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Abstract

The problem of the linguistic approximation is defined on the basis of

semantic equivalence. The process consists of interpreting the meaning of

any given membership distribution and attaching to it a linguistic label.

Some problems of existing implementations of the linguisitc approximation

are pointed out. A new approach to the problem, based on feature selection

and pattern recognition, is introduced. The sentences used as linguistic

labels belong to a language generated by a context free grammar. A member

ship distribution is associated to each corresponding Table. A prescreen-

ing process is performed among the distributions, using the information

coded and ordered in the parameter space. The result is a non-fuzzy subset

of sentences which are proposed as possible candidates to solve the linguistic

approximation problem. Finally, different metrics are applied to these

preselected labels and the best candidate is chosen to be the linguistic

approximation to the given distribution. Possible modifications to this

method are suggested. Some remarks are made about the flexibility and

efficiency of this approach. In the conclusions some notes on the necessary

trade-off to be considered in the implementation are given. An illustrative

example is shown in the appendix.
_
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2. Introduction

The theory of Fuzzy Sets, introduced in 1965 [1], has proven to be an

appropriate tool in dealing with the inherent imprecision of the concepts

involved in human reasoning and natural language [2,3,4,5,9,20]. The

classical two-valued logic is just too rigid to efficiently represent this

kind of information.

It is believed that the human ability to make rational decisions in

complex or fuzzy environments, based only on imprecise information, is an

approximate rather than a precise process [6].

The information, which constitutes the premises for the deductive

process, generally has a qualitative nature, its form being, for instance,

an expression in natural language. By using fuzzy sets we are able to

transform it to a quantitative representation: the same concept now is

represented by a linguistic variable with a value which is a fuzzy subset of

the universe of discourse whose label is a sentence in a natural or syn

thetic language.

Therefore, a language can be seen [7] as a fuzzy relation L from a

set of terms S to a universe of discourse U, which assigns to each

pair (s,u) element of S*U a grade of membership

uL(s,u) .

If we fix s, the membership function y.(s,u) determines a fuzzy subset

A(s) of U whose membership function is:

uA(s)(u) =uL(s,u) , ue U, seS.

The fuzzy subset A(s) of U is the meaning of s. The term s is the

label of A(s). *



Among the terminals of the grammar which generates the language we find

primary terms, hedges, relations, conjunctions and disjunctions. While the

first are labels of primary fuzzy sets, the rest can be seen as labels of

different kinds of operators which act on the primary fuzzy sets, modify

ing their original membership function values (membership distributions).

A problem arises when, as a result of a fuzzy reasoning process, we

obtain a fuzzy subset of U whose membership distribution does not have a

corresponding label.

Then the process of the linguistic approximation to this fuzzy subset

consists in finding a linguistic value (label), element of S, whose mean

ing is the same or the closest (according to some metrics) to the meaning

of the unlabelled fuzzy subset whose distribution we just obtained.

3. Definition of Linguistic Approximation

An informal definition of the linguistic approximation was already

given in the previous section. The idea of "...finding a label...whose

meaning is the same or the closest to the meaning of the unlabelled fuzzy

subset..." is nothing else but looking for the term s element of S

which has the highest semantic similarity to the unlabelled fuzzy subset.

The meaning of s, which we defined previously to be A(s) c u, is
**

completely characterized by its membership distribution

^A(s)(u) * .

*Refer to Section 12.2 for more details or to [8,9,20] for a more complete
treatment.

In order to simplify the notation, from now on we will just write u (u)
instead of P^VS)(U)-



Therefore the semantic comparison between two fuzzy subsets of the same

universe of discourse can be done by comparing their membership distributions

According to the criterion used in performing this comparison we may

have different criteria of semantic similarity: we can already see that the

linguistic approximation to a fuzzy subset is not unique. A discussion on

the different metrics (distances) used to evaluate this similarity is given

in Section 3.2 and more extensively in Section 9.

Because of the lack of a precisely defined criterion of similarity, the

approximation has to be found by "ad hoc" procedures. A remark is given in

[2]: Zadeh notes that "...the standard of precision in computations involv

ing linguistic values are, in general, rather low. This however is entirely

consistent with the imprecise nature of fuzzy logic and its role in approxi

mate reasoning."

We will try to formalize, within the limits dictated by implementation

restraints, the informal definition previously given by saying:

LA[A] = sA ,

if d(yA(u),yA,(u)) = min d(yA(u),uR(u))
M M VB^Ll

where: A and A' are fuzzy subsets of the same universe U;

A is the unlabelled fuzzy subset;

LI is a finite term set language (the linguistic labels);

sAi is the linguistic label (sentence) associated to A',

which belongs to LI;
*

d(A,B) is any distance which satisfies the axioms of a metric.

*These axioms are [10]: d(A,B) >0 if A f B; d(A,B) =0 if A= B;
d(A,B) = d(B,A), d(A,C) < d(A,B)+d(B,C).



3.1 Existing Implementations

The previous definition of linguistic approximation is based on a best-

fit method and two existing implementations follow this method:

Wenstop [11] implemented it using

d(A,B) =dl(A,B) =max (uA(u.)-yB(u.)) for all u.. elements of U.

Kacprzyk [7,12] used the following distances (for the case in which the

universe is partitioned into D points):

D ?
d(A,B) =d2(A,B) = I (yA(u.)-yB(u.)) •

Kaufmann [13] proposes two normalized distances as a measurement

between two fuzzy sets (he introduces them as measurements between two

fuzzy languages):

l Dd(A,B) = d3(A,B) =± I |yA(u.)-uB(u.)|

and

d(A,B) =d4(A,B) ={1 I (y^u^-ygfu.))2}0'5 .

Procyk [14] instead of using the best-fit method, prefers to express

the linguistic approximation to a fuzzy subset of U as a linear combination

of rule output sets (the terms in the last column of a decision table; refer

to Section 12.2).

Since the unlabelled fuzzy set is obtained by:

A= max (t. min B^)

where t.'s are scalars in [0,1] which are then interpreted as truth values

and B. is the ith element of the last column of the decision table.



Then the linguistic approximation is given in terms of the linguistic

values of each B. with non-zero t., preceded by the confidence adverb

associated to the corresponding t..

3.2 Comments on These Implementations

In order to evaluate the different distances let us partition the

universe of discourse U into D discrete points, i.e. |U| = D and

let us use a finite language LI which contains M sentences, i.e.

|L1| = M. Gl is the grammar which generates LI (for more details refer

to Section 5) and contains the following terminals:

LOW, MIDDLE, HIGH, ALL, NONE (primary fuzzy sets)

VERY, MOREORLESS, SORT OF (hedges)

OR, AND (connectors)

NOT (negation)

( , ) (markers)

The membership distribution^ associated with the sentences of LI are

obtained by modifying the membership distributions corresponding to the

primary fuzzy sets with a combination of operators (hedges, connectors,

negation). The combination is determined by the production rules of grammar

Gl (refer to Section 5) and the function of each operator is described in

Section 12.2, while its implementation is shown in Section 12.3. A simple

example is given, for the case of D = 21.

Distance dl (introduced by Wenstop) has the advantage that it is

easy to program and, in the comparison of two distributions, it may not be

necessary to perform D differences on the elements of U, since if any

of the already computed differences are equal to 1 (= max value of the

distance), then the value of the final distance will be equal to 1.
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However, it has two serious disadvantages:

1) It penalizes too much the difference in just one point. This is

illustrated in Fig. 1; if we have an unlabelled fuzzy set A and we have

to select between B and C, C would be chosen (instead of B, which

intuitively should be the result).

2) If we are comparing all the M distributions with the unlabelled

one, distance dl would come out equal to 1 (which is its maximum value)

for most distributions. We may refer to the example given in this section,

where

dl(L0W, MOREORLESS LOW) = 0.06

but

dl(L0W, S0RT0F LOW) = 1 ,

as well as

dl(L0W, MIDDLE) = 1 ,

dl(L0W, HIGH) =1 , etc.

This means that most distributions are considered too distinct and are

rejected. Because of this kind of strict tolerance, we need a large value

of M (equivalent to say a large language) if we want to assure a decent

fit of the obtained linguistic approximation. However, this implies a

considerable increase in the number of comparisons since we need to perform

an exhaustive comparison among all the M distributions.

