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0 ABSTRACT

An abstract model for the study of Markovian queuing systems is

developed and used to obtain a necessary and sufficient condition for

a given set of departure processes to be independent of the state of

the system. This criterion is used to prove that in equilibrium the

outputs of a Jacksonian network are Poisson processes independent of

each other and of the state of the network. This result holds also

when different classes of customers are routed through the network with

different probabilities so Icing as at each node they are all served

at the same rate. This condition cannot be relaxed since the output

of an M/M/l queue with two classes of customers being served at

different rates is shown not to be Poisson.
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1. INTRODUCTION

The nature of the output process of a queuing system was first

studied by Burke [1] and Reich [2], They showed that in equilibrium

the output of an M/M/m queue is Poisson and, more significantly, that

the number of customers in queue (the state of the system) at any time

is independent of past departure times. This result which is known

as the output theorem holds even when the rate of the exponential server

depends upon the state of the system (see [2,3,4].)

The output theorem has some useful consequences for the study of

a network of M/M/m queues. For example, consider the simple case of the

two-node tandem network of Figure 1 in which node i is a queuing system

consisting of a queue and m exponential sources. Customers enter the

network at node 1, queue up for service and upon completion of service

immediately join the queue at node 2. By the output theorem, in

equilibrium, the departures crom node 1 which are simultaneously the

arrivals at node 2 form a Poisson process and so, again by the output

theorem, the outputs of the network form a Poisson process. Moreover,

since the departure times from node 1 are independent of the number of

customers in queue at node 1, therefore

P(krk2) =P1(k1)P2(k2) O-D

where P(k-,k„) is the steady-state joint probability that there are k

customers in queue at node i, and the P^Ck.) are the marginal probabilities

Consider next a feedforward network as in Figure 2, in which each

node i is an M/M/m. queuing system. Upon leaving node 1 a customer

joints the queue at node 2 with probability r „ or tne queue at node 3

with probability r = l-r.«, whereas upon leaving nodes 2 or 3 a
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customer immediately queues up at node 4. Once again by the output

theorem, in equilibrium, the total departures from node 1 form a Poisson

process, and so, because of the independent sampling of these departures,

the arrivals at nodes 2 and 3 are also independent Poisson processes.

It follows, by the output theorem again, that the arrivals and departures

at node 4 are Poisson. The output theorem does not imply however

that the number of customers in queue at the various nodes are independent,

i.e.,

P(k1,k2,k3,k4) = P1(k1)..P4(k4)> (1.2)

where P is the steady-state joint probability and the P. are the various

marginal probabilities.

The product formula (1.2) is a special case of Jackson's theorem

[5]. Jackson considered an arbitrary feedback network of n nodes, say,

as in Figure 3. Customers enter the system at the nodes. The external

arrival process at node i is .in independent Poisson process with rate

Y.. The jLth node is an M/M/m. queuing system in which each of the m.

servers is exponential with parameter u.. Upon completing service at

node i a customer either immediately joints the queue at j with

probability r.. or leaves the network from node i with probability

1-Z'r... Thus the total flow of customers into node i consists of the

external flow with rate y. and the flow from the nodes in the network.
l

Let X. be the average total rate of flow into i. The X. satisfy the

equations

X. = Y. + T. r .X., i = 1,2,...,n. (1.5)
i l |i j

J

The state of the network at time t is the vector k(t) = (k-(t),.. .,k (t))
1 n

where k.(t) is the queue length at node i. Suppose that (1.3) has a
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unique solution {X.} and that the stability condition X. < m.u. holds

at each i. Jackson, proved that, in equilibrium,

P(k1,k2,...) =P1(k1)P2(k2),#*Pn(kn)* (l-4)

