Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE SIMULATION OF LARGE~-SCALE

INTEGRATED CIRCUITS

by

A. R. Newton

Memorandum No. UCB/ERL M78/52

July 1978

THE SIMULATION OF LARGE-SCALE INTEGRATED CIRCUITS

by

A. Richard Newton

Memorandum No. UCB/ERL M78/52

July 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

Electronic circuit simulation programs can accurately predict voltage and
current waveforms for small integrated circuits but as the size of the circuit
increases, e.g. for Large-Scale Integrated (LSI) Circuits involving more than 10000

devices, the cost and memory requirements of such analyses become prohibitive.

Logic simulators can be used for LSI digital circuit evaluation and design if
only first-order timing information based on user-specified logic gate delays is
required. If voltage waveforms and calculated delays are important, a timing simu-
lator may be used. In many circuits, however, there are critical paths or analog cir-

_cuit blocks where more accurate circuit analysis is necessary.

This dissertation describes the hybrid simulation program SPLICE, developed
for the analysis and design of LSI Metal-Oxide-Semiconductor (MOS) circuits.
SPLICE allows the designer to choose the form of analysis best suited to each part
of the circuit and logic, timing and circuit analyses are performed concurrently.
The use of an event scheduling algorithm and selective-trace analysis allows the
program to take advantage of the relatively low activity of LSI circuits to reduce

the cost of the simulation.

SPLICE -is between one and three orders of magnitude faster than a circuit

simulation program, for comparable analysis accuracy, and requires less than ten

percent of the data storage used in a circuit analysis. SPLICE is written in FORTRAN

and is approximately 8000 statements long.

The algorithms and data structures used in SPLICE are described and a number

of example simulations are included.

Acknowledgements

The author wishes to express his sincere appreciation to Prof. D. O. Pederson
for his continuirig guidance and encouragement. He also gratefully acknowledges
numerous helpful discussions with, and assistance in examples and programming
by, G.R. Boyle, E.Cohen, J. Crawford, M-Y. Hsueh, L. Scheffer and the
members of the Integrated Circuits Group at the University of California, Berke-

ley.

Support received from Corporate Engineering, Hewlett Packard, and in partic-
ular the encouragement provided by M. Brooksby and R. Smith, is gratefully ack-

nowledged.

The author wishes to thank his parents, Bette and Rodger, for their support

and encouragement throughout the course of this work.

(1)

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ..cvverecnrcnnerene ceresrestassererestearssresanentsrnsses 1
CHAPTER 2: THE LSI CIRCUIT SIMULATION PROBLEM..cccceceervoarcsccrosecne 5
2.1 INEEOAUCLION ..ottt cectess et s sas s sssesssae s s ssssensesesssnssssns 5
2.2 The LSI DeSign ProCesS.......ccccvereriirecrivenreseeressnsessessersessessessesessessersessessens 7
2.3 Analysis TeChNIQUES.......ccoveereerrirrerceeeererctiereecereesereeseeessnsesssesesasenes 8
2.3.1 INtFOAUCHION.......coevetiireccrereerenreestesretesnrresaesaeseeseesessssessessessessessessenes 8
2.3.2 Circuit ANALYSIScoveevieriieeniieeeeeneerenreneecereresesseessesseseessessesssonees 9
2.3.3 Timing ANQALYSIS...c..cceviiriecerintenrenrenserrereeneeessesssessessesssessesseseseesessene 12
2.3.4 LOGIC ANAYSIS.....cc.coverrereerienrieereeenenreneseresresessesssessessesssesssssesssossens 17

2.4 Hybrid ARNALYSIScccoveeveeiienieneninenseresenrenresesssesseeseessessessncsssessessessesnsone 20

CHAPTER 3: ALGORITHMS FOR CIRCUIT, TIMING AND LOGIC ANALYSIS. 23

3.1 INETOAUCEION ...oveeeeerecreetetese et ese s sessssessbenenesssessessssensseses 23
3.2 CirCuit ANALYSIS......ccevreereerrerrerreerrrrereissessessessessessessesesssessessseesssstesssesssssosnns 23
3.2.1 INTOAUCHIONveueeurreeereeeereeineseaesseaeseserenenesesessessessanesesnoseonsnssnsnses 24
3.2.2 Table MOMEISccovverrreerrreeetrrneeetsresecseneeesesnseseesesssssssesseressseneenes 24
3.2.3 Nonlinear Circuit TEAriNgceceeererreerrerereeeeneeseeesssessesseseesessnens 25
3.3 TiMING ANALYSISccuevveieriererrerreeeeireeeseererreresesscsssseessssessessosssssessesaessesnenns 29
3.3.1 INPOAUCTHIONcveuenircriretrrreririeesese et rese s esesseresbonsatesesasssanen 29
3.3.2 Equation DecOUPING........ccoveeerirrireieeceenteeseereesaesersnsesessessesssssesnsens 30
3.3.3 Single IErationcceceviviverereiiieecereetecereesseseeseeeseessessesssessenssessens 32
3.3.4 Stability S 33
3.4 LOZIC ADNAIYSIS....coeereererieeretecteceeeneereteteteseeseesneseessesseessessassssssesssensesaes 34
CHAPTER 4: HYBRID ANALYSIS AND SPLICE ...cccveecenccancannnnne creseses ceees 37

(i1)

4.2 The Event Scheduler ...t e saeeseesaeens 39
4.2.] BaSIiC CONTEPLSceevrreerreeenreerrreerseecsnessreessesssenessasessssesssnsorssssesassesssases 39
4.2.2 Data Structure of Elements and Nodesccecrevcereccerccrccscscnen. 40
4.2.3 Data Structure of the Time QUEUE........ccecerverrerrerrsercaeeseessersesesesnens 42
4.2.4 Scheduler Operation...........ccivimecereesrissssnisensessessessensessessessesssoseranes 43

4.3 Logic Analysis.......ccoueueue reeesesaseseantsasasesasaae 44

4.4 Timing Analysis. rreeeeseeeesnnessnens . 45

4.5 CITCUIL ANALYSIS.....eeirrererrerererersenersnecsseessasssasessessasessasesssnasssnsassnsessasssssasassas 47

4.6 The Hybrid INTErfaceccccceeerueeeerrrversanrsracrsnessaresssecssnsessssessseasesssssssasanas 47
4.6.1 The Thresholder.......cccvvirreirnrinninnnnnccniinnicessesesesssissssesssssssssessons 48
4.6.2 Logic-t0-Circuit CONVErSIONccccccvrreeeeccrsesnessasssosesnnsscssssnssscsssasssas 48

CHAPTER §: THE SPLICE PROGRAM ..ccecvccccoccsascrcccconccns sosesescsccsssessaces 49

5.1 INrOQUCHION.......coierieicnncneriisinenscnscsssscssesesassassesesasssrsssesesessesssnsensesaans 49

5.2 The Input Processor reesesestesaeasestnteassassasans st satesten et atester st baeabesanensens 50

5.3 Setup and Analysiscccceeeeveerunene . 50
5.3.1 Introduction.......... . 50
5.3.2 The Setup Phase. . . 51
5.3.3 The ANalysiS PRaseccoevrererreerensnecsnernesnissescnsesncssonsnsesansssnssssses 53

5.4 The OULPUL PrOCESSOL.....ccccrvemrsuinrmsinsnesisessessnsnissessesessaessasssassassssssssassses 53

CHAPTER 6: PROGRAM PERFORMANCE ..cccccetcrecrecccccncecccccsscscnceascaccnes 54

6.1 INLTOQUCLIONcorvuiereeeceeecerernienrsnreasosnssnsssessstesissssissessncssnesassssnssssessessasans 54

6.2 The Binary-to-Hexidecimal Decoderccccvvieeveeceeecrnrssinsssensencsssssns 54
*6.2.1 TimMing ANALYSIS....cceereerreeesieerseeecreereressesssnsesaecsssescanasss 54
6.2.2 Hyorid ANALYSIScccceecercencncecrcriecsriresnrucsessssessssensassssssssssessessanansanas 55

6.3 The 256-by-1 bit Dymamic RAM.......ccccccvviirnemnvimnniinriciiininecneninnees 57

6.4 The Digital FIlter ...ccuviviiiiieiecitiieeececeseecve ettt ssseessaneeanees 58
CHAPTER 7: CONCLUSIONS .itcececaaccccccccccscocccccccccssssssacsccccscns ceecrcveeese 00
APPENDIX I: A Table Model for an MOS Transistor......c..cccocevveerviennennnns Al.l
APPENDIX 2: Floating Capacitors in Timing Analysiscccecceecerveenencinnns A2.1
APPENDIX 3: SPLICE Input EIEmentscccovvveeeerrnineeicsicsesnsosssscnsssssnnssens A3l
APPENDIX 4: Input Processor Data StrucCture.........coocevveveevvcisrennnecsnnecnnens A4.1
APPENDIX 5: Setup and Analysis Data Structures.........c.cceeeverenvesseesssaneonaes AS.1
APPENDIX 6: Output Processor Data StruCturecccovveeesvesssencssncessensesas A6.1
APPENDIX 7: Input Data for Example CircuitS.......cccccevveeecrrnnccrerecerecerscenss A7l

APPENDIX 8: MOTIS-C: A New Circuit Simulator for MOS LSI Circuits A8.1
APPENDIX 9: Analysis Time, Accuracy and Memory

Requirement Tradeoffs in SPICE2........cc.ceeverreerrccnennnnnee A9.1
APPENDIX 10: A Simulation Program with Large-Scale

Integrated Circuit Emphasiscccceervemrceenicnsssvecisecnnnns Al10.1
'APPENDIX 11: Program Listing of SPLICE............cccocovveieninscvcennnennnans All.l

REFERENCES: 00000000000000000000000000000000080000000000000000000080000000000000000000000000000 Rol

(iv)

CHAPTER 1

INTRODUCTION

A number of simulation techniques are available for the analysis of electronic
circuits. For small circuits where analog voltage levels are critical to circuit perfor-
mance, or where tightly coupled feedback loops exist, a circuit simulator such as
SPICE2 [1] can accurately predict circuit performance. As the size of the circuit
increases, the cost and memory requirements of such an analysis become prohibi-

tive.

