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ABSTRACT

In decision-making, discrimination of fuzzy elements is as important

as dealing with randomness. The problems of the latter have been investi

gated primarily based on probability theory developed since Pascal's

ponderings in the 17th century. But the study of the former has not yet

been fully explored due to the fact that it has been less than thirteen

years since L. A. Zadeh initiated the serious study of fuzziness in 1965.

This paper presents a measure by which the effect of information on

fuzziness is estimated through discrimination of fuzzy elements. This

paper follows the concept of possibility distribution which is a key

concept in possibility theory derived from fuzzy set theory.

Through the degree of separation among some possibility distributions,

we attempt to devise a measure for fuzziness, which will be referred to

as the discriminative effect of information.

The structure of this measure for fuzziness is similar to the struc

tures of the measures for randomness in that what is called amount of

information uses the concept of entropy and what is called value of

information uses the concept of expected utility. Both of the measures

for randomness are grounded in probability theory which is derived from

random theory.

Then, several basic methods of information-processing are discussed

from the point of view of the measure of the discriminative effect of

information.

This measure may be regarded as the third measure of information,

and it appears to be of relevance to the problems of pattern-recognition

as well as decision-making.



INTRODUCTION

The quantity of information to which we are subjected today is so

immense that it defies any comparison with the past. Indeed, we live in

the age of the Information Society. Yet, when we take a closer look at

information that surrounds us, we realize that a certain aspect of it has

not changed over the years. That aspect is uncertainty. Most information

contains:

1. Uncertainty as probabilistic event (to be referred to as randomness),

and

2. Uncertainty as vagueness of the meaning of the event itself (to be

referred to as fuzziness).

Information such as "John will graduate from the University in June"

is an example of information containing the first category of uncertainty.

Likewise, "Wendy is rich" exemplifies uncertainty of the second category.

"Tom will marry an attractive girl" is an example that contains both kinds

of uncertainty. An explanation of the first category is unnecessary, as

it is obvious to most people. However, the meanings of words such as

rich and attractive are not fixed, but they are rather relative and there

fore permit vagueness.

The field of information-processing investigates how information with

all its uncertainty can best be economically utilized for better decision

making. The inevitable task here is to measure the effect of the change

in magnitude of uncertainty as the result of some information-processing.

C. E. Shannon developed the measure of amount of information from

entropy; and in the area of statistical decision theory, the measure of

value of information was developed from the concept of expected utility.



These two measures are very important tools today in the field of informa

tion-processing. But these measures are only applied to the uncertainty

of the first category, i.e., randomness. This paper attempts to present a

measure for the second category, i.e., fuzziness.—

Here are two simple decision problems.

Example A. A choice must be made between two alternatives, a, and a^.

The available information reads as follows:

"The alternative a., seems to have a payoff of near 100, while the

alternative a~ seems to have a payoff of near 101."

Does this information invite an immediate decision to choose alternative a2?

Not likely. Provided the research cost is not too high, the decision-maker

will require further information. He is more likely to make a choice and

decide on a2 after confirming that, for instance, "the payoff of a^^ is very

near 100, while that of a2 is very near 101."

Example B. In the case of an enraged husband whose wife has just been

taken hostage by a kidnapper, he would not start shooting at the kidnapper

based on the information that "the person on the right seems to be the

criminal and the one on the left seems to be his wife." He has to wait

for further information, no matter how costly it may be, which tells him

that "it is almost certain that the person on the right is the criminal,"

Regarding a measure for fuzziness, there is an excellent study done by
A. De Luca and S. Termini. The theme of their paper is to apply the concept
of entropy to any fuzzy set in order to directly measure the degree of fuzzi
ness of that set. Therefore, it is similar in its method and implication
to the measure of amount of information which is now well known.

In contrast, the theme of this paper is to indirectly measure the degree
of effect of information on fuzziness through discrimination of fuzzy objects.
This concept of measure is similar to the concept of res^vi^£pwer_ in optics

It is easily anticipated that we will find a close and interesting rela
tion between the measure presented by A. De Luca and S. Termini and the
measure proposed in this paper. The writer would like to discuss this point
as the subject of another paper in the near future.

Cf. De Luca, A., and S. Termini [2].
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and/or "it is now confirmed that the person on the right is your wife,"

before he can make his move.

These two examples illustrate that the degree of discrimination of

the fuzzy elements is heightened by further information. In both cases,

while the degree of discrimination is low, the decision was made to gather

further information, and the choice was made only after the higher decree

of discrimination had been obtained by further information. The degree of

discrimination plays an important role in decision-making.

However, there have been few serious studies which investigate the

effects of information-processing at the stages of discriminating the fuzzy

elements. Because investigations in the area of fuzziness have started only recently

2/
wait until L. A. Zadeh published the theory of "fuzzy Sets" in 1965.-

This paper follows the concept of possibility distribution which is

a key concept in possibility theory which, in turn, is based on fuzzy set

theory. Through the degree of separation among some possibility distribu-

tions, we attempt to present a measure for fuzziness, which will be referred

to as discriminative effect of information in this paper. The structure

of this measure is similar to the structures of the measures for randomness,

i.e., amount of information and value of information, which are developed

from probability theory based on random theory by using the concepts of

entropy and expected utility, respectively (Table 1).

In this paper I would like to discuss the characteristics of the dis

criminative effect of basic information-processing. In the concluding

3/remarks of my earlier paper, "Fuzzy Choice Models" (1976),- I touched on

the possibility of "...the third measure of information which is related

2Cf. Zadeh, L. A. [6 J

3Cf. Enta, Y. [3].



to discrimination among the fuzzy objects might be developed based on the

fuzzy set theory." I am now attempting to present that possibility.

Object

Randomness

Fuzziness

Basic theory

Probability theory

Possibility theory

Instrumental measure

Entropy

Expected utility

Degree of separation
among possibility
distributions

Table 1

Frames of three information-measures

Measure

Amount of information

Value of information

Discriminative effect

of information



I. POSSIBILITY DISTRIBUTION

What is the substance of the statement (or proposition), "alternative

a, has a payoff of near 100"? L. A. Zadeh's answer to this question is

that the substance is the possibility distribution derived from the state

ment. Let us explain the concept of possibility distribution,which is not

yet well known, by quoting his explanation:—

What is a possibility distribution? It is convenient to answer this

question in terms of another concept, namely, that of a fuzzy restriction

to which the concept of a possibility distribution bears a close relation.

Let X be a variable which takes values in a universe of discourse U,

with the generic element of U denoted by u and

X.= u, (1.1)

signifying that X is assigned the value u, u E U.

Let F be a fuzzy subset of U which is characterized by a membership

function yp. Then F is a fuzzy restriction on X (or associated with X)

if F acts as an elastic constraint on the values that may be assigned to X

—in the sense that the assignment of a value u to X has the form

X = u: uF(u), (1.2)

where pp(u) is interpreted as the degree to which the constraint represented

by F is satisfied when u is assigned to X. Equivalently, (1.2) implies

that 1 - lip(u) is the degree to which the constraint in question must be

2/
stretched in order to allow the assignment of u to X.—

''•Cf. Zadeh, L. A. [9, pp. 5-7].
2

A point that must be stressed is that a fuzzy set per se is not a fuzzy
restriction. To be a fuzzy restriction, it must be acting as a constraint
on the values of a variable.



Let R(X) denote a fuzzy restriction associated with X. Then, to ex

press that F plays the role of a fuzzy restriction in relation to X, we

write

R(X) = F. (1.3)

An equation of this form is called a relational assignment equation because

it represents the assignment of a fuzzy set (or a fuzzy relation) to the

restriction associated with X.

To illustrate the concept of a fuzzy restriction, consider a proposi

tion of the form p4 Xis F,-7 where Xis the name of an object, a variable

or a proposition, and F is the name of a fuzzy subset of U, as in "Jessie

is very intelligent," "X is a small number," "Harriet is blond is quite

true," etc. In more detail, the translation of such a proposition may

be expressed as

R(A(X)) = F, (1-4)

where A(X) is an implied attribute of Xwhich takes values in U, and (1.4)

signifies that the proposition p4 Xis Fhas the effect of assigning Fto

the fuzzy restriction on the values of A(X).

As a simple example of (1.4), let p be the proposition "the payoff

of alternative a± is near 100," in which near 100 is afuzzy subset of
real numbers, i.e., U =R1 characterized by the membership function illus

trated in Figure 1.1. In this case, the implied attribute A(X) is Payoff

(alternative a±) and the translation of "The payoff of alternative a± is

near 100" assumes the form:

3The symbol 4 stands for "denote" or "is defined to be."
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Figure 1.1: Fuzzy set; near 100

The payoff of
alternative a.. -*- Payoff (alternative a1) = near 100.
is near 100

"*L1

(1.5)

To relate the concept of a fuzzy restriction to that of a possibility

distribution, we interpret the right-hand member of (1.5) in the following

manner.

Consider a payoff, say u = 90, whose grade of membership in the fuzzy

set near 100 (as defined by Figure 1.1) is 0.8. First, we interpret 0.8

as the degree of compatibility of 90 with the concept labeled near 100.

Then, we postulate that the proposition "The payoff of alternative a^^ is

near 100" converts the meaning of 0.8 from the degree of compatibility of

90 with near 100 to the degree of possibility that the payoff of alternative

a, is 90 given the proposition "The payoff of alternative a1 is near 100."

In short, the compatibility of a value of u with near 100 becomes converted

into the possibility of that value of u given "The payoff of alternative a.^

is near 100."

Stated in more general terms, the concept of a possibility distribution

may be defined as follows. (For simplicity, we assume that A(X) = X.)