Moreover the marginal probability P.(k ) is the same as the probability

of the queue length being k. in an M/M/m. system with Poisson arrival

of rate X. and m. exponential servers with parameter u..
11 i

Although Jackson found his conclusion to be "far from surprising"

in view of the Burke-Reich theorem, in fact it is very remarkable in

the context of a recent result of Burke [6]. Burke considers the

simplest Jacksonian network of Figure 4 consisting of a single M/M/l

queueing system with feedback. Suppose that the arrival process is

Poisson with rate y» the exponential server has parameter u and that

the stability condition - < y holds. Suppose that the network is in

equilibrium. Let E , S , F(>, D respectively denote the total number

of arrivals into the node, the total leaving the node, the total fed

back, and the total departures from the network, all in the interval

[0,t]. It is an easy consequence of the output theorem that D is

Poisson. On the other hand, Burke calculates the interarrival

distribution of E and finds it not to be exponential so that E is

not Poisson. Using a very different technique, Bremaud [7] shows that

S and F are not Poisson either. (This result can also be derived
t t

from Burke's calculation.)

The Burke-Bremaud result suggests that in a Jacksonian network

with feedback the arrivals into a node will not be Poisson. That this

is in fact the case is proved in a companion paper [8]; however care

must be taken to exclude the situations typified by the tandem queue
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of Figure 1 where the arrivals at both nodes are indeed Poisson. At

the same time the Poisson nature of D in Figure 4 suggests that the

conclusion of the output theorem might hold for all Jacksonian networks

if one were to examine only those departures which leave the network

without entering another node. This conjecture is proved here.

The remainder of the paper is organized as follows. In the next

section an abstract model of a Markovian queuing network is proposed

and a condition is derived which characterizes when a set of arrival

or departure processes is independent of the state; as a trivial

consequence of the independence it follows that such a set of processes

is Poisson in equilibrium. In section 3 it is shown that the external

departures from a Jacksonian network satisfy .his condition, so that

the output theorem conjectured above holds. In section 4 the condition

is also verified for state-dependent service rates and in section 5 for

Jacksonian networks with stsv.-ral classes of customers so long as at

each node all classes of customers are served at the same rate. In

section 5 a simple example is given to show that the assumption of

class-independent service rate cannot be relaxed.

The method of proof relies heavily on the equations describing the

conditional probabilities of the state at time t given that some arrival

and departure processes are observed over the interval [0,t]. These

equations, known as filtering formulas, are used here in the form given

by Bremaud [9,13]. Slightly different versions of the filtering formulas

have appeared previously [11,12].

2. A MODEL FOR A MARKOVIAN QUEUING NETWORK

X is a countable set, the state space. E., i£I = 1,2,... are.

non-empty subsets of X, not necessarily disjoint. For each i,
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T. : E. •> X is a given function, the state transition function. It is
11

assumed that there is a finite number n such that each x belongs to at

most n different E.. (This ensures that from x at most n different

one-step transitions are possible.) (ft.^/p) is a probability space

on which are given independent Poisson processes (N , t ^ 0) with rate

X1, i £ I; sup X = X < «> (N is a counting process, i.e., N is

the number of events which occur in [0,t].) Also given is the X-valued

random variable X0, the-initial state, and XQ is independent of the

(N ). Define the sub-o-fields

erf =0(N*,s <t),<3Tt =a(x0) vgrf v<grf v....
The state process (X ,t >_ 0) is the unique right-continuous

piecewise constant solution of the differential equation (2.1) below.

For A C x let 1(A) denote the characteristic function of A, and let

£t(A) = l(Xt € A), KtM = l(Xt = x).

dC (x) =Z U (T~^0-5 (x)]£ (E )dN*, £0(x) =1(XQ =x).
i^I

(2.1)

In (2.1) tT^x = tT^x} = (y ^ E.lT.(y) = x}. Equation (2.1) can be
l l i'i

interpreted with the help of the state transition diagram of Figure 5.

Suppose that X = y # x so that £ (x) = 0, and that at time t the process

N1 jumps, i.e., dN* = 1. Then Xfc =x, or d^Jx) =£t(x)-£t_(x) =1, if

and only if (i) y£ E. so that the jump dN* is "enabled" and (ii) T.(y) = x

so that the state transits instantaneously from y to x. (The model will

become more comprehensible in subsequent sections where particular examples

are studied.) Notice that since any x belongs to at most n of the Ei and
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since X < X, therefore the probability that the state changes once

in an interval of length dt is at most nXdt + o(dt) and the probability

that it changes more than once is o(dt).