Large-scale integrated (LSI) circuits can contain over 10000 transistors. Con-
sider the analysis of a circuit containing 10000 Metal-Oxide-Semiconductor (MOS)
transistors, for 1000ns of simulation time on an IBM 370/168 computer. If the
circuit simulation program SPICE2 were used and computer time cost $1000/hour,
the cost of such a simulation would exceed $30000 (App. 9). For most circuits‘, a

number of simulations are required before the design is completed.

For circuits where verification of the logical operation of the circuit and only
first-order timing information is sufficient, a logic simulator [2]-[6] may be used.
Logic simulators provide a discrete "on/oﬁ" analysis for digital circuits and, because
of the simplifications made during the simulation, can analyze circuits containing
over 10000 logic gates. If dynamic charge-storage effects or bilateral circuit ele-
ments are important, or if a waveform analysis is required and the expense of a
circuit simulation is not justified, a timing simulator can be used (7], (App. 8).

Timing simulation is a simplified form of circuit simulation which takes advantage

of the properties of digital circuits to reduce the simulation time. Fortunately, a
large portion of a typical large scale integrated circuit is digital in nature. For this
reason, simplifications can be made in the analysis which greatly increase execution

speed yet provide adequate information about circuit performance.

A comparison of circuit, timing and logic analysis programs for the analysis of
the same problem on the same computer [9] has shown the timing simulator
MOTIS-C (App. 8) to be typically two orders of magnitude faster than SPICE2, and
the logic simulator SALOGS-3 [2] to be three orders of magnitude faster than

SPICE2.

It is evident that for the analysis of large digital systems which contain tightly
coupled circuit blocks or critical paths, a simulator is required which will combine
the accuracy of circuit simulation (for critical parts of the network) with the speed
and memory-saving advantages of timing and logic simulation for the remainder of
the circuit {10]. At the same time, techniques must be used which can take advan-
tage of the relatively low circuit activity of LSI circuits. If only those portions of
the circuit which are active at any time are analyzed by the simulator, substantial

time savings can be achieved.

This dissertation describes the hybrid analysis program SPLICE (Simulation Pro-
gram with Large-scale Integrated Circuit Emphasis), which allows concurrent cir-
cuit, timing and logic analyses of various parts of the same integrated circuit. Each
part of the circuit is partitioned by the user from the rest of the network and hence

need only be simulated when it is active.

SPLICE has achieved speed advantages of from one to three orders of magni-

tude over circuit simulator SPICE2 and requires from one to ten percent of the

memory used by SPICE2. The circuit designer may choose the form of analysis

(circuit, timing or logic) suitable for each part of the circuit to be simulated.

Chapter 2 introduces the LSI circuit design problem and describes briefly the
techniques used today for the analysis of electronic circuits. These techniques
include circuit, timing and logic analysis. The hybrid analysis program DIANA,

developed by Arnout and DeMan [10] is also described.

The algorithms used in circuit, timing and logic analysis programs are
described in Chapter 3 and Chapter 4 describes the algorithms used in program
SPLICE. In particular, the techniques used for exploiting the low circuit activity of
typical LSI circuits and the interface between the various forms of analysis are
presented. The use of an event-scheduler, similar to that used in a logic simulator,

for the control of circuit, timing and logic analyses is also described.

Chapter 5 describes the program structure of SPLICE and the data structures
used during the analysis. These data structures are critical for the efficient opera-

tion of the program.

A number of example simulations are included in Chapter 6. These examples
include a 256-by-1 bit dynamic RAM circuit, which combines circuit, timing and
logic analyses in the same simulation, and a 700 MOS transistor timing analysis
performed on an integrated digital filter which has subsequently been fabricated for
use in an electronic instrument. The latter example illustrates how relatively low

circuit activity is exploited to enhance the speed of the simulation.

In the final chapter, a summary of program performance is presented and

areas for future work are described.

4

There are eleven appendices. The first two appendices contain Some details of
timing analysis, appendices three to six contain a description of the data structures
used in program SPLICE and appendix seven contains the input to SPLICE for the
examples of Chap. 6. Copies of three papers which describe earlier work in this
area are included in appendices eight to ten and appendix eleven contains a listing

of program SPLICE.

CHAPTER 2

THE LSI CIRCUIT SIMULATION PROBLEM

2.1. Introduction

Circuit simulators, such as SPICE2 [1],[11], SCEPTRE [12] and ASTAP [13],
have proved effective for the analysis of small circuit blocks (less than 100 active
devices) by providing accurate voltage and current waveforms. Today’s large-scale
integrated circuits contain over 10000 active devices. The application of such
simulators to circuits of more than 1000 active devices is often not cost-effective or

is beyond available computer resources, as brought out in a later example.

Logic simulators provide a discrete "on/off" analysis of the circuit under test.
By the use of simple gate-level models and Boolean arithmetic, logic simulators
such as SALOGS-4 [3], F-LOGIC [4], CC-TEGAS3 [5], and LOGCAP [6] are capable of
economically analyzing systems containing the equivalent of over 100000 active
devices. The simplicity of the models used in logic simulation and the relatively
small number of discrete signal levels ‘available in logic simulators, only a first-
order timing analysis for design verification can be provided. Due to the simplicity
of the signal representation, however, logic simulators can generate and validate
the test patterns used in digital circuit testers and simulate the effect of a variety of

circuit faults.

A simplified form of circuit analysis called timing simulation [7] has been
developed recently and its performance lies between circuit and logic analyses.

Timing simulators [7], (App. 8), [14] take advantage of the properties of digital

networks to simplify both the active device models and the arithmetic required for
the analysis. Between one and three orders of magnitude computational speed
improvement over circuit simulation have been obtained using timing simulation.
The actual speedup depends on both the type of circuit being analyzed and the

level of model complexity used by the program, as described later in this chapter.

In the remainder of this chapter the LSI design process is.introduced and the
importance of modularity and regularity in both the circuit design and the circuit
analysis are explained. The concepts behind circuit, timing and logic analysis are

also presented while the details of specific algorithms are included in Chap. 3.

A speed comparison of different simulators, running on the same computer,
analyzing the binary-to-octal decoder circuit of Fig. 2.1, is presented in Table 2.1.
The circuit simulation was performed using SPICE2, timing simulation with program
MOTIS-C (App. 8) and SALOGS-3 [2] was used for the logic simulation. This table
illustrates that timing simulation can be two orders of magnitude faster than circuit
simulation and logic analysis can be as much as three orders of magnitude faster

than circuit analysis on the same computer.

There are many LSI circuits where a logic simulation alone cannot accurately
predict circuit performance. For the design of a Random Access Memory (RAM),
an accurate circuit level analysis of each sense ampiifier ahd associated storage
transistors is required to predict its performance satisfactorily. Integrated circuits
which combine digital logic with analog functions such as active filters or analog-
to-digital converters also require a circuit-level analysis of the analog circuit blocks.
For this reason hybrid analysis programs have been developed. These programs
combine circuit, timing and/or logic analysis in a single program and allow the

designer to analyze some parts of the circuit with detailed device-level analysis and

]'.

:

Co

V] §] ¢

Fig. 2.1 Schematic Diagram of the Binary-to-Octal Decoder

oG

PYYPYYYY

[y

N

W

=

Wn

[¢)8

-~

o0}

6A

6B

Central Processor Time Normalized
per Print Point (2ns)
(seconds)
CIRCUIT (SPICE2) 1.3 3000
TIMING (MOTIS-C) 0.0037 6
LOGIC (SALOGS-3) 0.0006 1l

Table 2.1 Analysis Times for the Binary-to-Octal Decoder

sophisticated device models while less critical digital parts of the circuit may be

analyzed using timing or logic analysis.

The partitioning of the circuit into analog and digital blocks allows the
designer to choose the level of modeling appropriate to each portion of the circuit
and hence reduce the total cost of the analysis. The circuit partitioning is also used
by the program to take advantage of the relative inactivity of large digital circuits
and reduce analysis time even further. The algorithms used to perform these tasks
are described in Chap. 3. Programs of this type include DIANA [10] and SPLICE

described in Chap. 4 and Chap. S.

~

2.2. The LSI Design Process

When an integrated circuit contains less than 100 active devices or is of a reg-
ular structure, such as a register or Programmable Logic Array (PLA), it is often
possible for a single engineer to design the entire circuit. With large circuits con-
taining large blocks of random logic this is no longer the case. The circuit must be
partitioned into functionally-independent blocks, each of which may be partitioned
further, until each piece of the circuit is small enough to be designed by a single
engineer. A block diagram of such a partitioning process is shown in Fig. 2.2. The
partitioning process is hierarchical and the circuit often contains regular structures

such as RAMs, Read-Only Memories (ROMs), PLAs or shift registers.

As the design progresses the circuit may be verified at each level of complex-
ity. The set of design verification aids corresponding to each level of uesign com-

plexity is shown in Fig. 2.3.

It is often sufficient to perform the detailed and relatively expensive circuit

analysis on the separate modules at the lowest level of Fig. 2.2, where the circuit is

7A

GATES
\

DEVICES

Fig.2.2 The Partitioning of a System Design.

SYSTEM
MICROPROCESSOR RAM INgggéggzPUT
ROM ALU REGISTERS
INSTRUCTION OPERAND EXECUTE SAVE
FETCH FETCH RESULTS

<

FUNCTIONAL
ANALYSIS

REGISTER TRANSFER
LEVEL SIMULATION

LOGIC SIMULATION

i

TIMING SIMULATION

i

CIRCUIT SIMULATION

Fig. 2.3 The Hierarchy of Design Verification Tools.

7B

8

described in terms of devices such as MOS transistors. The circuit analysis data is
used by the designer to choose an appropriate topology for a logic gate-level
description of the circuit block and to determine its parameters. This task may be
performed interactively on a minicomputer or suitable intelligent terminal [15]. In
this way, as the implementation of the circuit moves up the hierarchical tree of
Fig. 2.2, the integrity of the circuit (its connectivity) and accuracy of the signal tim-

ing information for the various blocks in the design may be preserved.

The highest level of simulation shown in Fig. 2.3 is the Register Transfer
Level (RTL) simulation. An RTL simulator uses the same form of signal descrip-
tion used in a logic simulator but provides higher-level logic models, such as regis-
ters, PLAs and Arithmetic Logic Units (ALUs), and higher-level structures such
as parallel data buses, where a number of data lines are described as a single, paral-

lel data path, both in the input description and during the analysis.

