ will be the observation of an‘element X¢ of Q.

A sequential Si is a time ordered set of data (xt ,...,xt.) from

0 i

t, to ti'

0

E, -is the subset of @ (Ei C Q) observed at the time t., i.e. E,

js the set of elements which appear in Si'

S«

i is formed by a set of sets {Sj};=0 such that Sj is the set

consisting of the first j elements of Si'

A self-learning algorithm is the following set of operations which is
repeated after incrementation of the index i:- at ti we are given

- the ordered set, S

1

- the subset of Q, 'Ei
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- a partition of ‘Ei’ Pi

- a new element to be classified, x,., €%
Using a decision (or recognition) rule R, xi;j is classified into a
class Ca'e Pi' A transformation A is applied to Ei and it becomes Ei+1’
The partition Pi of Ei becomes the partition Pi+1 of Ei+1’ and ti

becomgs ti+1’

Remark 1. A partition Pi can be represented in different ways:

non parametric without selection (the complete 1ist of elements forming

the classes of the partition is used to represent the partition),

non parametric with selection of the elements of Si which are the

most useful to the decision rule,
parametric. In this case a set '9,i of parameters represents the

partition.

Remark 2. Let PQ be the set of all possible partitions of © and
let P, bea partition of E; CQ. Then P: = P,U{CE;} s a partition
of Q. |

A.2 Self-Learning Process of Estimation of a Partition [30]

Let us state the problem of classif{cation as that of estimating a
partition. For that we provide the set Pg with a metric d [see part C].
Therefore (P.,d) is a metric space. |

Let us define a probability measure over Q charactefized by the
followihg density:

plx|e] ¥x€Q

Let us define a partition P which is the "true" partition of the

true
data, and the set {pEchk]}cfEPtrue such that
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1
plx|a] = Y plx|c,] ¥x€EQq.
| | card(Pvi Ckepv k

Then, a partition P?, built from the sequence Si and extended to Q, is
called an estimator of P, The distance d(P?,Pv) js called the estimation
error. ‘

Our goal is to obtain a sequence {P?}::t of estimators based on the
DR

sequence {xi}}:: of observations such that the estimation error decreases
' 0

when t increases. We call this a self-learning process.

A.3 Parametrization of a Partition [30]

a) Canonical parametrization

A partition P dinduces a decision rule R that is a mapping from Q
to P :
: R: @+ P
such that R(x) ='Ca iff x € Ca. The equivalence relation Eq associated

with P has the following expression

X Eq y iff R(x) = R(y)

Definition. Let A = {AC\(?)} be the set of characteristic functions
1‘ .
of the classes Ci € P. Then the partition P 1is equivalent to the set A

associated with the following decision rule:
R(x) = Ca R

a being such that A\e = max[)\C (x)] .
_ o i i
" We call A a canonical parametrization of P and the associated decision

rule will be noted R(x|A).
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b) Fuzzy parametrization

Replacing the characteristic functions Ac (x) € {0,1} by continuous
i
membership functions Mg (x) € [0,1] we can define a new decision rule
i

R(x|M) = C,
where = {u )} .én- o being such tha
h M={ C.( )}C ep d b h that
' i i :

po = maxfu. (x)] .
G i G
Clearly, we can choose M such that the partition Py induced by R(x|M)
be exactly P (there exists at least the solution of taking M = 7).

M) has

‘Similarly every partition PM jnduced by a decision rule R(-

a canonical parametrization.

c) Parametrization by kernels

Accdrding to the capacity of omission alluded to in the introduction we
try to find for each class 'Ci € P a finite number n; of real numbers,
composing fhe’vector ei € F{H such that the class C; can be characterized
completely by these numbers according to the decision rule R.

Let us call © ? {ei}' the set of parameters corresponding’to the classes
Ci €P. © is, therefore, a finite set of real numbers and we shall refer
to © as the set of kernels in the sense of Diday [16]. |

We denote R(x|0) the decision rule associated with ‘0. Clearly if the
set M in the fuzzy parametrization can be completely characterized by the -
set © and if O can be partitioned into a set of ei's such that each 05
determines uniquely the membership function uci(x), then R(x|0) 1is equiva-

Tent to R(x|M).
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Definition. If for a given P we know that R(x|M) is equivalent to

R(x]0@), then we shall claim that P 1is parametrizable by kernels.

