Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



A PATTERN RECOGNITION APPROACH TO THE PROBLEM

OF LINGUISTIC APPROXIMATION IN SYSTEM ANALYSIS

by

P. P. Bonissone

Memorandum No. UCB/ERL M78/57

11 August 1978



.
‘o

A PATTERN RECOGNITION APPROACH TO THE PROBLEM
OF LINGUISTIC APPROXIMATION IN §YSTEM ANALYSIS
Piero P. Bonissoné
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Abstract

The problem of the linguistic approximation is defined on the basis of
semantic equivalence. The process consists of interpreting the meaning of
any given membership distribution and attaching to it a linguistic label.
Some problems of existing implementations of the linguisitc approximation
are pointed out. A new approach to the problem, based on feature selection
and pattern recognition, is introduced. The sentences used as linguistic
labels belong to a language generated by a context free grammar. A member-
ship distribution is associated to each corresponding lable. A prescreen-
ing process is performed among the distributions, using the information
coded and ordered in the parameter space. The result is a non-fuzzy subset
of sentences which are proposed as possible candidates to solve the linguistic
approximation problem. Finally, different metrics are applied to these
preselected labels and the best candidate is chosen to be the linguistic
approximation to the given distribution. Possible modifications to this
method are suggested. Some remarks are made about the flexibility and
efficiency of this approach. In the conclusions some notes on the necessary
trade-off to be considered in the implementation are given. An illustrative

example is shown in the appendix.

* :
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2. Introduction

The theory of Fuzzy Sets, introduced in 1965 [1], has proven to be an
appropriate tool in dealing with the inherent imprecision of the concepts
involved in human reasoning and natural language [2,3,4,5,9,20]. The
classical two-valued logic is just too rigid to efficiently represent this
kind of information.

It is believed that the human ability to make rational decisions in
complex or fuzzy environments, based only on imprecise information, is an
approximate rather than a precise process [6].

The information, which constitutes the premises for the deductive
process, generally has a qualitative nature, its form being, for instance,
an expression in natural language. By using fuzzy sets we are able to
transform it to a quantitative representation: the same concept now is
represented by a linguistic variable with a value which is a fuzzy subset of
the universe of discourse whose label is a sentence in a natural or syn-
thetic language.

Therefore, a language can be seen [7] as a fuzzy relation L from a
set of terms S to a universe of discourse U, which assigns to each

pair (s,u) element of SxU a grade of membership

w (s,u) .

If we fix s, the membership function uL(s,u) determines a fuzzy subset

A(s) of U whose membership function is:
UA(S)(U) = UL(S9U) ’ ue€ Us s € S .

The fuzzy subset A(s) of U is the meaning of s. The term s is the

label of A(s). ?



Among the terminals of the grammar which generates the language we find
primary terms, hedges, relations, conjunctions and disjunctions. While the
first are labels of primary fuzzy sets, the rest can be seen as labels of
different kinds of operators* which act on the primary fuzzy sets, modify-
ing their original membership function values (membership distributions).

A problem arises when, as a result of a fuzzy reasoning process, we
obtain a fuzzy subset of U whose membership distribution does not have a
corresponding label.

Then the process of the linguistic approximation to this fuzzy subset
consists in finding a linguistic value (label), element of S, whose mean-
ing is the same or the closest (according to some metrics) to the meaning

of the unlabelled fuzzy subset whose distribution we just obtained.

3. Definition of Linguistic Approximation

An informal definition of the linguistic appfoximation was already
given in the previous section. The idea of "...finding a Tabel. . .whose
meaning is the same or the closest to the meaning of the unlabelled fuzzy
subset..." is nothing else but looking for the term s element of S
which has the highest semantic similarity to the unlabelled fuzzy subset.

The meaning of s, which we defined previously to be A(s) C U, is

*k
completely characterized by its membership distribution

IJA(S)(U) .

* .
Refer to Section 12.2 for more details or to [8,9,20] for a more complete
treatment.

*%
In order to simplify the notation, from now on we will just write us(u)
instead of “A(s)(u)‘



Therefore the semantic comparison between two fuzzy subsets of the same
universe of discourse can be done by comparing their membership distributions.

According to the criterion used in performing this comparison we may
have different criteria of semantic similarity: we can already see that the
Tinguistic approximation to a fuzzy subset is not unique. A discussion on
the different metrics (distances) used to evaluate this similarity is given
in Section 3.2 and more extensively in Section 9.

Because of the lack of a precisely defined criterion of similarity, the
approximation has to be found by "ad hoc" procedures. A remark is given in
[2]: Zadeh notes that "...the standard of precision in computations involv-
ing linguistic values are, in general, rather low. This however is entirely
consistent with the imprecise nature of fuzzy logic and its role in approxi-
mate reasoning." |

We will try to formalize, within the 1imits dictated by implementation

restraints, the informal definition previously given by saying:
LA[A] = sp s
if d(up(u)supi (u)) = min dup(u),uglu))
ATTTA ygeL1 A B

where: A and A' are fuzzy subsets of the same universe Us
A is the unlabelled fuzzy subset;
L1 s a finite term set language (the linguistic labels);
sp! is the linguistic label (sentence) associated to A',
which belongs to L1;

*
d(A,B) 1is any distance which satisfies the axioms of a metric.

*These axioms are [10]: d(A,B) > 0 if A # B; d(A,B) = 0 if A = B;
d(A,B) = d(B,A), d(A,C) < d(A,B)+d(B,C).



3.1 Existing Implementations

The previous definition of linguistic approximation is based on a best-
fit method and two existing implementations follow this method:

Wenstop [11] implemented it using
d(A,B) = d1(A,B) = max (“A(ui)'”B(ui))z for all u; elements of U .
i

Kacprzyk [7,12] used the following distances (for the case in which the

universe is partitioned into D points):
D 2
d(A.B) = 2(AB) = 1 (uplu;)-ugluy))” -
1=

Kaufmann [13] proposes two normalized distances as a measurement
between two fuzzy sets (he introduces them as measurements between two

fuzzy languages):

D
4(A8) = 43(A.8) = ] lupluy)-uglu)|
1=

and

d(A,B) = d4(A,B) = (& 5 ( (u; )-ug(u,))230+3
’ ’ D4y AT B :

Procyk [14] instead of using the best-fit method, prefers to express
the linguistic approximation to a fuzzy subset of U as a linear combination
of rule output sets (the terms in the last column of a decision table; refer
to Section 12.2).

Since the unlabelled fuzzy set is obtained by:

A = max (t; min B;)
i

where‘ti's are scalars in [0,1] which are then interpreted as truth values

.th

and Bi is the i element of the last column of the decision table.



Then the linguistic approximation is given in terms of the linauistic
values of each Bi with non-zero ti’ preceded by the confidence adverb

associated to the corresponding ti‘

3.2 Comments on These Implementations

In order to evaluate the different distances let us partition the
universe of discourse U into D discrete points, i.e. |U] =D and
let us use a finite language L1 which contains M sentences, i.e.

IL1] = M. Gl 1is the grammar which generates L1 (for more details refer
to Section 5) and contains the following terminals:

LOW, MIDDLE, HIGH, ALL, NONE (primary fuzzy sets)

VERY, MOREORLESS, SORT OF (hedges)

OR, AND (connectors)

NOT (negation)

(, ) (markers)

The membership distribution. associated with the sentences of L1 are
obtained by modifying the membership distributions corresponding to the
primary fuzzy sets with a combination of operators (hedges, connectors,
negation). The combination is determined by the production rules of grammar
Gl (refer to Section 5) and the function of each operator is described in
Section 12.2, while its implementation is shown in Section 12.3. A simple
example is given, for the case of D = 21.