Definition 1.1. Let F be a fuzzy subset of a universe of discourse U

which is characterized by its membership function u , with the grade of



membership, Up(u), interpreted as the compatibility of u with the concept

labeled F.

Let X be a variable taking values in U, and let F act as a fuzzy

restriction, R(X), associated with X. Then the proposition "X is F,"

which translates into

R(X) = F, (1.6)

associates a possibility distribution, II , with X which is postulated to

be equal to R(X), i.e.,

nx = R(x). (1-7)

Correspondingly, the possibility distribution function associated with X

(or the possibility distribution function of II ) is denoted by ttx and is

defined to be numerically equal to the membership function of F, i.e.,

*X£V (1-8)

Thus, TTY(u), the possibility that X =u is postulated to be equal to Mp(u).

In view of (1.7), the relational assignment equation (1.6) may be

expressed equivalently in the form

nx =f, d-9)

placing in evidence that the proposition p 4 X is F has the effect of asso

ciating X with a possibility distribution Hx which, by (1.7), is equal to F.

When expressed in the form of (1.9), a relational assignment equation will

be referred to an .j possibility .unsocial ion equation,-with the understanding

that Jiy is induced by p.
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As a simple illustration, let U be the universe of integers and let F

be the fuzzy set of small integer defined by (+ 4 union).

small integer = 1/1 + 1/2 + 1/3 + 0.8/4 + 0.5/5 + 0.2/6. (1.10)

Then, the proposition "X is a small integer" associates X with the possibil

ity distribution

nY = 1/1 + 1/2 + 1/3 + 0.8/4 + 0.5/5 + 0.2/6,

in which a term such as 0.8/4 signifies that the possibility that X is 4,

given that X is a small integer, is 0.8.
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II. DEGREE OF SEPARATION AMONG POSSIBILITY DISTRIBUTIONS

We assume that we have two different objects (variables or proposi

tions), X and X1, to be distinguished from each other. We then assume the

following two propositions concerning X and Xf, respectively:

p 4 X is F

and

p' 4 X' is F1.

When there is no other information, we discriminate X and X1 based

only on the two possibility distributions, i.e., II (= F) and II f (= F'),

which are derived from the propositions above.

Even when we are able to distinguish that X is X and X' is X', there

are differences in the degree of discrimination depending on the degrees

of fuzziness of the propositions. We have to guess that the relative posi

tion and shape of the two curves that represent each possibility distribu

tion, which we will refer to as relative relation, differentiate the degree

of discrimination. Therefore, the clue to the measure for fuzziness must

be found in the degree of discrimination.

For instance, as in Example A above, when we have the following two

propositions about alternatives a., and a2,

p4 The payoff of a1 is near 100 (2.1)

and

pf 4 The payoff of a2 is near 101, (2.2)

two alternatives, a and a2, are discriminated by the relative relation

between the two fuzzy subsets of real numbers R , near 100 and near 101.
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Now, there are many aspects of a relative relation. We face the prob

lem of making a choice of the most suitable aspect which expresses the

clarity of discrimination. The most suitable and meaningful choice for

that purpose seems to be the degree of separation among possibility

distributions, which we will explain later. It is analogous that entropy

is chosen as the randomness measure for the purpose of the efficient signal

transmission and expected utility is devised as the randomness measure for

better decision.

When some information-processing changes the degree of separation among

possibility distributions, the amount of the change is regarded as the

discriminative effect of the information-processing. It is analogous that

amount of information and value of information are considered as the amounts

of the change of instrumental measures such as entropy and expected value.

Stated in more general terms, the concept of discriminative effect of

information may be defined as follows:

Definition 2.1. Let

p(1) A X(1) is F(1)

(n) A v(n) . _(n)
p 4 X is F

be propositions about n objects, variables, or propositions, X ,...,X

Let the degree of separation, DS, among n possibility distributions

JI,v(=F ),...,II/ «v(=F ) derived from n propositions, be a, i.e.,
X X

DS(F(l),...,F(n)) =a. (2.3)

As the result of new information, I, let the proposition about X

be changed to
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(i) _Y(D • r .'q = X is G, 1 = 1,...,n

and the degree of separation among n possibility distributions

n(1)(= F(l)),...,n (i)(= G),...,H (n)(= F(n)) about x(1),...,x(i),...,x(n)
X X x

be changed to 39 i.e.,

DS(F(1),...,G,...,F(n)) =3. (2.4)

Then, the discriminative effect of the information I, DE(I), is defined as

-(a - 3), i.e.,

DE(I) = -(a - 3)

=-[DS(F(l),...,F(i),...,F(n)) -DS(F(1),...,G,...,F(n))]. (2.5)

As a simple illustration, let us assume that we have two propositions

about two alternatives, such as (2.1) and (2.2). Let the degree of separa

tion between two possibility distributions, near 100 and near 101, be 0.1,

i.e.,

PS(near 100, near 101) = 0.1.

By adding another information about alternative a^9 I, let proposition (2.1)

be changed to

q 4 The payoff of a, is very near 100. (2.6)

Then the degree of separation between very near 100 and near 101 becomes

0.4, i.e.,

PS(very near 100, near 101) =0.4.

Then, the discriminative effect of the information I, DE(I), is

-(0.1 - 0.4) = 0.3.



Definition 2.2.— Let n possibility distributions ^ (•?) (= F )»
X

2/
i = 1, ,n, be convex fuzzy subsets— of a universe of discourse U. For

each possibility distribution, we introduce the set r ,.. defined by

a

13

r (i) = {u| u /£)(") > <*}, aE C°9 13; i=l,...,n (2.6)

Fx ' F
a

3/Let C be Inf a such that T (.., i = l,...,n, are disjoint.— The number

a

1 - C will be called the degree of separation of n possibility distributions,

DS(n (1),...,n (n)), i.e.,

DS(n /n.,...,n , J = 1 - C. (2.7)
x(l) x(n)

The definition of a degree of separation in this paper differs from the
definition by L. A. Zadeh used in his paper, "Fuzzy Sets," 1965. The
definition by Zadeh is suitable when there are only two fuzzy sets. But
the definition set forth in this paper is applicable when there are more
than two fuzzy sets. The definition by Zadeh, however, has its merit in
that the fuzzy sets to be separated are not limited to be convex. Cf.
Zadeh, L. A. [6, p. 351].

2
A fuzzy subset F of U is convex if and only if the sets defined by

Ta = {u| uF(u) > a}

are convex for all a in the interval (0, 1].
The equivalent definition of convexity is as follows: F is convex

if and only if

uF(Au + (1 - X)u») > yF(u) A uF(u»)

for all u and u' in U and all X in [0, 1]. But note that this definition
does not imply that p (u) must be a convex function of u. Cf. Zadeh, L. A
[6, p. 347].

3
As in the case of ordinary sets, two fuzzy sets F and Ff are disjoint,
if F n F' is empty.



a a a

Figure 2.1: Illustration of degree of separation for n = 3

From this, we deduce the following theorem.

14

Theorem
(i)2.1. Let n possibility distributions II ,. •> (= F ), i = l,...,n,

be convex fuzzy subsets of a universe of discourse U, and the maximal grade

for each intersection, F HF] , i/j, i,j = l,...,n, be M, and M be

Sup M, i.e.,

= Sup {Sup [y (£)(u) A y /.v(u)]}, i i j, i,j = l,...,n
i,j U

where A stands for the infix form of min and V stands for the infix form

of max as well. Then, the degree of separation of these possibility

distributions is the number 1 - M, i.e.,

(2.8)

dsui ...,n ) = 1-M.
X X

(2.9)

Proof. Let M be the maximal grade of intersection F OF ,

l,k < n. Then the two sets,

and

PU)
M

{u| y (£)(u) > M}
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rF(x> ={ui Vk>(u)"R}
M

are disjoint and contiguous to each other at a point, say, u , such that

y fn\(u ) = y (v.\(u ) = M, because if they were not, there would be a point

uf that y (o)(uf) > M and y /k)(u') > M, and hence, y (o)^u'^ A V(k/u'^ > **'

which contradicts the assumption that M = Sup Cy (n\(u) A y (^(u)].

Moreover, these two sets are disjoint from any other set, say,

F / \ = {u| y , x(u) > M}, m < n, because if they were not, say, r ,, v and
pAnU p^mj p^k/
M M

r , v were not disjoint, there would be a point, say, u", such that

FM
y , ,(u") > M and y ,, Au") > M, and hence, y , Au") Ay., .(u") > M,
m(m) r,(k) r,(m) ^(k)

which contradicts the assumption that M = Sup {Sup [y ,.,(u) A y ,..(u)]}
i,j U F(1) TKl)

i t j, i = 1,...,n.

On the other hand, let e be any small positive number. Then,

and

T U) DTJl)
M-e M

F (k) D r (k)
M-e M

Thus, the two sets, r ,f, and T ,,* are not disjoint. Therefore, from

FM-e FM-e

Pefinition 2.2, the number 1 - M is the degree of separation among them. Q.E.P.
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Figure 2.2

The theorem states that in the case of n = 2, the degree of separation

of.two convex possibility distributions is one minus the maximal grade in their

intersection. For simplicity of calculating the degree of separation,

we postulate that all possibility distributions which we will treat below

are convex.

After all, the degree of separation can be interpreted as the index

of the degree of ease in separating the possibility distributions disjointly.

Therefore, it is natural to use the degree of separation as an instrument

which expresses the degree of discriminating fuzzy things and hence,

measures the discriminative effect of information. It is also meaningful

from the points of view described below.