Proposition. A partition P of @ parametrizable by kernels is equi-
valent to the following pair:

{o,R(-]0)}
where O 1is the set of kernels and R(+]@) is the associated decision rule.

Proof. We have seen'that a partition is equivalent to the pair
{A,R(-IA)T. Then there exists at least one fuzzy parametrization M such

that P -is equivalent to {M,R(-|M)} and since we know that R(-|M) is

equivalent to R(<|®) because it is parametrizable, then we have that P

is equivalent to {0|R(+]0)}.

Concluding Remarks

We have presented the problem of classification as that of estimating
a partition. We have also discussed three different ways of parametrization
of a partition. In the algorithms that we present in this report we use the
fuzzy parametrization in which the membership functions are probabilities.
This is similar to Ruspini's approach but the main difference is that we
don't obtain a fuzzy partition but a hard partition. The fuzzy partition
approach is interesting'when there is no noise in the}data, because with
the fuzzy partition assumption that igluci(X) =1 where N 1is the total
number of classes will give a high degree of membership of a noise point to

at least one of the classes, when, in fact, a noise point whould have a very

low degree of membership to each class.
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Our approach does not require the sum of the membership functions to
be one. Therefore we avoid this problem of noise points. Another important
difference between our approach to the classification problem and other
existent approaches is the concept of self-learning. This new concept allows

the algorithm to start classifying with 1ittle "a priori" information.
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PART B
DESCRIPTION OF THE ALGORITHM FOR CLASSIFYING GAUSSIAN DATA

Our algorithm uses the parametric approach because we assume that the
probability density functions associated with the classes are Gaussian.
The samples to be classified may be viewed as the outcomes of trials

governed by a mixture of k probability densities:

k
F(x;a) = J Pr(c;)p(x|C;)
‘ i=1
The "mixing parameters" Pr(Ci) satisfy
k
0<Pr(C,) <1 and J Pr(C;) =1.

Since we assume that all the Pr(Ci)'s are equal we have

p(x|C;)

Il ex

1
F(X;A) = —

where A is the composite parameter vector:

A= {6],62,...,6k}

and §' = {mean of p(x|Ci) =xi, covariance of p(x|Ci)==Si} .

We call &' the "kernel" of the class C. [16].

In this case the classification problem becomes a problem of estimating
the parameters of .61 for each class Ci.

We shall use‘a Kalman filter [34] for estimating the kernel 61 of
.each class. In order to apply this technique we modelize the classes as

fo]lows{
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Mathematical Model of the Classes

Let us assume that at instant t, the algorithm has created N classes
(C],CZ;..;,CN), and that at instant t @ new sample is presented to
the algorithm. Let us assume th&t this §amp1e is put into the class Ci'
The structure of this class will therefore be modified, since absorbing a
new element modifies its mean and its covariance, i.e. the kernel of the

class Ci‘ So we can say that a "dynamics" is associated to each class,

| taking into account its evolution as the class acquires new elements. For
this reason, we denote by xli and S;i the mean and the covariance of the
class Ci at "instant" ky- The kernel of Ci will be»denoted Gai.

The evolution of the mean x;_ of any class Ci is modelized by the
following equation: 1

i i i i n

where xl is the value of the mean of the class Ci when ki elements

i .
have been absorbed by Ci. xl is the mean of Ci after absorbing one
. i+l
more element and v; is a sequence of independent random Gaussian variables
: i

with X . s .
T i
‘ E[v. 1=0, E[v, vl '1=0's . .

Ky Ki'ds kidi
Now we assume that the mean xi is imperfectly observed. Then

1
- i n
Yo = X W o YER (2)

where wl is a sequence of independent random Gaussian variables with

1

X it ;
E[w 1=0, E[w w ']=R's .
ks SR kid;

and we have the additional hypothesis:

.y E[vl.wi T] =0
1
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- In order to construct a recursive algorithm we assume that the initial

state xg is normally distributed with

'E[xg] 0 and E[x1 i T] = Py

- The initial state xa is uncorrelated with v; and wl :
; .

ls[x‘ i T] =0, 1-:[x‘ i T] =0, ¥k

We see that y and x; are Gaussian because they are linear combinations
i
of Gaussian variables.