Distance d1 (introduced by wenstop)lhas the advantage that it is
easy to program and, in the comparison of two distributions, it may not be
necessary to perform D differences on the elements of U, since if any
of the already computed differences are equal to 1 (= max value of the

distance), then the value of the final distance will be equal to 1.
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However, it has two serious disadvantages:

1) It penalizes too much the difference in just one point. This is
illustrated in Fig. 1; if we have an unlabelled fuzzy set A and we have
to select between B and C, C would be chosen (instead of B, which
intuitively should be the result).

2) If we are comparing all the M distributions with the unlabelled
one, distance dl would come out equal to 1 (which is its maximum value)

for most distributions. We may refer to the example given in this section,

where
d1(LOW, MOREORLESS LOW) = 0.06
But
d1(LOW, SORTOF LOW) = 1 ,
as well as

d1(LOW, MIDDLE) =1 ,
d1(LOW, HIGH) =1 , etc.

This means that most distributions are considered too distinct and are
rejected. Because of this kind of strict tolerance, we need a large value
of M (equivalent to say a large language) if we want to assure a decent
fit of the obtained linguistic approximation. However, this implies a
considerable increase in the number of comparisons since we need to perform
an exhaustive comparison among all the M distributions.

Distances d2 and d4 are conceptually equivalent. So we will
analyze only one of them, namely d4. d4 has the advantage of being less
strict than dl1, since it avoids the problem of overpenalizing the
difference in just one point. (In the example of Fig. 1 the result is, in

fact, that d2(A,C) > d2(A,B)). It has three disadvantages:
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_ 1) It requires an exhaustive comparison over all the D elements of
each of the M distributions.

2) It does not uniformily take values over the interval [0,1] (unless
we compute d4(ALL,NONE)) and, consequently, after it reaches a certain
value it becomes very insensitive to any longer distances between two
distributions. We may refer to the example included in this section.

3) It is not very congruent in the sense that the value of the distance
between two distributions may be larger than the value of the distance
between two less éimi]ar distributions. We may refer to the same example,
where:

d4(LOW, MOREORLESS MIDDLE) > d4(LOW, HIGH)
and

d4(LOW, HIGH) > d4(VERY LOW, VERY HIGH) ..

Distance d3 has exactly the same advantage and disadvantages that
d2 and d4 have.

Procyk's method for finding the linguistic approximation has the
advantage of an easy computation but it is severely restricted by a very
reduced language (the only sentences allowed are the ones which appear in
the output rule set, combined with few confidence adverbs). Another limita-
tion is the fact that the method applies only to the result of a combina-
tion of an entry of the table with the relation which represents the deci-
sion table itself. The implementation is then based on a particular inter-
pretation of the implication, being in this case the cartesian product.
However we could have different ways to interpret the implication [15], in
which case the problem of the linguistic approximation should be redefined

(for this approach). It must also be noted that the un]gPe]]ed fuzzy set
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may not have been generated by a composition with a relation, but by the
application of some new relation or new hedge on the primary fuzzy set.
In this case, as well as in other cases (e.g., when we want to find the
Tinguistic value to be assigned to the truth value of a fuzzy proposition
of which we are doing the truth-qualification [16]), this approach can not
be applied.

In general we can say that even if it were good for very simple cases,
it lacks a metric which would give an estimate of the 'aocodness' of the

approximation.

3.3 Requirements for a Good Linguistic Approximation

The requirements of linguistic approximation confrort us with at least
four problems, not all of which are adequately dealt with by the above
implementations.

1) There is a need for the use of a large language, based on a rich
vocabulary, in order to have a good approximation of any fuzzy subset of U.
2) This is equivalent to having a large number M of sentences in
the available language. Then we need a arammar (preferably a context free

grammar) to generate such a language.

3) We must be able to cope with the increase of the number of opera-
tions on a data set consisting of MxD elements, and try, it it is possible,
to avoid an exhaustive search among the M sentences.

4) We need an adequate metric which has to be more flexible than d1
and more congruent than d2, d3, d4.

We have to make an important note, which will be considered in the
proposal of the grammar (refer to Section 5): the expansion of the vocabu-

lary does not mean that we need more levels of recursion in the productions



15

of the grammar. In fact this would lead to having more nested hedges and it
could create sentences which would be completely incomprehensible. Increas-
ing the size of the language has to be done in a horizontal rather than
vertical sense (looking at the production tree). This means that without
changing the levels of recursion we can increase the number of terminals
(primary fuzzy sets, hedges, connectors, relations, etc.). In other words
we enrich the vocabulary. The restriction on the number of recursions, in
order to have an intuitively understandable answer, justifies the use of a
grammar whose productions don't have cyclic nonterminals (i.e. it produces

a finite language [24]).

4. Pattern Space Approach

We want to solve the above mentioned problems by trying to reduce the
dimensionality of the data and consequently the complexity of the search.
In order to do this we introduce the concept of a pattern space which,
roughly speaking, has to satisfy four criteria:

a) low dimensionality

b) retention of sufficient information

c) enhancement of distance in pattern space as a measure of the
similarity of physical parameters

d) comparability of features.

Let us assume for the sake of simplicity (and since it is a require-
ment of the implementation) that the universe of discourse U is finite and
discrete (i.e. |U] = D).

Let A be a non-fuzzy set of M fuzzy subsets of U

A = {A](s),Az(s),...,AM(s)}
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and let S be the set of labels corresponding to A
S = {s],sz,...,sM} .
Let us define a functibn F
F: [0,11° + P

and let us call P the pattern space, which is ‘Rp, in which the mapped
membership distribution is represented by a point.

If we apply F to the membership distribution ”A.(") of a fuzzy
subset Ai C U, we obtain as a result the p-tuple 1

i_ (pi pi i
E - (P],Pzg--- ,Pp)

which is formed by the coordinates of the points in space P, i.e.
_ pl
F(UA.(U)) = E .
i

We have to make an important remark: we have said that Ei is the
representation of A, in the p-dimensional space P, as uAi(U) is the
representation of Ai in the D-dimensional space U. However, the one we
just obtained is not a complete representation.*

In fact, our purpose is simply to find a short-cut in the comparison
process: we will try to compare the meaning of the fuzzy sets in the

pattern space P, rather than in U, taking advantage of the fact that
p<<D (|P] << [u]).

*
We would have a complete representation only if the mapping function F is
injective (one to one). Since we cannot guarantee it, it may happen that

for some pair
A'l 7 AJ <« (UA](U)¢UAJ(U)) s uelu
and pl = pd |
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A very important point will be choosing the components of the function
F, namely

CF1( )

f2( )
FO)=| .

| fp( ) _

In the selection of these real valued functions we will try to have the
minimum amount of redundant information such that with few patterns we can
represent most of the information (we then have to reach a trade-off
between the number of parameters, which we want to be small, ahd the amount

of information, which we want to be high (even if it is not complete)).