Distances d2 and d4 are conceptually equivalent. So we will

analyze only one of them, namely d4. d4 has the advantage of being less

strict than dl, since it avoids the problem of overpenalizing the

difference in just one point. (In the example of Fig. 1 the result is, in

fact, that d2(A,C) > d2(A,B)). It has three disadvantages:
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{LOW SQUERR MOREORLESS LOW)[2]

0.0S25

{LOW SQUERR SORTOF £0V)[2l

1

{LOW SQUERR MIDDLE)l2]

* 1

{LOW SQUERR HIGH)l2l

1

{LOW SQUERR VERY HIGH)[23

1

Evaluation of distance d'i

{LOW SQUERR MIDDLE)i\'\

0.6316257735

{LOW SQUERR HIGH)Lll

0.6**2«*06191

{LOW SQUERR VERY HIGH)Ll'\

0.605974225**

{LOW SQUERR MOREORLESS MIDDLE)ll1

0.657368578

{{VERY LOW) SQUERR VERY HIGH)t\1

0.5572070253

{ALL SQUERR NONE)111

1

Evaluation of distance 62
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1) It requires an exhaustive comparison over all the D elements of

each of the M distributions.

2) It does not uniformily take values over the interval [0,1] (unless

we compute d4(ALL,N0NE)) and, consequently, after it reaches a certain

value it becomes very insensitive to any longer distances between two

distributions. We may refer to the example included in this section.

3) It is not very congruent in the sense that the value of the distance

between two distributions may be larger than the value of the distance

between two less similar distributions. We may refer to the same example,

where:

d4(L0W, MOREORLESS MIDDLE) > d4(L0W, HIGH)

and

d4(L0W, HIGH) > d4(VERY LOW, VERY HIGH) .

Distance d3 has exactly the same advantage and disadvantages that

d2 and d4 have.

Procyk's method for finding the linguistic approximation has the

advantage of an easy computation but it is severely restricted by a very

reduced language (the only sentences allowed are the ones which appear in

the output rule set, combined with few confidence adverbs). Another limita

tion is the fact that the method applies only to the result of a combina

tion of an entry of the table with the relation which represents the deci

sion table itself. The implementation is then based on a particular inter

pretation of the implication, being in this case the cartesian product.

However we could have different ways to interpret the implication [15], in

which case the problem of the linguistic approximation should be redefined

(for this approach). It must also be noted that the unlabelled fuzzy set
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may not have been generated by a composition with a relation, but by the

application of some new relation or new hedge on the primary fuzzy set.

In this case, as well as in other cases (e.g., when we want to find the

linguistic value to be assigned to the truth value of a fuzzy proposition

of which we are doing the truth-qualification [16]), this approach can not

be applied.

In general we can say that even if it were good for very simple cases,

it lacks a metric which would give an estimate of the •goodness' of the

approximation.

3.3 Requirements for a Good Linguistic Approximation

The requirements of linguistic approximation confront us with at least

four problems, not all of which are adequately dealt with by the above

implementations.

1) There is a need for the use of a large language, based on a rich

vocabulary, in order to have a good approximation of any fuzzy subset of U.

2) This is equivalent to having a large number M of sentences in

the available language. Then we need a grammar (preferably a context free

grammar) to generate such a language.

3) We must be able to cope with the increase of the number of opera

tions on a data set consisting of MxD elements, and try, it it is possible,

to avoid an exhaustive search among the M sentences.

4) We need an adequate metric which has to be more flexible than dl

and more congruent than d2, d3, d4.

We have to make an important note, which will be considered in the

proposal of the grammar (refer to Section 5): the expansion of the vocabu

lary does not mean that we need more levels of recursion in the productions
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of the grammar. In fact this would lead to having more nested hedges and it

could create sentences which would be completely incomprehensible. Increas

ing the size of the language has to be done in a horizontal rather than

vertical sense (looking at the production tree). This means that without

changing the levels of recursion we can increase the number of terminals

(primary fuzzy sets, hedges, connectors, relations, etc.). In other words

we enrich the vocabulary. The restriction on the number of recursions, in

order to have an intuitively understandable answer, justifies the use of a

grammar whose productions don't have cyclic nonterminals (i.e. it produces

a finite language [24]).

4. Pattern Space Approach

We want to solve the above mentioned problems by trying to reduce the

dimensionality of the data and consequently the complexity of the search.

In order to do this we introduce the concept of a pattern space which,

roughly speaking, has to satisfy four criteria:

a) low dimensionality

b) retention of sufficient information

c) enhancement of distance in pattern space as a measure of the

similarity of physical parameters

d) comparability of features.

Let us assume for the sake of simplicity (and since it is a require

ment of the implementation) that the universe of discourse U is finite and

discrete (i.e. |U| = D).

Let A be a non-fuzzy set of M fuzzy subsets of U

A = (A1(s),A2(s),...,AM(s)}
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and let S be the set of labels corresponding to A

b - is<i ,Sp >• • • >Sm/ •

Let us define a function F

F: [0,1]D+]RP

and let us call P the pattern space, which is 1RP, in which the mapped

membership distribution is represented by a point.

If we apply F to the membership distribution uA (u) of a fuzzy

subset A. c u, we obtain as a result the p-tuple

which is formed by the coordinates of the points in space P, i.e.

F(yA (u)) =P1 .
i

We have to make an important remark: we have said that P is the

representation of A. in the p-dimensional space P, as y« (u) is the
1 a.

representation of A. in the D-dimensional space U. However, the one we

just obtained is not a complete representation.

In fact, our purpose is simply to find a short-cut in the comparison

process: we will try to compare the meaning of the fuzzy sets in the

pattern space P, rather than in U, taking advantage of the fact that

p « D (|P| « |U|).
*

We would have a complete representation only if the mapping function F is
injective (one to one). Since we cannot guarantee it, it may happen that

for some pair

Ai f Aj ~ K.(u)^A.(u)) ' uGU
and . .

P = PJ .
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A very important point will be choosing the components of the function

F, namely

F( ) =

fl( )

f2( )

fp( )

In the selection of these real valued functions we will try to have the

minimum amount of redundant information such that with few patterns we can

represent most of the information (we then have to reach a trade-off

between the number of parameters, which we want to be small, and the amount

of information, which we want to be high (even if it is not complete)).

4.1 New Definition of Linguistic Approximation in This Space

We have to choose a criterion to evaluate the semantic similarity

between two fuzzy sets A, A', represented as two points in P.

Since we are in a euclidean space ]RP, a reasonable distance between

two points of this space is the weighted euclidean distance d5:

d5(A,A') =(j W^-pA')2)'5 .

Then we can define the linguistic approximations of the fuzzy set A

to be:

LA[A] = {sA,}

such that s., is the label corresponding to fuzzy set A'; A and A'

are fuzzy subsets of the same universe U; d5(A,A') < E where E is a

parameter which defines our tolerance in judging the similarity.
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In Section 8.2 we will see how to determine the weighting factors w.'s

and the tolerance parameter E. We can, however, justify at this point the

need for W.'s and E. The Wi can be interpreted as the relevance that a

difference in parameter P. has in the evaluation of the semantic similarity

between the two fuzzy sets. The W.'s also have the function of normalizing

the difference in distinct parameters such that it will be meaningful to

add them together. The reason for introducing a tolerance parameter E is

A • j:
based on the fact that the p-tuple P. is not a complete representation of

the fuzzy set A. Then, as it can be noted in the definition of linguistic

approximation used for this approach, we cannot expect a unique label s^,

to be its linguistic approximation. We rather prefer to find a small non-

fuzzy subset of S such that all its elements are within the tolerance E.

The size (cardinality) of this non-fuzzy subset of S is clearly

determined by the value of E.

Given A c U, this approach does not allow us to claim (on an analytical

basis) that we can find and pinpoint the label s. corresponding to the

fuzzy subset of U which minimizes, over the set term S, the distance

d(uc (u),uA(u))

based on the membership distributions (like dl, d3 or d4). We cannot

claim either that such a label is always included in LA[A].

However if we use an 'efficient' representation of A in P, we can

say, based on several experiments, that s. corresponds to a point P1 in

P which is generally fairly close to the point P representing A.

Therefore a relatively small value of E (refer to Section 8.2) will enable

us to include s. in LA[A] almost always. And in any case the computed

labels are always quite reasonable.
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The advantage of this approach is that the complexity of the search

does not increase with an increment in the dimension of U, which may be

useful if we require a better resolution.

It is also interesting to note that we need to perform the same kind

of operations on a data set of size (pxM), which is much smaller than (DxM).

Moreover we can increase the length M of the language which forms S and

not have to worry very much about the complexity of the search. We can

anticipate that this point is of vital importance when we try to implement

it in a computer. (Refer to Section 8.3). At this point, if we want a

unique answer, we have to apply some metric between each element of the set

of linguistic approximations that we have obtained and the unlabelled

fuzzy set A. This however is not a serious problem, since, by using a

small tolerance parameter E, |LA[A]| is small.

5. Proposal of a Context Free Grammar

In order to be able to deal with a language with several sentences we

need a grammar to generate it. A very convenient one is the so-called

context free grammar [17]. We will limit the level of recursions by not

creating cyclic nonterminals in order to assure that the generated language

will be of finite length.