Note that functional simul&tion is not included directly in the verification pro-
cess. Functional simulation is simulation at the algorithmic level and does not
depend on the particular design implementation. It is the comparison of the RTL
simulation and the original functional-level description of the circuit which finally
verifies that the circuit design meets the specifications required by the original algo-
rithmic description of the circuit function. This dissertation is not concerned with

functional simulation, as mentioned earlier.
2.3. Analysis Techniques

2.3.1. Introduction The detailed analysis of integrated circuits in the time domain
requires the solution of a set of first-order, nonlinear ordinary differential equa-

tions which describe the circuit and its associated signal sources. In the case of

Nodal Analysis [16], the node voltages may be expressed in compact vector form

as
v = f(v,t) (2-1)

where v;, i=1,...,n are the node voltages. For MOS circuits, the nonlinear devices
include driver transistors, loads and transmission gates and the principle energy
storage element is the capacitance at a node. A detailed analysis of circuit perfor-

mance requires the accurate solution of this set of differential equations.

2.3.2. Circuit Analysis A nodal or modified-nodal {17] circuit analysis program
such as SPICE2 solves the initial value problem of Egn. 2-1 until the successive
difference in the computed node voltages between analysis iterations is less than
0.1%. The device models are relatively complex and describe accurately the termi-

nal characteristics of the nonlinear devices which make up the integrated circuit.

" In a circuit analysis program the numerical solution of Eqn. 2-1 is performed
in two steps. First, the solution time interval T is divided into small time steps
where each increment h is called the stepsize. This is shown for a single node in
Fig. 2.4. The set of nonlinear algebraic difference equations, derived below, is

then solved numerically.

At any time t, where the node voltages are known, the node voltages at time
.+ may be obtained explicitly from those already computed at t, by using a
Taylor-series expansion at t,. If only the first term of the expansion is used the

method is called the Forward-Euler algorithm where
Vas1 = Vo +hi(vy, tg). (2-2)

Explicit methods such as this require very small values of the timestep h to main-

tain accuracy and stability [16]. For this reason they are seldom used in circuit

dee

9a

time

Fig. 2.4 The solution period is partitioned into steps

of width h.

10

simulation programs.

Another way of obtaining the value of the node voltages at t,,, is to use a
polynomial approximation to the voltage waveform at each node. In this case the
values ‘of the node voltages at previous timepoints are used to predict the value of
the voltages at t,,,. These predicted voltages at t,,, may then be used to obtain a
better approximation for the node voltages at t,,, in a similar manner. This results
in an implicit solution method. The two implicit methods of interest here are the

first-order Backward-Euler method where
Va1 = Vothf(vosy, the) (2-3)

and the second-order Trapezoidal method:

Voel = Vq %[f(vn-c-h tn+1) + f(v,, tn)]- (2-4)

The second part of the circuit analysis concerns the solution of the set of non-
linear algebraic equations which result from the application of the difference
methods described above. Eqns. 2-2, 2-3 and 2-4 may each be written in the stan-

dard form:
v = V(v). (2-5)

where v is the vector of node voltages at t,.,. The subscript n+1 has been dropped
for clarity and is assumed below. The method most commonly used for the solu-
tion of Eqn. 2-5 is the Newton-Raphson algorithm [16]. Egn. 2-5 may now be writ-

ten in the form
jiv) =0 (2-6)

and assuming an initial choice for the voltages at t,,, of v? then the mth iteration

of the Newton-Raphson algorithm may be written as

11

v+l =y [J(v™)] (v ™) 2-7)
where J(v™) is the Jacobian matrix of j(v™). Eqn. 2-7 then becomes:

JOvm)v™l = J(y™)ym.j(v™) = i(v™M), (2-8)
This is the set of linear algebraic equations solved during the circuit ar_lalysis.

The flow diagram of a typical circuit analysis program is shown in Fig. 2.5.
After an initial choice for the node voltages v{ is made at time t=0(A), the non-
linear device models are evaluated to obtain the matrix entries for both the Jaco-
bian matrix J(v™) and the right-hand-side equivalent current vector i(v™) in
Eqn. 2-8 above (B). The contributions from linear elements, such as time-invariant
capacitors, resistors and voltage and current sources, are also loaded into the
matrix at this time. The set of linear equations are then solved using an efficient
sparse matrix algorithm [1] (C) and the new voltages are compared to the previous
estimate (D). If the process has not converged this loop is repeated until conver-
gence is obtained. Typically 3 to S iterations are required per timepoint once the

initial solution (at t=0) has been obtained.

Once convergence is obtained, the error introduced by the Trapezoidal rule
approximation is estimated (E). This estimation may be done directly, using a
Local Truncation Error (LTE) scheme [1], [16], or indirectly by counting the
number of iterations required for convergence in the Newton-Raphson loop. For
the analysis of linear or weakly-nonlinear circuits the former method must be
used. For highly nonlinear circuits (e.g. digital circuits), LTE estimation algorithms
are generally too conservative and the iteration count method is far more effective
(see App. 9). If the solution at a timepoint is not satisfactory, the timestep is

reduced and the locp is repeated until an acceptably small error or number of

START

= e

— ~

EVALUATE DEVICE

MODEL EQUATIONS

:

SOLVE MATRIX

EQUATIONS @

CUT TIMESTEP

INCREMENT @
TIME
PRINT RESULTS
AxD ©®
STOP

Fig. 2.5 Flow Diagram for Circuit Analysis

11A

12

iterations is obtained. Time is then incremented (F) and the entire process is

repeated until the requested simulation period is over (G).

Fig. 2.6 shows the percentage of timé spent in the major subroutines of pro-
gram SPICE2 for the analysis of the binary-to-octal decoder circuit of Fig. 2.1. It is
evident from this analysis that aimost 80% of the total analysis time is spent in the
evaluation of the device model entries for the Jacobian matrix and the right-hand-
side current vector. A large fraction of the remaining time was spent in the evalua-
tion of LTE and the integration of the capacitor currents using the Trapezoidal
Rule. Techniques which can be used to reduce these times are described below

and in Chap. 3.

2.3.3. Timing Analysis Timing analysis [7] is a simplified form of circuit
analysis which takes advaﬁtage of the properties of digital circuits to reduce the
simulation time and memory requirements of the analysis. Timing simulators are
less accurate than circuit simulators. Node voltages may be as much as 5%-10% in
error but the timing information provided by the simulator is within a few percent

which is sufficient for most digital design problems.

The various simplifications made in a timing analysis are described in terms of
the circuit simulation algorithms presented above. Details of the algorithms used

for timing simulation are included in Chap. 3.

As mentioned above the evaluation of device model equations for each device
in the circuit at each iteration in the analysis can account for a large percentage of
the total analysis time. In a timing simulator the model equations are replaced by a
table of values and model evaluation consists of looking up~the values of the

matrix entries in the table. A detailed description of the table models used in

12A

*3TNOAT) wwvoomﬁ 1e3°0-03-L1BUTY 9yl JO SISATRUY
., 94yl 103 gADIdS 3o saurinoaqng iofey ay3l uy juads suwyy 9°z ‘814

LILELEL

" N392003

dYJSOKW

NO3SONW

134SON
WI13d
WITCNd
BYILNI
avol
dy3l
ONNYL
140S

SNOILVADE XIYLVW YVANIT J0 NOILATOS

SINARIND YOLIDVAVD 40 NOILVIOIINI

AOWYT NOILVONMYL TVOOT J0 NOILVWILSH

STIAON HOIAIA A0 NOILVNTVAI

2=0037A7 2=NILTAT ISON ¥300J30 0-01-8 —~ 2331ds

oo

90N

%

//

ULdH3H

13

program MOTIS-C and SPLICE is included in App. 1. For example, the drain-to-

source current I},s of an MOS transistor may be obtained from
Ips(Vps, Vgs, Vas) = Tp(Vps, Vgs, Vas) (2-9)

where Vps, Vgs, and Vg are the controlling branch voltages and Tp is a table con-
taining values of | Ips spanning the expected range of the branch voltages. For most
computers the table look-up scheme is much faster than the equivalent equation
evaluation and the model accuracy is still consistent with the accuracy of the
overall analysis. The table model requires more storage than an equivalent equa-
tion model would; however, the memory requirements of the table may be
reduced substantially if a number of simple transformations are used (App. 1).
Table 2.2 shows a comparison of model evaluation time and Newton-Raphson
iterations required for convergence for the three models available in SPICE2 (18],
[19] and a table look-up model of the type described in detail in App. 1. This table
model used 100 steps for each controlling voltage to span a range of voltage of +

twice the maximum power supply voltage. These results are based on the analysié

of the circuit of Fig. 2.1 on a CDC 6400 computer.

For circuit analysis the table values must be interpolated to avoid convergence
problems due to table step discontinuities. In timing analysis interpolation is gen-
erally not used because only a single Newton-Raphson step is taken at each

timepoint and hence dc convergence is not a problem.

The next simplification used in timing analysis is to replace the circuit matrix
solution of Eqn. 2-8 with a simple vector product. This is accomplished by decou-
pling the circuit equations for the evaluation of the node voltages at t,., by using

previously computed values of voltage for the evaluation of node coupling terms.

134

mode!| | ep/d/it | %cp ' it/tp | ep/pp [cp/pp
(ms) load | averg | (msDd norm
GP 2.9 81 4.5 | 2.8 | 12°
EM 2.3 | 77 4.7 | 2.37 | 1¢°
MOS3 3.8 88 3.7 2.2 %]
MOS2 4.3 79 3.1 1.3 6
MOSH 3.7 78 4.1 Q.Q 4
MOSO 9.24 21 4.6 B.22 !
*normal ized by device count (48/88)

cp

d
it
tp
S

Table 2

central processor time for analysis

: active device

: Newton—Raphson iteration

time point

user requested print point

.2 Results for the Analysis of the Bi=~~ry~to-
Octal Decoder Circuit using a variety of
Device Models. MOS1, MOS2, and MOS3 are the
Models Available in SPICE2. MOSO is the Table
Look Up Model.