4.1 New Definition of Linquistic Approximation in This Space

We have to choose a criterion to evaluate the semantic similarity
between two fuzzy sets A, A', represented as two points in P.
Since we are in a euclidean space IRp, a reasonable distance between
two points of this space is the weighted euclidean distance d5:
1
as(A.A) = ( § w2(phph')2) 5
Then we can define the linguistic approximations of the fuzzy set A

to be:
LA[A] = {sA.}

such that Sp! is the label corresponding to fuzzy set A'; A and A’
are fuzzy subsets of the same universe U; d5(A,A') <E where E is a

parameter which defines our tolerance in judging the similarity.
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In Section 8.2 we will see how to determine the weighting factors wi's
and the tolerance parameter E. We can, however, justify at this point the
need for wi's and E. The w{ can be interpreted as the relevance that a
difference in parameter Pi has in the evaluation of the semantic similarity
between the two fuzzy sets. The wi's also have the function of normalizing
the difference in distinct parameters such that it will be meaningful to
add them together. The reason for introducing a tolerance parameter E 1is
based on the fact that the p-tuple EA is not a complete representation of
the fuzzy set A. Then, as it can be noted in the definition of linguistic
approximation used for this approach, we cannot expect a unique label Sp»
to be its linguistic approximation. We rather prefer to find a small non-
fuzzy subset of S such that all its elements afe within the tolerance €E.

The size (cardinality) of this non-fuzzy subset of S is clearly
determined by the value of E.

Given A C U, this approach does not allow us to claim (on an analytical
basis) that we can find and pinpo.nt the label S5 corresponding to the

fuzzy subset of U which minimizes, over the set term S, the distance
d(usi(u),uA(u))

based on the membership distributions (1ike dl, d3 or d4). We cannot
claim either that such a label is always included in LA[A].

However if we use an 'efficient' representation of A in P, we can
say, based on several experiments, that S; corresponds to a point Ei in

P which is generally fairly close to the point EA

representing A.
Therefore a relatively small value of E (refer to Section 8.2) will enable
us to include S5 in LA[A] almost always. And in any case the computed

labels are always quite reasonable.
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The advantage of this approach is that the complexity of the search
does not increase with an increment in the dimension of U, which may be
useful if we require a better resolution.

It is also interesting to note that we need to perform the same kind
of operations on a data set of size (pxM), which is much smaller than (DxM).
Moreover we can increase the length M of the language which forms S and
not have to worry very much about the complexity of the search. We can
anticipate that this point is of vital importance when we try to implement
it in a computer. (Refer to Section 8.3). At this point, if we want a
unique answer, we have to apply some metric between each element of the set
of linguistic approximations that we have obtained and the uh]abe]]ed
fuzzy set A. This however is not a serious problem, since; by using a

small tolerance parameter E, |LA[A]] 1is small.

5. Proposal of a Context Free Grammar

In order to be able to deal with a language with several sentences we
need a grammar to generate it. A very convenient one is the éo-cal]ed
context free grammar [17]. We will limit the level of recursions by not
creating cyclic nonterminals in order to assure that the generated language
will be of finite length.

Let us propose the following grammar GI:

Gl = (V S,P)

N’VT’
where {VN} = {A,B,V,H,U,T} is the set of non-terminals

{V,1 - {NOT. OR, AND, VFRY, MORI'ORLI'SS, SORTOF, ALL. NONE,

LOW, MIDDLE, HIGH} 1is the set of terminals

|

S 1is the starting symbol



5.1

is the set of productions:

S+A

S -+ ACA
S~+U
A-+>B

A -~ NB
B~>T

B - HT

B> WT

N - NOT

C - AND

C ~OR

H - VERY

H - MOREORLESS
H -+ SORTOF
V - VERY

T -+ LOW

T -+ MIDDLE
T -+ HIGH

U -+ ALL

U - NONE

20

Finite Lanquage Generated by the Grammar

In order

¢ = number of connectors (|C|)

to compute the number of sentences of the language let us call:

u = number of universal terms (|U])

t = number of primary fuzzy sets (|T|)

h = number of hedges (|H]|)

v = number of hedges which can be nested once

Then i1 we consider that we will not apply a comnector to two identical

expressions, i.e., (AiCAi)’ since this is semantically equal to Ai’ we

end up with a total number of sentences:

*

*
Refer to Section 12.4 for its derivation.
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IL(G1)]| = u+t(h+1+v®)[2 + 2ct(h+1+vE) - c] .

If we evaluate this expression for the particular values of 'u, t, h,
c, v' that we have in our proposed Gl (namely u=2,t=3, h=3,
c=2,v=1) we find that
[L(G1)]| = 902 .

The previous expression, howeyer, will give us the number of sentences in
~ the language that we obtain if we modify the vocabulary (corresponding to
change the values of 'u, t, h, ¢, v').

Some sample sentences of this language are given on the next page,

while the implementation of the grammar is shown in Section 12.3.

5.2 Association of a Membership Distribution to Each Sentence

The membership distribution of each label (sentence of L(G1)) is
computed by generating first the membership distribution of the primary
fuzzy sets and then by applying to them the operators corresponding to the
labels of connectors and hedges.

We have implemented our ideas in APL. In the implementation, each
sentence generated by Gl 1is a combination of compatible functions which
operate on the vectors containing the values of the membership distributions
of the primary fuzzy sets. The latter are generated by a starting function
in which it is possible to specify the number of partitions, allowing the
user to arbitrarily change this number. This is a very flexible feature of
the system. For more details refer to Section 12.3.

On the next page we show the membership distribﬁtions associated with

the labels used to show a sample of L(Gl)g
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6. Feature Selection

This is a very crucial point, since the right selection of features
determines the success or failure of any pattern recognition process [18].
After several tries and experiments looking for an 'efficient'* representa-
tion, we ended up with the following four parameters:

1) Power

2) Entropy

3) First moment

4) Skewness

6.1 Power
The power of a fuzzy set is defined [19] as the summation of the member-
sk
ship value of each element of the support of the fuzzy set, i.e.

Power(A) = “A("i).'

1

nes-10o

1

This definition is for the assumed case of having a finite discrete universe
of discourse U, such that |[U] = D. |

This concept may also be interpreted as a numerical summary of the
fuzzy cardinality of a fuzzy set [6].

In the implemented APL function this value is normalized such that it

will take values in [0,1].

*
By efficient we mean having a small set of parameters containing a lot of
information on the distribution.

k%
The support of a fuzzy set A C U is a non-fuzzy subset of U such that all
its elements have a non-zero membership value in A. Then the summation
over the support is identical to the summation over the entire universe.
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6.2 Entropy
The fuzzy entropy of a fuzzy set A CU 1is defined as [19]:

D
Entropy(A) = .X]S(UA(Ui))
'I:

(for “A(ui) # 0 and “A(ui) # 1) where S( ) is the Shannon function:
S(x) = -xInx - (1-x)1n (1-x) .

The entropy is a measure of the degree of fuzziness [19] and its
existence (non-divergence) has been proven for the case of a finite support
[19], as well as for the continuous support [21,22].

In the APL function this value has been normalized with respect to
the maximum value that the entropy can take over all the subsets of U.
This happens to be the entropy value of a fuzzy subset whose membership

value is equal to 0.5 for each element of U.

6.3 First Moment

This parameter indicates the 'center of gravity' of the membership
distribution, just as the well-known mean indicates the center of a proba-
bility distribution.