Now fix JC I and define the counting processes

^-(Ei)dNc> iGl» Yt =2 SJ. (2.2)
0 S S * j(=j c

S is the number of transitions of type T. which occur in [0,t], while

Y counts any transition of type T., j £ J. Our aim is to derive a

condition which characterizes the independence of X and {Y ,s < t}.
r t s —

To do this we follow [9] to obtain the conditional probability distribution

of X given Y , s < t. From (2.1), (2.2) follows
t s —

dCjx) = £ [E (T^x)-^ (x)]dS* (2.3)
t i^l t- i t- t

From the independence of the N and Xfi it follows that each N is

a Poisson process with ( P,tT_)-intensity X and so S is a counting

process with (^JVJT )-intensity XXE (E ), that is, the process
ft .

Si = X1^ (E.)ds
t Jo s" x

is a (^P,Tr )-martingale.

Hence (2.3) can be rewritten as a semimartingale

E (x) = E (x) + f f (x)ds + M(x), (2.4)
t u jQ s t

where

f (x) = £ [E (TT^-E (x)lXi£ (E.)f (2.5)
S 7c? SI S SI

and M (x) is the (^,7jr )-martingale,
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M(x) = £ f [E (TT^-E (x)](dS^-XiE (E )ds) (2.6)
C id Jo S" 1 S" ssi

For any A^X and x, denote

Ct(A) - E{Et(A)|C^} =q>{Xt e k£ft},

Et(x) = Et({x}),

where, as usual, 9T»- = a(v »s 1. c) •

It is known [11,12,13] that the process

it

h ds

0 8

is a C~ysxjr )-martingale where

h = £ Aj? (E.). (2.7)
C j5 ^ ^

Moreover the process (£ (x)) is given by

ft
it(x) =CQ(x) +j fg(x)ds +Mt(x) (2.8)

where

rYft(x) =E{ft(x)|gr^> (2.9)

and (M (x)) is a (rPyTf )-martingale given by

rt
(x) = I k (x)(dY -h ds), (2.10)

t Jo S S S

t

M.

where k (x) can be easily calculated using the formulas in [9,12,13] as

k (x) = -I (x) + (hJ'1 £ Xj£ (tTSc). (2.11)t t- t j€iJ t- j

To calculate f (x) observe that ifACx, BCx, then
s

St(A)E.t(B) = l(Xt e A)l(Xt € B) = l(Xt G AO B) = Cfc(A O B) ,

so that from (2.5)
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f (x) o £ Xi[E (t/x)-^ (xOe.)]. (2.12)
s ±€l s i s i

Here we used the fact that T? x C e. by definition and x O E = {x} n e
ii i i

to simplify notation. Finally, from (2.12),

f(x) = £ Xi[| (T^x)-? (x He,)]. (2.13)
s .^ SI S 1

It will prove useful to note that P (x) = EE, (x) is just the

unconditional probability that X = x so that from (2.4), (2.5)

dP — KPjT^-PjxnE.)]. (2.14)
df (X) = 5 X~Z ifcl

»YLemma 2.1 (Independence Criterion.) X and 9JT are independent for t >^ 0

if and only if for all x and t >^ 0

£ Xj P (E.)P (x) = £ XjP (T^x). (2.15)j€j tit jGj t j

Proof The independence of X and y. is equivalent to

£t(x) = P (x) for all ::. (2.16)

To prove necessity suppose (2.16) holds. Then £ (x) must be continuous

in t and so k (x) = 0 in (2.10). From (2.11), (2.7) and (2.16),

0=-P (x) +[£ XjPt(E.)]_1 £ XjPt(TT1x)
jGj J jGj J

which is the same as (2.15).

To prove sufficiency suppose (2.15) holds. It is enough to show

that P (x) solves the equation of conditional probabilities (2.8).