14

This results in an explicit analysis of the coupling while the solution at the node
may still be implicit in form. The process may be clarified by considering Eqn. 2-8
evaluated using voltages at the previous timepoint t, rather than the previous

Newton-Raphson iteration m:

J(va)vae = i(vy). (2-10)
If J(v,) is partitioned into two parts

J(vq) = D(v,) +0(v,) | (2-11)

where D(v,) contains the diagonal entries and O(v,) the off-diagonal entries of

J(v,):

m 0 -+ 0
0 jn 0

Diva)=1{ (2-12)
0 0 - N
0 jiz - in
i 0 -

ovy =" = (2-13)
moodw2, 0

where N is the number of circuit nodes or equations. Eqn. 2-10 may be written:

D(vy) +0(v)vaey = ilv,) (2-14)

D(vy)vae + O(vy) vy = i(vy). (2-15)

If the coupling terms O(v,) are evaluated using the voltages at the previous

timepoint t, then Eqn. 2-15 becomes

D(vy)vpe +O0vy)v, = i(v,) (2-16)

15

D(vy)vpyy = i(vy)-0(vy)v, 2-17)

since O(v,)v, is known at time t,,,. The left-hand-side of Eqn. 2-17 may now be

replaced by a vector product to give
g(vy)vpe = k(v,) (2-18)
where g(v,) = [y, jaz J33 - * -5 innd and k(vy) = i(v,) -O(vy)v,.

Eqn. 2-18 is in the form used in timing simulators MOTIS, MOTIS-C and SIMPIL
[14]. Although explicit analysis is less stable than an implicit scheme of the same
order [16], the unilateral nature of most digital circuits and the voltage limiting of
logic levels 1 and 0 in MOS and 12L circuits make this approach practical. The use
of explicit coupling techniques and their effect on the stability and accuracy of the

analysis are described in Chap. 3.

Single Iteration: As mentioned earlier, only a single Newton-Raphson step is
used to approximate the solution of the nonlinear difference equations. This is
satisfactory because the device model equations are relatively smooth and slowly-
varying functions. Accuracy is maintained in MOTIS by using a global fixed timestep
h, typically Ins, which is small enough to keep the change in device model
operating-point between successive timepoints within acceptable limits. MOTIS-C
and SPLICE use variable timestep algorithms for timing analysis. MOTIS-C selects a

timestep which keeps the change in node voltage between any two successive

timepoints small (less than El:f of the supply voltage range) while SPLICE monitors

the change in device currents between timepoints. The latter scheme is described

in detail in Chap. 4.

The difference equation used for the integration of capacitor currents varies

between simulation programs. MOTIS and SIMPIL use the Backward-Euler scheme

16

of Eqn. 2-3, MOTIS-C uses the Trapezoidal algorithm of Egn. 2-4 and the timing
analysis part of SPLICE uses a modified form of the Forward-Euler method,
Eqn. 2-2, for the integration of grounded capacitor currents. Non-grounded (float-
ing) capacitors cannot be treated implicitly if the node decoupling scheme is used.

Techniques for integrating floating capacitors are described in Chap. 3 and App. 2.

Flow Diagram: The combination of the simplifications described above consti-
tutes timing analysis and the flow diagram of a typical timing simulator is shown in
Fig. 2.7. After an initial guess for the node voltages is made at time t=0 (A), the
contributions to the node conductance vector g(v,) and the right-hand-side
equivalent current vector k(v,) in Eqn. 2-18 are looked-up in the model tables
(B). The contributions from linear elements such as time-invariant capacitors,
resistors and voltage and current sources are also loaded into the vectors at this
time. The vector division is then performed to obtain a new set of node voltages
(C), time is incremented and the loop is repeated until the requested simulation
period is over. The simplicity of this scheme is apparent when Fig. 2.7 is compared

with Fig. 2.5, the flow diagram for circuit simulation.

If table models are generated for individual transistors, timing simulators may
be between one and two orders of magnitude faster than circuit analysis programs,
with less than 10% error in the node voltages. The actual speed improvement
depends on the type of circuit under analysis. If the circuit contains a node or
nodes which may change voltage levels very rapidly, a very small timestep must be
used. In this case the program is relatively slow. Four-phase MOS circuits often
fall into this category. This problem is alleviated when a variable timestep scheme
is used. In MOTIS-C, thé timestep is chosen to limit the maximum voitage change

at all circuit nodes between timepoints. As circuit size increases, the probability

16A

START

SO
/ X
: LOOK UP

TABLE ENTRIES

l

PERFORM VECTOR @

DIVISION

.

INCREMENT
i ®

:

PRINT RESULTS @

AND
STOP

Fig. 2.7 Flow Diagram for Timing Analysis

17

that at least one node in the circuit is changing rapidly at any time increases. Thus
if the timestep is the same for every node in the analysis it is often maintained at a
small value for most of the analysis. A technique which overcomes this problem is

used in SPLICE and is described in Chap. 4.

Macromodels: LSI circuits often contain many groups of transistors which per-
form the same function (e.g. logic gates in a digital circuit). If the designer or
computer program can identify these blocks before the analysis, further speed
improvements can be obtained by exploiting known characteristics of the group of
devices. The simplified model of a group of transistors which perform a specific cir-
cuit function is called a macromodel [20]. For example MOTIS-C contains a variety of
macromodels for logic gates and a data latch (D-type flip-flop). The macromodels
may use the existing device look-up tables or generate their own, as in the case of
the CMOs inverter macromodel in MOTIS-C [8]. SIMPIL uses a macromodel for each
muiti-collector 12L gate. With the use of such macromodels up to three orders of
magnitude of speed improvement over conventional circuit énalysis has been

obtained, with comparable waveform accuracy (App. 8), [14].

2.3.4. Logic Analysis A logic analysis may be viewed as a simplified timing
analysis where a number of discrete voltage levels are used rather than a continu-
ous voltage range. The level denotes the logic condition at a node and in the sim-
plest logic simulator these conditions are logic-1 (‘1°), logic-0 (‘0°) and all other
conditions are denoted by the unknown logic state (**’). For MOS circuits an addi-
tional staté is often used to simplify the analysis of tri-state gates and logic buses.
This is called the high impedence state (‘H’). For worst-case and other forms of

logic analysis other states may be added to denote such conditions as signal rising,

18

falling, about-to-rise and so on [3].

Rather than model individual transistors, groups of devices which perform a
logic function are modeled as a single block. This is similar to the timing macro-
models described in the previous section. These models may include simple gates
such as NAND, NOR and inverter, or more complex functions such as flip-flops and

registers.

Some logic simulators can only analyze combinatorial circuits. That is, time
delays through the signal paths are not included in the gate models. Other logic
simulators allow unit delays where all logic gates have the same delay and still oth-
ers have assignable delays where the designer can assign specific delays to any of
the gates used in the simulation. For MOS circuits where rise and fall times of
gates may be quite different an assignable delay simulator with the ability to assign
different rise and fall delays to each gate is required. In general only one logic state
change may propagate through a gate at any one time. Not until it has reached the
output of the gate can a second change begin. This type of delay is sometimes
called an /nertial delay. Should the input change again before the gate output has
reached its new value a logic spike is produced and may or may not be propagated
depending on the simulator being used. The generation of a spike is illustrated in
Fig. 2.8. Most simulators print a warning message when spikes occur should the
user request it. If more than one logic state may propagate through the device at
the same time, a transmission line delay is required. This requires a variable-length
queue for each delay and is generally not used except in special cases, such as for
long signal path delays. Transmission line delays may be generated artificially in

many simulators by connecting a number of buffer gates in series.

18A

lL

=

(a) No Spike Gemerated

RV P
Vel

(b) Spike Generated at Gate OQutput

Fig. 2.8 An Example of Spike Generation In Logic Analysis.

19

Even in assignable delay logic simulators the delays may only be integer mul-
tiples of a fundamental time quantum. This quantum may represent 0.5ns, for
example, in which case a gate of delay 10 units would have an effective delay of

Sns.

The unilateral nature of logic gates is fundamental to the operation of logic
simulators. The inputs of gates sample the logical values of the nodes to which
they are connected and then the gate determines the logical values of its own out-
puts. Inherently bidirectional elements such as MOS transmission gates are difficult
to implement in a logic simulator other than by using a unidirectional approxima-

tion to the gate.

Just as with timing simulation, it is the unidirectional nature of the gates
which maintains the stability of the analysis. Tightly-coupled gates can still cause
problems. Consider the NAND latch of Fig. 2.9. If the initial conditions are as
shown in the table at t=0, and each gate has a unit delay, the logic outputs will
oscillate. Many logic simulators can detect such oscillations during the analysis and
attempt to correct the problem by holding a node until the oscillation settles, or

halting the analysis and advising the user of the problem.

In many logic simulators tri-state gates or wired-or circuits also require special

attention.

Due to the many simplifications described above, logic simulators can achieve
speeds of more than three orders of magnitude faster than circuit-leve' ~*mulators.
The decoupling of logic nodes by the logic gates also permits the use of algorithms
which detect the logic gates that may change at any given time and ignore the

remainder of the circuit (gates where no input changes have taken place at this

19a

01L0101...

101010...

INITIAL CONDITIONS:

WO W
HOMKH

Fig. 2.9 An Example of a Critical Race in Logic Analysis

’

20

time). This process is called selective trace or event-driven analysis and is described
further in Chap. 4. Since in most large digital networks less than 20% of the nodes
are changing at any one time selective trace algorithms can enhance execution

speed greatly.

The simplifications made in logic simulation also reduce the accuracy of the
analysis. The output waveforms for the analysis of the circuit of Fig. 2.1 for circuit
and logic analysis are shown in Fig. 2.10(a) and Fig. 2.10(b). Note that the logic
levels have been scaled to match those of the circuit analysis and the\logic unk-
nown states are shown as rising or falling lines as appropriate. The relative speeds
of the analysis are also included. Both analyses were performed with program

SPLICE.

2.4. Hybrid Analysis

Modern circuit analysis programs require a great deal of computer time for
the analysis of LSI circuits. In many of these circuits the detailed accuracy pro-
vided by a circuit simulation program is not required for the entire circuit under
investigation but only in some areas of the circuit. This is particularly true of digi-
tal circuits where often a gate-level logic analysis provides sufficient information
about the performance of much of the circuit while other parts, such as transfer

gate clusters in MOS circuits [15], require more detailed modeling and analysis.

By providing a range of models, from highly accurate circuit-level device
models for critical parts of the network to less accurate models which describe
larger pieces of the circuit, the designer can reduce the simulation time significantly

by choosing the computationally less expensive models wherever it is appropriate.