The parameter is simply obtained by:
First moment(A) = EnA(u)

and we define EnA( ) (which stands for ensamble average of A) as:

Hpluy)
EHA(f(U)) y f(U ) -BWEFTKT

In the implementation, for the sake of simplicity, we scale the points
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u; €U such that they take values only on the integers, starging from O,
i.e.

u=(i-1) , i=1,...,D.

Then En(u) becomes
R D o1y _talyy)
Eny(u) = Eny(i-1) = .2](1-1) Sower(AY

1'—'

The shift (i-1) occurs simply because we are starting from 0 in the
assignment of the values of us- The membership distribution is normalized
such that its area is equal to one. This is useful for the computation of
this parameter (first moment) and the parameter discussed in the next
section (skewness). However, the distribution will not be normalized
during the inference process (which is part of the approximate reasoning)

nor during the linguistic approximation process.

6.4 Skewness
This parameter is interpreted as a measure of asymmetry of the distribu-
tion with respect to its center of gravity. It is simply the third moment.

It is defined as:

2. : 30 Malyy)
Y [(i-1)-(first moment(A))] [EGWEF(KTJ

i=1
En, [(-1)°T .

Skewness(A)

A distribution skewed to the left can be shown to have a negative
third moment, while the one skewed to the right will be a positive one.

The way this parameter is obtained, in the implementation, is:

Skewness(A) = EnA[(i-1)3]— 3x First moment(A) x Var(A) - (First moment(A)3)
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where Var(R) = Eny[(i-1)%1- (Eny[i-11)2 .

7. Analysis of the Correlation Among Features

Since it is very important to have a very small number of parameters,
in order to have a small-dimensional space P, and in this way reduce
considerably the complexity of the search for similarity, we try to avoid
having two or more parameters with a high cross-correlation (which would
imply redundancy of information).

An experimental analysis was performed in the following way: a set of
seven different parameters was chosen and a non-fuzzy subset of distribu-
tions, which was considered a good representative sample of the set of
distributions in U, was mapped in this 7-dimensional pattern space. Then
projections of the points (representing the distributions) were taken over
all the possible 21 planes. Each projecfion was then analyzed, looking
for a possible function of the two coordinates of the corresponding plane.

A high correlation was found between the parameters:

Power and Bandwidth*
Power and Spread**

The maximum of the distribution (analogous to the mode), which toge-
ther with the parameters discussed in Section 6 completed the group (certainly
not exhaustive) of parameters used in this correlation analysis, did not
contribute a relevant amount of information. Hence only the previously
discussed parameters were used in the representation of the set of distribu-

tions on U discussed in Section 6.

*
Bandwidth is defined as the size (cardinality) of the subset of U such that
the membership value of each point of this subset is bigger than 0.5. Refer
to Section 12.2 for more details.

. v
Spread is a measure of the dispersion of the distribution. It is calculated
(analogously to the variance in a probability distribution) by computing the
second moment with respect to the center of gravity.

*
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A sample of the more interesting projections of the points of this
7-dimensional space on some of its planes is shown in the appendix (Section
12.5). We can verify the strong correlation between power, bandwidth and
spread, as mentioned before, by observing the almost straight line that the
projections form on the corresponding planes. In an analogous way we can
see how other parameters present a very low cross-correlation: the projec-
tion on the plane that they form is a very well-spread cluster of points. |

We would 1ike to remark that the parameters we have chosen do not
form the only possible set of patterns useful for the purpose of evaluating
similarity among the distributions. It is also clear that the addition of
some other parameter could have 'sharpened' the discrimination since we
would have a more complete representation. However, we cnnsider the group
of parameters described in Section 6 to be a good answer to the trade-off

between complexity and completeness of representation.

8. Prescreening Process

We will extract the information from the set of distributions corres-
ponding to the set of labels (sentences of L(G1)), thus obtaining, for
each fuzzy set, a 4-tuple which characterizes it in P.

Then we can form a tableau with five columns: the first four for the
parameters and the fifth for an index which indicates the corresponding
label in the language. We could look at this language as if it were an
alphanumerical array of finite dimensions such that each row of the array
would correspond to a sentence. Then the index (number of the row) iden-

tifies the sentence.
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Since we are going to search in this tableau each time we want to find
the linguistic approximation to an unlabelled fuzzy subset of U, it is
very convenient to order the tableau according to some kind of structure

which simplifies the search.

8.1 Parameters Data Structure

Since a tree is a more efficient representation than a tableau, we
will order the latter in such a way that it will be very easy to transform
it into a tree. Perhaps this is best illustrated with an example as shown
in Section 12.5. It is very easy to come up with an algorithm which does
this in a recursive fashion. An example of such an algorithm is given in
Section 12.3.

In the tree corresponding to the tableau (also shown in the example),
a node at each level is equivalent to a group of elements with the same
parameter value in the corresponding column.

The searching problem can be speeded up by the use of this ordering.

A possible searching algorithm could be the following: At the first
level we compute, for each different node, the square of the first compo-
nent of the distance d5 from the leaf to the point which represents the
unlabelled fuzzy set. Then a first comparison against the tolerance para-
meter E2 is made and if for some node we are already exceeding this value
(i.e. (w%(p?-p?)z) >E2)),then we drop all the successors of that node.

We pass to the second level and compute, for the surviving nodes, the square
of the second component of d5, add it to the previously computed square of
the first component and compare again with Ez. We repeat the process until
we arrive at the leaves of the last 'survivor' nodes. Of course some other

algorithm could be found to perform this search. In particular, if we
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slightly modify the criterion of similarity in this space, a very fast
algorithm could be implemented.
In fact, a geometrical interpretation of such criterion is the following:

We want all the points s we select to satisfy
d5(A,s) < E 3
then if we take the square of the previous inequality

4
.X]Nf(Pﬁ-Pi)z < 2
i=

this is equivalent to having a hypersphere of radius E in a space of
dimensions

[w]e],wzez,w3e3,w4e4]
where

_ (o pS
e_i - (Pi-Pi) .

Then the criterion is reduced to check if the point is contained in the
hypersphere.

If we change the shape of the region of tolerance from a hypersphere
to a hypercube, whose center is in the origin and whose edge length is E,

we have the criterion of similarity changed into:

(ax (Weed)) < 2

for i 1,...,4 which in fact can be rewritten as:

Iwiei| < (E/2)

for i=1,...,4.

This metric is called 'city-block distance’.
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This of course defines a tougher criterion of similarity since the
hypercurbe is inscribed in the hypersphere. If we assume the points to have
a uniform density in this space [w]e1,...,w4e4], then the reduction in
volume would be proportional to the reduction in the number of points which
satisfy the criterion. |

If we want to maintain the same volume we have to come up with an edge
length E', between E and 2E, such that a hypercube with this edge
would have the same volume as the hypersphere of radius E. This is a
simple problem of advanced ca]cu]us.*

What interests us, however, is the fact that now we can check for the

criterion in this new way:
A E' s A E'
(WP =) < Wiy < QiP5+

for i=1,...,4.
It is quite clear that the check for this new criterion in the
ordered tableau (or in the tree) may be performed in a very fast and

efficient way.

8.2 Determination of Weights and Tolerance

The weights W can be expressed as:

I,

w,=_1.
i Ri

where Ii is a factor which measures the relative importance of the para-
meter Pi with respect to the other ones. Ri is the length of the range

of values that parameter Pi takes over all the points that constitute

*It can be proven (refer to Appendix 12.4) that

. i .5
E' = (37732) " F -
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our data, i.e.