Estimation of the Kernel: 61 ={xi ,Si } of Each Class
' | S B
We know that the mean of the class Ci after absorbing ki elements
. i
is X

i
Because the observed data agree with the equation
_ i
Ye = Xk, W,
i
the covariance, which reflects the scattering in the class Ci after absorb-
ing ki elements is
s; = EL(y=x, )(y-1)T] E[wk T1=

i i
then

i i i,
8§ =1{x, LR} .
ki ki ki |
We sha11 estimate xi and Rk recursively because the data are observed

i
sequentially. We shall also est1mate Qk = E[vk T] because in most

practical situations it is not known.



21

Having modelized the classes following the equations (1) and (2) our
problem becomes a problem of estimating the state of the system, described
by the equations (1) and (2), together with the covariances Qi and Ri.

A recursive solution to this problem is given by a suboptimal adaptive

filter based on a Kalman-Bucy filter, in which the unknown covariances QL
. i
and R; are recursively and simultaneously estimated with the state xk
i
The estimators of Qk and Rk are the following.

i

Estimation of Q.: Q Q, = El- Z q ‘ak)(qj-ak)T

. ~ 1 K
where : aQ = 1 Z]q
and 9 = Ryr5 X575 -
Qj/j Q estimation of the state at instant j, having observed the

sequence {y], -2 }
Qj-]/j-] A estimation of the state at instant j-1, having observed the
sequence {y],...,yj_]}

k
. . .08 -1 a
Estimation of R,z R, = 175 j§1(r3 r)rr)
A1 §
where r, =+t r.
k k j=1 3
and 3T Y5 %5

A

/J-l A estimation of the state at instant j having observed the
sequence {y],...,yj_]}

Remark 1. It can be proved that if T1im Pk/k = 0 then the estimators
N N k-m
Qk' and Rk are asymptotically unbiased [30] where Pk. is the covariance

of the estimation error in the Kalman-Bucy filter defined as [34]

- (x-3 2 T
Perk = ELOG Ry R
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So, under this condition, we can say that we are making an asymptotic
estimation of the "true" classification of the data.

The algorithm of the suboptimal adaptive filter is the following:

"a priori" data: k=1
0, Po» Qp» Rg» r=0, a= 0

i

X/k-1 7 ¢xk-1/k 1.
PRRLLIRYISULEL

|

"k =Y~ By ke

l\

n ~ 1T
k=l ] R R R R

WT oyl
WORLIRL
- +IK rk

K k- ]H (HP

=Py
Xk ke

Pe/k ” ﬁ k/k-1 "KMk

l

A = Xg/k " ¢xk-]1/k-1
A k- T
(PRI

Remark 2. We see that we have one filter for each class but the
"evolution instants" are not synchronous because each filter progresses by

one step only when its corresponding class accepts one more element.
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Progressing by one step is equivalent to updating the estimators from
X /k=1 o X -and from ﬁk/k-l to pk/k using the equations of the
filter, i.e. the kernel of the class is modified in order to take into
account the new element accepted by this class and that is what we call

"learning".

Degree of Membership of'One Sample to a Class. Decision Rule

The data observed at'any instant t ‘agree with the equation

where i 1is to be determined between the existant classes at instant t.

The decision rule for determining the class Cj' to which Y belongs is:

y, € C. if ply.|C.) = max [p(y,]|C.)] >«
t ] N T Y

and we use the suboptimal adaptive filter described before, for estimating

the probability density functions:

plylCy)

for i=1 to N, where N is the number of existant classes at instant t.
The threshold o is introduced in order to avoid taking decisions

based upon a small probability and at the same time it enables us to increase

the number of classes because if:

mx  [plylc)] <o

1=1to

a new .class 'CN+1 is created and we decide that:

Yt € Cyny
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and the initial values of the "kernel" GNH of this class will be:
N+ _
o
N+T _
59 =Ry

and R0 is assumed to be known.

Initialization

The algorithm starts by putting the first observation 2 in the class

C], so the kernel of C1 is:
s} = {y.,R}
1 1°7°0° ¢

This kernel will be modified each time that C] will accept.one more element.
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+ Rk jmi+]

Computer P (y,lc;) for
~ i=itoN

and find: :
max [p(y 1C)]=p (v, ¢

No (/c‘i)}Yes_ 7 Eq

_\Vd

)
for i =1tON

exceptfor i = j
: do: 0
No ™~ max Yes ai ai

L Wl VR
1 1

i-1""i-1
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Application to the "Mixture Resolution" Problem

© First Example:’ 150 points picked up from a mixture of 3 Gaussian

densities of parameters (see Fig. 1)

STl 2. To 3_[4
BB H R H
4 1.7 0.25 0 4 -1.7
S]= o . Sz= . S3=
1.7 1 . 0 0.25 -1.7 1

The estimation results are:
g - [-0.05 2 _ [0.07 _[4.54
0.34| ° 13.391 3.11
r - -
o . 2.5 0.81 . 0.51 -0.10 s 2.71 -1.46
0.81 0.44 - -0.10 0.23 -1.46 1.08

In this example all the points have been correctly classified.