Obviously, from Pefinition 2.1, the degree of discrimination (hence,

the discriminative effect of information) is in the interval between

[0, 1], i.e.,

DS(n (1),...,n (n)) e [o, 1] (2.10)

Furthermore, it has the following characteristics:

1. The degree of separation between two possible distributions can

be raised by making a sharper increase on either curve. Of course, it is



17

raised more drastically when both curves are increased. Translating it

into terms of discrimination, in order to raise the degree of discrimina

tion between two fuzzy things, it is sufficient to make one of the fuzzy

things clarified. Of course, making both things clearer raises the degree

of discrimination even further.

Figure 2.3

2. If a distance between two objects X and X' in U becomes larger,

then the degree of separation between them becomes larger even if the

shapes of their possibility distributions remain the same. If the distance

becomes smaller, the degree of separation becomes smaller. In brief, when

we discriminate between similar things, we have to make the propositions

about them more restrictive to get the given degree of discrimination.
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3. The degree of separation among the given number of possibility

distributions is not raised by adding another possibility distribution, i.e.,

Ds(n ,...,n )>Ds(n(1),...9n(n),n(n+1)). (2.11)

This is expressed in terms of discrimination that increasing the number of

fuzzy things does not result in raising the degree of discrimination. As

shown in Figure 2.5, the degree of discrimination might be lowered by adding

a new fuzzy thing. This relation is similar to the entropy-measure for

randomness, where entropy is raised by increasing the number of transmitted

signals.

The points we described above are familiar to us in our daily experi

ence when we make discriminations of one kind or another. Therefore, it

is a very proper choice to adopt the degree of separation as the instrument

which expresses the degree of discrimination and hence, measures the dis

criminative effect of information.
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III. GENERAL CHARACTERISTICS OF DISCRIMINATIVE EFFECT OF INFORMATION

We often combine two simple propositions, such as "Paul is young"

and "Paul is fat," into one composite proposition, "Paul is young and fat."

On the other hand, from the point of information-economy, we often reduce

a proposition which includes more than two implied attributes regarding

some object to another proposition which implies fewer attributes than the

original proposition does. For example, the proposition "Kazuko is a charm

ing girl," which expresses her attributes of intelligence and looks, can

be reduced to another proposition, "Kazuko is beautiful," which expresses

her attribute of looks only. We know and manage many other ways of informa

tion processing. What effects do these information-processing ways have on

discrimination? That is, what are the discriminative effects of these

methods of information-processing? In this section, we shall discuss some

important methods of information-processing.

1. Informative proposition

In the following two sets of propositions, the second set gives a

clearer discrimination between Gareth and David than the first: "Gareth

is tall" and "David is short"; "Gareth is tall" and "David is very short."

This increased discrimination was obtained through more information-gathering

about David.— Here, we shall treat such a problem regarding the relation

between the discrimination and the proposition change.

In general, if p is a proposition of the form p A X is F, which is

translated into a possibility association equation

Of course, we cannot deny the possibility that information-gathering con
cerning David results in a proposition, e.g., "David is tall." But this
kind of change of proposition from "Pavid is short" to "Pavid is tall"
belongs to the field of randomness. In this paper, we do not dare treat
this kind of change.



II = F
A(X) *'

?0

(3.1)

where F is a fuzzy subset of U and A(X) is an implied attribute of X,

taking values in U, then the information conveyed by p, I(p), may be

identified with the possibility distribution, II , ., of the fuzzy variable

A(X). Thus, the connection between I(p), 11/%, fuzzy restriction R(A(X)),

and F is expressed by

Kp) 4 nA(x) (3.2)

where

EA(X) = R(A(X)) = F* (3.3)

For example, if the proposition p 4 Pavid is short, then the informa

tion conveyed by p is

I(Pavid is short) = II
(Height(Pavid))

where

E(Height(Pavid)) =Sh°rt'

in which the fuzzy subset of R , short, might be given by Figure 3.1

"More or less short"

i'Short"

100 160 200

Figure 3.1
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Now, if p 4 X is F and q A X is G and G C F, then q implies p, denoted

by q => p. In that sense, q is at least informative as p, expressed as

I(q) > I(p).

For example, if p 4 The weather is bad today and q 4 The weather is

rainy today and rainy weather C bad weather, then q is more informative

than p, i.e.,

I(The weather is rainy today) > I(The weather is bad today).

In conclusion, the concept of informative proposition may be defined

as follows:

Pefinition 3.1. When proposition p 4 X is F and proposition q A X is G

and G C F, then proposition q is called at least as informative as p,

expressed as I(q) >_ I(p).

This definition means that if the curve of a possibility distribution

derived from the proposition is sharper, then the proposition is more

informative.

From the outset, getting more informative propositions or making the

propositions more informative is one of the fundamental bases of information

processing. Here we shall discuss the discriminative effect of the more

informative proposition.

(i) Basic proposition

A basic statement concerning the discriminative effect of a more

informative proposition is as follows:
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Proposition 3.1. The degree of discrimination given by a more informa

tive proposition is at least as high as the degree given by a less informa

tive proposition. That is, the discriminative effect of a more informative

proposition is nonnegative.

Note that the converse is not true. This proposition can be obtained

from the following theorem:

Theorem 3.1. We assume that we have two different objects X and X',

and the following three propositions concerning them:

p4 Xis F+ nA(x) = F, (3.4)

p'4 X' is F' + nA()(l) =F\ (3.4')

q4 Xis G+ nA(x) = G. (3.5)

If G C F, then

PS(F, F1) < PS(G, F1), (3.6)

where F, F', and G are convex fuzzy subsets of U.

Proof. The maximal grades of F H F' and G H F' are, respectively,

MFnF, =Sup CyF(u) a yF,(u)], (3.7)

MGnF, =Sup CuG(u) A upt(u)]. (3.8)

From the premise, since G C F, we obtain

UQ(u)<yF(u), fuGU. (3.9)
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Thus,

M > M

Moreover, F, F', and G are assumed to be convex (see p. 16). Hence, from

Theorem 2.1,

PS(F, Ff) < PS(G, F!). (3.10)

Q.E.P.

Proposition 3.1 then means that, for example, when we discriminate

between two persons by their wealth, it is more certain to do it by

q 4 Pouglas is a millionaire and p' A Peter is poor than by p A Pouglas

is rich and pf; moreover, it is more certain to do it by q and q' 4 Peter is

destitute than by q and p'.

A more informative proposition concerning X contains more restrictive

information about X. And it means that the fuzziness which is the obstacle

in discrimination is less. Considering this fact, the previous proposition

is self-evident.

(ii) Linguistic hedges

As was pointed out in Section I, the fuzzy set F in the proposition

p 4 X is F is acting as a fuzzy constraint on X, R(A(X)).

In natural language which we use in daily life, we have many linguistic

hedges, such as very, more or less, much, lightly, etc., which act on the

+ .
fuzzy constraint, then modify the fuzzy set F to F . That is, if

p A X is F + R(A(X)) = F
(3.11)

II = F
UA(X)
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then

q 4 X is mF-* R(A(X)) = F+
+ (3.12)

II = F
A(X) * '

where m is any linguistic hedge functioning as modifier on F, and F+ is a

modification of F defined by m.

Here, we shall treat only the representative ones very and more or less,

2/
and discuss the discriminative effects about them briefly.—

According to L. A. Zadeh, in (3.12), if

m = very,

then

where

U9(u) =]ip(u)2. (3.13)
F

Likewise, if

m = more or less,

then

F+ = F1/2 (3.14)

where

y/2(u) =Vu) •
o _

A more detailed discussion of linguistic hedges may be found in [5] and
[7].



then

As an illustration, if

David is short -HHe.ght(David) =short,

David is very short -nHe.ght(David) =short2,

where these two possibility distributions are expressed in Figure 3.1.

From (3.13) and (3.14),

2 1/2F CF CF1^. (3.15)

2 1/2Moreover, if F is convex, then F and F ' are convex, too. Hence,

from Theorem 3.1, we can get the following statement.

Proposition 3.2. A proposition with the linguistic hedge very is more

informative than one without it; thus, its discriminative effect is non-

negative. Contrarily, a proposition with more or less is not more informa

tive than one without it; thus, its discriminative effect is nonpositive.

For example, the degree of discrimination between Gareth and Pavid

by the proposition "Gareth is tall" and "Pavid is short" is lower than in

the case "Gareth is very tall" and "Pavid is short." The difference between the

two degrees of discrimination above is the discriminative effect of the

proposition or information with the addition of the linguistic hedge of very.

fjii) Composition—same dimension

We assume that there are n simple propositions concerning X,

P(l)4XisFa)-nA(x) = F(:) (3.16)

P(n) ^ X is F(n> * nA(X) =F(p)' <3-17>
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where FQ) >•-*>F(n) are fuzzy subsets of a universe of discourse U.