R. = max {P3} - min {PJ}
i i i 3 i

for j=1,...,M, i=1,...,p. We want to remind the reader that Pg is

h

the it parameter of the fuzzy set whose label is Sj‘ We could impose the

restriction that the I's have to be normalized such that:

4
I, =1.
i=1 !

Clearly if all the parameters are equally important, then Ii =1, for all
i. This, however, gives the user the flexibility of tailoring his own
definition of similarity, by assianing different values to the importance
of each parameter. By defining the weights in this way, we obtain (for the
case of Ii =1 for all i) that the value of the weighted difference on
parameter Pi’ i.e.

2P _pS\2 _ 2.2

is in the interval [0,1], provided that the value of the coordinates of
the point representing A in P falls within the range R. This should
be achieved if we have enough data (points in P, representing sentences
in L(G1)).

Because of this normalization, the different dispersion that each
pattern had fs now compensated. Then the summation over distinct dimensions
of P (different parameters) is now a meaningful operation.

In pattern recognition literature [10,23] other possible ways of find-
ing the weights have been suggested, such that the maximum distance between

members of the same set is minimized. Such proposed weights are:

- _K
W, = 5

1 Sigma

i
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where Sigmaz is the sample variance of the set of values of parameter P.
K is a constant which is chosen in order to satisfy a normalizing restric-

tion on wi, like:

K= —1 it S =1
E(_i_?) i=1
i=1 Sigmai
or

-~
I

p p
(signal)V/P 4f W =1 .
i=] =

i

We can see that these expressions (and the idea involved in them) are
very similar to the one we are using.

An important remark has to be made: the weights are calculated after
the parameters of the set of membership distributions corresponding to the
labels in S have been computed. Thus they, as well as the tree parameters,
- are independent from the values of the coordinates of the point correspond-
ijng to A. Because of this, they are calculated only once.

We have already seen, in Section 8.1, the geometrical interpretation
of the tolerance parameter E. If we know that wiei is in [0,1] for all
i, then we can see that to fix a certain E implies that an average percen-

tage of points would be inside the hypersphere.

E=1 - 50%
E= .5~ 25%
E= .4~ 20%
E=.3~-15%
etc.

If we use the 'city block distance', corresponding to the hypercube

instead of the hypersphere, as our tolerance region, then E (or E') is
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interpreted as the maximum (symmetric) range of error for each parameter.

Then we have:

E=1 »>mx |We] <.5

E=.5>mx |We.| <.25
i

etc.

8.3 Notes on the Implementation

Since the 1ist of programs is given in Section 12.3 and the results
are illustrated with an example in Section 12.1, we will 1imit ourselves in
this section to some general but useful remarks on the implementation.

We only have to store the pxM real values corresponding to the para-
meter representation of A.

Since we need to keep track of the elements of the original set and,
after the prescreening, we will want to know the distribution of some of
them, we keep an alphanumerical representation of each set. In other words
we store the labels (and its corresponding index in the language), instead
of storing the distributions.*

When we have selected the elements of the non-fuzzy subset of linguistic
approximations LA[A] (from the prescreening process), we use an APL feature
called 'execute' which we apply to the alphanumerical label transforming it
into an executable function which gives as a result the corresponding
membership distribution.

Another important remark is the following: it may be that the context
free grammar G1, which generates the language, will produce a set of

sentences which have exactly the same meaning (exact semantical equivalence

*
It is important to note that while an alphanumerical character needs only
a 1 byte representation, a real number requires 8 bytes to represent it.
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implies that the associated membership distributions are identical), even if
they are syntactically different. An example is given on the next page.

In this case we want to perform a 'compression' on the sentences of
the language and suppress the sentences which are semantically identical,
representing them with the one belonging to the same class of equivalence
which has the shortest and therefore more intuitively understandable Tabel.

Another observation could be made on the need of writing the programs
which deal with the parameters in such a way that they take as input the
columns of the tableau rather than the whole table. This is done in order
to avoid the possibility that, for a large M, we could have a table too
big to be fully represented in the available resident memory. In fact,
some time-sharing systems in which APL is generally available, are blessed
with severe memory restrictions. An example of this is UCLA CCN- IBM 360-91,

where the size of any active workspace is limited to 48K.

9. Label Selection

We have already obtained a small non-fuziy subset of S, LA[A], as a
result of the prescreening process. Now we want to compare the similarity
between the unlabelled fuzzy set A and the membership distribution of
each member of LA[A], the set of linguistic approximations, in order to
select the 'best' one.

In order to do this we need to define an appropriate measure of the

similarity (or dissimilarity) of two fuzzy sets.

9.1 Euclidean and Hamming Distance

In Section 3.2 we have already examined the Euclidean distance (da)

and the Harmming distance (d3). However, we will show the result of applying
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those distances, as well as dl, to a sample of fuzzy subsets of U, in

order to illustrate the incongruences pointed out in Section 3.2.

9.2 Bhattacharyya Distance

Recently, possibilistic interpretations have been given to membership
distributions [25,26]. This justifies an attempt in using, after proper
extension, some probabilistic measures to compare two possibility (member-
ship) distributions.

A good measure of such a comparison is the Bhattachryya Distance, which

is defined [27] as:

d6(p1(u),p2(u)) = -In R
where R 1is called the Bhattacharyya coefficient and, for the discrete
case (|U] = D), is defined [27] as:

D
R(p1,p2) = T [(pT(u;) xp2(uy)]’
i=1

5

Note that in this definition we are using membership distributions

which have been normalized, such that:

D

Y pi(u;) =1 forall j.
j=1 9 1

This is simply obtained by:

up (ug)

P3(4;) * omer(ay -

J

This measure, however, does not satisfy the triangle inequality, and

therefore is not a metric (according to the axioms of footnote on p. 6).
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We can observe that R takes values in [0,1], being equal to 1
when both distributions are identical. Then we can define a distance d7
[29]: ,

d7(p1,p2) = [1-R(p1,p2)1"° .

It can be easily proved that this measure does satisfy all the axioms of a
metric.

By applying this measure to the same sample of fuzzy subsets of U,
used to illustrate the incongruences of d3 and d4, we can see that this
new distance reflects very well the semantic distance among fuzzy sets. It
does not show any of the incongruencies mentioned in Section 3.2 for d3
and d4 and it is also less strict than dl. This example is shown on the
next page. |

This distance has been applied in the implementation and has provided
very good results.

A geometric interpretation of the Bhattacharyya coeffiéient R is the

following: 1if we regard the numbers
[pj(u)]'5 , j=1,2 for all allowable u

as the direction-cosine of the two vectors in the space U (we can in fact
visualize a fuzzy subset p(u) in a discrete U (|U| = D) as a D-dimen-
sional vector), then the coefficient R 1is the cosine of the angle between

these two vectors.

9.3 Other Possible Distances

Some other distances, actually used in probabilistic contexts, could be

used to measure the dissimilarity of two possibility distributions.
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For example, we could try to use:

d8(p1.p2) = En ;[In p}(ﬁ ] - En,[1n 23

where
H '(u‘i)

T3 owerTo3]

as it was also defined in Section 6.3.

ne-190

Enpj[f(u)] = i

This distance is called Divergence and it is was introduced by Jeffreys
[29].