Substituting %(A) = P.(A) into (2.11) and using (2.15) shows that

kt(x) =0, and so Mfc(x) =0in (2.8). Since £Q(x) =<P{XQ=x|93Tq) =P()(x)
it only remains to verify that
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is a

"Po(x) +fo
= P_(x) + f £ X1^ (TT^-P (x HE.)]ds
0 Jo i€l sis

from (2.13). But the equation above is identical to (2.14). n

Corollary 2.1 Suppose the process (X ) is in equilibrium and let

P (x) I P(x) be the steady-state distribution. Suppose the independence

condition (2.15) holds. Then (Y ) is a Poisson process with rate

£ XjP(E,).
j^J J

Proof By the equilibrium assumption and Lemma 2.1 it follows that the

process

P(x) = Pn(x) + 1 f (x)ds
t 0 "o

-f hds =Y -[£ XjP(E )]t.
U Jo S Z i£j J

( P,oT. )-martingale. By Watanabe's thoerem [14,15], (Y ) must be
t

Poisson with rate S XJP(E.). n
j 3

Note that the independence condition is required to hold only in

equilibrium. In fact in every interesting case the condition will

not hold outside of equilibrium. The next result gives a condition for

the counting processes (Sp, j £ J, introduced in (2.2) to be all

mutually independent Poisson processes. The proof is similar to that

of Lemma 2.1.

Lemma 2.2 Suppose the process (X ) is in equilibrium with steady state

distribution P (x) = P(x). Suppose that for all j in J and x in X

P(x)P(E.) = POrT3^). (2.17)

Then the S are independent Poisson processes with rate X P(E.).

Moreover X and {Slj £ J,s < t) are independent,
t s —
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Proof Let Of = V CtS ,and for ACxlet
t j€J l

Ct(A) =EUtU)fcft), 5t(x) =|t({x}).

It is known [11,12,13] that the process

si - c h* ds
1 Jo s

is a (LP,tJ?)-martingale where

hi = Xj£ (E.);
«- r— j

moreover,

•t

^t(x) =lQ(x) +f fg(x)ds +Mt(x) (2.18)

where

ft(x) =E{ft(x) %ft}

and (M (x)) is a (^P,Yj?)-martingale,

M^(x) = £ I kJ(x)(dS -hJds). (2.19)
1 j^j Jo S s S

The process (k^(x)) can be readily shown to be

kj(x) =-?t(x) +(hjr1 X^jT^x)

=-i (x) + [i _(E.)]_1 UtS). (2.20)
t c j t j

Also,

f(x) = £ Xi[E (TT^)-? (x He,)]. • (2.21)
iei 1

Now suppose (2.17) is satisfied. Then we claim that E, (x) £ P(x)

solves the conditional probability equations (2.18). Because substituting

I (x) = P(x) in (2.20), and using (2.17), implies kJ(x) = 0 and so

M (x) = 0; (2.18) then reduces to
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0=f £ Xi[P(TT1x)-P(x nE,)],
Jo i<=i x x

which, from (2.14), certainly holds in equilibrium.

Since I (x) =^{X =xf^T )=P(x) it follows that X andCf*

are independent. Furthermore hj = XJP(E.), and so (S^-XJP(E.)t) is a

(^P,VjT' )-martingale. Watanabe*s theorem [15] now implies that S is a

Poisson process with rate XJP(E.), and for t > t, the future increment

S - S^ is independent of Of from which follows the independence of

these processes. n

3. OUTPUT THEOREM FOR JACKSONIAN NETWORKS

Consider a feedback network with n nodes. The arrivals of external

customers at node i form an independent Poi^s^n process with rate y.

Node i is an M/M/l queuing system with service parameter u.. A customer

who completes service at i joins the queue at node j with probability

r.., j = l,...,n, or leaves *:he network with probability r._ = l->! r...
ij j iJ

Let {X.} be a solution,assumed to be unique, to the equations

X. = y. + 2 X.r.., i = l,...,n.
ii.J ii

3

X.

Assume that the stability condition p. = — < 1 holds. Jackson*s

result states that, in equilibrium, the probability that there are

k. customers in queue (including the customer in service) at node i is

P(k1,...,k ) = VAk.)...? (k ), (3.1)
1 n l 1 n n

k.