When we combine these simple propositions into one composite proposi

tion, there are three forms, depending on the degree to which we believe

each of them:

(1) <j4XisF(1)and...andF(n)^nA(x) =F(1)n ••• nF(n) -f\ F(i)
and

7FA(X)(u) =yF (u) A '" A yF ^u) =A UF (u) (3.18)
(1) (n) i (i)

(2) qAXis F(1) or...or F *JIA(X) =F U ••• UF =(Jf(1)
1

and

TTA(x)(u) =yF (u)V--.Vy (u) =V yp (u) (3.19)
(1) (n) i (i)

(3) q4 X is F,x with the degree of belief u> and...

and F, v with the degree of belief U)
(n) & n

-»• IIA/.vv = WtF... + •*• + w F, n = T w.F,.v
A(X) 1 (1) n (n) V l d)

and

%(x)(u) =miufm,(u) +"• +Vf, ,(u) =?Vf.(u)- (3-20)
(1) (n) i i

where + denotes the arithmetic addition, and where w. E [0, 1] and /. w. = 1«
i

Let us explain briefly. In case (1), i.e., the conjunctive composition,

all of the simple propositions are believed as true, but in case (2), i.e.,

the disjunctive one , at least one of the propositions is believed as true

but which one is true is not known. In case (3), we shall call the composi

tion a weighted sum composition; the simple propositions P(i)»•••>P(n) arc

respectively believed as true with the degrees of belief of u) ,... ,(a) . In

this connection, when the p,.x is believed as true, with w. = 1, the weighted
Mi) i

sum composition becomes p,.v itself.
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3/
As a simple illustration,— if

p, v A x is a small integer, (3.21)

P/9\ A X is a near 3 integer, (3.22)

where small integer is defined by

small integer = 1/1 + 1/2 + 1/3 + 0.8/4 + 0.5/5 + 0.2/6 (3.23)

and where

near 3 integer = 0.6/1 + 0.9/2 + 1/3 + 0.9/4 + 0.6/5 + 0.2/6, (3.24)

then the conjunctive proposition, i.e., "X is a small and near 3 integer"

induces the following possibility distribution:

0.6/1 + 0.9/2 + 1/3 + 0.8/4 + 0.5/5 + 0.2/6; (3.25)

the disjunctive proposition, i.e., "X is a small or near 3 integer" induces

1/1 + 1/2 + 1/3 + 0.9/4 + 0.6/5 + 0.2/6; (3.26)

and the weighted sum proposition, such as "X is a small integer with 0.6

degree of belief and near 3 integer with 0.4 degree of belief," induces

0.84/1 + 0.96/2 + 1/3 + 0.84/4 + 0.54/5 + 0.2/6. (3.27)

Now, from (3.18), (3.19), and (3.20),

A uF (u) <[0).1JF (u) <VuF (u), ¥*u GU. (3.28)
i (i) i (i) i (i)
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That is

0F(i)cKF(i)cMF(i)- (3-29)
-*• 1 J.

Of course,

9F(i)cF(Dc Vf(d- <3-3o>

Then, from Theorem 3.1, we obtain the following statement:

Proposition 3.3. A conjunctive proposition is at least as informative

as a weighted sum proposition, and the latter is at least as informative

as the disjunctive proposition; then the magnitude of discriminative effect

decreases in the following order: the conjunctive proposition, the weighted

sum proposition, and the disjunctive proposition, provided that the possibility

distributions of these composite propositions are convex.

The difference among these composite propositions are caused by

the difference of the degrees to which we believe each of the simple

propositions which compose these composite propositions. After all, when

the degree of belief, that is, the degree of randomness is low, the composite

proposition is more informative than in the case in which the degree of

randomness is not low; and its discriminative effect becomes higher. This

is one example of the influence of randomness on discrimination.

2. Composition—different dimensions

So far, we have the premise that all possibility distributions derived

from the propositions are the fuzzy subsets of the same universe of discourse

(of the same dimension). Here we take away the premise and discuss the

method of information-processing, such as composition, more generally.
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Let p.. A X's attribute A., is F be a simple proposition concerning

the attribute A, of X.,..., and p A X's attribute A is F be a simple
1 1 ' mi = nn r

proposition concerning the attribute A of X. There are three forms of

composition of these simple propositions, such as conjunctive, disjunctive,

and weighted sum composition, also.

Here, we shall discuss the discriminative effects of composition,

covering multi-dimensions.

(i) Conjunctive composition

If p 4 X's attribute A1 is F± + IIA , . = ?1 (3.31)

p 4 X's attribute A is F ' + IIA ,„. = F , (3.32)
Mi - n n A (X) n'

n

and if also the attributes A.,...,A are noninteractive, then

q 4 Xfs attribute A is F1 and,...,and

and

X's attribute An is Fn * II^^..^U)) =Fj_ * ••• x Fn

\AAX),...,A (X))(ul'--"Un) =Vf<U1)/S •••A,JF (V =^ •«F.(ui)'
In 1 nil

(3.33)

where F ,...,F are the fuzzy subsets of U ,...,U with membership

functions y_ (u1),...,up (u ), respectively, TI/A ,„^ A /^\ is an n-ary
1 n 1 ' ' n

possibility distribution of an n-ary variable (A.(X),...,A (X)) in

r - n x ••• x U with its membership function it,. ,„^ . (y}\ an<*

1 ' ' n 4/
F x ••• x F is a cartesian product of n unary relations of F,,...,F .—

The discussion of the rationale for identifying noninteraction with set
intersection can be seen in [1, p. 31].
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It should be noted that Fx x ... xFn may be expressed equivalently as

F1X •*• xFn =Fxn ...nFn =H F. (3.34)
i

where ^,...,1^ are the cylindrical extensions^ of F ,...,F ,respectively.
For example, the proposition,

q = Paul is young and fat

convoy;: (ho pouuibilily distribution

\e(Paul), Weight(Paul)) =young *fat>

where young and fat are the fuzzy subsets of the integers from 0 to 150

and the real numbers from 0 to 400, respectively.

We can obtain the following statement concerning a noninteractive

conjunction.

Proposition 3.4. The degree of discrimination by a noninteractive

conjunctive proposition is the same as the highest degree of discrimination

attained by one of the simple propositions which compose the noninteractive

conjunctive proposition.

It follows from the theorem below:

Theorem 3.2. Let II. (y1»***>^a (y} ^e convex possibility distributions
1 n

in U ,...,U , respectively, and be noninteractive, and let IL , ,*,... ,11. ,ylx

be the same. Then,

DS(n(A1(X),...,An(X))' E(A1(X'),...,An(X'))}

= max {Ds(n n ,>),... .ds(iia ( nA ( ».
11 n n

(3.35)

5 ...
If F. is a fuzzy subset of (.)., then it; cylindrical extension in I). x ♦•• x u

l x l — 1 : J n

is a fuzzy subset of U x ••• x U defined by F. = ,. (u.)/(u.,...,n ).
i n l ., r, 1 . i j n

U,x-.-xU i
J n
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Lemma. If the possibility distributions II . .,...,11. , x in IL,...,U ,
«t\X) A \ X) 1 n
1 n

respectively, be convex; then a cartesian product of II ,.,... ,IIA , ., i.e.,
A.. \ X) A ( X)
i n

^A (X) X *" XnA (X) in U = Ul X *" X Un is convex to°-
1 n

Proof of lemma. If

\(X) =J \(U1)/U1 (3.36)

v«
TT (u )/u (3.37)

„ A n n
U n
n

where the integral denotes the union of fuzzy singleton tt (u.)/u.
U. A£ 1 1

over the universe of discourse U.. Then,
l '

\(x) *" *\(x) •/„ x...xu \(V A"" AV^'V-'V'
(3.38)

Let any two fixed points in U be u = (u ,...,u ) and u' = (u',...,u') and

let XG [0, 1]. Then the grade of IIA , . x ... x J] , . at the point
1 n

Xu + (1 - X)u' is

TT. (Xu, + (1 - X)u') A ••• A tt (Xu + (1 - X)u'). (3.39)
a. i i An n

1 n

Since IIA ,»,... ,11 are convex, we obtain
1 n

tta (Xux + (1 - X)uj) > tta (ux) A tta (u^) (3.40)

it (Xu + (1 - X)u!) > tt. (u) A ir. (u'). (3.41)
ri n n — a n An

n n n



Thus,

tt (Xu + (1 - X)u') A ... A tt (Xu + (1 - X)u')
"i -1- i An n

x n

> (IT (U ) ATT (UM) A ... A (TT (u ) A TTA (u«))
i fti x a n A n
± ± n n

= (tt (u ) A ... A tt (u )) A (tt. (u») A ••• A tta (u»))
l n-n n a i An
x n i n

Proof of Theorem 3.2. If

n A^X) *TA (u,)/u
U± Ai x x

nA (X) =f *A (un)/un
n JU n

\W) K (ul)/ul
U Ai 1 L

h (X') =f„ "k (un)/un
n JU n
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(3.42)

Q.E.U.

(3.43)

(3.44)

(3.43')

(3.44')

Since (3.43),...,(3.44) are noninteractive, as are (3.43'),...,(3.44'),

we obtain

II(A1(X),...,Ati(X)) " nAn(X)
In 1

x n An(X)

tt (u ) A-- Aw (un)/(ur...,un),
Unx«..xU 1 n

1 n

E(A1(X' ),...,An(X'))~ ^(X') x n
A (X')

n

(3.45)

(3.45')

ir; (u ) A ...Airi (un)/(Ul,...,un).
U x•••xu 1 n

1 n



Now, the maximal grade of II , . ^11 . M,i.e., FL n , is
Axw A^x J V(X)'V(X')

lw" 1

(3.46)ji n = Sup [7rA (ui} A7Ta (U1)LV(X)'V(X') U, Al Al

In the same way,
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\ m-*» fvM =SnP ^ ("») A** (Un)]- (3-U6,>A (X) A (X') U n n
n n n

And the maximal grade of n( (x) (x)) °"(A^X'),... ,An(X«)) is

h nll(A1(X) ,... ,An(X))'il(A1(X'),... ,An(X'))

Sup [(TT. (Ul) A ... A 7T. (u )) A (TT' (u) A ... A TT» (u ))]
Ux...xu Al -1 An n n n n n
1 n

Sup [(tt. (u.) A ir« (u.)) A ••• A (tta (u ) A irfl (u ))]
.,_...,, a, i Ani An An
U,x...xu 1 1 n n