Let us propose the following grammar Gl:

Gl = (VN,VT,S,P)

where {V..} = {A,B,V,H,U,T} is the set of non-terminals

Wjl " (NOT, OR, AND, VFRY, MORIORIISS, SORTOF, ALL, NONE,
LOW, MIDDLE, HIGH} is the set of terminals

S is the starting symbol



P is the set of productions:

S + A

S + ACA

S + U

A -• B

A •* NB

B * T

B -• HT

B -f VVT

N + NOT

C + AND

C -• OR

H -• VERY

H •*- MOREORLESS

H + SORTOF

V + VERY

T •*• LOW

T •> MIDDLE

T + HIGH

U + ALL

U•+ NONE

20

5.1 Finite Language Generated by the Grammar

In order to compute the number of sentences of the language let us call

c = number of connectors (|C|)

u = number of universal terms (|U|)

t = number of primary fuzzy sets (|T|)

h = number of hedges (|H|)

v = number of hedges which can be nested once

Ihon if wo roiiMilor that wo will not apply a connoctor to two identical

expressions, i.e., (A.CA.), since this is semantically equal to A., we
*

end up with a total number of sentences:

*

Refer to Section 12.4 for its derivation.
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|L(G1)| =u+t(h+l+v2)[2 +2ct(h+l+v2)-c] .

If we evaluate this expression for the particular values of 'u, t, h,

c, v' that we have in our proposed Gl (namely u = 2, t = 3, h = 3,

c = 2, v = 1) we find that

|L(G1)| = 902 .

The previous expression, however, will give us the number of sentences in

the language that we obtain if we modify the vocabulary (corresponding to

change the values of 'u, t, h, c, v').

Some sample sentences of this language are given on the next page,

while the implementation of the grammar is shown in Section 12.3.

5.2 Association of a Membership Distribution to Each Sentence

The membership distribution of each label (sentence of L(G1)) is

computed by generating first the membership distribution of the primary

fuzzy sets and then by applying to them the operators corresponding to the

labels of connectors and hedges.

We have implemented our ideas in APL. In the implementation, each

sentence generated by Gl is a combination of compatible functions which

operate on the vectors containing the values of the membership distributions

of the primary fuzzy sets. The latter are generated by a starting function

in which it is possible to specify the number of partitions, allowing the

user to arbitrarily change this number. This is a very flexible feature of

the system. For more details refer to Section 12.3.

On the next page we show the membership distributions associated with

the labels used to show a sample of L(Gl).f
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6. Feature Selection

This is a very crucial point, since the right selection of features

determines the success or failure of any pattern recognition process [18].

After several tries and experiments looking for an 'efficient' representa

tion, we ended up with the following four parameters:

1) Power

2) Entropy

3) First moment

4) Skewness

6.1 Power

The power of a fuzzy set is defined [19] as the summation of the member-
•kit

ship value of each element of the support of the fuzzy set, i.e.

D

Power(A) = J V*(ui) .
1=1 1

This definition is for the assumed case of having a finite discrete universe

of discourse U, such that |U| = D.

This concept may also be interpreted as a numerical summary of the

fuzzy cardinality of a fuzzy set [6].

In the implemented APL function this value is normalized such that it

will take values in [0,1].

By efficient we mean having a small set of parameters containing a lot of
information on the distribution.

The support of a fuzzy set A c U is a non-fuzzy subset of U such that all
its elements have a non-zero membership value in A. Then the summation
over the support is identical to the summation over the entire universe.
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6.2 Entropy

The fuzzy entropy of a fuzzy set A c u is defined as [19]:

D

Entropy(A) = J S(uA(u.)}
i=l M n

(for PA(u,-) t 0 and vA(u-) t 1) where S( ) is the Shannon functi

S(x) = -xlnx - (l-x)ln (1-x) .

The entropy is a measure of the degree of fuzziness [19] and its

existence (non-divergence) has been proven for the case of a finite support

[19], as well as for the continuous support [21,22].

In the APL function this value has been normalized with respect to

the maximum value that the entropy can take over all the subsets of U.

This happens to be the entropy value of a fuzzy subset whose membership

value is equal to 0.5 for each element of U.

6.3 First Moment

This parameter indicates the 'center of gravity' of the membership

distribution, just as the well-known mean indicates the center of a proba

bility distribution.

The parameter is simply obtained by:

First moment(A) = EnA(u)

and we define EnA( ) (which stands for ensamble average of A) as:

D ^u1*EnA(f(u)) =^f(u.) power{A) •

In the implementation, for the sake of simplicity, we scale the points

on
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Uj e u such that they take values only on the integers, starging from 0,

i.e.

u = (i-1) , i = 1 D .

Then En(u) becomes

D yA(u.)
EnA(u) =EnA(i-l) =^(1-1) pQwer(A) .

The shift (i-1) occurs simply because we are starting from 0 in the

assignment of the values of u.. The membership distribution is normalized

such that its area is equal to one. This is useful for the computation of

this parameter (first moment) and the parameter discussed in the next

section (skewness). However, the distribution will not be normalized

during the inference process (which is part of the approximate reasoning)

nor during the linguistic approximation process.

6.4 Skewness

This parameter is interpreted as a measure of asymmetry of the distribu

tion with respect to its center of gravity. It is simply the third moment.

It is defined as:

D ^3 yA^ul'Skewness(A) =J [(i-1)-(first moment(A))] [power(^)]

=EnA[(i-l)3] .

A distribution skewed to the left can be shown to have a negative

third moment, while the one skewed to the right will be a positive one.

The way this parameter is obtained, in the implementation, is:

Skewness(A) =EnA[(i-l)3] -3xFirst moment(A)xVar(A) -(First moment(A) )
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where Var(A) =EnA[(i-l)2]- (EnA[i-l])2 .

7. Analysis of the Correlation Among Features

Since it is very important to have a very small number of parameters,

in order to have a small-dimensional space P, and in this way reduce

considerably the complexity of the search for similarity, we try to avoid

having two or more parameters with a high cross-correlation (which would

imply redundancy of information).

An experimental analysis was performed in the following way: a set of

seven different parameters was chosen and a non-fuzzy subset of distribu

tions, which was considered a good representative sample of the set of

distributions in U, was mapped in this 7-dimensional pattern space. Then

projections of the points (representing the distributions) were taken over

all the possible 21 planes. Each projection was then analyzed, looking

for a possible function of the two coordinates of the corresponding plane.

A high correlation was found between the parameters:
*

Power and Bandwidth

**

Power and Spread

The maximum of the distribution (analogous to the mode), which toge

ther with the parameters discussed in Section 6 completed the group (certainly

not exhaustive) of parameters used in this correlation analysis, did not

contribute a relevant amount of information. Hence only the previously

discussed parameters were used in the representation of the set of distribu

tions on U discussed in Section 6.

Bandwidth is defined as the size (cardinality) of the subset of U such that
the membership value of each point of this subset is bigger than 0.5. Refer
to Section 12.2 for more details.

"kit

Spread is a measure of the dispersion of the distribution. It is calculated
(analogously to the variance in a probability distribution) by computing the
second moment with respect to the center of gravity.
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A sample of the more interesting projections of the points of this

7-dimensional space on some of its planes is shown in the appendix (Section

12.5). We can verify the strong correlation between power, bandwidth and

spread, as mentioned before, by observing the almost straight line that the

projections form on the corresponding planes. In an analogous way we can

see how other parameters present a very low cross-correlation: the projec

tion on the plane that they form is a very well-spread cluster of points.

We would like to remark that the parameters we have chosen do not

form the only possible set of patterns useful for the purpose of evaluating

similarity among the distributions. It is also clear that the addition of

some other parameter could have 'sharpened' the discrimination since we

would have a more complete representation. However, we consider the group

of parameters described in Section 6 to be a good answer to the trade-off

between complexity and completeness of representation.

8. Prescreening Process

We will extract the information from the set of distributions corres

ponding to the set of labels (sentences of L(G1)), thus obtaining, for

each fuzzy set, a 4-tuple which characterizes it in P.

Then we can form a tableau with five columns: the first four for the

parameters and the fifth for an index which indicates the corresponding

label in the language. We could look at this language as if it were an

alphanumerical array of finite dimensions such that each row of the array

would correspond to a sentence. Then the index (number of the row) iden

tifies the sentence.
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Since we are going to search in this tableau each time we want to find

the linguistic approximation to an unlabelled fuzzy subset of U, it is

very convenient to order the tableau according to some kind of structure

which simplifies the search.

8.1 Parameters Data Structure

Since a tree is a more efficient representation than a tableau, we

will order the latter in such a way that it will be very easy to transform

it into a tree. Perhaps this is best illustrated with an example as shown

in Section 12.5. It is very easy to come up with an algorithm which does

this in a recursive fashion. An example of such an algorithm is given in

Section 12.3.

In the tree corresponding to the tableau (also shown in the example),

a node at each level is equivalent to a group of elements with the same

parameter value in the corresponding column.