P.(k.) = p.^l-p.). (3.2)

Next this description of the network is transposed into the form

of the abstract model. It is convenient to partition the transition

functions (T.), the enabling events (E.) and the Poisson processes (N )
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into three types corresponding to the different kinds of transitions.

The state space is

X = {x = (k,,...,k )Ik. € IN },
± n l

where IN is the set of nonnegative integers.

(i) Internal transitions. For 1 < i,j < n, let E.. = {(k,, ,k )Ik. > 0}
— — ij 1 n ' l

T..(k.,...,k ) = (k_,...,k.-l,...,k.+l,...,k ), and N J an independent
ij L n 1 i j n

Poisson process with rate u.r ..

(ii) External arrivals. For 1 <_ i < n, let U. = X, A (k ,...,k )

= (k., ,k.+l,...,k ), and N an independent Poisson process with
1 l n

rate y . •
i

(iii) External departures. For 1 <_ i <_ n, let V. = i(k ,... ,k )|k.. > 0}

D (k,,...,k ) = (k,,...,k.-l,...,k ), and M an independent Poisson
l 1 n 1 in

process with rate 6. = u r .

Observe that instead of describing the server at node i by a single

Poisson process of rate u. followed by independent sampling with

probabilities r..,...,r ,r we are using an equivalent description of

n+1 independent Poisson processes N ,...,N , M with rates

Vu Vm'Vio-

Theorem 3.1 In equilibrium, the outputs or external departures are

Poisson processes independent of each other and of the state.

Proof Let

• f iSj = I C (V.)dM^t JQ s- i s

be one of the outputs. According to (2.17) it suffices to show that

P(x)P(V.) = P(DT1x) for all x. (3.3)
l i
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Since V. = {(k-,...,k )|k > 0}, it follows from (3.1), (3.2) that

P(v ) = p. (3.4)
i l

On the other hand for x=(k^-.-.k ), D~ x=(k^ .. .,ki+1,... ,kft) and

so from (3.1), (3.2)

-1P(D~ x) =PiP(x). (3.5)

(3.3) now follows from (3.4), (3.5) and the theorem is proved. n

Remark Using Lemma 2.1 it can be seen that the transitions corresponding

to the external departures are the only ones which can be independent

of the state. Since T..(E..) C X and A.(U.) C x therefore there must
i] i] / i i ^

exist x, . and x. such that TT.(x..) = AT (x.) = (j>. Hence
ij i ij ij . l i

P(TT"l:x..) =0 * P(E..)P(x..) >0, P(AT1x.) = 0 * P(UJP(x.) >0, and
i] l] 13 ij ' l l i i

so the independence criterion (2.15) is not satisfied. Of course, this

does not imply that these transitions do not form a Poisson process.

For example the external arr'vals are certainly Poisson, as are the

departures in equilibrium from node 1 in the tandem network of Figure 1.

4. QUEUES WITH STATE DEPENDENT SERVICE RATE

Theorem 3.1 can be shown to hold even when the service rate depends

upon the number of customers in queue. To avoid cumbersome notation

this is proved here for a single queuing system represented by the

birth-death process of Figure 6. Take X = IN .

(i) Arrivals. Let U = X, A(k) = k+1, and M a Poisson process with

rate X.

(ii) Departures. For i = 1,2,... let E. = {i}, T±(i) = i-1, and

NX an independent Poisson process with rate u..
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Let

ir0 =1, ir =[yl...pj]"1 XJ (4.1)

and assume that £ir. < °°. It is known that the process (X ) has the
3 t

steady-state distribution

P(X„ =k) =P(k) = [En.]""1 ir . (4.2)
t J K

Theorem 4.1 (Reich [2]) In equilibrium the departure process is

Poisson and independent of the state.

Proof. The departure process is

,t

Yt - 2 f ss.<V<
z i>l Jo s 1

and so, by Lemma 2.1 and Corollary 2.1, the result is true if and only if

£ y.P(E.)P(x) =£ y.POrT-'-x), for all x. (4.3)
i>l X x i>l X X

For x = k, tTXx = <b if i^ k+1 and T~ x = k+1, so that (4.3) is
l k+1

equivalent to

£ y±P(i)P(k) =yk+]P(k+l)
i>l

which can be readily verified from (4.1), (4.2). n

5. NETWORKS WITH SEVERAL CLASSES OF CUSTOMERS

Consider a feedback network with n nodes and L classes of customers.