1 n

= Sup {...{Sup [(TT. (un) A TT' (U.)) A ... A (IT (u ) A TT' (u ))]}...}
Ur U Al 1 Al 1 n n n n

1 n

= M A-..AMn n . (3.47)
V(X)'JIA_(X') A(X),llk(X')
11 n n

Furthermore, since (3.43),...,(3.44) and (3.43'),...,(3.44') are convex,-

from the lemma, n(^(x) >̂_^x)) and n(Ai<x.)f.. .^(x-)) are convex to°'

Thus, from Theorem 2.1,



Ds(n(AX(X) ,.. .,An(X)) jIT(A1(X' ),... ,An(X') )}

= 1-^
(A (X),...,ATi(X))'n(A1(X')"*"A (X'))

i n 1 n
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=1 ~ % n a ... A M )
1IA1(X)'liAn(X') ilA (X),JlA (X')
il n n

=max {dsui.ii ),...,dsuia (x),nA (xl))}. q.e.d.
11 n n

As a simple illustration, if U.. = U« = the space of integers,

HA (X) = °-4/"1 + 1/0 + O*6/1* (3.48)

nA (X) = °-2/-1 + 1/0 + °'2/1> (3,49)

"a (X') =°*6/° +Ul +°,5/2j (3.48')

"a (X') =°*3/0 +1/l + °*H/2' ' (3.49')

and if also, IL /„<. and IIA /„v are noninteractive, as are IIA ^^ and

nA2(X')' then'

n(A (x) A(x)) =0.2/(-l,-l) +0.4/(-l,0) +0.2/(-l,l) +0.2/(0,-1)
+ 1/(0,0) + 0.2/(0,1) + 0.2/(1,-1) + 0.6/(1,0) + 0.2/(1,1) (3.50)

n(A (xl) A(xf)) =0.3/(0,0) + 0.6/(0,1) +0.4/(0,2) +0.3/(1,0) +1/(1,1)
+ 0.4/(1,2) + 0.3/(2,0) + 0.5/(2,1) + 0.4/(2,2). (3.50')

Hence,



FL n = Sup [1 A 0.6, 0.6 A 1] = 0.6, (3.51)
JlA1(X)'JIA1(X')

FL n = Sup [1 A 0.3, 0.2 A 1] = 0.3, (3.51')
UA2(X)'ilA2(X»)

Mjj n = Sup [1 A 0.3, 0.2 A 0.6,
(A1(X),A2(X))» (A1(X'),A2(X1)) Q6 AQ3^ Q 2A ^ = Q3

(3.52)

From the premise of convexity,

DS(nA1(X)'\(X')) =1-0-6 =0.4, (3.53)

DS(IIA2(X)'IIA2(X')) =1-0.3 =0.7, (3.53')

DS(ILA ,„x A /unX, ,„,, A ,„t^) = 1 - 0.3 = 0.7. (3.54)C(A1(X),A2(X))'n(A1(X'),A2(X'))) =1-°'

Proposition 3.4 may be explained in the following way.

For example, assume that we have the following propositions concerning

Paul and Jeff:

p1 A Paul is young, (3.55)

p2 4 Paul is fat, (3.56)

p' A Jeff is more or less young, (3.55')

p' A Jeff is very thin, (3.56')

If the attributes age and fatness are noninteractive, then it is

sufficient to discriminate between them by the propositions including the

information about their fatness. Then, it is not necessary to discriminate

between them by composing the following conjunctive propositions:
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q A Paul is young and fat,

q'A Jeff is more or less young and very thin.

But when the attributes A..,...,A are not noninteractive, obviously

from the process of the proof of Theorem 3.2, we cannot obtain a simple

and generalized statement concerning the discriminative effect of a

conjunctive composition. But when the attributes A.. , ,A have some

interactive relation, say, the relation in which increases in the grades

of the possibilities in some attributes, e.g., A.'s can be compensated for

by decreases in the grades of the possibilities in the other attributes,

e.g., A.'s—such as the relation between looks and voice—the possibility

distribution II,. , . rv\\ derived from a compensatory conjunctive
vA-\X),. ..,A VX) )

proposition,

6 /
q 4 X's attribute A., is F.. and*.. .and* attribute A is F —
^ - 11 n n

may be

TI(A1(X),...,An(X)) "Fl Fn>

\A1(X),...,An(X))(V""V =̂ V \iU*U (3.57)

where • denotes arithmetic multiplication. In this case, we can obtain

the following statement which is somewhat different from Proposition 3.4.

Proposition 3.5. The degree of discrimination by a compensate conjunc

tive proposition is at least as high as the highest degree of discrimination

attained by one of the simple propositions, which compose the composite

proposition, provided that the possibility distribution derived from the

The conjunction and*denotes any interactive conjunction, to differentiate
it from the noninteractive conjunction and.
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compensate conjunctive proposition is convex.

Proof. Let the possibility distributions derived from the simple

propositions concerning the attributes A ,...,A of objects X and X' be

(3.43),...,(3.44) and (3.43'),...,(3.44'), respectively. From (3.57),

the possibility distributions derived from the compensate conjunctive

propositions concerning X and X* are, respectively,

n(A,(X),...,A„(X)) =ITA.(X) nA(X)
1 n 1 n (3.58)

„ V(ui] V^V'-V'
U x...xu 1 n
1 n

II(A1(X'),...,Ari(X')) =nA.(X') nA (X»)
1 n 1 n (3.58')

TT' (U.) TT' (U )/(u, ,...,U )
Ux...xu \ 1 An n 1
1 n

The maximal grades of IIA ,^ n IIA (X')'***,nA (X) n ^A (X') are
11 n n

(3.46),...,(3.46'), respectively. And the maximal grade of

n(A1(X),...,An(X)) nTI(A1(X'),...,An(X')) is

Mn nJl(A1(X) ,... ,An(X)) ']i(A1(X'),... ,An(X' ))

Sup [(TT. (un) TT. (u )) A (TT! (u.) tt! (u ))]
_„ A, 1 An A, ± An

U x-.-xu 1 n 1
1 n

= Sup {...{Sup [(TT. (U,) TT. (U )) A (TT' (U.) TT' (u ))]}...}
.. .. A, 1 An A, 1 An
Un U 1

1 n

(3.59)
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Since tta (u2),tt^ (u2),...,tta (un),TT^ (u ) G[0, 1], we obtain
2 2 n n

Sup {...{Sup [(tt (u ) tt (u )) A (tt' (u.) tt! (u ))]}...}
ri n ft-, J- A n A 1 An
u2 un J- n 1 n

<irA (ux) ATT^ (Ul), YUl GU. (3.60)

Hence,

% TT ~ % n (3.61)
n(A1(X),...,An(X))'Jl(A1(X'),...,An(X')) V^xr^XM

Likewise,

Mn <M (3.61')
U(A1(X) ,... ,An(X) )'ll(A1(X' ),... ,An(X» )) UAn(X) , An(X')

Moreover, if Jl(^(x) ^̂ ^(x)) a^ E^.j ^(xl)) are convex, then,

from Theorem 2.1,

DS(II(A1(X),...,An(X))'II(A1(X'),...,An(X'))}

^ DS(nA1(X)'nA1(X'))---DS(TIA (X)'nA (X'))- (3'62)
11 n n

Q. Fi. D.

Let us use the example described above and the four possibility

distributions be (3.48),...,(3.49'). The possibility distributions derived

from the compensate conjunctive propositions concerning X and X' are,

respectively,
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R(A (X) A (X)) =O-08^-1'!) + 0.4/(-l,0) + 0.08/(-l,l) + 0.2/(0,-1)

+ 1/(0,0) + 0.2/(0,1) + 0.12/(1,-1) + 0.6/(1,0) + 0.12/(1,1),

(3.63)

n(A (xt) A (xt)) =0.18/(0,0) + 0.6/(0,1) +0.24/(0,2) + 0.3/(1,0)

+ 1/(1,1) + 0.4/(1,2) + 0.15/(2,0) + 0.5/(2,1) + 0.2/(2,2).

(3.63')

Thus,

\ nli(A1(X),A2(X))9U(A1(X'),A2(X'))

= Sup [1 A 0.18, 0.2 A 0.6, 0.6 A 0.3, 0.12 A 1]

= 0.3 (3.64)

From (3.51) and (3.51'), JL n and FL n are 0.6 and 0.3,
liA1(X)'JlA1(X') UA2(X)jllA2(X«)

respectively. In this case, since n(^(x) ^(x)) and n^^.j^^.jj
convex, from Theorem 2.1,

DS(n(A1(X),A2(X))'n(A1(X*)'VX,))) =''°"3 =°'7' (3'65)

Of course, from (3.53) and (3.53'),

DS(\(X)'IIA1(X')) =°A'

DS(IIA2(X)'IIA2(X-)) =°-7-

Finally, when we consider the implication of Proposition 3.4, after

getting Proposition 3.5, there is an interesting analogy between that and

are
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a basic statement of probability theory. That is, Proposition 3.4 implies

that in discrimination, if the attributes A1 and A_ are noninteractive,

then the discrimination by the proposition containing the information

of attribute with high discriminability is sufficient and the other proposi

tion about another attribute becomes useless. It is analogous to that in

probability theory, if the events A., and A. are independent, the information

that event. A has occurred does not change the estimate of the probability

that A„ will occur, then the information is worthless, although there is a

difference in which the former is related to fuzziness and the latter to

randomness.

(ii) Disjunctive composition

Disjunction is dual of conjunction. That is, if simple propositions

are (3.31),...,(3.32) and the attributes A19...,A be noninteractive, then

q A x's attribute A is F, or,...,or

attribute Aq is Fn -H( __̂(x)) =̂ U- UF„ =U F±,
1

where U denotes union and

*CA1<x>....,yx»<V—V =VV V'" V\(Un) =YVUi>'
(3.67)

We can obtain the following statement concerning a noninteractive dis

junction.