>
w

u»

Second Example: 150 points picked up from a mixture of 3 Gaussian

densities with parameters (see Fig. 2)

1 _2_3_(10
S$$ =5 =85 = [0A1]

In this example 6 pdints have been misclassified. The results concerning

the estimation of the kernel of each class are the followfng:
~1 _[0.24 ~2 _|3.42 ~3 _[3.16]
X = [3.29] > X7 [0.38] > X F [3.58_

A1 0.67 -0.22 2 1.07 -0.39 3 " 0.64 -0.03
§' =] , S°= , §=
-0.22 0.66 - -0.39 1.15, | -0.03 1.23
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Concluding Remarks

The self-ieaﬁning approach leads to good results in the "Mixture
Resolution" problem even when the clusters corresponding to the different
distributions are close.

The results concerning the classification itself are better than those
concerning the kernel estimation. The last point could be improved by
using more elaborated estimatofs of the covariances.

Our approach is particularly interesting when the "a priori" information
is poor (unknown number of classes and unknown number of samples), and
when the data are sequentially observed. Because the data are sequentially

treated we have at any instant a partition of the data already observed.



29

PART C
CLASSIFICATION OF QUALITATIVE DATA

In this part We present another algorithm based on the seIfélearning
approaéh.“The decision rule will bé the maximum 1ikelihood [3,303.

The’prdbability of an element belonging to a class is estimatgd by
counting; this implies the existence of a similarity measure between quali-
tative data which gives the possibility of comparing groups of qualitative
data. '

We have applied this algorithm to the tactile recognition of geometric
solid objects using the angular information supplied by potentiometers placed

on the finger-joints of an artificial hand [3].

C.1 Probability Estimation by Counting

We consider three types of estimation by counting:
- estimation by natural counting
- - estimation by statistical counting

- estimation by weighted counting
For simplicity we are going to consider a vector X having a component
quantified into two levels (v = 2, i.e. E = {0,1}) of non equiprobables ‘
(the probability of having the level 1 is p and the probability of having
level 0 is q = 1-p).

i) Estimation by Natural Counting. Let X1,X2,...,Xn be a set of

indebendent observations. The estimation of the probability vP[x=i] (i € {0,1})
is computed by means of the relative frequency. For'examb1e, if n is fhe
number of 1's observed among the first n observations, then the estimator

of P[x=1] is:



™
and we obtain P =
for the Xn+1 observation
= n +_l._x
Pntl = n#1Pn " nF 1 nt]
n]+1 )
We have Prt1 = nFT if X4l ~ 1
M
and Potl = noT if X4l = 0

This estimator is unbiased. It converges almost surely and in quadratic
mean. However, it presents the problem of considering zero the probability
of an event which has not been observed. For example, if the first n
observations are 0, then Py = 0 and q, = 1. This is undesirable when
these estimators are used in a product as we shall see later.

To compensate this drawback we can take:

*
n

P

Pn if 3i: X; #0

e << 1 if V¥i: xi =0

¢ is called the "learning threshold".

ji) Estimation by Statistical Counting. Let X]’XZ"“’Xn’xn+1""

be a set of independent observations. The estimation of the probability

P[X=i] (i € {0,1}) is also computed by means of the relative frequency,

but in this case we assume that Pg = p[X0=1] = %n Then if n is the

number of 1's observed among the first n observations, we have:

-1
Pn T v+n

ne~13
>
—
1]

When the observation of Xn+] is added, we have:

_ _vin 1
Pn+1 v+n¥Tpn'+v+n+1Xn+1 ’

n=20,1,...
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Denoting | o = V}ﬁ
S | % .
Prs1 = 'I+anpn+1+an"n+'l y

we obtain

Later on, we shall refer to 'anv as "statistical a. This estimator is
kunbiased. It converges to almost surely and also in quadratic mean. We can

see that in this case that the "learning threshold" is

Therefore,‘the "learning threshold" depends on n and converges to zero
when n -+ «,

iii) Estimation by Weighted Counting. In this case a subjective constant

value o 1is assigned to o_ and we shall prove that the estimation of the

n
probability P[X=i] has an indeterminate bias which is a function of the
. o , , ‘

sequence {X.} ;-

In order to estimate P 1let us assume that the observations are inde-
pendent and that P0 is known (for exampie, we can take P = %- as previously).