Note that the Divergence is not a metric, since it does not satisfy the
triangle inequality.

Several other distance measures could be adapted for this application.

They are extensively treated (for the probabilistic context) in [28,30].

10. Remarks, Applications and Conclusions

Remarks

1) The described approach shows a great flexibility, allowing the user
to define his own concept of similarity by changing the relevance value Ii
which multiplies the corresponding parameter Pi' In fact, it may be the
case that for some particular application he wants the membership distribu-
tion of the linguistic approximation to have the same area under the curve
that the unlabelled distribution has. This can be easily achieved by select-
ing a proper high value for the I corresponding to the parameter ‘'power'.

2) Since the result of the prescreening process gives us a non-fuzzy
subset of S with a small cardinality (compared with |S| = |L(G1)]), we
could apply different metrics to evaluate the similarity of each member of

the set of linguistic approximations and the unlabelled one. Then, since
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each metric would measure a different feature, we could use a majority rule
(2 out of 3) to arrive at a deterministic choice of the label.

3) The parameter 'entroby' has shown to be very sharp in the discrimina-
tion of points but it is also very sensitive. This may cause the presence
of a 'disturbance' (1ike a plateau with a small membership value (0.2)
widely spread over the universe of discourse) which would provoke a big
"jump' in the value of the parameter.

Since all the points are well-distributed (almost uniformly distributed
[0,1]4 in the weighted pattern space}, a large deviation of point EA,
representing the unlabelled fuzzy set A even on only one of the dimensions,
will take it completely off the region where all the points are located.

Three different ways of handling this problem are sujgested. The first
one has been implemented successfully.

a) We can calculate the minimum distance of point EA to the
set of points and assign to the tolerance parameter E a value of the same
order of magnitude.

b) We can reduce the weight corresponding to thé parameter
entropy, in order to compensate for its sensitivity.

c) We can use a smoothing filter, applying it to the unlabelled
distribution before we extract its parameters. This can be done with some

*
kind of deterministic threshold or fuzzy threshold or a combination of both.

*A deterministic threshold Td(A) is:

W) - u(ug) iF wplug) > g
Fam T it wyluy) <
a4/ = Ho
while a fuzzy threshold Tf(A) could be:
(u ) - ]JA(U.i) if uA(ui) > ]JO
Hre(A) 'Yy 20) if wslus) <
Hptug ) AT pllyd < g

where (l/uo) > K > 0. g represents the level of the threshold.
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4) If we could derive a distance from the concept of a dissimilarity
re]ation,* then, if d(si,A) is minimum over all the s, members of LA[A],
we could interpret it by saying that A and s; are the only two elements
of the same equivalence class of a partition with a threshold equal to
(1-d(si,A)).

5) If we want to add or replace some parameters, looking for any
possible improvement, we have to keep in mind the four criteria which any

'good' pattefn space has to satisfy. (We listed them in Section 4).

Applications

The linguistic approximation is practically the final step of the
process of approximate reasoning, in which the result is interpreted seman-
tically and a qualitative answer is given back to the user.

We can refer to three situations in which this step is necessary:

1) We can approximate an infinite language LO = L(GO) (where GO
contains some cyclic nonterminals) with a finite language L1 = L(G1).

In fact, the fuzzy set associateq to any sentence of LO is treated as an
unlabelled fuzzy set, and its corresponding 'closest' label is searched in
L1. The 'goodness' of this approximation depends, of course, on the proper

choice of G1, given GO.

*
Dissimilarity relation d is defined [31] as:
ud(x’}') = ]'Us(xay)
where ug(x,y) is the similarity relation between x and y. The similarity

relation is a generalization of the concept of equivalence relation and
must satisfy:

Hg(x,x) =1
ug(x,y) = ugly,x)

ug(x,2) z;f ug(x,y) A ugly,2)
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2) We can find the label for the result of performing a composition of
an entry with a relation which represents the decision table. Such is the
case of the example given in Section 12.1. This is the classical inference
process, present in most applications of fuzzy sets.

3) We can interpret the results of a truth-qualification:

(X is F) - Hx F

(X is F) is LT, F*

where uF*(u) = uL(uF(u)). Then we are able to find LA[F*]. Note: m,

represents the induced possibility distribution of X.

Conclusions

The described approach does not pretend to be the panacea for all the
problems which may arise when we try to solve the non-trivial task of find-
ing the linguistic approximation to any unlabelled fuzzy subset of some
universe U.

Since the tendency is moving toward a more flexible language (hence
d more complicated grampar), this method attempts to cope with the increasing
domplexity of an exhaustive search by offering a short-cut (the reduction of
the dimensionality of the data).

It is insensitive (as far as increasing of complexity is concerned) to
increasing the number of elements of the universe of discourse, which some-
times may be useful in achieving a better resolution of membership distribu-
tion curves.

It also shows a solution to the classical trade-off between space (for
storage) and time (for processing) that we have to face in the implementation.

By keeping only the alphanumerical representation of the distributions and a
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reduced number of real-valued data, we save memory space; by using the pattern

space representation, we save processing time.
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12. Appendices
12.1 Illustrative Example

In order to illustrate this method, a couple of examples are given.
In these examples a small language (containing 32 sentences) was chosen.
This reduced language is a non-fuzzy subset of L(G1) and it is listed dn
the next page. In the first example an unlabelled fuzzy set was created
and (for a tolerance E = 0.4) three labels were selected in the prescreen-
ing process: HIGH, MOREORLESS HIGH, SORTOF HIGH. Finally HIGH was
selected among the three labels to be the linguistic approximation to the
unlabelled one.

In the second example we created a 3 by 2 decision table TOT:

X Y
LOW HIGH

TOT = | MIDDLE MIDDLE

SLYGHTLY | MOREORLESS
HLGH HIGH

which can be interpreted as:
if X is LOW then Y 1is HIGH or
if X dis MIDDLE then Y 1is MIDDLE or
if X s SLIGHTLY HIGH then Y is MOREORLESS LOW.

Then the following compositions were performed:

T, = MIDOLE o TOT
T, = (SLIGHTLY HIGH) o TOT
T, = (VERY HIGH) o TOT
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The linguistic approximation for T1, T2, T3 was found using the

above described method, yielding these results:

LA[T1] = MIDDLE
LA[T2] = MOREORLESS LOW
LA[T3] = MOREORLESS LOW

It is important to note that in our very limited language we did not have
any not normalized fuzzy set.

This is the reason why the linguistic approximation to T3, which is
sub-normal, is a normal fuzzy set.

This can be solved by using a larger language which includes connectors
like AND whose application creates sub-normal fuzzy sets.

The results are shown on the following pages.
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12.2 Basic Concepts of Fuzzy Sets

The purpose of this appendix is to give a very brief introduction to
the basic concepts of Fuzzy Set Theory. Its scope is limited. For a much
more complete treatment please refer to [1,15,16].

Let U be a collection of objects or concepts {u} and let us refer
to U as the 'universe of discourse'. Let A, B, C be three fuzzy subsets
of U. Let “A(u) be a function which maps frém U into [0,1] and let
us refer to uA(u) as the 'membership function of A'. We can represent A
as
A= U uA(u) .

YueU
Given a universe U, we say that A CU is fully characterized by its
membership function uA(u). We define the following operations on fuzzy

sets, based on their corresponding membership function.