The arrivals of external customers of class l at node i form an independent

Poisson process of rate y.. Node i is an M/M/l queuing system with

service parameter y. independent of the class of customer. A customer

of class I who completes service at i changes into a customer of el ass

m and either immediately joins the queue at node j with probability

r.. or leaves the network with probability r . Naturally
ij
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£ £ rm = 1. Let {X.} be a solution, assumed to be unique, to
j=0 m=l 3 X

the equations

*• = Y. + 2L» Z-» X-i r^-f , 1 = l».--»n, A = 1,...,L.
1 X j=l m=l 3 J

X.
a x

Set X = E X.. Assume the stability condition p. = — < 1. We can now
1 H x X Ui

reformulate the description in terms of the abstract model.

oo

Set X = {6} U [U {l,...,L}k]. 6 denotes the empty string. The
k=l

state space is X= Xn. A state is then an n-tuple x = (x^...^) where

x represents the customers in queue at node i with the right-most element
i

in x. being the customer in service and the left-most the customer who

arrived most recently, x. = 6 means the server is idlo. To simplify the

description of the transition functions let a • b denote the concatenation

of two strings from X. For example if a = (a ,...,a7 then

a . %=<a1,...,aM,«-) . Also for x. £ X let

a(x.) = left-most element in x., a(9) = 0,
i i

d(x.) = right-most element in x., b(6) = 0,

k (x ) = number of customers in x. of class £,
i i

o

k(x ) = Z k (x.) = number of customers in x^

and if k(x.) > 0 let x. be obtained from x. by deleting the right-most

element.

(i) Internal transitions. For 1 <_ i,j <_ n and 1 £ £,m <_ L, let

E*™ ={x|d(x.) =*}, T^m(Xl,...,xn) =(x1,...fxi>...,m •Xj ,... ,xn) ,and
N an independent Poisson process with rate y.r .
ij J

I
(ii) External arrivals. For 1 <_i<n and 1 <. I < L, let U. = X,

A*(xn,...,x )=(x,,...,^ •x.,...,x ), and N* an independent Poisson
•x 1 n 1 i n i

process with rate y..
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(iii) External departures. For 1 < i < n and 1 <_ &,m <_ L, let

Vlm =(x|d(x.) =U, D£m(x1,...,x ) =(x. i4,...,x ), and M*m an
l i llnlin i

£mindependent Poisson process with rate y r.n.

£m
Thus the transition function T.. represents a customer of type I

who completes service at node i changes to type m and joins the queue

&m
at node j whereas D. corresponds to this customer departing from the

network. A. represents a customer of type I arriving at node i from

outside the network. To prove the output theorem the following extension

of the steady state distribution formulas (3.1), (3.2) is needed.

Lemma 5.1 In equilibrium, the probability distribution of the state

process (X ) is given by

P(xn,...,x ) = P^xJ.-.P (x ), (5.1)
1 n 11 n n

k(x.) L k£(x.)
P.(x.) = p. X (1-p.) n (p.) X , (5.2)

1 *=1 X

where p. = X.X. .
ri ii

Proof See the Appendix. n

Note that the distribution (5.1), (5.2) is the same that would

prevail if the total arrivals of each class of customers at each node

were an independent Poisson process (which is not true in general).

Theorem 5.1 In equilibrium, the outputs or external departures of

each class of customers are Poisson processes independent of each other

and of the state.

