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ABSTRACT

Feedback networks of M/M/l queuing systems are considered. In

equilibrium, the flow of customers from node i to node j is Poissonian

if and only if there is no path through the network feeding back

from node j to node i. Furthermore, when this condition holds, the

flow is independent of the number of customers at every node k which

is not j nor connected by a path from j.
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1. Introduction and Summary

Consider a feedback network consisting of n nodes, i = l,...,n.

During the time interval [0,t] A customers arrive at node i from

outside the network. (A , t >^ 0) is an independent Poisson process

with rate y.. Node i is an M/M/l queuing system with service parameter

u.. Upon completing service at i a customer either immediately joins

the queue at j with probability r.., or leaves the network with
n 1J

probability r.n = 1 - J£ r... Denote the number of customers in
J~-*•

[0,t] who move from i to j by S*J and the number who leave the network

bv Si0. Let X be the average total rate of flow of customers into i.
J t l

Then

n

(1)X. = Y. + 2 rT-iXi> i= 1»««-»n-

It is assumed that (1) yields a unique solution {A > 0}, and that

the stability condition p. = X u. < 1 holds.

Let X = lNn where IN denotes the nonnegative integers. At time

tthe state of the network is Xt =(x|;,...,Xn) where X* is the number
of customers in queue (including the one in service) at node i.

Jackson [1] has shown that, in equilibrium, the probability distribution

of the state is the same as if the total arrivals into each node i

formed an independent Poisson process with rate A^

P(Xt=x) =P^xY.-P^x11), PiCx1) =(l-P.)P* • (2)

This is surprising in view of the fact [2,3] that for a single

M/M/l queue with feedback, the number of customers who complete service, the

number fed back and the total number of arrivals are all not Poisson. Ilowcvor,
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the number of customers who leave the feedback queue do

form a Poisson process. This last result, known as the Output Theorem

for an M/M/l queue [4,5], was recently extended by the authors [6].

We showed in particular that for a network of the kind introduced

above customers who leave the network from any node form a Poisson

process. In terms of the previous notation, the process (S ,t>0) is

Poisson; moreover it is independent of the state of the network X .

The statistical characterization of the "internal" flows that is

the processes (S ^), 1 <. j£ n, is given here. Say that £ is a

descendent of k if there is a path through the network from k to %

i.e., there is a sequence i-, i2,...,i such that

r. . r r ' . r. 0 > 0.
ki., i-x« i -i ±1
112 m-1 mm

Theorem 1 If (SXJ, t>0) is Poisson then i is not a descendent of j.

Theorem 2 If i is not a descendent of j then (S J) is Poisson;
ii k

moreover {S J;u<t} is independent of the queue length X at every

node k which is neither j nor a descendent of j.

Theorem 1 is proved in the next section and Theorem 2 in section 3.

2. Proof of Theorem 1

The idea of the proof is very simple. If (S ) is Poisson then

the probability that a customer will move from i to j during the

time [x,T+t] is the same whether or not a similar move was previously

observed at time t. However, if there is a path back from j to 1,

then the customer who moved at time t will, with positive probability,

reappear at i thereby increasing the chance of a subsequent move during

[x,T+t]. We now give a formal proof.
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Let Xft be a random variable, the initial state. Let (A ),

(S •*), 1 < 1 < n, 0 <^ j <^ n be right-continuous, independent Poisson

processes with rates y , r u. respectively. These processes are also

independent of X . The state process (X ) is then given as the

solution of the integral equation

Xt -X0 +A1 +£ Sj1 -£ 8*1

-xo+At+g i toi***? -g fo i(x-->o>d§»j•(j)
Here 1(0 is the indicator function of the set (•).

Define the following transition functions.

Arrivals. U. : X •* X, where u\(x ,...,x ) = (x ,...x +l,..x ),

1 < i <n.

Internal transitions. T±j :E± *X, where E± =(x GX|x >0} and
T..(x) =(x1,mX1-1,..x}+1,.mxY 1ii.j ±n.

Departures. T±Q :E± -X, where TiQ(x) =(x ,..,x -l,..x ), 1<i<n.

For B C x let

p (B) = Prob{X 3B}, P„(x) = P ({x».
t t t t

With the notation introduced above the differential equation governing

P is readily seen to be

f(x) =£ rV^-yx)] +£ £ p^lP.^^-p^x nEi)i
t t_! 1-1 J-0 w

Here T^x -{yeEjT^y) =x}, xnEi -{x> nE£. Observe that
P (x) s0 when P (x) " P(x) is the distribution given by (2).