204

v(1) ’ ' y -]
v(2) W

1]
w3 | N i

{]
v(s) t _/ :
ws) | N |
v(6) | . _/_—_-
v(7) | _/
v(8) } __]

0.0 ‘ TIME (ns) .400.0

Simulation time: 23'7seconds.

Fig. 2.10(a) Circuit analysis of the Binary-to-Octal Decoder.

V(a)

V(B)

v(C)

V(D)

V(1)

V(2)

v(3)

v(4)

v(5)

v(6)

v(7)

v(8)

20B

U U T

[\ | \
[A

_____//

-/

=/

o /

~ \/

s]

~ _/

v e e\

TIME(ns)

Simulation time: 0.3seconds

Fig. 2.10 (b) Logic Analysis of the Binary-to-"-+“21 Decoder

21

For example, consider the dynamic RAM circuit shown in block form in
Fig. 2.11. To predict the circuit performance accurately it is necessary to analyze
each sense amplifier with a detailed circuit-level analysis. The high loop gain of the
amplifier makes a decoupled timing analysis unsatisfactory due to the equation
decoupling scheme used in the timing analysis. For storage transistors and data
input/output circuits a timihg analysis provides the voltage waveform information
required, while the row and column decoding functions are modeled adequately by

a pure logic analysis.

Another property of LSI circuits which may be exploited in the analysis is
their relative inactivity. Typically less than 20% of an LSI circuit is changing state at
aﬁy one time. In a circuit simulation program, where a single matrix is used to
describe the network, the entire circuit must be re-computed at each analysis point
even when only a small percentage of the entries are changing in the matrix
describing the LSI circuit. Just as sparse matrix techniques reduce the memory
requirements and analysis time for circuit analyses so algorithms must be used
which take advantage of this relative inactivity of LSI circuits to reduce the simula-

tion time.

Hybrid analysis programs allow the designer to use a combination of analysis
techniques and models, from circuit-level g:!evice models to logic-level gate models
in the same simulation program. Such programs have provided up to three
orders-of-magnitude reduction in simulation time and substantially lower memory
requirements than conventional circuit simulation, while still providing a detailed

circuit-level analysis where necessary [10] (App. 8).

There are many ways that circuit, logic and timing analysis may be combined

in a single analysis program. The simplest approach is to combine existing

1399

COLUMN DECODER
(logic)

STORAGE ARRAY
(timing)

STORAGE ARRAY _
(timing)

p—

T

RS

ircuit) JL.

(logic)
—ye e S

PTTY

(timing)

ROW DECODER

FﬂFﬂHﬂ—ﬂAﬂF
SENSE AMPLIFIE

L

INPUT/OUTPUT CONTROL

[JLLI]

Input = =Output
1
Read/Write
control

Fig. 2.11 Block Diagram of 256-by-1 bit Nvmamic RAM

22

simulators yia a data interface which transforms the circuit or logic variables into a
form suitable for use by the other program(s). The block diagram of such a pro-
gram, which combines circuit and logic analysis, is shown in Fig. 2-12. After the
circuit has been analyzed for a short period of time the circuit node voltages are
converted to equivalent logic levels with a rhresholding process. A node voltage or
branch current below a prescribed level is converted to a logic 0, above another
prescribed value to a logic 1, for positive logic. Voltages or currents between these
levels are propagated as unknown logic states (‘*’). A logic analysis is then per-
formed for those parts of the circuit which were described in terms of logic gates.
After a short period of time, the logic nodes which are connected to the circuit-
level devices are processed and used to control voltage sources, current sources or
switches in the circuit analysis. This process is repeated for the duration of the
simulation. Note that the circuit-level part of the analysis is included as a single
block and thus the entire circuit-level part of the analysis must be performed at

each analysis iteration. The program DIANA uses an analysis similar to this.

Another approach is to integrate the analysis algorithms in such a way that the
circuit analysis may be partitioned into many small blocks, each of which may be
processed independently. In the case of the RAM circuit above only one sense
amplifier would be selected at any time. By partitioning each sense amplifier into a
separate block for circuit-level analysis, only the selected sense amplifier need be
processed. Program SPLICE permits such decoupling of circuit blocks whereas pro-
grams where the circuit analysis is performed as a single block must analyze all
sense amplifiers at every analysis point. The algorithms used in SPLICE are

described in detail in Chap. 4.

CHAPTER 3

ALGORITHMS FOR CIRCUIT, TIMING AND LOGIC ANALYSIS

3.1. Introduction

A number of approaches V'may be used in the design of circuit, timing and
logic analysis programs. In each case tradeoffs are made between memory require-
ments, execution speed, model accuracy and simulation accuracy. In a hybrid
analysis program, in which two or more forms of analysis may be performed con-
currently, a number of additional constraints are applied. The degree to which
these constraints influence the architecture of the hybrid program depends largely
on the way in which the various components of the program communicate with

one another.

This chapter describes certain of the critical algorithms used in circuit, timing
and logic analysis programs as an introduction to the description of hybrid simula-
tion presented in Chap. 4. Table look-up models for circuit analysis and the appli-
cation of diakoptics or tearing to nonlinear circuit analysis are described. The use
of equation decoupling in timing simulation and its effects on the stability of the
analysis are included and time queue techniques for logic simulation are intro-

duced.

3.2. Circuit Analysis

23

24

3.2.1. Introduction Circuit analysis algorithms for the time-domain transient
analysis of medium and small scale integrated circuits have received a great deal of
attention over the past decade. Most of the algorithms used in modern circuit

simulation programs have been compared and described in detail by Nagel [1].

Recent work has focused on increasing the speed of circuit analysis, at the
expense of some accuracy, and the- application of circuit tearing techniques [27] to
the solution of nonlinear networks. Tearing algorithms allow the circuit analysis to
take advantage of the known inactivity of certain parts of the circuit at any time
and, by using previously computed solutions for these inactive blocks, the simula-
tion timé can often be reduced substantially. These algorithms are described later

in this section.

3.2.2. Table Models As shown in the previous chapter the evaluation of the non-
linear device model equations may account for over 80% of the total circuit simula-
tion time. A table look-up model for MOS transistors similar to that described ear-
lier for timing analysis was used in a version of circuit simulator SPICE2 for the
analysis of large ﬁigital circuits. The tables were generated using the techniques
described in App. 1. The two timestep control algorithms used in program SPICE2
(the LTE method and the iteration count method) were also compared and the
effectiveness of the device bypass algorithm [1] was investigated. The bypass
scheme enhances execution speed by monitoring the operating point (node vol-
tages and branch currents) of each active device. If the operating point does not
change significantly between Newton-Raphson iterations the device models are not
re-evaluated but rather the matrix entries computed at the previous iteration are

used again. All devices must still be checked at each iteration to determine

25

whether the model equation evaluation may be bypassed.

The details of these investigations are included as App. 9. The results show
that with the table model, analysis speed could be increased by as much as a factor
of four over an analysis using the equivalent conventional analytic model. The
iteration count timestep control scheme is far more effective than the LTE scheme
for the digital circuits investigated and it is to be also noted that the error criteria
used by the program in the Newton-Raphson iteration could be relaxed
significantly before errors were observed in the voltage waveforms. The bypass
scheme also proved very effective for digital circuits. Approximately 50% of all
model evaluations were bypassed during the analyses. This is a far greater percen-

tage than that observed for typical linear integrated circuits [1].

With all of the above techniques incorporated in the program the execution
speed of SPICE2 could be increased by approximately a factor of twenty. This

improvement is not sufficient for the economic analysis of LSI circuits.

3.2.3. Nonlinear Circuit Tearing A number of recent publications [21]-[23], [25]
have extended and generalized Kron’s method [27] of diakoptics or tearing. These
extensions include the application of this approach to nonlinear networks and some
strategies for choosing appropriate tearing interfaces [24]. Rather than repeat these
general results, a description of Kron’s technique for nodal analysis is presented
and its application in the circuit analysis program MACRO [26] is described.
Modifications of the diakoptic approach, such as co-diakoptics [22] anA node tear-

ing [23] are not described here.

Kron’s method greatly reduces the dimensions of the matrices to be inverted

during the analysis by dividing the network into a number of smaller subnetworks.

26

A more important outcome for the analysis of LSI circuits is that the approach par-
titions the subnetworks in such a way that only those that are active at any time

need be analyzed.

The division of a given network is performed by detaching suitable tie
branches so as to create a number of unconnected subnetworks. To compensate
for the branches removed by this process, currents equal to those that were
flowing through the branches are injected at the nodes from which they were
disconnected. This method, based on the nodal admittance approach, is called

diakoptics.

Consider the network shown in Fig. 3.1(a). Its corresponding admittance
matrix may be written in the form:

Yu Y, Yy ,

Y= Yz] Yn Yz; i (3'1)

Y3 Y5 Yj;

All the submatrices along the main diagonal are square and their off-diagonal
elements depend only on the corresponding subnetwork. The elements of the
off-diagonal submatrices Y, i=j consist of the tie or transfer admittances connect-
ing nodes of the subnetworks i and j. The nodal equations for the network may be

written in the form

Yv =i | (3-2)
where v and i are the vectors of node voltages and node currents, both of order N,
respectively, where N is the total number of nodes in the circuit. By adding addi-
tional equations to the system, the tie admittances Y;; can be removed from the Y

matrix and the resulting block-diagonal matrix structure obtained is

26A

SUBNETWORK

SUBNETWORK
3

(a) Network Partitioned into three Subnetworks.

SUBNETWORK

3

(b) The Network After Tearing

Fig. 3.1 A Partitioned Network and its Torn Representation

27

g

[Y' -K”v
K' Z||b
where p is the number of branches removed, Y'(NxN) is the block-diagonal
admittance matrix, Z(pxp) is the tie-branch impedance matrix, K(Nxp) represents
the tie connections, b(p) is the vector of compensating currents to be injected and
v and i are the unknown node voltages and node currents respectively. The

number of torn branches p is much smaller than the total number of nodes N. For

the example of Fig. 3.1(a) p = 4.

K has N rows, corresponding to each node of the original network, and p
columns, corresponding to each of the tie branches. In column q of K, +1 will
appear in the row corresponding to the node where + I, is injected and -1 in the

row of the node at which -1, is injected, as shown in Fig. 3.1(b).