Proof Let

S£m(t) =C E (V*m)dM*m(s)i JQ s- 1 I
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be one of the outputs. According to Lemma 2.2 it suffices to show that

P(x)P(V*m) =P[(D^m)-1x] for all x. (5.3)

Since V± =(x|d(xi) = £}, therefore by (5.1), (5.2),

pcvf>-1 ^ a-Py. =plP;. (5.4)
On the other hand (D, )" x = (x.,...,x. •£,...,x ) and by (5.1), (5.2)

l l l n

P(x ,...,x • £,...,x ) = P(x)p.p.,

which together with (5.4) yields (5.3). n

6. EQUALITY OF SERVICE RATES FOR DIFFERENT CUSTOMERS IS NECESSARY

In the previous section the output theorem was proved under the

condition that customers of different classes entering the same node

are served at the same service rate. Here a simple example is given to

show the necessity of this condition. Consider an M/M/l queue in

which the arrivals of customers of class I - 1,2 form an independent

Poisson process of rate y > 0. Service is provided on a FCFS basis,

and the service time for a customer of class i is exponentially distributed

with parameter y .

The notation of the preceding section is maintained with the

obvious simplification resulting from the fact that there is only one

node. In particular there are no internal transitions. The state space

is

oo

X = {0} U [U {l,2}k].
k=l

(i) External arrivals. For I = 1,2 let U = X, A (x) = S. • x and

I £
N an independent Poisson process with rate y .

-18-



(ii) External departures. For £= 1,2 let V = (x|d(x) = £},
X

D^(x) = x, and M an independent Poisson process with rate yA.

As in section 2, for ACx let ^(A) = l(Xt G A). Define the

counting processes

.t

s-Nr~"s
St =J 5_(V0)dM*f I=1,2

1 2
and Y - S + S , the total departure process. As before, let

f,t(A) =E{?t(A)|C)*}.

Then the process

.t

w„ h ds
s

is a (HVufl)-martingale where

\ =^t-(V +"2«t-<V •
Theorem 6.1 In equilibrium (Y ) is a Poisson process if and only if

1 2

Proof The sufficiency is immediate from Theorem 5.1. To prove the

necessity suppose that (Y ) is Poisson. By Watanabe's theorem h must
t t

be constant and so, in equilibrium,

ht =/c^O^) +^2it_(v2> =yl +y2' (6'l)
and hence

yl^t(V +^JV =Y1 +Y2 =Ysay. (6.2)

Following the development in section 2, the conditional probability

P(X = xfJX_} is given by (2.8), which is reproduced here,

(x) = L(x) + I f (x)ds + I k (x)(dY -h ds) (b.3)0 JQ s JQ s s st

-19-



From (2.13),

2 2

ft(x) =£ Y£[Ct(A^1x)-5t(x nu£)] + £ /[^(d'^o-^Cx ny],
(6.4)

and from (2.11),

2

KM = -L to + ("J"1 £ /L OV^c). (6-5)t t- t £ss] t- *

Substituting from (6.2), (6.4), (6.5) into (6.3), it follows that in

between jumps of Y , i.e., when dY = 0,

• 2 2

lt(x) - £ it(x) =£ yhit(Al\)4tto] + £ /[^(D^-^Cx nv£)l

+ yL(x) - £ ulCD^x)
C £=1 C *

2

= £ [Y Ct(A^x)-y^t(xnVjl)]; (6.6)

whereas at a jump of Y , i.e., when dY =1,

2

Lto =Y_1 £ M&L_(D:Lx). (6.7)
C £=1 C *

Note that V„ = {x • I |x G X]. Set V„ = (x • I • mix £ X}. Then it
£ ' Am •

follows from (6.6) that, before the first jump of (Y ),

Ct(e) = o,

£t(v£) = £. It(x) =(Y-P£)5t(v£) +Y£it(e),
xGV£

itU) =Y£Ct(e) -/gtU),

MV =(Y-Pm)et(v,m)+Y\(m).

This system of equations can be considered recursively and its general

solution is

-20-



£t(V£) =a£ exp(y-p )t +t>r (6.8)

^t(V "\m «P<Y-P")t +btm exp- A +c^. (6.9)
£

The constants can be found by observing that if y < y the system is

stable and then (6.8), (6.9) must converge to the unique equilibrium

which can be easily computed. This gives

b£ =Y*P(e)(y*-Y)~\ (6-10)

c£m =YVp(e)[ym(ym-Y)]"1. (6.11)