Proposition 3.6. The degree of discrimination by a noninteractive

disjunctive proposition is at most as high as the lowest degree of dis

crimination attained by one of the simple propositions, which compose the
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disjunctive] proposition, provided that the possibility distribution derived

from the ncjninteractive disjunctive proposition is convex.

Proof. Let the possibility distributions derived from the simple

propositions concerning the attributes A1, ,A of objects X and X' be

(3.43),...,(3.44) and (3.43*),...,(3.44'), respectively. From (3.67),

the possibility distribution derived from the noninteractive disjunctive

propositions concerning X and X' are, respectively,

n(A.(X),...,A(X)) =\(X) U '*' UHA (X)
In 1 n

1 n (3.68)

n(A1(X,),...,An(X')) =\(X') U"•" UftAn(X')

(3.68')

Now the maximal grades of II ,„•> f) II. ,f*,...,IL , * H II. ,tv are
11 n n

given by (3.46),...,(3.46'), respectively. And the maximal grade of

II(A1(X),...,An(X)) OII(A1(X'),...,An(X')) is

^n nU(AX(X) ,... ,An( X))'Ji(Ax(X'),... ,An(X'))

Sup [(tt. (un) V •
Al 1U, x•••xu

1 n

V tta (un)) A (tt^ (ux) V
n 1

Vw' (un))]
n

Sup {...{Sup [(tt, (u,) V ••• Vtt. (u )) A (it! (u.) V •Ax 1 An n Ax 1
1 n

n

(3.69)
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Since

Sup {...{Sup [(tt (u ) V ••. V tt. (u )) A (tt! (u) V ••• V tt ' (u ))]}...}
U2 Un Al ! An n Ai 1 An n

>TTA (Ul) ATT^ (Ul), ¥~u1 e Vv (3.70)

we can obtain

Mn n >FL (3.71)
il(A1(X) ,...,An(X))'"(A^X') ,. .. ,An(X')) U(A1(X)'V^X')

Likewise,

^n n =\ n ' (3*71,)il(A1(X) ,... ,An(X))'U(A1(X'),... ,An(X» )) llAn(X) ,JIAn(X')

Moreover, if n^^ _̂ ^(x)) and n^.j ^(xl)) are convex, then,

from Theorem 2.1,

DS(II(A1(X),...,An(X))'Il(A1(X'),...,An(X'))

<Ds(nAi(x),nAi(xl)),...,Ds(nA^(x),nAn(xf)). (3.72)

Q.E.D.

Using the example described above, let the four possibility distribu

tions be (3.48),...,(3.49'). The possibility distributions derived from

the noninteractive disjunctive propositions concerning X and X' are, respectively,
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n(A (X) A (X)) = °-4/(-l>l) + l/(-1.0) •+ 0.4/(-l,l) + 1/(0,-1) + 1/(0,0)

+ 1/(0,1) + 0.6/(1,-1) + 1/(1,0) + 0.6/(1,1), (3.73)

"(A (X') A (X')) = °-6/(0'°> + 1/(0.D + 0.6/(0,2) + 1/(1,0) + 1/(1,1)

+ 1/(1,2) + 0.5/(2,0) + 1/(2,1) + 0.5/(2,2). (3.73')

Hence,

«

= Sup [1 A 0.6, 1 A 1, 1 A 1, 0.6 A i]
^I(A1(X),A2(X))'II(A1(X'),A2(X»))

From (3.51) and (3.51'),

and

V ^.n, =0'6lA1(X)5ilA2(X')

\ nV(X)'V(X')
= 0.3.

2W/ 2

= 1.

In this case, since H^^^^) and H^,^^)} are convex, from
Theorem 2.1,

DS(II(A1(X),A2(X))'n(A1(X'),A2(X')) =1 - 1 =0

Of course,

BS(\«y\(x<)) =0A
and

DS(IIA2(X)'nA2(X')) =°-7
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(iii) Weighted sum composition

While we are treating the propositions concerning the attributes of

different dimensions, we can also make an interpretation about the weighted

sum composition which is different from the one made in l(iii).

Although, as shown in l(iii), we can interpret a nonnegative number

U). as the magnitude to which we believe the i-th proposition, it is also
»

possible to interpret U). as the magnitude of contribution made by the

attribute A. in discrimination.

In either interpretation, if the simple propositions are (3.31),...,(3.32),

then the weighted sum composite proposition becomes

q A X's attribute A is F. with the weight of U).. and,... ,and X's attribute

A is F with the weight of U)
n n to n

(An(X),...,A (X)) 11 n n L. i i'
In i

\kA70,...,A (X))(ul'"-'un) ••ftl'i' + ••• +<Vf (un)
1 n 1 n

=IVF(ui)s • i3'W
i i

where + denotes arithmetic addition, and where U). G [0, 1] and ) 0). = 1.
i

For example, if the four possibility distributions are (3.48),...,(3.49*)

and u), = 0.6, (a>2 = 0.4, then the possibility distributions of the weighted

sum composite proposition are, respectively,

n(A (X) A (X)) =0-32/(-l»l> + 0.64/(-l,0) + 0.68/(-l,l) + 0.68/(0,-1)

+1/(0,0) + 0.68/(0,1) + 0.44/(1,-1) + 0.76/(0,1) + 0.44/(1,1),

(3.75)

n(A (X') A (X')) =0-48/(0'0) + 0.76/(0,1) +0.52/(0,2) + 0.72/(1,0)
+ 1/(1,1) + 0.70/(1,2) + 0.42/(2,0) + 0.7/(2,1) + 0.46/(2,2).

(3.75')
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Hence,

"(A1(X),A2(X)),ll(A1(X,),A2(X'))
t

- Sup [1 A 0.48, 0.68 A 0.76, 0.76 A 0.72, 0.44 A 1] (3.76)

=0.72. x

In this case, since \k^ %k^ ^ "(A^X') ,A2(X')) are convex' from
Theorem 2.1,

DS(II(A1(X),A2(X))'1I(A1(X'),A2(X'))) =X- °-72 =°-28- (3"77>

From (3.33), (3.67), and (3.74), we can obtain a statement analogous

to the one in l(iii), as below. That is,

PlFi CI u)iFi C U F± (3.78)
i i i

and

Of:L CF. CU F±. (3.79)
i i

Hence, even where these three compositions are made from the propositions

concerning the different attributes of different dimensions, we see the

same relation as obtained in l(iii), where we treated the composi

tions made from the propositions concerning same attributes of same dimensions

This means that the conjunctive propositions are more informative than the

weighted sum propositions, and the latter are more informative than the

disjunctive propositions. Namely, the magnitude of discriminative effect

decreases in the following order: conjunctive propositions, the weighted

sum propositions, and disjunctive propositions. Although the range of
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dimensions treated here are different from the range used in l(iii),

we can recognize the influence of randomness on the discrimination.

(iv) Conditional composition

When n = 2, meaning the number of different attributes are limited to

two, we can devise another kind of composition, i.e., conditional composition,

That is, if n = 2 in (3.31),...,(3.32) and also if attributes A and A are

noninteractive, then

q 4 If X's attribute A± is F then X's attribute A is F

"n(Al(X),A2(X)) =Fi*?2> (3'80)

where F' is the complement of F., and e denotes the bounded sum, of which 1

is the maximum, then

1r(A1(X),A2(X))(ui'U2) =XA(1 ""p^V +WF2(U2»' (3-81)

7/
in which + and - denote the arithmetic addition and subtraction.—

As it may easily be guessed, from the processes of the proofs of

Theorem 3.2 and Proposition 3.5, we cannot obtain a simple and generalized

statement concerning the discriminative effect of a noninteractive condi

tional composition.

3. Unconditional dimension reduction

The proposition "Roger is big" expresses two attributes, height and

weight. But considering the economics of information or the ability to

process information, we often reduce that proposition into a proposition

which expresses only one attribute, say, "Roger is tall." Now we shall

7
In the form defined by (3.80), it is consistent with the definition of

implication in L , logic.



discuss the discriminative effect of this type of dimension reduction of

a proposition.

Let us formulate a problem. The proposition p 4 x is F contains

statements about n attributes A1,...9A with A^X) taking values in IL,

i = 1,...,n, i.e.,
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Xis F"* IT(A1(X),...,An(X)) "Fj

^(A1(X),...,An(X))(ur--"Un) =WF(ul V' (3.82)

When we reduce the proposition above to another proposition which includes

the information about k (< n) attributes A. ,...,A. of X, say,
11 \

P/t x A X's attributes A. ,...,A. are F, .,(k) = ix ik (k)

through some kind of procedure without using any other propositions. What

is the discriminative effect of this unconditional dimension reduction of

the proposition? That is the problem we are going to discuss here.

The concept of the unconditional dimension reduction has a close relation

to the concept of the marginal possibility distribution, which in turn is

analogous to the concept of the marginal probability distribution.

We shall explain it in detail. Let X = (A^X),. .. ,An(X)) be an n-ary

fuzzy variable taking values in U = IL x •••x un» and let 11^

(= n,A /vs , **) be a possibility distribution associated with X
(.A(X),...,A \ X) )

(= (A1(X),...,An(X)), with iTx(ul9...,un) (=TTx(u),u4 (u^...^)) denoting

the possibility distribution function of II .