The searching problem can be speeded up by the use of this ordering.

A possible searching algorithm could be the following: At the first

level we compute, for each different node, the square of the first compo

nent of the distance d5 from the leaf to the point which represents the

unlabelled fuzzy set. Then a first comparison against the tolerance para-

meter E is made and if for some node we are already exceeding this value

2 A c 2 2
(i.e. (Wf(p?-p?) ) >E )),then we drop all the successors of that node.

We pass to the second level and compute, for the surviving nodes, the square

of the second component of d5, add it to the previously computed square of

the first component and compare again with E . We repeat the process until

we arrive at the leaves of the last 'survivor' nodes. Of course some other

algorithm could be found to perform this search. In particular, if we
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slightly modify the criterion of similarity in this space, a very fast

algorithm could be implemented.

In fact, a geometrical interpretation of such criterion is the following

We want all the points s we select to satisfy

d5(A,s) < E ;

then if we take the square of the previous inequality

I W*(P*-P?)2 <E2
1=1 n n n

this is equivalent to having a hypersphere of radius E in a space of

dimensions

[W1e1,W2e2,W3e3,W4e4]

where

•i =("r^ •

Then the criterion is reduced to check if the point is contained in the

hypersphere.

If we change the shape of the region of tolerance from a hypersphere

to a hypercube, whose center is in the origin and whose edge length is E,

we have the criterion of similarity changed into:

(4x(W2e?)) <E2

for i = 1,...,4 which in fact can be rewritten as:

|W.e.| < (E/2)

for i = 1,...,4.

This metric is called 'city-block distance'.
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This of course defines a tougher criterion of similarity since the

hypercurbe is inscribed in the hypersphere. If we assume the points to have

a uniform density in this space [w,e,,...sW.e.], then the reduction in

volume would be proportional to the reduction in the number of points which

satisfy the criterion.

If we want to maintain the same volume we have to come up with an edge

length E', between E and 2E, such that a hypercube with this edge

would have the same volume as the hypersphere of radius E. This is a
*

simple problem of advanced calculus.

What interests us, however, is the fact that now we can check for the

criterion in this new way:

(W.pA--|-) <W.P^ <(W.P*+^-)

for i = 1,... ,4.

It is quite clear that the check for this new criterion in the

ordered tableau (or in the tree) may be performed in a very fast and

efficient way.

8.2 Determination of Weights and Tolerance

The weights W can be expressed as:

I.
w = _L
1 Ri

where I. is a factor which measures the relative importance of the para

meter P. with respect to the other ones. R. is the length of the range

of values that parameter P. takes over all the points that constitute
*

It can be proven (refer to Appendix 12.4) that

<=• M.4142; L •



32

our data, i.e.

R. =max {P^} -min {P:j}
J J

for j=1,...,M, i= l,...,p. We want to remind the reader that P"? is

the ith parameter of the fuzzy set whose label is s.. We could impose the
j

restriction that the I's have to be normalized such that:

4

n I. = 1 .

i=l n

Clearly if all the parameters are equally important, then 1^=1, for all

i. This, however, gives the user the flexibility of tailoring his own

definition of similarity, by assigning different values to the importance

of each parameter. By defining the weights in this way, we obtain (for the

case of I. = 1 for all i) that the value of the weighted difference on

parameter P., i.e.

W?(P^-P?)2 =W2e2

is in the interval [0,1], provided that the value of the coordinates of

the point representing A in P falls within the range R. This should

be achieved if we have enough data (points in P, representing sentences

in L(G1)).

Because of this normalization, the different dispersion that each

pattern had is now compensated. Then the summation over distinct dimensions

of P (different parameters) is now a meaningful operation.

In pattern recognition literature [10,23] other possible ways of find

ing the weights have been suggested', such that the maximum distance between

members of the same set is minimized. Such proposed weights are:

Wi "~ 2
Sigma.
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2
where Sigma is the sample variance of the set of values of parameter P.

K is a constant which is chosen in order to satisfy a normalizing restric

tion on W., like:

K =

or

if jW. =
7 ( T ) 1=1
i=l Sigma.

K= n(Sigma?)1/P if nW. =1.
i=l n i=l n

We can see that these expressions (and the idea involved in them) are

very similar to the one we are using.

An important remark has to be made: the weights are calculated after

the parameters of the set of membership distributions corresponding to the

labels in S have been computed. Thus they, as well as the tree parameters,

are independent from the values of the coordinates of the point correspond

ing to A. Because of this, they are calculated only once.

We have already seen, in Section 8.1, the geometrical interpretation

of the tolerance parameter E. If we know that W.e^ is in [0,1] for all

i, then we can see that to fix a certain E implies that an average percen

tage of points would be inside the hypersphere.

E = 1 -• 50%

E = .5 + 25%

E = .4 + 20%

E = .3 + 15%

etc.

If we use the 'city block distance', corresponding to the hypercube

instead of the hypersphere, as our tolerance region, then E (or E') is
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interpreted as the maximum (symmetric) range of error for each parameter.

Then we have:

E = 1 •*• max |W..e..| < .5

E = .5 -*• max |W.e.| < .25
i

etc.

8.3 Notes on the Implementation

Since the list of programs is given in Section 12.3 and the results

are illustrated with an example in Section 12.1, we will limit ourselves in

this section to some general but useful remarks on the implementation.

We only have to store the pxM real values corresponding to the para

meter representation of A.

Since we need to keep track of the elements of the original set and,

after the prescreening, we will want to know the distribution of some of

them, we keep an alphanumerical representation of each set. In other words

we store the labels (and its corresponding index in the language), instead
*

of storing the distributions.

When we have selected the elements of the non-fuzzy subset of linguistic

approximations LA[A] (from the prescreening process), we use an APL feature

called 'execute' which we apply to the alphanumerical label transforming it

into an executable function which gives as a result the corresponding

membership distribution.

Another important remark is the following: it may be that the context

free grammar Gl, which generates the language, will produce a set of

sentences which have exactly the same meaning (exact semantical equivalence

It is important to note that while an alphanumerical character needs only
a 1 byte representation, a real number requires 8 bytes to represent it.
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implies that the associated membership distributions are identical), even if

they are syntactically different. An example is given on the next page.

In this case we want to perform a 'compression' on the sentences of

the language and suppress the sentences which are semantically identical,

representing them with the one belonging to the same class of equivalence

which has the shortest and therefore more intuitively understandable label.

Another observation could be made on the need of writing the programs

which deal with the parameters in such a way that they take as input the

columns of the tableau rather than the whole table. This is done in order

to avoid the possibility that, for a large M, we could have a table too

big to be fully represented in the available resident memory. In fact,

some time-sharing systems in which APL is generally available, are blessed

with severe memory restrictions. An example of this is UCLA CCN-IBM 360-91,

where the size of any active workspace is limited to 48K.

9. Label Selection

We have already obtained a small non-fuzzy subset of S, LA[A], as a

result of the prescreening process. Now we want to compare the similarity

between the unlabelled fuzzy set A and the membership distribution of

each member of LA[A], the set of linguistic approximations, in order to

select the 'best' one.

In order to do this we need to define an appropriate measure of the

similarity (or dissimilarity) of two fuzzy sets.

9.1 Euclidean and Hamming Distance

In Section 3.2 we have already examined the Euclidean distance (d4)

and the Hamming distance (d3). However, we will show the result of applying
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those distances, as well as dl, to a sample of fuzzy subsets of U, in

order to illustrate the incongruences pointed out in Section 3.2.

9.2 Bhattacharyya Distance

Recently, possibilistic interpretations have been given to membership

distributions [25,26]. This justifies an attempt in using, after proper

extension, some probabilistic measures to compare two possibility (member

ship) distributions.

A good measure of such a comparison is the Bhattachryya Distance, which

is defined [27] as:

d6(pl(u),p2(u)) = -In R

where R is called the Bhattacharyya coefficient and, for the discrete

case (|U| = D), is defined [27] as:

D 5R(pl,p2) = I [(pl(u.)xP2(u.)]-b .

Note that in this definition we are using membership distributions

which have been normalized, such that:

D

.1 PJ-("i) =1 for all j.