Let X-I,XZ,o'o,xn’Xn_'_-l’voo
recursive estimator of P is given by

be a set of independent observations. The

1 o . =
Pnl = ToaPn tTegine1 3 N = 01see.

In this case the "learning threshold" €, is given by

1 1
€, = T
n (-H_a)n v

We can see that each observed event artificially modifies its own probability
and the greater a, the more important this effect is. Then we can say that

this is a subjective method. We shall refer to this o as "subjective a.
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We have that Pn strongly depends on the observation Xn for n> 1.
Then P, is a random variable.

Setting 6 = 1+a, we have

2x +...+6n"]x ]

3 n

- P0+(6-1)[X]+6X2+6
‘ n Gn

P, isa random variable that can take 2" values. Let us compute the

expectation of Pn'

i Pyt (8-1 )[E[X]]+SE[X2]+GZE[X3]+- . -+6"‘].E[X,.,]]

E[P ]
n Gn
P+ (8-1)P(1+5+8%4- 45"
E[Pn] = ° n
_ 8
Pq +P(s"-1)
_ g Th\®
E[Pn] - &N
then
1im E[Pn] = p
| mard

independently of Po and o (if o > 0). Unfortunately the variance does
not converge to zero:

Py +p(1-p)(8"-1)
Gn

var[p,] =
‘and

lim Var[P ] = p(1-p)  (if « > 0)
n->o

It can be shown [13] that p is estimated with a bias that depends on the

sequence {xs}2=1’ on o andon P,.
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fhis estimator presents the advantage of keeping its‘adaptativity nature
indépéﬁdentiy‘of thevnumber of observations fhat have been made because each
new observation has a constant weight (a is constant), while with the
“statistical a® this weight tends to zero. |

We use the "statistical o" for estiﬁating the probability of an element
be1onging to a claSs,'in the first version bf the classification algorithm
that we‘present in this paragraph. In a second version Of'thé same algorithm

we use the “subjective a".

C.2 Description of the Patterns

We have applied this algorithm to the tactile recognition of}geometric
solid objects using the angular information supplied by botentiometers placed
on the finger-joints of an artificial hand. If we have m potentiometers,
this information is represented by a vector X of m components x],xz,...,x
(vi, Xi € 1R+). We know the maximum and the minimum values that each compo-
nent can take, whichkenables us to normalize these components and to quantify
the interval in v 1levels. Then, thé pattern to be classified becomes a
vector H of m components, each of which can take v values.

This can be represented'by a matrix with v rows and m columns. A
pattern will represented by this matrix in which each column has only one

ehtry different from zero. For example, let m =4

[ x] i 3.2
. x2 ) 7.0
Xq 1.3
] Xy ) 4.2 |
10.5 [ 0.0
x = 8.2 X _ | 5.0
max - 2.4 |’ min 0.2
6.0 | 0.5
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and if v =3 we have'

w N -
]

h

. ' . 1 h

H = X(quantified) = h
. ) h

H

and the matrix corresponding to this.pattern will be

hj =3 —

hj =;2 —

hj =1 — ,

v ﬁi h2 h3 vh4

C.3 Characterization of the Classes

A class ”C§ wi]]_be characterized by the probability of the occupation
of each entry 4fi(hj,j) in the corresponding matrix F,. It can be seen

that the sum of the probabilities in the same column is

v
h.z=]fi(hj’3) =1
j

C.4 Degree of Belongingness of a Pattern to a Class
Assuming that the compbnents of the vector X are statistically inde-

pendent, we can ca]cu]dte‘thepfobability that X belongs to Ci -as follows:

J=m J=m
P, = PrX|X€C,] = 1 Prix;|X€C.] = 1 f.(h,.j)
o T 3= J 1 j=1 LI R

and X will be classified into the class Cj if and only if'
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= Prix|X€C.] = max[Pi]
- This is called the maximum 1ikelihood decision rule. P, is the degree of

beldngingness of X to the class Cy.