Equality (=)
A=B iff uA(u) = uB(u) for all u€U

Containment (C)

ACB iff uA(u) < uB(u) for all u€U

Union (OR)
C=A0RB iff uc(u) = max [uA(u),uB(u)]
for all
uel

Intersection (AND)
C=AANDB iff uc(u) =  min [uA(u),uB(u)]
for all
uelu
Complementation (NOT)

B =NOT A iff uB(u) =1- uA(u)
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Union, intersection and complementation satisfy De Morgan's laws, as well as

the associative and distributive properties.
Definition of an 'alpha-level-set'. An alpha level of a fuzzy subset

A

alpha = {u]uy(u) > alpha}

Then A satisfies the resolution identity

U [alpha A

A= 1.
¥ alpha€[0,1] alpha

The 'bandwidth' of A 1is the 0.5 level-set of A. The 'support' of A
is defined as

Support(A) = {ulpA(u) > 0} .
Other useful operations on fuzzy sets are:

Bounded Sum (e)
C=AeB +yp.(u) = U [1AND (up(u)eug(u))]
Ye VUl Ly B

Bounded Difference (©)

C=AeB->u(u= U [0 OR (up(u) - pg(u)]

yusl

Raising a fuzzy set A to a real number power 'beta',
B = AR o p(u) = Ly,

The linguistic hedges used in the grammar proposed in Section 5, when applied

to the label of a fuzzy set A, are the operators defined as:

2

VERY A= A
1/2

MOREQORLESS A = A
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Implication (=)
Several ways of defining implication could be listed. We will limit

ourselves to only two of them.

A =B = [AxB] OR [(NOT A) x V]
or '
A=B = [(NOT (AxV))e (UxB)]

where U and V are the universes of discourse of A and B respectively.

x denotes the cartesian product which is defined as:

C=AxB -~ “c(“i"‘j) = forUa”[uA(ui) AND uB(uj)]
uel

12.3 List of APL Programs

A 1ist of APL programs follows.



SAVED

(1]

(1]

YLOAD FUZZY1 63
17.13.48 06/19/78

VSTARTLOIV

START : M

YENTER DIMENSION'

D+[]

HIGH+(L((D-1)%2)) SFN(D-1)

LOW+GHIGH

Me[ ((D-1)#4)

MIDDLE«(M+1x(L(M%2))2(M3%2)) PFNCT(I((D-1)%2))
ALL+Dp1

NONE+«DpO

VSFNLOlv

S+~4 SFN C;B3X1;X2:X3:X4

B+l (A+C)+2

S+X1+(A4+1)p0
S5¢5,X2+2x(((A+1(B=-4))-A)+(C-4))*2
S+S,X3«1-(2x(((B+1(C=B))=C)s(C-4))*2)
S+S,Xu4«(D-(C+1))p1

S+0.01xL0.5+100xS

VPFNCTLOIV

P+B PFNCT C3X13X2
P+«X1+(("1+1D)sC)/((C-B) SFN C)
P+P,X2+(("1+1D)>C)/(1-(C SFN(C+B)))
P«0,01xL0.5+100xP

VTABLE2[DO]vV

R«TABLE2 Z3X13;X2
X1+«Z[1D]
X2+DpZ[D+1D]
R«X1 RELATION X2

VRELATION[O]V

Y«A RELATION B
Y«Ao,.LB

VCOMPOSITION2(0]V

Y«A COMPOSITION?2 B
Y«Al.LB



(1]

{13

(1]

(1]

(2]
{31

VMOREORLESSLOIV 64

Y«MOREORLESS A
Y«A%x0,5
Y«0.01xL 0.5+100xY

VSORTOFLO]V

Y+SORTOF A
Y«NORM((NOT(VERY VERY A)) AND(DIL A))

VNORMLDIV

Y+«NORM A
Y«A:([/74)
Y«0.01xL0.5+100xY

VVERYLDIV

Y«VERY A
YeAx A _
Y«0.,01xL0,.5+100xY

VDILLOIV

Y«DIL A
Y+MOREORLESS A

VOR[O]vV

Y«A OR B
Y«AlB

VAND([O]V

Y«4 AND B
Y«ALB

VSLIGHTLY[O]V

Y«SLIGHTLY A
Y«INT(NORM((PLUS A) AND(NOT(VERY A))))
Y«0.01xL 0,5+100xY

vINT(Olv

Y«INT A

Y«NONE
Y[(A4<0.5)/1D])«2x(A[(As0.5)/1D])*2
Y[(A420.5)/1D])«1-(2x(1-A[(A20.5)/1D])*2)
Y«0.01xL0.5+100xY



(1]

veLusiOolv

Y+«PLUS A
Ye«Ax(T1+(5)*0.5)
Y«0.01xL0,5+100xY

65

VHAMMINGDISTANCE([(O]IV

R+A HAMMINGDISTANCE B
Re(+/(1(A-B))) D

VSQUERRLD]V

Y«A SQUERR B3 Y1
Y«((+/(A-B)*2)%0.5)#(D*0.5)
YY Y1+([/((A-B)*2))

VBHATTADISTANCELDO]vV

V R+A BHATTADISTANCE B;R1

v

@ IT COMPUTES THE BHATTACHARYYA DISTANCE
Al+«A+ (1x((+/4)=0)+(+/4))
B1+B+(1x((+/B)=0)+(+/B))
R1+(A1xB1)*(0.5)

Re«(1-(+/R1))*0.5
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[2]
3]
(u]
(5]
(6]
(7]

(11

13

™~
[LS IS
e

VEOWER[DI]V 66
Y+POWER A3Y1

Y«(+/A)3D

YeY, Y1++/(A>0)

VENTROPY[Li1V

Y«ENTHOPY A3B;C3 V3 V1
B+«A[(A>0)/1D]
C+«(1-4)[((1-4)>0)/1D]
V<NONE

V1i+NONE
VL(A>0)/1D]«-(Bx®B)
Vi[((1-4)>0)/1D]j«=-(Cx0C)
Y«(+/(V+V1))+ENTROPNORM

VENTROPNORMLUi]V

Y«LENTKHOPNORM; A
A+0.5%xALL
Ye2x(+/-(Ax04))

VFIRSTMOMENTLOlV

K+«FIKSTMOMENT A3 A1
A1+Az (1x((+/4)=0)+(+/4))
i+ /((T1+1D)x41)

VSKULNESSLLIv

R+«SKULNESS A
k«(THIRDMOMENT A)-((3x(FIRSIMOMENT A)x(SPREAD A))+(F1KSTMOMENT A)*3)

VSPREADLUIIV

K<SPKEAD A
h+(SECONDMOMENT A)-(FIRSTMOMENT A)*2

VSECONDMOMENTL IV

R+SECONDMOMENT A3 A1
A1+43 (1x((+/A)=0)+(+/4))
Fe+ /(((T1+1D)%2)x41)

VITHIRDMOMENTL[(J]V
A+1HIKDMOMENT A; A1l

A1+A: (1x((+/4)=0)+(+/A))

he+/(((T1+10)*3)xA1)
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LE«LEmsmH v I
E*((V‘i)/t(pV)) ((pV)«1)
LE+(1+LE) ( T1¢LE) i