This is simply obtained by:

pj(ui} s power(A.) *

This measure, however, does not satisfy the triangle inequality, and

therefore is not a metric (according to the axioms of footnote on p. 6).
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LOW SQUERR VERY LOW |(Note :The two distance values
0.1011599394 0.0625 1 are respectively d4 and dl)

LOW SQUERR LOW

0 0

LOW SQUERR MOREORLESS LOW |

0.108671633 0.0625 (

LOW SQUERR SORTOF MIDDLE

0.615165483 1

LOW SQUERR MOREORLESS MIDDLE

0.667368678 1

LOW SQUERR MIDDLE

0.6316267735 1

LOW SQUERR VERY MIDDLE

0.5976700794 1

LOW SQUERR MOREORLESS HIGH

0.6844810339 1

LOW SQUERR HIGH

0.642406191 1

LOW SQUERR VERY HIGH

0.6059742254 1

(VERY LOW) SQUERR (VERY HIGH)

0.5672070253 1

(MOREORLESS LOW) SQUERR (VERY HIGH)

0.650410127 1

(MOREORLESS LOW) SQUERR MOREORLESS HIGH

0.7241152237 1

(MOREORLESS LOW) SQUERR SORTOF HIGH

0.6507248705 1

(MOREORLESS LOW) SQUERR MIDDLE

0.6413378873 1

(NOT LOW) SQUERR HIGH

0.6042074699 1
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LOW HAMMINGDISTANCE VERY LOW

0.05571428571

LOW HAMMINGDISTANCE LOW

0

LOW HAMMINGDISTANCE SORTOF MIDDLE

0.4780952381

LOW HAMMINGDISTANCE MOREORLESS MIDDLE

0.540952381

LOW HAMMINGDISTANCE MIDDLE

0.4942857143

LOW HAMMINGDISTANCE VERY MIDDLE

0.4485714286

LOW HAMMINGDISTANCE MOREORLESS HIGH

0.5857142857

LOW HAMMINGDISTANCE HIGH

0.5238095238

LOW HAMMINGDISTANCE VERY HIGH

0.4680952381

LOW HAMMINGDISTANCE NOT HIGH

0.4761904762

(VERY LOW) HAMMINGDISTANCE VERY HIGH

0.4123809524

(MOREORLESS LOW) HAMMINGDISTANCE VERY HIGH

0.53

(MOREORLESS LOW) HAMMINGDISTANCE MOREORLESS HIGH

0.6476190476

(MOREORLESS LOW) HAMMINGDISTANCE MIDDLE

0.5028571429

ALL HAMMINGDISTANCE NONE

1
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We can observe that R takes values in [0,1], being equal to 1

when both distributions are identical. Then we can define a distance d7

[29]:

d7(pl,P2) =[1-R(pl,p2)]-5 .

It can be easily proved that this measure does satisfy all the axioms of a

metric.

By applying this measure to the same sample of fuzzy subsets of U,

used to illustrate the incongruences of d3 and d4, we can see that this

new distance reflects very well the semantic distance among fuzzy sets. It

does not show any of the incongruences mentioned in Section 3.2 for d3

and d4 and it is also less strict than dl. This example is shown on the

next page.

This distance has been applied in the implementation and has provided

very good results.

A geometric interpretation of the Bhattacharyya coefficient R is the

following: if we regard the numbers
V

[p.dO]'5 , j=1,2 for all allowable u

as the direction-cosine of the two vectors in the space U (we can in fact

visualize a fuzzy subset p(u) in a discrete U (|U| - D) as a D-dimen

sional vector), then the coefficient R is the cosine of the angle between

these two vectors.

9.3 Other Possible Distances

Some other distances, actually used in probabilistic contexts, could be

used to measure the dissimilarity of two possibility distributions.
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LOW BHATTADISTANCE VERY LOW

0.1366279357

LOW BHATTADISTANCE LOW

0

LOW BHATTADISTANCE MOREORLESS LOW

0.1142214296

LOW BHATTADISTANCE SORTOF MIDDLE

0.8505931171

LOW BHATTADISTANCE MOREORLESS MIDDLE

0.8761510058

LOW BHATTADISTANCE MIDDLE

0.8957076553

'LOW BHATTADISTANCE VERY MIDDLE

0.928484797

LOW BHATTADISTANCE SORTOF HIGH

1

LOW BHATTADISTANCE HIGH

1

(MOREORLESS LOW) BHATTADISTANCE MIDDLE

0.8429398355

(NOT LOW) BHATTADISTANCE HIGH

0.5132778802

(NOT LOW) BHATTADISTANCE LOW

0.8200559701

(VERY LOW) BHATTADISTANCE MOREORLESS LOW

0.2457850041

(MOREORLESS LOW) BHATTADISTANCE MOREORLESS MIDDLE

0.820374781

ALL BHATTADISTANCE NON*.

1

(NOT LOW) BHATTADISTANCE MIDDLE

0.4949688234
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For example, we could try to use:

d8(pl,p2) =Enpl[1nEl}M|]-Enp2Dng{M|]
where

Enpj[f(u)] =jif(u)1 ^ijy

as it was also defined in Section 6.3.

This distance is called Divergence and it is was introduced by Jeffreys

[29].

Note that the Divergence is not a metric, since it does not satisfy the

triangle inequality.

Several other distance measures could be adapted for this application.

They are extensively treated (for the probabilistic context) in [28,30].

10. Remarks, Applications and Conclusions

Remarks

1) The described approach shows a great flexibility, allowing the user

to define his own concept of similarity by changing the relevance value I.

which multiplies the corresponding parameter P.. In fact, it may be the

case that for some particular application he wants the membership distribu

tion of the linguistic approximation to have the same area under the curve

that the unlabelled distribution has. This can be easily achieved by select

ing a proper high value for the I corresponding to the parameter 'power'.

2) Since the result of the prescreening process gives us a non-fuzzy

subset of S with a small cardinality (compared with |S| = |L(G1)|), we

could apply different metrics to evaluate the similarity of each member of

the set of linguistic approximations and the unlabelled one. Then, since
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each metric would measure a different feature, we could use a majority rule

(2 out of 3) to arrive at a deterministic choice of the label.

3) The parameter 'entropy' has shown to be very sharp in the discrimina

tion of points but it is also very sensitive. This may cause the presence

of a 'disturbance' (like a plateau with a small membership value (0.2)

widely spread over the universe of discourse) which would provoke a big

'jump' in the value of the parameter.

Since all the points are well-distributed (almost uniformly distributed

[0,1] in the weighted pattern space), a large deviation of point P ,

representing the unlabelled fuzzy set A even on only one of the dimensions,

will take it completely off the region where all the points are located.

Three different ways of handling this problem are suggested. The first

one has been implemented successfully.

a) We can calculate the minimum distance of point P to the

set of points and assign to the tolerance parameter E a value of the same

order of magnitude.

b) We can reduce the weight corresponding to the parameter

entropy, in order to compensate for its sensitivity.

c) We can use a smoothing filter, applying it to the unlabelled

distribution before we extract its parameters. This can be done with some
*

kind of deterministic threshold or fuzzy threshold or a combination of both.

A deterministic threshold Td(A) is:

yTd(A) (u4) =
v 0 if vA(u.j) <u0

while a fuzzy threshold Tf(A) could be:

UA(u.) if yA(u.) >yQ

Vui) 1f uA(ui) -y0*WUi)= Ky2(Ui) lf yA(Ui)<.0
where (l/yQ) > K> 0. yQ represents the level of the threshold.
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4) If we could derive a distance from the concept of a dissimilarity

relation, then, if d(s..,A) is minimum over all the s^ members of LA[A],

we could interpret it by saying that A and s. are the only two elements

of the same equivalence class of a partition with a threshold equal to

(l-d(si9A)).

5) If we want to add or replace some parameters, looking for any

possible improvement, we have to keep in mind the four criteria which any

'good' pattern space has to satisfy. (We listed them in Section 4).

Applications

The linguistic approximation is practically the final step of the

process of approximate reasoning, in which the result is interpreted seman

tically and a qualitative answer is given back to the user.

We can refer to three situations in which this step is necessary:

1) We can approximate an infinite language LO = L(G0) (where GO

contains some cyclic nonterminals) with a finite language LI = L(G1).

In fact, the fuzzy set associated to any sentence of LO is treated as an

unlabelled fuzzy set, and its corresponding 'closest' label is searched in

LI. The 'goodness' of this approximation depends, of course, on the proper

choice of Gl, given GO.
*

Dissimilarity relation d is defined [31] as:

v^Xty) =1-us(x,y)

where u$(x>y) is the similarity relation between x and y. The similarity
relation is a generalization of the concept of equivalence relation and
must satisfy:

us(x,x) = l

Ps(x,y) =us(y,x)

u$(x,z) >V y$(x,y) Au$(y,z)
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2) We can find the label for the result of performing a composition of

an entry with a relation which represents the decision table. Such is the

case of the example given in Section 12.1. This is the classical inference

process, present in most applications of fuzzy sets.

3) We can interpret the results of a truth-qualification:

(X is F) +nx = F

(X is F) is L+ n = F*

where uF*(u) =uL(up(u)). Then we are able to find LA[F*]. Note: IIx
represents the induced possibility distribution of X.

Conclusions

The described approach does not pretend to be the panacea for all the

problems which may arise when we try to solve the non-trivial task of find

ing the linguistic approximation to any unlabelled fuzzy subset of some

universe U.