Let k A (i_,...,i, ) be a subsequence of the index sequence (l,...,n)
— 1 k

and let X,, * be the k-ary fuzzy variable Xn » A (A. (X),...,A. (X)). The(k) J KK) - i1 ik

marginal possibility distribution II„ (= II,A ^ ^^ A (x))^ is a
(k) i, i,

1 k
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possibility distribution associated with X,, . which is induced by II as

the projection (or shadow) of II on U, » A U. x ••• x n. . Thus,
x kk) - i± ik

n*«c>" n<*± <" *i <«> - S~3"-' (3'83)u; xl k u(k)

which implies that the possibility distribution function of X,^ is related

to that of X by

ttx (u(k)) =Sup [TTx(u)], (3.84)
(k) u(kl)

where u(k) A (i^ ,...,1^ ), k' 4 (J1»...»Jk,) is asubsequence of (l,...,n)
1 K

which is complementary to k (e.g., if n = 5 and k = (i1>i2^ = ^2'4^' tnen

k1 = Cj1,j2,j3) =(1,3,5)), u(]<t) 4 (u.,...,u. )and Sup denotes the
1 k' u(k')

supremum u. ,...,u. over u,, M = (u. ,...,u. ) G U. x ••. x u. .
^1 \ (k } ^1 3k' 31 3k'

Then, we can consider the possibility distribution which will be derived

from the unconditionally reduced k (< n)-ary proposition which is induced

by the n-ary original proposition as a k-ary marginal possibilith distribu-

tiOIlj Vu =V- (X),...,A. (X))'
w xl k

Here we can obtain the following statement concerning an unconditional

dimension reduction.

Proposition 3.6. By using the unconditional dimension reduction,

the degree of discrimination of the reduced proposition is at most as high

as the degree of discrimination by the original proposition. That is, the

discriminative effect of unconditional dimension reduction is nonpositive.

Both statements are true provided that the possibility distribution derived

from the reduced proposition is convex.
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Proof. Let the II and II , be the convex possibility distributions in
x x'

U = U x — x u concerning X and X', respectively, and tt (u) and tt' (u)

be the possibility distributions of II and II f, respectively. And let

u = ^u(k)'u(k')^ and let U' U(k)' and U(k') be any point in U'
U/, ^ = U. x ... x u. and U,, ,v = U. x ... x u. , respectively. From(k) ^ ik (k») DjL 3k,
(3.84), the possibility distribution functions of the marginal possibility

distributions on U,,v induced by II and II , are, respectively,
\K) x x

Vv,(u(k)) =Sup Clrx(u)](k) u(kt)

= Sup [IT (u„,,,u,. ,J] (3.8b)
V"(k)'"(k')

U(k')

Kiv ,(u(k)> =Sup Ciri'(u)](k) u(kt)

= Sup h:,(uM,„unrlv)]. (3.85')
'x'K"(k)'"(k')

U(k>)

Now, the maximal grade of II fl II, is

"n .n , =sup [irx(u) a *.,(„)]
x x' u

= Sup Cirx(u(k),u(kl)) *^u(k)'u(k<)U
u

=Sup {Sup CVu(k)'u(k')) Alrx'(u(k)'u(k'))]}- (3-8G)
U(k) U(k')

On the other hand, the maximal grade of II O II , is
X(k) X(k)

h ,n =Sup {Sup ClTx(u(k)'u(k'))] ASup C7Tx'(u(k)'u(k'))1}
x(k)' X(k) U(k) u(k') U(k')

(3.87)



Since,

.SUP tTTx(u(k),U(kf))ATTxt(u(k),U(kt))l
U,, , V
(k')
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<Sup [TTx(u(k),u(kl))]A Sup nTT't(u(k),u(kt))], V-u(k) EU(ky
l(k')

we obtain

Vn,^ \ ,n ,
x x x(k) x (k)

l(k')

Moreover, if II and II , are convex, then, from Theorem 2.1,
X(k) x(k)

ds(ii ,n t) > Ds(n ,n , ).
x x x(k) x(k)

As a simple illustration, let

U = U = Integers and II and II t be expressed in the following

tables, respectively,

n
X

AX(X) A2(X) TT

-1 0 0.4

0 -1 0.3

0 0 1

0 1 0.4

1 0 0.6

Table 3.1: II

x'
A1(X') A2(X») TT

0 1 0.6

1 0 0.2

1 1 1

1 2 0.6

2 1 0.5

Table 3.1': II ,
x'

(3.88)

Q.E.D.
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From Tables 3.1 and 3.1', the marginal possibility distributions on U

concerning X and X' are, respectively,

\ =\(x) =P^* nx =lu s»* (*<Vu2))/ui
1 2

= 0.4/-1 + Sup [0.3, 1, 0.4]/0 + 0.6/1

= 0.4/-1 + 1/0 + 0.6/1, (3.89)

nX' = HA (X') = °*6/° + in + °*5/2- (3.89')

Hence,

Mn n Sup [0.4 A 0.6, 0.6 A 0.2]
x' x'

= 0.4.

On the otherhand,

JL = Sup [1 A 0.6, 0.6 A 1]
\(x)'\(x.) (39i)

= 0.6.

Thus,

(3.90)

DS(nx,nx.) = 1 - 0.4 = 0.6, (3.92)

and, since IIA ,„^ and IIA ,„,<. are convex,

DS(\(X)'nA1(X')) =1-0-6 =0.4. (3.93)

The meaning and the reasoning of Proposition 3.6 is clear. As a simple

illustration, in the case of discriminating between Roger and Jack, it is

better to do so by propositions such as "Roger is big" and "Jack is not big"

than by the propositions which express one attribute, height, only, such as,
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"Roger is tall" and "Jack is more or less tall." The reason why this is

so is that such unconditional, dimensionally reduced propositions neglect

some parts of information which were contained in the original proposition.

Using the concept of the marginal possibility distribution, we can

define the concept of noninteractivity of fuzzy variables, which is analogous

to the concept of independence of random variables.

Definition 3.2. The fuzzy variables X,, v = (X. ,...,X. ) and
IkJ ix ik

^/•vm = (X. ,...,X. ) are noninteractive if and only if the possibilityu ; :x Dk,

distribution associated with X = (X..,...,X ) is the cartesian product of

the marginal possibility distributions associated with X,,x and X, ,., i.e.,

n = n x n , (3.94)
X X(k) x(k')

where

II = Proj II and II = Proj II .
x(k) o(k) x x(k-) u(k0 x

In particular, the variables X ,...,X are noninteractive if and only if

It = n x •.. x n , (3.95)
XX, X

1 n

where

n = Proj n , i = l,...,n.
xi U. x

1

Therefore, if the attributes A..,...,A implied are noninteractive

and Proj II and Proj II t, i = 1, ,n, are convex, then, from Theorem 3.2
U. X U. X
1 l

and (3.95),



DS(n ,n ) = max (DS(Proj II , Proj II ,),... ,DS(Proj II , Proj *II t)).
x u1xu1x uxux

11 n n
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(3.96)

Thus, we arrive at the following statement

Proposition 3.7. If the attributes A1,...,A implied are noninteractive,

then the degree of discrimination by the proposition containing the information

about all the attributes is the same as the maximal grade of discrimination

attained by one of the n unconditionally reduced unary propositions derived

from the original proposition, provided that the possibility distributions

derived from the reduced propositions are convex.

When we consider the implications of Propositions 3.4, 3.5, 3.6, and

3.7 together, we can draw the following conclusion, as shown in Figure 3.2.

That is, there is a symmetrical relation between the nonnegative discriminative

effect of a conjunctive proposition and the nonpositive discriminative effect

of a nonconditional, dimensionally reduced proposition on the axis where

the attributes A.,...,A are noninteractive.
1 ' n

Nonpositive Nonnegative

are interactive

(Proposition 3.6)

Unconditional

Dimension

Reduction

Attributes A,,... ,A
1' ' n

are noninteractive

(Propositions
3.4 and 3.7)

Figure 3.2

are interactive

(Proposition 3.5)

Conjunctive

Composition



4. Conditional dimension reduction

We have discussed the discriminative effect of unconditional dimension

reduction in 3. Here, we shall discuss a problem in which we

can use some information in dimension reduction. We call this kind of

reduction conditional dimension reduction.

More specifically, let the proposition p 4 X is F express the information

concerning n attributes A.,...,A of X, taking values in U ,...,U , respec

tively, i.e.,

XisF*,Ix =n(A1(X),...,An(X)) =F'
(3.82)

ir(A1(x),...,An(x))(v---'un) =y v-'V-

And let another proposition p,, M A X's attributes A. ,...,A. are F ,

express the information concerning attributes A. ,...,A. (k' < n) of X,
Dl Dk'

taking values in U. ,...,U. , respectively, i.e.,
Dl 3k'

X's attributes A.^,...,^^ are Fk, , ^ =H(^ (x),...,Aj ^x)) =̂ .

*(A. (X),...,A. (X))(V"V =VV''*'V* (3'97)

When we use the proposition P/-vm to reduce the original proposition p

and obtain a reduced proposition P/k\» what is the discriminative effect of

this conditional dimension reduction? That is the problem we discuss here.