D+BOOLVECT cw i‘

-LEN*LE£1J“
IN#VO

I«1+1

;S%*LENtST e Ry
LENmLE[I} Ch
.*LOOP . 5§ ,.}y

‘vssARcarREs[ﬂJv

'ReSEARCHTREE. 4 Bozﬁ ao&swaoac . BOLDyERRA' EREB; ERRC. . |
‘ RA+LK[2]xWEC23x((A[2] K2)*2))S(EP$J*2)))/1(pKQ))
+((+/BOLAY=Q)/NIHIL - st
PC+({(BOLBx S,
+((+/BOLBY=0)/NIKIL

gPD*((pa;p¢g(§uutegl+suurpc]+(zknclzxca]sttalg((Ats] JKS[PE1)#2))) s (EPS

+((+/BOLE)Z0)/NIHIL

SUM[EB]*SUM[PB]+(ERRB*LK[§ﬂxWE[llﬁ((A[iJ Ki[PB])*2)))S(EPSI*2)))/PB)

I*2)))/PC)

~R*((aoza*((SUM[PD]+SUMLPD]+(&Rﬁb«LK[u]ow[u]x((h[quKuEPD])*2)))5(EPSI*2)))/PD)

j-»((~~/15‘¢Jw)==e)/uimzv T R R R IR
NIHEL?: R"\O ‘ B N o : . 'ﬂg ; o e :
E”D"““'”‘U,~7M'»Fﬁ3ﬁ~;x“ T;Fjw‘,ﬁ‘.f\ﬁ?V;Ei"lul‘] B

-



69

¢068LOSHEZT IN+NV YY

A.m.aoﬂv.ﬁ.w.aeﬂu.ﬁ.u.QOﬁv.ﬁ.u.aoﬁv.a.m.aoﬁv.ﬁ.:.aoﬂv.a.m.aoﬁv.m.m.acﬁv.a.ﬂ.qoﬁv.a. 196 )IN+QV+Y

a

[zl

(tl
avinviN TVYIIIT+¥ A
ACO17IVHILITA
A
d007/((HINdO)saNI)+ [ST]
T+aNI+alNI [481]
[tanIlyy dax:d007 [€T]
_ 1+-aNT [2t]
09 (q°* (¥INdF))+gd [TT.
yv*.q.+4y [OT.
' CANBIES 4 [6:
yv* ay-+uy [s:
yvnv-+yv (A
AN TS {4 [o:
AN N 14 [(s:
SAYTV® o+ 4V Ch:
[(HINO) L+ (HINdO) JONTYLS+NV Ce:
[ (YINJI )\ JONTHIS+AV (e.
(YINJS)TVYIITT+ONTIYLS [T
NI SONIYIS NV aysayIvo A
. AL0)SayzIvoA
A
. taNg (st
($Z2X)STYTV  HATVHO [T X1STYTV  HLIA+X [hY
s 40 +0 h T +HdTVY0 [E€T
s YAHII9 L T +HIIZ:O0MI (21
ani+~ [11
(¢vx)say1v+x  [O1
oMr/(zxz2tx)+« (6
(1gad)v/(1aa=(vaq/1))+ex Ce
[(z#(gg9))\xZ+1_laa+1ad L[
(ago)r/(ag=(ag/1))»1& L
g aona Is1a-ai ¢
g aved Isra-ad [
sauzvy [t
[ HZINdISE0~STYTV [t
(¥nsISH+4INd s

ISIa Y71 4nsS+X A

ACOlV7A

" 8L/L0/%0 TH HE'ET
e " wWyyvd avo7(

aan



A
V SSANINNS+EX°X+X [h]
V ZHIHOWISYII+CX X+X (el
V XJONINA+TX°X+X (]
[TI(Vy ¥340d)+X [t]
EXCXTXY ZOVHIXT+X A

ACOIZIVHIXEA

.Y
- | tqng [ee)
’ “. : ayap+~ [C¢]
‘ d3+18d3 [1€]
cHY4 9084 HHJ Ig X1TvoIZVNOINY 3N0A 38 T1IA SIRL: [0€)

¢ ¢+ [62]

-d3%, = d&8 8dSVI SIHI AT s [82]

s JORVISIA ”ﬂNININ JHL RVHI Hﬂ”@IP IN3o4dd ST SI INTVA HIN SIHL o [T}
dd - ISJE H@ISSV Xg NIVIQ0 SI an1vA SIHZ s [92]

@ISJZ Had A Hﬂﬂ V- 9RISN 9939038 FHI Ivaday NHOILZSA99NS. [ST]
ARt ' JE*SI T+43 .[tZ]

‘ ' [ez]
[e I]Hﬂ [zel

HHV HONVJSIG ZHJ d0 SIHANOAN0O AHL 40 AYYNOS 3BL + [1T2]
0 [oz)]

\ dﬂ [6t]

) S'0»([X]ey)+da ([8T]

s 2 SI INIOd NIATH FHI WOYZ FIoNVISIA SII « ([L1]

. e o+ [91]

X [st]

(e4d)1/(cq=(e4/1))+X [hT]

: s ¢ SI INIOd IS3S019 AHL + [e1]
el o ‘ ‘ ‘ [ [Zt]

o
"
)

CISdAt, = ISd3 FONVIIT0L NIATO FHI NIRLIH SINIOd ON c’ONIMEVH (11}
: ang« [01)
- ' ONINYVA/(0=(X708/+) )+ (6]

CYOL/(((Z+ISIT)>E¥)+XT08)+X33438 (8]

¥a/++€4 (L]

(T (¥ -[(h]P))x[aI¥T=[w]aM+[he]¥T (9]
(Cx(e¥-[eIV))x[elX¥Tx[e]aM-[€c]¥T7 [S]
(Zx(ex-(2Iv))x[2IxT=[2)aq8+(2%]4a (4]
(Zo(TX¥=-C(vlW))x{TI¥TI=x[T]an+[T¢J¥8 [¢]
00 (h°(TXNI))+4g [zl

XNIxZHOIFH+FN  (T]

V EXTHOHVIS+X A -

0L 'A[UJGXZHSHVSSA



I\ ]

A

12.4 Formulae Derivations

Derivation for the expression for |L(G1)]:

t+ht+v2t

2v

t(h+1+v2)
2)

2t(h+1+v

a-1
atu+c § (a-i)
i=1

a+y+f2-la,

3
u+ t[2(h+1+v2)] + t[2th2+athathvi+atveeatyt-ne2t-1-v2]c

ui-t[2(h+1+v2)]4-t[2tc(h+1+v2)2-c(h+1+v2)]
u+ t(h+1+v2)[2 + 2tc(h+1+v2) -c]

Derivation for the expression for the volume of a hyperSphere of

radius e:

Conditions:

Then

From tables:

V= Ifedw [[!dv = Ifedw(%wpz) = ZI: %ﬂp3(W)dw

R

.[%rrp3 = yolume of a sphere of radius p in R3]
2ay2422 (= p2) +ul = e = p2aud = &
20dp = -2wdw
' : = dw = -——L— dp
w = Jet-p? Ve?-p%

w>+e > p=0
w+0 +p=e

0 e 4
V=2 [ Groti—ew =& [ L
e ve2-p2 0veZ-p?

4 )
X .13 32 34 .-1 x -
J o dx = -7% YeZ-x2 - gt xvVe2-x2 +-§e sin m+c = f(x)
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impl fes v = Sn(f(e)-£(0)) = SnideD1 .
2
v ='%T e4
buf~ V= e'4 implies

12.5 Graphs and Tables

Pertinent graphs and tables follow. -
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