Since the tendency is moving toward a more flexible language (hence

a mpre complicated ^opir), this method attempts to cope With the increasing

doniplexity Of an exhaustive search by offering a short-cut (the reduction of

the dimensionality of the data).

It is insensitive (as far as increasing of complexity is concerned) to

increasing the number of elements of the universe of discourse, which some

times may be useful in achieving a better resolution of membership distribu

tion curves.

It also shows a solution to the classical trade-off between space (for

storage) and time (for processing) that we have to face in the implementation

By keeping only the alphanumerical representation of the distributions and a



46

reduced number of real-valued data, we save memory space; by using the pattern

space representation, we save processing time.
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12. Appendices

12.1 Illustrative Example

In order to illustrate this method, a couple of examples are given.

In these examples a small language (containing 32 sentences) was chosen.

This reduced language is a non-fuzzy subset of L(G1) and it is listed (5n

the next page. In the first example an unlabelled fuzzy set was created

and (for a tolerance E = 0.4) three labels were selected in the prescreen

ing process: HIGH, MOREORLESS HIGH, SORTOF HIGH. Finally HIGH was

selected among the three labels to be the linguistic approximation to the

unlabelled one.

In the second example we created a 3 by 2 decision table TOT:

TOT =

Y

LOW HIGH

MIDDLE MIDDLE

SLTGHTLY
HiGH

MOREORLESS

HIGH

which can be interpreted as:

if X is LOW then Y is HIGH or

if X is MIDDLE then Y is MIDDLE or

if X is SLIGHTLY HIGH then Y is MOREORLESS LOW,

Then the following compositions were performed:

T, = MIDDLE o TOT

T2 = (SLIGHTLY HIGH) oTOT

T3 = (VERY HIGH) °TOT



50

The linguistic approximation for Tl, T2, T3 was found using the

above described method, yielding these results:

LA[T1] = MIDDLE

LA[T2] = MOREORLESS LOW

LA[T3] = MOREORLESS LOW

It is important to note that in our very limited language we did not have

any not normalized fuzzy set.

This is the reason why the linguistic approximation to T3, which is

sub-normal, is a normal fuzzy set.

This can be solved by using a larger language which includes connectors

like AND whose application creates sub-normal fuzzy sets.

The results are shown on the following pages.
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OBS+OBSt% »
0BS+0BS.A2LAST
0BS+0BS,A1LAST

OBS

LOW 1
MIDDLE 2

HIGH 3

VERY VERY LOW 4
VERY VERY MIDDLE 5

VERY VERY HIGH 6

P£i?y LOW 7
K£/?* MIDDLE 8

P£/?y fflGtf 9
MOREORLESS LOW 10
MOREORLESS MIDDLE 11
MOREORLESS HIGH 12
SORTOF LOW 13
SORTOF MIDDLE 14
SORTOF HIGH 15
fl0T L0V 16
AWT MIDDLE 17
00T #IC7# 18
AW? y£i?* VSi?* £0^ 19
00T Ptf/?* V£#* MIDDLE 20
AJ0T y£i?y /£/?* ffI0# 21
NOT VERY LOW 22
#0? VERY MIDDLE 23
00T /£i?J HIGH 24
#02* MOREORLESS LOW 25
/I/0T MOREORLESS MIDDiE 26
iWr MOREORLESS HIGH 27
/M? SORTOF LOW 28
#0T SORTOF MIDDLE 29
ff0T SORTOF HIGH 30
ylLL 31
JV0iV£ 32
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0.50-

0.25-

0.0

o o o

O.oo-o-o-o-o-o-o-o-o-o-o

10.0
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O O O

20.0

a THIS IS THE UNLABELLED FUZZY SET

1.00- I © o

o

o

0.75-

0.50-

0.25-

O.OO-o-o-o-o-o-o-o-o-o-o-o-o

I I I I I
0.0 10.0 20.0

A THIS IS THE MEMBERSHIP DISTRIBUTIDON OF THE SELECTED LABEL 'HIGH1
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A THESE ARE THE MEMBERSHIP DISTRIBUTIONS OF THE OTHER TWO POSSIBLE CANDIDATES
A TO THE LINGUISTIC APPROXIMATION OF THE UNLABELLED FUZZY SET.

1.00-

0.75-

0.50-

0.25-

O.OO-o-o-o-o-o-o-o-o-o-o-o

0.0 i°-°

A THIS CORRESPONDS TO 'MOREORLESS HIGH'

o

o
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0.75-

0.50-
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o oo-o-o-o-o-o-o-o-o-o-o-o

' I I I
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12.2 Basic Concepts of Fuzzy Sets

The purpose of this appendix is to give a very brief introduction to

the basic concepts of Fuzzy Set Theory. Its scope is limited. For a much

more complete treatment please refer to [1,15,16],

Let U be a collection of objects or concepts {u} and let us refer

to U as the 'universe of discourse'. Let A, B, C be three fuzzy subsets

of U. Let uA(u) be a function which maps from U into [0,1] and let

us refer to uA(u) as the 'membership function of A1. We can represent A

as

A = u uA(u) .

Given a universe U, we say that A c U is fully characterized by its

membership function y*(u). We define the following operations on fuzzy

sets, based on their corresponding membership function.

Eguality (=)

A=B iff uA(u) =uB(u) for all uGU

Containment (c)

Ac B iff uA(u) <uB(u) for all u e U

Union (OR)

C = A OR B iff ur(u) = max [ufl(u),uR(u)]
L for all M B

UGU

Intersection (AND)

C = A AND B iff yr(u) = min [u«(u),uR(u)]
L for all M B

ueu

Complementation (NOT)

B= NOT A iff uB(u) =l-yA(u)
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Union, intersection and complementation satisfy De Morgan's laws, as well as

the associative and distributive properties.

Definition of an 'alpha-level-set'. An alpha level of a fuzzy subset

Aaipha ={"|PA(u)±a1pha} '

Then A satisfies the resolution identity

A = u [alpha A , . ] .
Valphae[0,l] a,pha

The 'bandwidth' of A is the 0.5 level-set of A. The 'support' of A

is defined as

Support(A) ={u|uA(u) >0} .

Other useful operations on fuzzy sets are:

Bounded Sum (©)

C= A© B -*• ur(u) = U [1 AND (yA(u) • yR(u))]
L VuGU

Bounded Di fference (e)

C= Ae B+ ur(u) » U [0 OR (yA(u) - uR(u)]
C Vu^J ad

Raising a fuzzy set A to a real number power 'beta',

B=Abeta -yB(u) -[yA(u)]beta ,

The linguistic hedges used in the grammar proposed in Section 5, when applied

to the label of a fuzzy set A, are the operators defined as:

VERY A= A2

MOREORLESS A= A1/2
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Implication (=•)

Several ways of defining implication could be listed. We will limit

ourselves to only two of them.

A =>B = [AxB] OR [(NOT A) x V]

or

A=»B = [(NOT (AxV))© (UxB)]

where U and V are the universes of discourse of A and B respectively,

x denotes the cartesian product which is defined as:

C = AxB - yr(u.,u.) = U [yfl(u.) AND yR(u.)] .
L n J for all M 1 * J

ueu

12.3 List of APL Programs

A list of APL programs follows.



)L0AD FUZZY1 63
SAVED 17.13.48 06/19/78

VSTARTlUlV

V STARTiM
[1] 'ENTER DIMENSION'
C2] D+U
[3] HIGH<-(L((D-l)i2)) SFN(D-l)
[ 4] LOW+bRIGH
[5] Af-r((0-l)*4)

[6] #IZ?Z>Z,£«-(Af+lx(L(Af*2))*(tf*2)) PFNCT( \ ( (D-l )*2 ))
[7] 4£/>£pl
[8] NONE+DpO

VSFNlUlV

V S«-;4 S2W CiBiXliX2iX3;Xk
[13 B^r(i4 +c7)*2
[23 5*-*l«-(;4 +l)p0
[33 S+S 9X2<-2*( ( (A +1 (B-A))-A) *(C-A))* 2
[43 5^£,X3«-l-(2x(((B+i(t?-£))-c?)*(c?->0)*2)
[5 3 5+5,X4«-(0-(c?+l)) pi
[63 5-*-0.01xL0.5+100x5

VP*W:T[D3V

V P+B PFNCT t?;A'l;X2
[13 P<-Al«-((~l +iZ?)5;c?)/((i7-£) SFN C)
[23 P*-P,*2<-(Cl +iZ?)>c?)/(l-(c? SFN(C+B)))
[33 P«-0.01xL0.5+100xP