C.5 Self—Learning;ﬁstimation of the Elements of the Matrices Fi

In order to cons1der the recursivity of the c1assif1cat1on process we
shall index by ng (number pf elements classified into the class C1) the
values ‘Fi and Pi’ Then we have Fi("i)’ Pi("i)' Similarly we 1ndex X
by n, (total number of elements already classiffed). Then ny 2
where VN is the number of classes that have been created, so X becomes
X(nt). When an element x(ht) is assfgned4to e class ci we modify the
corresponding matrix"Fi(ni). This modification consists in increasing the

elements fi(hj’j’"i) on a certain value o, i.e.
f.i(hj,jsni'ﬂ) = fi(hj"]’"i)+a
and we normalize the column in such a way that |
v v
(h.,j,n;) = 2 f. c3j,n.t =
Lt = Loy sng
J

This is equivalent to the estimation of the probability
Prhs(ng)[X(ny) €C,]

by counting (see paragraph C.1). « can be chosen arbitrarily COnstant or
as a functien.of ‘"i' or n,. Choqsing o ¥~£; the estimation is equivalent
to what we called estimation by statistical counting in paragraph C.1.
Choosing o arbitrarily constant we do an estimation by weighted counting

(paragraph C.1).
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C.6 Growing the Number of Classes
| An empty class Ck is prepared in such a way that the elements of its
corresponding mtrix F, (nk-O) are given the same value fk(h .»J,0) =

If a new element X(h{ﬂ) " to be classified is such that
¥i Pi("i) < Pk(nk=0)

then we ass1gn X(n +l) to the empty class’ Ck Therefore the structure of
Ck js modified by increasing the elements fk(h ,J,O),_ of the matrix Fk(nk-O),

by a certain value o, i.e.
fk(hjbjsl) = fk(hj’j?o)'*a ,

and renormalizing the columns

At this moment we have one more class with one element in it, and we

prepare one empty class 'Ck+1 with the elements of its correspond1ng matrix

Fk+1(0)’ equal to %u
We see then that an element'wi1l be classified into a non-empty (exis-

tant) class with a degree of belongingness greater than that of the empty

class, i.e. greater than (—)m Then if there exists j such that

pj(nj) max[P (n )] > (—0mv we classify the element into the existant (non-

empty) c1ass C and therefore the number of classes is not increased.

c.7 Initialization Without Initial Information

The algorithm starts with just the empty class C1 in memory. This
class is characterized by the corresponding matrix F](n1=0) and the elements

of this matrix have the same value, i.e.

PP
f](hjsto) - v vJ .
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The first element X(nt=1)4 is classified into the empty class C1.
Therefore the corresponding matrix F](n]=0) is modified, as described in
paragraph C.5, and becomes Fl(n1=1) and the empty class C2 characterized

by Fz(n2=0) is prepared.

Remark. If the pfobabi]ities were estimated by natural counting instead
of weighted éduntfng, the elements f](hj,j,1) of the matrix F](n1=1) would
be either 0 or 1 so that the algorithm could not evoluate any more. We
avoid this by: | |

T) The existence of an empty class that has a probability different

from‘zero of accepting an element.

2) The weighted counting of favorable events.

C.8 Flowchart
" There exist two program versions of this algorithm depending on the
character of a:

- Subjective a: The entries are the element H to'bé classified and the

index iL' Learning will be used depending on the value of‘this index.
* The output is the number of the class to which the element has been
classified. |
Other parameters of the program are the matrices Fi("i)’ the vector
Pi("i);4 the number k of classes already created, the coefficient o
(constént), the number of levels v, the number of components m, and an
index ic ‘that indicates whether or not an ehpty élass exists.

Statistical a: It has the same parameters as the subjective o except

the coefficient o, since in this case this coefficient is computed statis-
tically and is different for each class, because its value depends on the

number of elgments classified in its correébdnding class.
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These two versions can be represented by the following flowchart.

{F.}'{P.}l Kl’ i'l -
1Y1\ C
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.

No
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C.9 Application to the Tactile Recgggjtion of Solid Geometrical Objects

We have stqdied the possibilities of our se1f—learnihg algorithm in
recognizing solid geometrical objects using the pertia]‘and feduced infor- -
mation supplied by an artificial prehensile organ which has four fingers
with_three finger-joints each. A linear potentiometer supplying angular

information has been placed in each finger-joint.