(i) Comparison of conditional and unconditional dimension reduction

A difference between conditional and unconditional dimension reduction

is the availability of the possibility distribution of a conditional proposition,

i.e.,



"(A. (X),...,A. (X)) =Fk'
]1 ]k

Upon reconsidering the matter, the possibility distribution derived

from an unconditional, dimensionally reduced proposition is

H(A. (X),...,A. (X)) 4 Pr°J V (3.83)
Xl *k (k)

Therefore, it is consistent that we consider the possibility distribution

derived from a conditional, dimensionally reduced proposition, as

E(A. (X),...,A. <X» A?°* {\nf^' (3-98)
Xl \ U(k)

Equivalently, the right-hand member of (3.98) may be regarded as the

composition of II and F, ,, i.e.,
X K

Proj (Ilxn Fk) =hx o Fk,. (3.99)
U(k)

Now,

nxnFk'ClIx;

therefore,

Proj (n PI F, ,) C Proj n . (3.100)
x k x

U(k) U(k)

Hence, if Proj (II O F, ,) and Proj II are convex, then, from Theorem 3.1,
x k x

U(k) U(n)

we can obtain the following statement:

Proposition 3.8. A conditional, dimensionally reduced proposition is

at least as informative as an unconditional, dimensionally reduced proposition;
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the discriminative effect of the former is at least as high as the one of

the latter, provided that the possibility distributions derived from the

reduced propositions are convex.

As a simple illustration, let the possibility distributions of X and X'

be Table 3.1 and 3.1', respectively. Moreover, let the possibility distribu

tions of the conditional propositions concerning the attribute A of X and

X' be, respectively,

nA (X) = 0*2/"1 + 1/0 + O-6/1

nA (X') = °*1/0 + Vl + °*'4/2

(3.101)

(3.101»)

From (3.101) and (3.101'), we can obtain the cylindrical extensions of

nA2(X) andIIA2(X') 3S follows:
\A1(X)

A2(xT\ -1 0 .1

-1 0.2 0.2 0.2

0 1 1 1

1 0.6 . 0.6 0.6

Table 3.2: II. (X)
A2

\A^(X' ) *

A2(X^ 0 1 2

0 0.1 0.1 0.1

1 1 1 1

2 0.4 0.4 0.4

Table 3.2': H. (X)
A2

where the value of each element of these matrices expresses the grade of

possibility of each combination of the variables. Tables 3.1 and 3.1' are

Transformed into the following matrices:



\ AX(X)

A2(xK -1 0 1

-1 0 0.3 0

0 0.4 1 0.6

1 0 0.4 0

Table 3.3: IT
X

X/Ux' )

A2(X'Y 0 1 2

0 0 0.2 0

1 0.6 1 0.5

2 0 0.6 0

Table 3.3»: JJvf
A
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II.. nl. ,yv and IL., nil ,y,v are obtained from the combinations of Tables

3.2 and 3.3 and Tables 3.2' and 3.3', respectively, as follows:

\A1(X)

A2(xr\ -1 0 1

-1 0 0.2 0

0 0.4 1 0.6

1 0 0.4 0

Table 3.4: II n H (X)
A Pin

From Tables 3.4 and 3.4',

Table 3.4': IL,, O It (X1)
A A-

Proj (nY nn. (x)) = 0.4/1 + 1/0 + 0.6/1,
U X A2

Proj (nYf nl (X')) = 0.6/0 + 1/1 + 0.5/2
U± X A2

(3.102)

(3.103)

Proposition 3.8 stands to reason. Because a conditional, dimensionally

reduced proposition has used more information than an unconditional,

dimensionally reduced proposition, t:hen the former becomes more informative

and more discriminative.
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(ii) Comparison of conditional dimension reductions

From (3.98), which is the definition-equation for the possibility

distribution of the conditional, dimensionally reduced proposition, we

can obtain the following statement:

Proposition 3.9. In conditional dimension reduction, if a conditional

proposition <!/.,•> is at least as informative as the other conditional

proposition p,, f», then the conditional, dimensionally reduced proposition

using q/k<\ is at least as informative as the other one using P/ki\i thus,

the discriminative effect of the former is at least as high as the one of

the latter, provided that these possibility distributions are convex.

Proof. Let F, , and G, , be the possibility distributions derived from

the conditional propositions P/Vt\ and Pt/i-i'v* respectively. Since

(<*(k»))== (p(k'))

we obtain

V C Fk'*

From (3.98),

Proj (nx fl Gk,) C Proj (n^!^). (3.104)

Q.U.D.

u(k) u(k)

The implication of the proposition is self-evident
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5. Qualified proposition

In daily life, we often get the propositions such as "It is more or

less true that X is a small integer" and "It is likely that X is a small

integer." In natural language, there are many qualifiers, such as more or

less and likely, which are attached to the propositions, e.g., "X is a small

integer," and act on fuzzy constraints and modify the fuzzy set F to F .

There are three types of qualifiers:

I. t, where t is a linguistic truth-value, e.g., true, very true,

more or less true, false, etc.

II. X, where X is a linguistic probability-value (or likelihood),

e.g., likely, very likely, very unlikely, etc.

III. tt, where tt is a linguistic possibility-value, e.g., possible,

quite possible, slightly possible, impossible, etc.

Here we shall discuss the discriminative effect of the truth-qualifier

8/
T, because the treatment of T provides the basis for the others, X and tt.—

In general, the proposition with the truth-qualifier t may be stated

as follows:

p* M is F is T, (3.105)

where T is a fuzzy subset of interval [0, 1] which expresses the degree

of truth. For example, true may be expressed as in Figure 3.3.

o

A more detailed discussion about qualifiers may be found in [1], [7], and [8]



0.5 0.7 0.8 *\ 1
0.9

Figure 3.3: Fuzzy set; true.

A proposition with a truth-qualifier T, p*, can be transformed into

9/
a proposition without T, q, by using the extension principle.— In this

case, the possibility distribution derived from the proposition q becomes

the composition of the binary relation in the space [0, 1] x u, u , and

the unary relation (or fuzzy subset) on [0, 1], T, i.e., if

p M is f •> nA(x) = F,

then
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p* AXis Fis t-»• nA(x) =F+, (3.106)

where F = \i o t, in which y is the inverse of the membership function

of F and o is the operation of composition.

Let g be a mapping from U to V. Thus,

v = g(u),

where u and v are generic elements of U and V, respectively

Let F be a fuzzy subset of U expressed as

F = uF(u)/u.
Ju

By the extension principle, the image of F under g is given by

g(F) =[ u(u)/g(u).
JU

Cf. Bellman, R. E., and L. A. Zadeh [1].
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For example, let the proposition with a truth-qualifier be p* A It

is very true that X is a small integer, the fuzzy subset of small integer

be (3.23) and the truth-qualifier true, which is a fuzzy set too, be

defined by

true = 0.2/0.7 + 0.5/0.8 + 0.8/0.9 + 1/1.

From (3.13),

very true = 0.04/0.7 + 0.25/0.8 + 0.6/0.9 + 1/1.

On the other hand, we can interpret u ,, . _ as a binary relation in
r small integer J

the space of [0, 1] x Integer, and express it as follows:

small integer
\Inte-

\ger
[0,1]N 1 2 3 4 5 6

0.2 0 0 0 0 0 1

0.5 0 0 0 0 l' 0

0.8 0 0 0 1 0 0

1 1 1 1 0 0 0

-1

small integer
Table 3.5: u

Then, using Kaufmann's expression,— we can calculate \i .. . ^ °
' to f 9 "small integer

very true as follows:

10
Cf. Kaufmann, A. [4]



0.7 0.8 0.1 1

0.04 0.25 0.6 1

tfi.
•

1 2 3 4 5 6

0.2 0 0 0 0 0 1

o 0.5 0 0 0 0 1 0

0.8 0 0 0 1 0 0

1 1 1 1 0 0 0
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(0.25 A 0) V (1 A 1) (0.25 A 0) V (1 A 1) (0.25 A 0) V (1 Al)

(0.25 A 1) V (1 A 0) (0.25 A 0) V (1 A 0)

12 3 5 6

1 1 1 0.25 0 0

(0.25 A 0) V (1 A 0)

(3.107)

Roughly speaking, this result implies that the proposition with the

truth-qualifier, "It is very true that X is a small integer" is transformed

into the proposition without the qualifier, "X is a very, very, and very

small integer."

Now, if two propositions with the truth-qualifiers are

p* 4 X is F is t

and

q* A X is F is t*,

and, if also,

T* C T,

then, from (3.99) and (3.106),

-1 * ^ -1PF o T" C pF o x.

(3.108)

(3.109)
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Thus we can obtain the following statement:

Proposition 3.10. In two propositions with truth-qualifiers, T and T*,

if t* C t, then the proposition with t* is at least as informative as the

other with t; and the magnitude of discriminability of the former with t*

is at least as large as the magnitude of discriminability of the latter

with t, provided that the possibility distributions derived from the

propositions are convex.

The implication of the proposition is self-evident. For example, in

the case of discrimination between Roger and Jack, it is clearer to

discriminate between them by the propositions, "It is very true that Roger

is big" and "It is very true that Jack is not big" than by the following,

"It is more or less true that Roger is big" and "It is true that Jack is

not big."
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CONCLUDING REMARKS

In decision-making, discrimination of fuzzy elements is as important

as dealing with randomness. The importance of the former will be understood

when one realizes that identification, e.g., pattern-recognition, diagnosis,

etc., can be interpreted as a special kind of discrimination, in which we

discriminate, not between two fuzzy objects, but between a fuzzy object

and a conceptualized pattern or image.

But the study of discrimination of fuzzy elements has not yet been

fully explored owing mainly to the fact that it has been less than thirteen

years since L. A. Zadeh initiated the serious study of fuzziness in 1965.

As a step toward approaching that problem, this paper presented a

measure for discrimination of fuzzy elements, which was called discriminative

effect of information, through the concept of degree of separation. Then, .

several basic ways of information-processing are discussed from the point

of view of the discriminative effect of information.

The writer is well aware that this is a very small step into the vast

areas which are as yet unknown. I would like to express my heart-felt

gratitude to Professor L. A. Zadeh, without whose encouragement for the

development of this idea, this paper could not have been done.
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