V

V2*i4fl££2[D3V

V R+TABLB2 Z\X1\X2
[13 *1«-Z[i03
[23 A2*-Z?pZ[ZHiZ?3
[33 i?«-*l RELATION X2

1RELATI0NIU1V

V y«-4 RELATION B
[13 y*-i4o.LB

V

Vi?0Af P0 SITI0N2 [ D 3 V

V Y+A C0MP0SITI0N2 B

[13 Y+Al.lB
V



VMOREORLESSLDlv 64
V Y+MOREORLESS A

[13 7«->i*0.5
[23 ir«-o.oixLo.5+iooxy

V

VSORTOFIUIV

V Y4-SORTOF A

* [13 Y+NORM((NOT(VERY VERY A)) AND(DIL A))
V

VNORMlUlv

V Y-NORM A

[13 Y+A*([/A)
[23 y«-0.01xL0.5+100xy

V

vveryiuIv

7 Y+VERY A

[13 y«-i4xyl
[2 3 ]T«-0.01xL 0.5+100xy

V

vz?ix[03v

V y«-0IL i4

[13 Y+MOREORLESS A
V

V0fl[D3V

V Y-*-A OR B

[13 y+^rs
V

VANDLUlV

V y+i4 i4M7 B

[13 y«->!L£

v5Lit7^rLy[D3v

V Y+SLIGUTLY A

[13 Y+INT(NORM((PLUS A) AND(NOT(VERY A))))
[2 3 y+o.oixto.5+100xy

V

vintIUIv

v y+iivr >i

[13 Y+NONE
[2 3 y[(i4S0.5)/iZ?3+2x(>lC(>ls0.5)/i/?3)*2
[33 y[(/UO.5)/iZ?3«-l-(2x(l-/![;(/UO.5)/t03)*2)
[43 y+o. oixlo. 5+iooxy



VPLUSWlv 65
V Y+PLUS A

[13 y«-/l*(~l +(5)*0.5)
[23 y+O.OlxLO.5+100xy

V

^HAMMINGDISTANCE[03V

V R+A HAMMINGDISTANCE B

[13 R+(+/(\(A-B)))*D

vSQUERRLDlv

V Y+A SQUERR B\Y1
[13 y«-((+/U-£)*2)*0.5)*(Z?*0.5)
[23 y+y„yi+(r/((i4-B)*2))

7

VBHATTADISTANCEIUIV

V R+A BHATTADISTANCE B\R1
[13 * IT COMPUTES THE BHATTACHARYYA DISTANCE
[2 3 iU+-i4*(lx(( + />O=0 ) + (+/>!))
[3 3 £l«-£*(lx(<+/£)=0 )+(+/£))
[43 i?l+(i41x5l)*(0.5)
[53 i?«-(l-(+/i?l))*0.5



VPOWERlU'lv 66

V Y+-POWER A\Y\
[lj Y+(+/A)*D
[2 j Y+Y,Y1++/(A>0)

VBNTROPYlUlv

V Y+ENTROPY A;B;C;ViVl
[13 B+AL(A>0)/\D1
[2] O(l-iO[(<l-iO>O)/i0]
[33 V+NONE
[4 3 Vl+NONE
[5] y[(/1>O)/i03«-(B**S)
[6] ia[((l-/D>0)/i£3«-(C><»£)
[7 J Y+(+/(V + Vl))iENTROPNORM

VENTROPNORMWlV

V Y-ENTROPNORMiA
[1] /H-0. 5x/1Z,L
[2] y«-2x(+/-(/lx<M))

V

V^IA,5TAf0W£W27[D3V

V R+FIRSTMGMENT A;A1
[13 i4l*-^v(lx((+//5)=0 ) + (+/>?))
[2] /i«-+/((~l + i0)x41)

V

VS#(/£M*55[GJV

V R+SKULNESS A

[13 R+(THIRDMOMENT A)-((3*(PIRSTM0MhNT A)*(SPREAD A)) + (F1RSTM0MENT A)* 3)
V

V5Ptf£/?Z?[D3V

V R-SPREAD A

[lj h*-(SECONDMOMENl A)-(FIRSTMOMENT A)*2
V

V5£C,0#ZW0#£7I/Z'[GJV

V R+SECONDMOMENT A\A1

[13 /U«-;4*(lx(( + /iO = o) + (+/iO)
[2 j A++/((("l + i/5)*2)x/ll)

V

VT#IffZW0M£WT[UJV

V n + 'iHIRDMOMLNT A;A1

[1 j '/ll«-/J*(lx( (+/>|) =0 )+(+/>!) )
[2] A«-+/(( (~l + i£)*3)x>ll)

V



i7/(([T](jd))5/»)«- Cee]
t+/»-»•/» [2e]

27/(([X3(Fd))>tfj)4- [IS]
l+NI+NI [06]

e7/(([T3(^d))5(y+iVI))-H [62]
!+#••# [8 2]

[i(^+A/I)3b',J5,[5/'3^V^*[SiVJ]^V0-[^I]S' [Z.2]
« i+>rr*>ri!€7 [92]

X+#:27 [52]
X-tfi:X7 [+t2]

c/S'd((([2 3(fd))x2 +([2](^d)) +e)«(2*([X](b'd) +x_)x(CX3(l^d))x[X3(^d)))^S' [82]
X-*-f [22]

Q+Xl [12]
(ff'JS€ (iVd((A/d)«[X](ffd)))-^^)[X]4 (<?£<*( X+Ud)€ [I] (ffd))*ff)-^ [02]

tiff [X]VJ^(((/d)x2+X-[2](//d))«[X](XffcJ))4Xff)[X]4(cf5d(([3](ffd) +T)«[i](12;d))*I2;)^ff [6X.
2ff* ds'*ia+*ia [8x;

7/([x]ud)>i)«- [z,x;
i+j^r [9i;

[([2](^d))i +([2](^d)x,r)i]effH.[!([x3(7d))i+([x3(j;d)xi)]+iff:7 [si;
d8* ( C2 3 (#d)' ( [ I 3 (Z<> ) x[ X3 (ffd )) )-*8 [ +rX ;

o+i [ex;
//•d(([23(^d)x[x](^d))«[x](j;d))^eff [2x;
j;,d([2](i;d),([x3(j;d)x[x](^d)))-2ff [xx;

j;VS',(/id((/id),[x3(7d))->xfir),cfs,*xff-*-xff [ox;
iZON*<tZ+Jl [5;

» ••*<?$ ~.[s;

tit+do u;
i)%+dO [9;

i/C¥.?yi4dtT^/i [s;
iSNONt '» 77F» d t, 2 ^/7 [17;

» j/0i • n7/Wid e 2 o [s;
» d0ZX0Si\SS37X03H0N>\ Xd3At<* OX 8 -•# [2]

» H0IHt\37(iaiNt\ 407. d 9 6 -•,£ [X;
UVHNVXO A

A[Q]OT/WIW0A

£9



•' )LOAD COLUMNS •'. ,: '̂ 6g ' /f^i-VV.''
^£0 13.42.1006/07/78 _

VORDEBiniV ;.

V B+OR&QR A> •": .^-; ,:':'/W
J B+M ". '•• - •••:• ; >;•-;;;••..; •. •.;'••..';. :",;* >• -.,,'r •.:./•'

v ' •". -••. ; •"••'"',; '• ''•.•'•!•>:»• .'•'••':••.!,•;" .•'."• •. !- : •''".•. ':." t\ '•'",".:;•.;

vLENGmtQlv ''•':.-i:Ar''.'r'l:' '7;"-«.'- .'••;. ".•:-".;;'.-'"'

3 i^(<y?i)/i(py))0((pvr)+/i) ••; M ..; .,:/•.;'•;.
3 L^(l*^)^-(rl*Lff) v; •' !k-.:. :V';';;.

V . .• ';:'••/• ;.. <<-, -.,.' " .• ' •<•;•:— -. '•' • '.. ' ' '.' • ', '"• .:.;'V .

v vd*bmlvep? c "•-' •'"-..v-;;/•"• •="*•i"fi;-.v- 'v '̂//.