C.9.1 Measurement Conditions

The different obJects that we have considered are:
- a cube |
- a sphere
- a tetrahedron
The size of these objects is such that they can be completely embraced by the
organ. The objects are positioned in such a way that each phalanx touches

the object. 30 measurements for each object are available.

€C.9.2 Analysis of the Results

We have considered two cases, either using the information of the four
fingers, or using the information of two symmetrical fingers. In the first

case the vector H has 12 components whereas in the second case H as 6

‘components.

Table 1 summarizes the results obtained in the "subJect1ve a" case for
d1fferent values of o and considering e1ther four f1ngers or two fingers,

the value D is the index of dissimilarity between the classification

- obtained and the "true" classification. This index of similarity is viewed

in detail in Part C of this report.
" Table 2 summarizes the results obtained with the “"statistical a", also

considering either four or two fingers and we.have also compdted the
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dissimilarity'between the true classification and the classification obtained
by the algorithm, | A
In Table 3 we see what the output 1isting of results looks 1ike.

.10 Conclusions

Ou; goal Qas to illustrate our algorithm of self-learning classification
and the results appear to be good. |

Although the number of classes in the true classification is 3 (cubes,
sphereé and tetrahedrons),'we see that the algorithm creates more than 3
classes. This is because the cube and the tetrahedron can bé positioned in
different ways in the artificial prehensile organ. This is why we can say
that its corresponding classes are multimodaf and a multimodal class is
interpreted as several classes by the algorithm.

In the case of the S§here we find the 30 corresponding measurements in
the same class. This is because the sphere shape is invariant by rotation.
Then its corresponding “"true" class is unimodal.

. For the above reasons we consider good a result that‘gi&es a partition
of the objects in more than 3 classes if this partition is finer than the
“true" 3-class partition, and in this case the index of dissimilarity will
be zero. |

Summarizing we can say that our approach is interesting when the "a
priori" information is poor and'the déta are observed sequéntially.’ Further-

more, the partition of the data already observed is.available at any time.
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D = 0.1877
7 classes created

gilngrg very good recognition. 14 objects misclassified out of 90 (4
g tetrahedra into the class of the sphere, and 10 tetrahedra into
the classes corresponding to cubes)
| D = 0.1684
o 8 classes created
gz;ggrg very good recognition. 13 objects misclassified out of 90 (3

tetrahedra into the class of the sphere and 10 tetrahedra into
the classes corresponding to cubesg ‘

TABLE 2
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PART D
METRICS BETWEEN PARTITIONS BASED ON THE INFORMATION THEORY

In this part we present an index of dissimilarity and a metric between
partitions based on the mathematical theory of information [29]. These
distances are useful in analyzing the results of classification algorithms
because they are a tool for comparing the partition obtained with the "true"

partition or classification.

D.1 Mutual and Conditional Information

Let us consider the following partitions of a set Q: PC’ of which
the classes will be denoted c1,c2,...,ci,...,cp and PF’ of which the

classes will be denoted F],Fz,...,F. .,F_. Let us consider the following

J,-c r
probability-measures:
Pi = P(Ci)
Pj = P(Fj)
Pij = P(CirWFj)
Clearly, we have:
P, = § Pij
Pj = ; Pij
Y IP.. =1
ij 13

The average information of PC is
ﬁ(PC) ) P, log, P

Similarly: R(P.) = -] P; log, P
J



a4
The mutual average information of Pc and PF is:
It can be shown [29] and [30] that

| A(P; and Pp) 5_H(Pc)-+H(PF)
The expression '

Y

- P..
H(PF/PC)'= A(P. and Pp) -A(P;) = _iijpij 1092(1%39

is the coﬁditiona] information of PF knowing Pc or the supplementary

informationAsuppliéd by PF when PC occurs. It can be easily seen that

A(Pe/P) < A(PR) .

D.2 The Conditional Information as an Index of Dissimilarity
Between Classifications [29]

A classification can be seen as a partition of the set 2 of data to

be classified.