4
4
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In the remaining discussion assume that P (x) = P(x) . Fix i,j

and suppose that (S J,t>0) is a Poisson process. Since X., given by (1),

is the average rate of flow into node i and r . is the probability that a

customer departing from i joins the queue at j, therefore the process

ii
(S J) has rate X.r... Let

t 1 ij

Cyt =a(S^,ult).

Then, since a Poisson process has independent increments,

Prob(S^A-sJj =l|Cyt) =X.r ..A +o(A). (5)

Since S J is Poisson with rate r..y., (3) gives

Prob(St+A~StJ =1l^t) B.Prob(xi>°l(3t)rljpiA +°(A)' (6)
From (5), (6)

ProbCX^O^) =X^"1 =p±,

and since this is constant it must also equal the unconditional probability,

Prob(xJ>0|C3Tt) =P(X*>0) =P(E±) =p±. (7)
iiSuppose now that t is a jump time of (S ), that is a transition

ii ii
of type T,, occurs at t so that SJ-SJ =1. We wish to evaluate

3V ij x T-

irt(x) =Prob(Xt+T =x|dSx1J =1)

Since (X ) is Markovian, tt .(x) obeys the differential equation (4) but

with the initial condition

irn(x) =Prob(X = x|dS lJ = l)
0 T ' T

For later reference' observe that as a consequence of (7) we still

have

tt (EJ = Prob(X ^ >0|dS ij = 1) = P(E.) (8)
t i t+T T x
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Tin' initial condition *0(x) can be evaluated as follows. Since

X = T. (X _) and X _ £ E. therefore applying Bayes* rule, and

using (7),

Tin(x) =Prob(XT =x|x e k.) -POrT^xMPCE.)]"1 =p(tT^x)pT3.
U x t- i ij i ij i

(9)

T~*x = (x^.-xVl,.^-!,..^11) if xj >0, T~lx = $ if xj = 0,

(10)

therefore from (2) we get

P(T~Xx) =p^"1 l(x e E)P(x). (11)

from (9), (11) follows

tt0(x) =pT1 P(x)l(x €E). " (12)

On the other hand,

\flx =(x1,..,x3-lf..xn) if xj >0, uTXx =+if xj »0,

and so, fron; (2) ,

P(uT1x) =pT1P(x)l(x €E)=tt0(x). (13)

Thus the distribution tt is the same as that obtained from P after an

external customer arrives at j.

Lemma Suppose that i is a descendent of j i.e. there is a sequence <>T

nodes k,,..,k so that
1 m

.rJk,V "V, ,k.V>0
1 12 m-1 m m

Then ti (E.) > P(E.) for t > 0.
til

Proof Let X be the initial state distributed as before as

Prob(X = x) = P(x) and let X() = MXq) so th.it, from (13),

Prob (X = x) = ii (x) . Let (Xt), (X^) be the solutions of O)

(14)



corresponding to the initial conditions Xfi, X respectively. Then

clearly

Prob(X =x) = P(x), Prob(Xt=x) = tt^x) ,t^ 0. (15)

We show first that

Z = X - X > 0, for t > 0. (16)
t t t — —

To see this it is convenient to define the n-dimensional processes

O ), (8 )where 9k =l(Xk_ >0), 0k =l(Xk >0) and the nxn-dimensional

process (S ) where
n _. .

=k& r£k . 2-t St '
St St \l j=0 *

6, is the Kronecker index. Then from (3),

X. == Xft + A + f dS 0 ,t 0 t JQ u u'

- . tt = -
x„ = x_ + a„ + I ds e ,t 0 t JQ u u

and so

Z. = Z_ + f dS (6-9 ). (17)t 0 JQ u u u

Now let 0 < t < i < ..be the jump times of S. Clearly

\-" zo "*o "*o "YV -xoi°'

and suppose, as induction hypothesis, that Z > 0. Then
t — —

0 - 6 > 0 since X > X entails 1(X > 0) > 1(X > 0);
T T— T - — T - T- — T -
mm mm m n