V £N+LBQKDtiRNEXT C\ TBHPiZt^MdiltlP^k, ':/" -•.' ••'/,' V-'-' ^ •#• E'i^
J •: 52^0'!;-,-:••• ."^;. r ? ' •:' ''
3 -'EB]i*ijili%;
3 " IN+iQ •;V.'>.,v>''-.' ••.. W
] I00P:2Wi^*^C^ti^3 j •#*
3 IN*ZHia$THtoTMPy}

3 v••.,*{&W0WMP
] •^'':ST*.E0;*'ST'->:.:•:
oi ibn^lhiiJ ;"•.•.'•••:»:.•;.•{ '•' • ' v <-.•;.••;;•;;••.••':• ';':',• ••••''•,:.'.-'.
,i3y*zi0.iop; . vr.;.',;^\.,-;v.'- . -•'..:--,,'y-v-'V1' f!''v<-:Yi:- -•' — ; ; • v; ...>••/,. v.;,;.'.,

y\'y^j^pi^ ".v; ';';i'r '''•':/•'--f''.''-- • ;,:":",''.':'; ;•••'••

L] PB^((B0i;4^;C^

l] W*(licSS|^i?i9WCi^ tAXiivXifoii m)V*(EPSI*2)>)/PB)
!3 ^|<|2||W^(5^[||^ 33xVffE3 3«i (^ E^3t«3EPc?3 )*2) ))*<BPSI*2)) )/#•)
>3 *<<V/^i^|o^>^!j^ftv::"•'• ,.,.:f;"-.v'1'::"''?y '̂''''Vr';':'>. ': •"•' '•'•' .'."• y-'̂ ,,; ••'•'̂ •••' •-•• '•••• '.4.4i • •• •'
r] • i^< (W0^(C^ <i4E^3VX4EP/?3 >*2)) )f(pP5I*2)))/PP)
j']v." :*('(V/B^:i©|*b')/^' '••.,'••••"";• '̂•^-v!;;':'"'1 '• .":V•?•••;.•,'•: •••:•••> •'v.-,;.-.. • • 'Vr v-''", ;:;v,v .•
n to^^- ^ •.,••'•••"••.•.• ' .-..•:-••••',•.'v' '.v^.y:.; '" •'' , • >?••"*/-..''""•"••. ,.•••;•.'.;••''..'•"••.• •
103 •i»*i:':V-!.;.'"'*;-;- •- ,v,-,li.' 'v: v..-"..',. ,,'••• : '•'; »»':•...',•' -,,:•:; • "'•./•?•••••]• ' •• •.••:•,,' V- •"••> i.-;,.!;. •,,,:.;.. •'••

•n • •• - --'V;'- ,';';:' :;.'• V .-" '. ••:•• ' . • '• ^•••? ••.. .-;''./ ' '. ':;. V' •'•'•c> \ •"• .• '; .-. •. - • •.•.'•.
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VSEARCHEX3l\nv70

'Y+SEARCUEX3A
WE+WEIGHTxLK
BR+((pKl),4)p0
m;l>&^El]*£ffEl]x((>l[l]-tfl)*2)
£ffEs23«-&'£E2]xZ;A:E2]x(<4[2]-tf2)*2)
i?i?[;3>^E3]xL^E33x((>![33-/^3)*2)
ff/?E;43*^E43«^E43x((i4E43-^4)*2)
R3++/ER

HERE:Y+{B0LY+(R3<(EPSI*2)))/\pR3
•*•((+/B0LY)=Q)/WARNING
+END

WARNING:•NOPOINTSWITHINTHEGIVEN
it

9

TOLERANCEEPSI=9iBPSI

THECLOSESTPOINTISs•

y«-((l//?3)=J?3)/i(p/?3)
y
tt

•ITSDISTANCEFROMTHEGIVENPOINTIS:•
BP+(R3lYl)*0.S
BP
io

•THESQUAREOFTHECOMPONENTSOFTHEDISTANCEARE
BRUil

=»

£F«-1.15x£P

'SUGGESTION:
t

t

t

t»

'THISWILL
EPSI+EP

+UERE

ENDi

REPEATTHEPROCESSUSINGANE%,RALIfEtOREPSI®
THISVALUEISOBTAINBYASSIGN'EPSI+•EP'
THISNEWVALUEIS15PERCENTHIGHERTHANTHEMINIMUMDISTANCE
INTHISCASEEP=•lEP

BEDONEAUTOMATICALLYBYTHEPROGRAM*

VEXTRACTWlV

7y+extractin*i.*25y3
El]Y+iPOWER4)E13
E23X+Y0Y1+ENTR0PYA
[3]Y+Y9Y2+FIRSTM0MENTA
[4]Y<-Y9Y3+SKULNESSA
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12.4 Formulae Derivations

Derivation for the expression for |L(G1)|:

b =t +ht +v2t =t(h+l+v2)

a =2v =2t(h+l+v2)
a-1

s = a+u+c I (a-i)

=u+t[2(h+l+v2)] +t[2th2+4th+4thv2+4tv2+2tv4-h+2t-l-v2]c

=u+t[2(h+l+v2)] +t[2tc(h+l+v2)2-c(h+l+v2)]

=u+t(h+l+v2)[2 +2tc(h+l+v2)-c]

Derivation for the expression for the volume of a hypersphere of

radius e:

V=f dw fffdv =[ dw(|irp2) =l\ |rrp3(w)dw
R3

[Sirp = volume of a sphere of radius p in K ]

9 9 9 9 9 9 222
Conditions: x +y +z (= p ) + w = e => p +w = e

Then 2pdp = -2wdw
^__. => dw = ^— dp

w = /e*-pz J&-p*

w •+ +e -+ p = 0

w •+ 0 •+ p = e

V- 2 f 4rrp3)( q—)dP =h I*-2— dP

From tables: f x dx =-^v^TF-le^v^F+le^in"1 -rjr+c =f(x)J/pi^r 4 8 8 |e|
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implies 8 8 r3 4tt-V=fir(f(e)-f(0)) - fr[feHf]

4
but V = e' implies

V = -k- e

12.5 Graphs and Tables

Pertinent graphs and tables follow.



2.6190476**1
2.8571429**1
2.6190476**1
1.6047619**1
1.6190476**1

6047619**1
0519048**1
1809524**1
0519048**1
2380952**1
5904762**1
2380952**1
3000000**1
0571429**1
3000000**1
3809524**1
1428571"~1
3809524**1
3952381**1
3809524**1
3952331**1
9330952**1
8190476**1
9380952**1
7619048**1

6.4095238**1
6.7619048**1

7000000r*l
9428571**1
7000000**1
0000000*0

0000000*0

2.5029317**1
3.0240237**1
2.5029317**1
1.6191073**1
1 .9582174**1
1.6191073**1
2.0561410**1
2.4684148**1
2.0561410r*l
2.7215771**1
3.2237294**1
2.7215771**1
2.9620703**1
3.0989855**1
2.9620703**1
2.5029317**1
3.0240237**1
2.5029317**1
1.6191073**1
1.9582174**1
1.6191073**1
2.0561410**1
2.4684148**1
2.0561410**1
2.7215771**1
3.2237294**1
2.7215771**1
2.9520703**1
3.0989355**1
2.9620703**1
o.oooooooro

0.0000000*0
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2.6363636*0 5

1.0000000*1 "1
1.7363536rl *5
1.455973370 1

1.0000000rl *5
1.8543027*1 "l
1.9976905*0 3

1.0000000*1 l

1.8002309*1 "3
3.2838235*0 5

1.0000000*1 *5
1.6716176*1 "6
4.9378882*0 1

1.0030000*1 5

1.5062112*1 "1
1.2612903*1 *1
1.0000000*1 "5
7.3870968*0 1

1.1633012*1 "7,
1.0000000*1 0

8.3669881*0 7

1.2078584*1 "1
1.0000000*1 2

7.9214157*0 1

1.3216197*1 "2
1.0000000*1 2

6.7838028*0 2

1.1512059*1 "1
1.0000000*1 3

8.4879405*0 1

1.0000000*1 1

0.0000000*0 0

4806912*0 1

7053026**13 2
4805912*0 3

5753724*0 4

684 3419**14 5
6753724*0 5

3570716*0 7

7053026**13 8
3570716*0 9

3427147*0 10

6 8434 19-** 14 11

3427147*0 12

3920595*0 13

6843419*"14 14
3920596*0 15

6304146*1 16

6843419**14 17
6304146*1 18

8058532*0 19

0000000*0 20

8 0 53532*0 21

1556179*1 22

8421709**13 23
1555179*1 24

0340745*1 25

2737353**13 26
03407M5*! 27

1481841*2 28

4105051**13 29
1481841*2 30

1368584**13 31
,0000000*0 32

fl THIS IS A 32 X 5 MATRIX THAT WE WILL £/5* AS AN EXAMPLE

A FOR THE ORDERING PRO^FDURE



)COPY TREE TOT
~/U'~0. 15.18.38 05/02/78

p?0?
32 4

I1+0RDER TOTlill
Kl-TOTlil']
Kl+KlEJll
V1+B00LVECT XI

Vl«-+ /l'l

22

11

22

29

;/i

K2<-?0Tli2l
I2-ORDPR K2

K2+K21I21
V2+B00LVRCT K2

V2«-+/f2

"2

K3+T0Tli3l
I3«-0*-** K3

K3-K31I31
VS+BOOLVVCT K3

"3«-+/i'3

;/3

KH+TOTliM
14*0/?*"* K4

"4<-K4El4 3
VH+BOOLVECT K4

NH++/V*

04

t

ft 32 5

TOT+rOT,(\M)

pTOT

%•: ,4i-14.8,I4, HFMT TOT

74
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3.0240237**1
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1.6191073**1
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2.9620703**1
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0.0000000*0
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1,.0000000*1 3,.4106051**13 29

8,.4879406*0 1,.1481841*2 30
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0,.0000000*0 0,.0000000*0 32
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