The form of the matrix on the left side of Eqn. 3-3 is bordered block diagonal
and is shown schematically in Fig. 3.2. It can be shown that for a relatively sparse
network and using efficient sparse matrix algorithms the number of arithmetic
operations required to solve Eqn. 3-3 can be greater or fewer than those required
for the solution of the original nodal system depending on the form of the network
being simulated and the re-ordering scheme used to reduce fillin terms generated

during the matrix decomposition process [22].

The major saving of such a scheme for circuit analysis comes from the fact
that the LU factors for the individual Y; blocks need only be re-computed if the
node voltages within the subnetwork change [29]. Since the evaluation of the
admittance matrix entries consumes a substantial portion of the total circuit
analysis time, and large networks are often relatively inactive, the potential savings

can be quite significant.

28

On the other hand, if a bypass scheme of the form described in the previous
section is used, the only time savings of a diakoptic analysis of this type is the
evaluation of the LU factors. Unless the model evaluation time is reduced to the
point where it is comparable to the time required for LU factorization and
forward/backward elimination, diakoptic analysis on computer which can only per-
form one arithmetic operation at a time cannot provide a significant speed

improvement over nodal analysis with bypass.

Another approach based on diakoptics, which is used in the circuit analysis
program MACRO [26], [25] is to partition the analysis into two separate Newton-
Raphson iterations which are coupled by a functional iteration as described in the
previous chapter. In this case the block-diagonal Y’ is inverted to give Z' = (Y')~\.
This inversion is performed symbolically to reduce computation time. Z'is then
used to solve for the tie branch currents b in an independent Newton-Raphson
loop. Once these have converged a new estimate for the node voltages is computed
and the Y' matrix entries are re-computed for any subcircuits where the voltages

have changed. The algorithm proceeds as follows: partition Eqn. 3-3 into two parts

Y'v =i+Kb (3-4)

Kv+2Zbh =0 (3-5)
Substitute Eqn. 3-4 into Eqn. 3-5 to obtain:
Zb = -K'[Z'(i + Kb)]. (3-6)

An initial estimate is made for b, i and Z' then Eqn. 3-6 is solved using a Newton-
Raphson algorithm until b converges. Z' is fixed during this iteration and this is the
major difference between this approach and conventional diakoptic analysis. Once

the b values have been obtained, Eqn. 3-4 is used to solve for a new estimate of v

27A

Y1
Y, 0 X
0 Yoy
Kt z

Fig. 3.2 Bordered Block-Diagonal Form of the
Augmented Circuit Matrix.

29

and then the necessary entries of Y’ are re-computed. This outer Newton-Raphson

loop is repeated until convergence is obtained for the node voltages.

Rabbat and Hsieh [28], [25] have also presented a scheme for detecting inac-
tive subnetworks a priori by noting that only if a block connected to an already-
inactive block changes state, can the inactive block become active. Since this tech-
nique is very similar to the selective trace approach used in logic simulation, it will

not be described further here.

Many of the above approaches have the potential of reducing the numerical
operation count for the solution of the linearized equations at a Newton-Raphson
iteration. While device model evaluation is still the most time-consuming part of
the analysis, diakoptic approaches alone cannot improve the speed of circuit

analysis so that the simulation of LSI circuits becomes economical.
3.3. Timing Analysis

3.3.1. Introduction Many simplifications made to the circuit simulation algo-
rithms introduced in the previous chapter to obtain a timing simulator. The algo-
rithms described here apply to MOS timing simulation but most of the techniques
are similar to those used in other timing simulators, such as SIMPIL [14] for 12L

circuits.

Since device model evaluation is generally the most expensive part of circuit
analysis, timing simulators use table look-up models to reduce model evaluation
time. This technique has been described earlier and a detailed description of the
algorithms used in MOTIS-C and SPLICE are included in App. 1. Another important
simplification in timing simulators is the reduction of the Newton-Raphson itera-

tion loop and matrix solution to an explicit; single-iteration vector product as

30

shown in Chap. 2. By using decoupling the circuit equations the program can take
advantage of the low circuit activity of many LSI circuits and enhance execution
speed. The penalty for this simplification is reduced stability of the analysis. Algo-
rithms which allow the program to take advantage of this low circuit activity and
techniques for overcoming some stability problems in timing simulators are

described in this section.

3.3.2. Equation Decoupling As shown in Chap. 2, the use of node voltages from
previous timepoints for the evaluation of coupling terms allows the use of the

explicit, single-iteration-per-timepoint analysis of Eqn. 2-18.
S(Vn)vn-’-] = k(vn) (3'7)

where g(v,) = (i1, -+, innl and k(v,) = i(v,)-O(v,)v, as described in Sec.
2.3.3. This equation is in the form used in programs MOTIS, MOTIS-C and SIMPIL.
Program SPLICE uses a variation of Eqn. 3-7 as described in Chap. 4. Eqn. 3-7
shows that the voltage at node m in the circuit at timepoint t,,, may be computed

directly from voltages evaluated at t,:

g™ (vy)vim, = k™(v,). (3-8)
Hence the nodes are decoupled at time t,,,. Eqn. 3-8 may be expanded to include
the coupling terms in the form:

N . .
gm(vn)v::.[= i:.‘..[' Z om’f(v" k = nv n-lv tte)- (3‘9)
i=1

O™ contains the off-diagonal Jacobian entries as described in the previous chapter.

Note that v* has been replaced by f(v{, k = n, n—1, ---) above. In MOTIS, MOTIS-

C and SIMPIL, extrapolation is not used and hence:

31

f(vi,k =n,n=1, ---) = vl (3-10)
Accuracy is improved by evaluating the slope of the current characteristic at t, and
using the slope to estimate the current at t,,,. If this were not used the algorithm
would reduce to the Forward-Euler form of Egn. 3-10. As it is, the programs use
one iteration of the Backward-Euler method for the node voltages. Note that this
technique is similar to the Jacobi method [30]. If k = n+1 is permitted in Eqn. 3-9

for nodes which have already been solved at t,,; then the method is of the Gauss-

Seidel form [30].

Since the equations have now been decoupled and each node voltage may be
solved independently of the other nodes at t,,,, techniques which exploit the inac-
tivity of the circuit can be used. One approach is to monitor node voltages for a
number of timepoints and if any node has not changed by a significant amount the
solution for that node voltage may be bypassed at the next timepoint and its old
value used instead. To do this effectively the program must have a facility for
determining which other nodes are affected by the change in voltage at a particular
node. For example in the circuit of Fig. 3.3, if the voltage at node 2 changes then
node 3 must be checked to see if its voltage has changed. MOTIS performs this task
by having a flag associated with each e;lement. Should the operating point of any
element change significantly at a timepoint, the flags associated with all elements to
which it is connected are set and these elements are processed at the next
timepoint. Note that this implies a numerical delay of at least one timestep but if
the timestep is small these errors will not be significant. SIMPIL performs a fast
logic simulation of each gate to determine whether it need be processed in detail at

the current timepoint and MOTIS-C does not use a bypass scheme.

31A

Fig. 3.3 Simple MOS Circuit

32

3.3.3. Single Iteration Circuit simulators use the Newton-Raphson procedure to
solve the nonlinear algebraic difference equations at each timepoint (typically 2-5
iterations are required). If the equations are decoupled using the scheme described
above, convergence could only be obtained using a functional iteration approach
and would therefore be much slower in most cases. Rather than perform a number
of iterations at each timepoint, a single iteration is used in timing analysis. Accu-
racy is maintained by reducing the timestep so that the linearized device models do
not change significantly between timepoints. In MOTIS and SIMPIL this timestep is
chosen prior to the analysis and must therefore be a conservative value. MOTIS-C
uses a variable timestep scheme in which the initial guess for the timestep is based
on the properties of the circuit (App.8), but at any time during the analysis the
timestep may be adjusted by the program to limit the voltage change at all nodes in
the circuit. This approach is acceptable for most digital circuits where accumulated
voltage errors at a node are removed when the node voltage reaches logic "1" or
logic "0" value. A variable timestep scheme also enhances the stability of the

analysis as described in the following section.

With a global timestep and without a bypass scheme, the value of the
timestep chosen by the program will be small for large circuits. As the size of the
circuit incéreases the probability that the voltage at at least one node in the circuit
will be changing rapidly increases as well. Since the equations are decoupled, it is
possible to have different timesteps at each circuit node. Those nodes where there
is little activity or where the voltages are changing slowly may use a large timestep
while nodes switching rapidly can use a smaller stepsize. The voltage at inactive
nodes used in the analysis of a node with a small timestep may then be extrapo-

lated to estimate their value at the new time, for the evaluation of device models.

33
SPLICE uses such an approach and it is described in Chap. 4.

3.3.4. Stability Matrix iterative schemes such as the Jacobi and Gauss-Seidel
methods are inherently unstable when the matrix has a weak diagonal [30]. In cir-
cuit terms, this corresponds to a network in which there is a strong bilateral cou-
pling between nodes. For MOs digital circuits most of the node coupling may be
represented by voltage-controlled current sources and their almost unilateral pro-
perties ensure local stability. It is possible, however, for loops to exist within the
network where the circuit delay around the loop may be comparable to the analysis
timestep. A simple example of such a circuit and its associated directed graph is
shown in Fig. 3.4. A loop exists which could cause numerical instability if the
analysis timestep were comparable to the loop delay. In this case the instability can
be removed by reducing the timestep and hence increasing the self-admittance of
each node in the analysis until the system is diagonally dominant and stable. This
approach relies on the fact that their are grounded capacitors at nodes around the

loop.

There are two cases which arise in MOS circuits where this approach is not
sufficient. The first is the case of an MOS transmission gate where the drain and
source nodes are coupled by the channel conductance. This conductance can be
quite large when the device is in the conducting state. Techniques for the analysis
of transmission gates in this situation are presented in [15] and App. 8. The second
case is that of a floating capacitor. A technique which has been used successfully
for the analysis of ﬂoat{ng capacitors is included in App. 2. Both of these solutions

require the use of a much smaller timestep than would otherwise be necessary.

@ A@D"‘@"'L‘@)

(a) Section of an MOS Shift Register

(b) Directed Graph showing the signal loop

Fig. 3.4 Circuit with Potential Timing Instability
if Clock Signals Overlap.