~k k
moreover Z > 9 - 0 since X - X > 0 entails

T - — T T T- T- —
m m m mm

*t - " xk - - 1(^k -> 0) " 1(xk - >0)* Finally» from <17)»
m m m m
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Z - Z = dZ =dS (0 -0 ),
T " T T - TXT*

m+l m m m m m

and so

Z = Z + dS (0 -0 ) > 0 - 0 + dS (0 -0 )
T ,.- T- TXT— T T TTT

m+1 m mmm mm mmm

= [I+dS ](0 -0 ),
T XT
m mm

where I is the identity matrix. The entries of the matrix I + dS and
J x

m

of the vector 0 - 0 are nonnegative. So Z > 0, and (16)
m m m+1

follows. A particular consequence of (16) is that

Prob(X*>0 and X*=0) = 0. (18)

We claim next that

Prob(X*=0 and X*>0) > 0. (19)

Consider the event H = {XQ=0} so that in H, XQ =U (XQ) = (0,..,1,0)

with 1 in the jth component. Prob(H) = (1-p^ ..(1-P'n) > 0 according

to (2). Also consider the event G = {0<x1<.•<Tm+1<t<Tm+2 and Tl
_jk _kxk2

is a jump of S , t. is a jump of S »">Tm is a ^ump of
k nk kmi -k£- m-± m^ t is a jump of S }. Since the S are independent

m+1

Poisson processes with positive rates by (14), therefore Prob(G) > 0.

Also since these processes are independent of the initial state therefore

Prob(G H H) = Prob(G)Prob(H) > 0. But clearly on G H H we have

X1 = 0 and X1 > 0, so
t t

Prob(X^=0,Xi>0) >LProb(G)Prob(H) >0

and (19) is proved. From (15), (18), (19) it is immediate that

Prob(X^>0) =TTt(Ei) >Prob(X^>0) =P(E±) ,

and the lemma is proved.
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Modified network

Fig. 1 Illustration for Theorem 2.



ii
We can now complete the proof of Theorem 1. Since (S J) is

Poisson therefore, according to (8), ^(E.) = P(E.). Hence by Lemma 1

i cannot be a descendent of j.

3. Proof of Theorem 2.

The graph of the network consists of the nodes N = {l,..,n} and the

directed edges £ = {(k,£) ^ N x N|r > 0}. Fix j. Let
K.X/

D = {k|k = j or k is a descendent of j}, and C = N-D. Express £>

as the disjoint union of the sets £,r, £n and £pn where

gc = fin {CxO, fiD - £n {DxD} and gCD = g- {gc Ugo). it is

easy to see that ^ cannot contain any edge going from a node in D

to a node in C i.e., O O {DxC} = (J>.

Now fix i, suppose r.. > 0 and i is not a descendent of j. Then

i£ c and (i,j) €= £>CD. Consider the modified network consisting only

of the nodes in C and of the edges in Q and QrT.t regarding the edges

in Orn as corresponding to ilows of customers who depart from this

modified network. (This is illustrated in Figure 1 where the dashed

arrows correspond to arrivals or departures in the original network.)

It is obvious that the number of customers S1J and the queue lengths

Xt for k £ C are the same in the original and modified networks. But in

the modified network they are external departures. It follows from [6]

that, in equilibrium, (S*J) is Poisson and {S1^,u<t},{Xk,k ^ c} are
t u — t

independent. The theorem is proved.

4. Conclusion

The set of flows in a Jacksonian network which in equilibrium

are Poisson have been characterized. Briefly, the number of

customers who leave i and go to j is Poisson if and only if the edj»e
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(i,j) is not part of a loop in the graph of the network. Although

each node was assumed to be an M/M/l queuing system it is easily

seen, following the argument given here and in [6], that the result

holds even when the service rate at a node depends upon the queue

length at the same node. In particular, the result holds when node

i is an M/M/m. queuing system.

-10-



REFERENCES

[1] J. R. Jackson, "Networks of waiting lines," Operations Research,

vol. 5, no. 4, 518-521, Aug. 1957.

[2] P. J. Burke, "Proof of a conjecture on the interarrival-time

distribution in an M/M/l queue with feedback," IEEE Transactions

on Communications, vol. Com-24, no. 5, 575-576, May 1976.

[3] P. Bremaud, "Streams of a M/M/l feedback queue in statistical

equilibrium," preprint, Sept. 1977.

[4] P. J. Burke, "The output of a queuing system," Operations Research

vol. 4, no. 6, 699-704, Dec. 1956.

[5] E. Reich, "Waiting times when queues are in tandem," Ann. Math.

Statis., vol. 28, 527-530, 1957.

[6] J. Walrand and P. Varaiya, "The outputs of Jacksonian networks are

Poisonnian," Electronics Res. Lab., Memo M78/60, August 1978.

-.11-


	Copyright notice 1978
	ERL-78-59