Substituting (6.8), (6.10) into (6.2) gives

2

y= £ yVd^-YrVe). (.6.12)
£=1

Next, at the first jump of Y , we obtain from (6.7)

y'W =£ -W•
m=l

and so, from (6.2),

(y)2 =y£ ylit.<v£) - Z pV et_(vta) (6.w>
£=1 £,m

Hence, before the first jump of Y ,

(y)2 =E VV Ct(Vta) . (6.14)
£,m

Substituting (6.9), (6.11) into (6.14) implies

2 V'1 £ £ m, m •.-lTt/a\
(y) = Zj u Y Y (y -Y) P(6)

£,m

and substituting for P(9) from (6.12) gives

_ £ £, £ v-1 v* £ £ m, m N-l
y I y y (y -y) B i, H If IP -Y)

£ £,m

1 2Substituting y + y for y on the left leads, after some simplification,

to y = y as required.
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7. CONCLUSION

The Burke-Reich output theorem has been generalized to show that, in

equilibrium, customers leaving from any node of a feedback network of

M/M/l queues form a Poisson process which is independent of the state of

the network. Moreover the departures from different nodes are independent

The result is true even if there are several classes of customers and

even if the service rate is state-dependent so long as at each node

the service rate is independent of the customer class. This final

condition is necessary. The techniques of proof rest heavily upon recent

formulas of the conditional probability of the state given that a subset

of the transitions are observed. Although flows internal to the network

as not generally independent of the state they may nevertheless be

Poisson. These flows are characterized in terms of the network topology

is a companion paper.
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APPENDIX. Proof of Lemma 5.1.

The unconditional probabilities P (x) = P(X = x) are given by the

differential equation (2.14). In the notation of Section 5 the

differential equation is

i,j=l £,m=l j j j

+ £ £ yVkaS^x] - p (x nub)
i=L £l i t X t i-

+ £ £ Vio{pt[(Dim)"lx]-pt(xnvim)} ^ '
i=l £,m=l

= at(x), say. (A.l)

It will first be shown that o (x) =0 !"jr all x when Pt(x) ~ P(x)

where P(x) is given by (5.1), (5.2). From (5.1), (5.2) and the definitions

of the various transition functions the following evaluations are

obtained.

PKT^)"^] =PiP^Pj)"1 Ka^) =m> ?M,
p(x nE*m) = l(d(x.) = £) P(x),

IJ 1

P[(A^)"1x] =(PiPi)'1 Ka(x.) =£) P(x),

P(x nuj) =P(x),

PKD^)"^] =p.p* P(x),

P[x Hvjm] =l(d(Xi) =£) P(x).

Here l(-) is the indicator function of the set (•)• Using these formulas,

and recalling that p. - \ \i± , |K = Vj^ , we. get

A-l



o.(x)[P (x)]"1 = £ rim {xVttV1 Ka(x ) = m) - y. l(d(x ) = I))
i,j,£,m 1J XJ 3 3

+£ yJ {y1(xj)'1 l(a(xt) =£) - 1}
i,£

+ £ riS U*-y. l(d(x) =£)}.
i,£,m

Next substituting from the relations

E£m ^£ ..m m v1 ~^m iA - V ^
rii Xi = Ai " Yi ' £ rio Xi ^ Vi,£ 1J X J 3 i,£,m 1U X i,£

where the second relation expresses the equality between total input

and output rates, gives

aCx)[P,(x)]-1 =£ (A^y-a™)"1 Ka(x.) =m) - £ r*m yl(d(x >
1 L j,m J J J J 3 i,j,*,m 1J

+ £ yV(xJ)"1 l(a(x )=£) -£ y[
i,£ i,£

+T, y[ - £ ^ Pi iw^) =«
i,£ i,£,m

Ey. l(a(x.) = m) - £ y,-l(d(x ) = £) = 0.
j,m J J i,«-

Hence P (x) = P(x) is indeed a solution of (A.l). It can be verified

that E P(x) = 1 and so the lemma is proved. n
x

A-2
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FIGURE CAPTIONS

Fig. 1 A two—node tandem network

Fig. 2 A feedforward network

Fig. 3 A Jacksonian network

Fig. 4 An M/M/l queue with feedback

Fig. 5 State transition diagram for (2.1)

Fig. 6 Birth-death process
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