Example. Let Q be {x],xz,x3,x4,x5,x6,x7,x8,x9}. Let PF be the
partitidn of Q@ 1in four classes F], F2, F3, F4 sharing the data as fo1]ows:
F] = {x],xz}, sz = {x3,x4,x5,x6}, F3 = {x7,x8}, F4 = {xg} and let us

consider another classification of the same set Q, defined by:
Pe = 1095003084505 G}

the elements of each class being C] = {xg}, C2 = {xs,x7}, C3 = {x3,x4},
C4 = {x5,x6}, Cg = {xz}, C6 = {x]}. Let us define a matrix M(C|F), the

elements of which are
' card(cirWFj)

ij = " card(Q)

P
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i.e. Pij is an estimation of the probability

P(C; NFy).

In the example above we obtain the following matrix:

P
Fi
Ci F] F2 F3 F4
C] 0 0 0 {1/9
C2 0 0 {2/9]| O
03 0 12/9| 0 0
P
AN ETI R
05 1/9( 0 0 0
C6 1/9( O 0 0
Clearly, we have X P It is easy to prove that M(F/C)

where T stands: for transpose

Remark.

represented by

= {61,6,,65,G,}
where G] = {x7,x8}
62 = {xg}

G3 = {x3,x4,x5,x6}
G4 = {Xlgxz}

Let us compute the matrix M(F/G) with Pij =

card(Firﬁej)

card(Q)

= W (C/F)

Let us assume that we have another classification of Q .

We obtain



»

6 Ps
FN & 6 6 6
Fl o oo e
F| 0 0 [4/9] 0
P
F Fal2/9] 0 [ 0 | 0
Fl 0 {19 0|0

We deduce the following:

Property. If two classifications (partitions) are equal (modulo a permu-
tation of'indices) the corresponding matrix is a square matrix that has only
one element different from zero in each row and each column. We shall call

this matrix "quasi-diagonal".

Remark. In the matrix M(C/F) of the above example we have the follow-
ing property: |

Adding the rows 3 and 4 as well as the rdws 5 and 6, we obtain a "quasi-
diagonal® matrix; a matrix having this property will be called "quasi-

diagonalisable".

Definition. A partition (classification) PF having less classes
than another partition (classification) PC is‘compatib1e with Pes if and
only if Pc is finer than PF. In this situation the corresponding matrix
is "quasi-diagonalisable".

Similarly if the matrix if "quasi-diagonalisable", the partition having

1ess classes is omgatible with the other partition.

Now we are going to define an index of dissimilarity between partitions

(classifications) that will be zero if and only if the matrix formed with
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these partitions is: diagonal, "quasi-diagonal” or “"quasi-diagonalisable",
i.e. if the partitions afe: equal, equa1 modulo an index permutation or
compatible. In ady of these three situations, this index of dissimilarity
should be zero. The conditional information measure has such properties.

Then the distance betwéen two partitions PF and Pc is:

] | Py
Ig(PesPe) = H(Pe|Pe) = -iijpij 1°92(‘l5;1) :

D.3 Properties of the_Index of Dissimilarity

It can be shown [30] that the index of dissimilarity Id(PF,PC) has the

following properties into the set PQ of partitions of Q:

D1 (positivity): W’FGPsz and W’CGPQ we have Id(PF,PC) > 0.

D2: VP€P, anQ ¥P.EPy, if P. C P then I,(Pr,P.) =0.

D3: Id(PF,PC) # Id(PC,PF) in general.

D4: VPLEP,, YP.EP,, VP, EP, we have: Id(PF,Pc) +Id(PC,PG) > Id(PF,PG).
Remark. We will use the following normalization of the above index of
dissimilarity
Id(PF,PC)

I,(P.,P.) =
NYF°'C H(PF and PC)

in such a way that IN(PF,PC) € [0,1]. It can be shown [30] that the properties

D1 to D4 are preserved.

D.4 A Metric Between Partitions

Let us now define a metric between partitions that will be zero if and

only if~the'corresp0nding matrix is "quasi-diagonal" or diagonal, i.e. if
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the partitions are either equal or equal moduld an index permutation.
This metric can be easily defined by symmetrization of the previous
distange, i.e.

d(P.Pp) = H(Pe/P.) +H(P./Pp)

because symmetry is the only property that does not hold in the case of the

index of dissimilarity for being a distance.

Remark. This metric can be normalized as follows

' A(p./P.) +R(P./P.)
_VE e c"F
(PP = — P

such that dN(PF,PC) € [0,1] and it can be shown [30] that all the metric

properties are preserved.
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