33A

34

3.4. Logic Analysis

Most gate-level logic simulators belong to one of two general types. The first
is based on the Huffman model [31] shown in Fig. 3.5. In this case, the gate
description of the network supplied by the user is read by the program and any sig-
nal delays are factored out. The resulting combinatorial network is then ordered in
terms of signal dependence. This ordering process includes the detection of certain
pathological conditions in the network such as zero-delay loops. The analysis then
consists of applying the input excitations to the network and following any signal
path state changes through the network to the outputs. The delays are then applied
to any secondary outputs and the analysis of the combinatorial block begins once
again. The process is repeated until the requested input sequence has been com-

pleted.

This approach is very efficient for circuits where relatively few delays are
significant in the operation of the circuit. When all gates have associated delays,
performance will be degraded but the severity of the degradation depends greatly
on the way the algorithm is implemented. SALOGS [2], [3] uses an algorithm of

this form.

The second and more common approach is based on the use of a Time Queue
(TQ) [32] as shown in Fig. 3.6. Each entry in the queue represents a discrete point
in simulation time. Time moves ahead in fixed increments, determined by the
user, which correspond to consecutive entries in the time queue. Each entry in the
queue contains a pointer to a list of events which are to occur at that instant of
time. An event is defined as the change of logical state of an output node of an
element. The element may be a logic gate or an input signal source. The new state

may or may not be the same as the state already held by the output line. If the

PRIMARY
INPUTS

SECONDARY
INPUTS

]

COMBINATORIAL
NETWORK
(leveled)

——-ji‘

A
N

DELAY ELEMENTS

g
AN
]
AN

Fig. 3.5 Huffman Logic Model for Logic Analysis

34A

SECONDARY
OUTPUTS

t=0
1

present time
(PT)

TIME
QUEUE

34B

Events to be processed at
present time

- | @ o=

Can schedule their fanouts to
be processed in the future.

Fig. 3.6 Principle of the Time Queue Simulator

35

new state is different from the old one, all elements whose input lines are con-
nected to this output line must be processed to see if the change affects their out-
puts. These elements are called the fanouts of the output node and if the gate has
only one output they constitute all the fanouts of the gate. Fig. 3.7 shows a simple
circuit in which the NAND gate with output at node 1 has 3 fanouts. If the new
state at the output line is the same as the old state then the fanouts need not be
processed at this time. The algorithm used to determine whether the fanouts need
processing at any time is called a selective trace algorithm as mentioned in the previ-
ous chapter. It is also referred to as event-driven analysis or dynamic leveling. For
logic simulation no penalty in accuracy or stability is incurred with the use of selec-

tive trace.

When an output is evaluated and the new value is the same as the value
already held by the node, the event is cancelled and the fanouts are not added to
the time queue. If the new value is different, the event is executed by adding a list
of all the elements which fan out from the node to the time queue. Each of these
elements is then checked in turn to see if its outputs may have changed due to the
chatige of state at its input.and the process is repeated. Cyclic races can occur in
this simulation. They are detected and the simulation is halted using the approach

mentioned in the previous chapter.

The program module responsible for adding elements to the time queue is
often called the scheduler and elements added to the time queue at time t are
scheduled to be processed at time t. The scheduler is the heart of a time queue

simulator and will be described in detail in Chap. 4 and Chap. S.

In the time queue algorithm delays are included as part of each gate element

and hence are not treated separately as in the first approach. Since for an accurate

35A

Fig. 3.7 NAND gate 1 has 3 fanouts at node A .

36

simulation most gates will have a delay associated with them this approach lends

itseif to a more efficient implementation.

Many logic simulators use the time queue approach (e.g. [4]-[6]) and this

approach also has advantages for hybrid simulation as described in Chap. 4.

CHAPTER 4

HYBRID ANALYSIS AND SPLICE

4.1. Introduction

This chapter describes the algorithms used in the hybrid simulation program
SPLICE. Program SPLICE can perform circuit, timing and/or logic analysis for MOS
circuits. Parts of the circuit where simple logic functions are performed and the
voltage levels are not critical can be described in terms of logic gates. Other parts
of the circuit where MOS transfer gates are present, dynamic loading effects are
critical to the circuit operation or where voltage levels are required, ‘may be
analyzed using a timing simulation. If the circuit contains blocks where a timing
analysis is not satisfactory a circuit simulation may be performed. These blocks
include circuit networks where strong feedback is present, such as sense amplifiers
in a RAM or closed-loop operational amplifiers in an analog filter circuit. If floating
capacitors are connected in series a circuit analysis may also be required. The cir-
cuit analysis is performed locally on a small group of devices and hence many
separate blocks which require circuit analysis may be included in the input to the

program.

Each portion of the c;rcuit, whether it is described using logic gates, transis-
tors used in a timing analysis or circuit elements, can communicate with the other
parts of the circuit via the Aybrid interface This interface converts logic levels to vol-
tages and currents, or voltages to logic levels, according to the user’s specifications.

The hybrid interface is described in Sec. 4.6.

37

38

Consider the 256-by-1 bit dynamic RAM circuit shown in Fig. 4.1 and men-
tioned in Ch. 2. If this circuit were simulated using a complete circuit analysis, a
great deal of time would be spent providing detailed waveform information about
the input decoders and input/output circuits. At the same time, when only one
sense amplifier is selected in a read or write operation, all sixteen amplifiers and
the entire circuit array are processed. A bypass scheme or diakoptic approach as
described in Chap. 3 may reduce the total analysis time but the cost of the analysis
would still be prohibitive. A logic analysis would be much faster but would not
provide any information about the operation of the RAM (access time, refresh

time, etc.).

The input decoders can be simulated using a simple logic analysis to select the
addressed row and column of the memory array. The logic outputs of the decoders
may then be converted to voltages which control the input/output transistors and
storage transistors. These transistors can be analyzed using a timing analysis since
the voltage waveforms, charge stored on the bit storage capacitors and the circuit
delays are important. The sense amplifiers are regenerative and hence require a
circuit analysis for accurate prediction of their performance and to avoid numerical
instabilities during the simulation. For this example the program would consider
each sense amplifier separately and only analyze the active or selected one(s). The

analysis results for this RAM example are included in Ch. 6.

With a hybrid analysis program the designer can select the form of analysis
suitable for each part of the circuit. Each block of the circuit is processed separately
(each gate in the logic analysis, each node in the timing analysis and individual cir-
cuit block for the circuit analysis). Blocks which are not active at any time are not

simulated.

38A

7979

COLUMN DECODER

P?TY

(logic)
]
1
L
STORAGE ARRAY | | === [| sToracE array |
(timing) . | S— (timing)
(/5] L
. .
2 S [
B = o
2y g —~ :l :L
8'3 O oo =1
A oo &
2 = L=l
5 = X
2 5 z
< 15 _F
= —
%]
M
e J
1
Input = =Qutput
T
Read/Write
control

Fig. 4.1 Block Diagram of 256-by-1 bit Dynamic RAM

39

The analysis algorithms of SPLICE are controlled by an evenr scheduler of the
type used in a time queue logic simulator. In SPLICE however, the events
scheduled can be gates, as in the logic simulator, and/or timing elements or entire
blocks of transistors which require a circuit analysis. In the remainder of this
chapter the algorithms used by the event scheduler, the logic, timing and circuit

analysis modules of SPLICE, and the hybrid interface are described.
4.2. The Event Scheduler

4.2.1. Basic Concepts The event scheduler used in SPLICE is similar to that used
in a time queue logic simulator. As mentioned above, the elements the scheduler
deals with are not only logic gates but timing transistors and circuit blocks as well.
An element of the analysis is defined to be a logic gate, timing elements or group of
connected transistors which constitute a circuit analysis block. Elements have
three types of ports. Input ports (I), output ports (O) or input/output ports (1/0).
Input ports sample the signal at the node to which they are connected but play no
part in determining its value, as shown in Fig. 4.2. Output ports simply drive a
node and the value of the signal at that node plays no part in determining the out-
put of the element at that time, and input/output ports both sample the signal and
then may change its value. Some examples of logic, timing and circuit elements

and their ports are shown in Fig. 4.2.

In SPLICE, the circuit nodes also have distinct properties, as shown in Fig. 4.3.
A node may have fanouts, which are the connections to the input ports of ele-
ments, and fanins which are the connections to output ports of elements. A con-
nection to an input/output port constitutes both a fanin and a fanout. Fanouts

sample the signal level at the node and fanins can change the value of the signal at

INPUT PORT
(D)

(b) Examples of Element Ports.

gIRCUéT !
LonGIInC‘ OUTPUT PORT
(0)
h d
INPUT/OUTPUT
PORT
(x/0)
(a) SPLICE Element Ports
I
0]
I
l
/0 o +
1/0

Fig. 4.2 The Port Couvention for SPLICE Elements.

39A

398

NODE
FANINS p(O)—9= FANOUTS
(FI) (FO)

(a) SPLICE Node Convention

l—-l-L FI IFO :FI FO i

4 M

(b) Examples of Fanins and Fanouts

Fig. 4.3 Node Convention used in SPLICE.

40

a node. Note that nodes internal to a circuit-analysis block are not the concern of

the scheduler and hence not included here.

The efficiency of a time queue simulator depends on the particular data struc-
tures it uses. As events are scheduled to occur, they must be ordered in such a
way that the scheduler can determine which event to process next. To make this
process efficient the simulation time is broken down into small, uniform timesteps.
The size of the timestep is the smallest non-zero delay which a logic gate may have
and the delay of any gate must be an integral multiple of this timestep. This tech-
nique is used in SPLICE and the size of the timestep is called the Minimum Resolv-
able Time (MRT). For MOS circuits one unit of MRT is typically 1ns. In SPLICE,
one unit of MRT is the minimum non-zero delay of a logic gate and the minimum
time for which a circuit or timing element may be analyzed before its output
change is propagated to the remainder of the network. The timestep may be
reduced below one unit of MRT within the circuit or timing analysis, as described
later in this chapter. One unit of MRT is also the smallest timestep between output

events, such as print or plot requests made by the user.

4.2.2. Data Structure of Elements and Neodes Prior to the analysis, SPLICE gen-
erates a list of data for each element and node in the circuit. Fig. 4.4 shows the
general structure of an element block. The first word of the data list contains a
pointer to another data list which describes the element model (whether it is an
MOS transistor, NAND gate, etc. and the parameters of the model si'~h as delays,
threshold voltage, etc.). Rather than store the element parameters in the element
list itself, a separate model list is used. Since many elements in a large circuit are

of the same type, by keeping all device parameters separate form the elements the

LOCELM e—emeigms @t LOCMOD (to model)
+l Noutput
. LOCNOD
PY (Pointers to
[element nodes)

Fig. 4.4 General Structure of SPLICE element.

40A

LOCNOD =i > LOCFOL

OCFIL

VALUES

PARAMETERS

41A

Fanout List

Fanin List

Fig. 4.5 General Structure of SPLICE node.

41

likelihood of storing redundant information is reduced.

The second word in the list contains the number of output pius input/output
nodes the element has. This value is stored with the element for reasons of

efficiency during the scheduling process.

The list then contains pointers to each of the node lists which correspond to
the outputs of the element, followed by input/output node pointers and finally
input node pointers. The data structure for a circuit block is more complex and is

described in Chap. §.

The geﬁeral structure of a node is shown in Fig. 4.5. The first word of the list
contains a pointer to a list of elements which fan out from the node. This list is
called the fanout list and contains pointers to each element whose input or
input/output port is connected to the node. The second word contains a pointer to
a fanin list. This list contains pointers to elements whose output or input/output
ports are connected to the node. The third word contains the node fype. Nodes
may be of type logic, timing, external-circuit and internal-circuit. External circuit
nodes are those connected to timing elements. The fourth word contains T, the
last time a which the ;mdes fanout list was scheduled to be processed. The
remaining words contain the node voltages or logic levels ét the previous two
analysis points as well as a variety of parameters such as node capacitance, for tim-

ing nodes, and pointers to matrix entries for circuit nodes. A detailed description

of these data structures is included in App. 5.

When an element is processed, its outputs are evaluated and if any of them
have changed, the element node pointer is used to find the corresponding node list

and the locatinn of the fanout list is obtained from the first word of the node list.

42

The fanout list origin is then used by the scheduler to schedule the fanouts to be

processed at the appropriate time in the future.

Thus the lists for an element contains the element connection information
and a pointer to the model information. The node list contains information about
the state of the signal level at the node, pointers to fanout and fanin lists, and

some parameter information.

4.2.3. Data Structure of the Time Queue Efficient processing of the time queue
is critical to the overall performance of the program. The time queue contains the
fanout lists of all nodes scheduled to be processed and the time at which they are
scheduled to be processed. A simple way of storing these entries is the linked list
structure of Fig. 4.6. The scheduler moves along this time-ordered linked list
where each entry in the list contains the time the fanouts of a node are to be pro-
cessed and a pointer to the fanout list of the node. As each event is executed, the
scheduler processes each element on the fanout list in an arbitrary order. Once the
elements on th list have been processed, the simulator moves to the next entry in
the time queue. It may contain a list to be processed at the same time as the last
list or a list to be processed some time in the future. Any events generated as
each list is processed are inserted in the time queue at the time they are due to
occur. Unfortunately, if an event is scheduled to occur more than one unit of
MRT into the future, the process of inserting it in the time queue may involve
searching many entries already in the queue before its place can be de’~~mined and
hence this scheme is relatively inefficient. By observing that most events occur
within a few units of MRT from the present time (PT), a more efficient scheme

may be used [5], [33].

42A

(present time)

T1

T2

13

'y -

T4

T4 2 T3>T2>T1 = PT

Fig. 4.6 Simple Linked-List Time Queue

43

Rather than a simple linked list as described above, a contiguous block of data
is set aside where each consecutive position in the block represents the next unit
of MRT. If no events are scheduled at a particular time, the entry in the block is
null (-1). If the first entry in the block is the present time, PT, then any event to
occur s units in the future can be added to the list simply by adding s to the PT
pointer and inserting the fanout list pointer in the scheduler block. If the block is
100 units of MRT long, most events will occur within the time-span of the block.

A linked list is still used for events outside this range.

Fig. 4.7 shows the structure of the scheduler used in program SPLICE. The
program uses two 100-word blocks as well as the linked lists. As the PT pointer
moves down one block, entries may be added to the second block. When PT
reaches the end of the first block, it jumps directly to the second block and 'a swap
occurs. When a swap occurs, the first block is cleared and the linked list is
searched to find any events which may occur within the next 200 units of MRT. If
any are found they are added to the blocks at the appropriate point. Note that if
more than one event (fanout list) is scheduled to occur at the same time, the

fanout lists are linked as shown in Fig. 4.7.

4.2.4. Schedular Operation A simple example of the way in which the scheduler
operates is illustrated in Fig. 4.8. When processing begins at PT, the address of
FOL1 is obtained from the time queue. Each entry on FOL1 is then processed in
turn. In this case the first entry in the list is a pointer to elemc¢ . EL1. The
scheduler determines how many output nodes the element has and then proceeds
to check each one. If the first output node is ON1, the scheduler finds the node

list, checks the node type and depending upon the node type passes the fanin list

43A

ISCBlL =0
+1
PT i .-
.
']
°
+98
+99
ISCB2 =
+1
+2
[J
°
o
+98
+99
ISCB3 — P
)
ey

\]

Fanout Lists to be Processed
at the Present Time.

Second 100-entry block.

Linked List for Events more than
200 units of MRT from TSCBl.

Tig. 4.7 Structure of SPLICE 3cheduler Tables.

PT —p»

FOL2

EL1

Noutput

ON1

TIME
QUEUE
FOL1
& L
EL1l
ELZ <
FOLN ON1
onieomm—— penall)
Y.
/
FILN /

43B

LOCMOD

Fig. 4.8 An Example of the Processing of an Event in SPLICE.

44

address to either the circuit, timing or logic analysis module of the program. The
analysis module then performs the analysis at the node in question, updates the
signal values and if a significant change has occured sets a flag, aotes the time at
which the fanouts should be scheduled and returns control to the scheduler. The
scheduler checks the flag and, if it is set, adds the pointer to FOLN at the end of
the list at the appropriate point in the time queue. The scheduler then moves on to
the next output node of EL1 and continues the processing until no output nodes
remain. The scheduler begins processing the next element on list FOL1 and so on
until all fanouts from the node have been processed. It then moves on to the next
list of node fanouts, FOL2. When all events at PT have been processed, the PT

pointer is incremented and the process begins again.

4.3. Logic Analysis

With the event scheduler described above, logic analysis is straightforward.
When a gate is scheduled, its inputs are evaluated and the logic function of the
gate determines the value at the output. If there is a change in a gate output, the
appropriate gate delay tp is obtained from the gate model and the gate fanouts are

scheduled tp units of MRT in the future.

A spike analysis is performed for each gate and should a spike be detected an
entry is made in a spike data file. Spikes are not propagated by SPLICE. This data
file may then be interrogated by the user after the analysis. A variety of logic gates

are defined by SPLICE and described in App. 3.

Most logic nodes have only one fanin (only one gate determines the logic
value at the node) and in this case the fanin list contains a single entry. When tri-

state gates and logic buses are involved, many gates may fan in to a node. When

45

the logic analysis is performed a node where more than one fanin is present,
SPLICE checks the outputs of all other gates connected to the node to see if a bus
contention exists. If a conflict is present and more than one gate connected to the
node is trying to set its value, a diagnostic message is issued to a bus contention

file and the new value is forced at the node.

4.4. Timing Analysis

When the scheduler determines that the next node to be processed is a timing
node, it calls the timing processor and passes it a pointer to the node fanin list as
above. The timing processor then evaluates the nett current charging the grounded
node capacitor and computes the change in node voltage for one unit of MRT
using a Backward-Euler model for the grounded capacitor. If this change in voltage
AV is less than a user-defined value AV, the node fanouts are not scheduled, the
node voltages are not updated and control returns to the scheduler. The default
value for AV, is 0.1volt. Note that by not updating the node voltages if AV is less
than AV;, the program avoids the situation where a slowly-varying node may
change over a wide range of voltage without ever exceeding AV, between
timepoints and hence without ever having its fanouts scheduled. All node voltages
in the program are stored as 16bit integers to conserve memory and voltages are

scaled to lie within the range of +32767 units.

SPLICE does not use both a current and an equivalent conductance to model
the active devices in the circuit as would be the case in a true Newton-Raphson
step. Instead the program predicts the current midway between timepoints and
uses a single current scurce to model each active device. The approach is shown

schematically in Fig. 4.9 and resuits in the use of Eqn. 3-9:

45A

NODE
VOLTAGE

This value of voltage is used
to evaluate the model ___,——'

e >

s > v ey e Cs wn ww o nm -

n-1 n n+l TIME

Fig. 4.9 The Extrapolation Scheme Used to Predict
Timing Element Current.

",

46

N . . -
g (v)V, = iy~ 3 O™E(vi, k = n,n—1, -+). @1)

i=1
where now

; (V%'V:j\-l)

f(vi,k =n,n=1, ---) =vi+ 5 4-2)

This approach reduces the arithmetic required to evaluate the device models

and no penalty in either stepsize or accuracy has been observed.

For a node which is switching rapidly from one voltage level to another, the
change in the currents flowing through the active devices over a period of one unit
of MRT may be larger than can be tolerated for an accurate simulation. For this
reason SPLICE monitors the change in Iy for each MOS transistor, Alg, and if Al
exceeds a user-defined value Al,, the timing analysis timestep is reduced bu a fac-
tor of 4 and the analysis is repeated. Hence many internal timesteps may be used
by the timing simulation to obtain a satisfactory solution for the node voltage over
the one unit of MRT required by the scheduler. For each internal timestep
Eqn. 4-1 is used for the evaluation of the voltage at node m but now the coupling
terms are evaluated using

hi(vi-vi-y)

2hyprt

f(vi, k =n,n-1, ---) =vi+ 4-3)

where h; is the internal timestep at the node and hygy is one unit of MRT.

During the internal solution, if the drain current changes by less than an

amount Alp, a provision is made to increase the internal timestep.

47

4.5. Circuit Analysis

It the next node to be processed is an external circuit node, the scheduler
passes control directly to the circuit analysis module of SPLICE. The data structures
used for circuit analysis are more complex than those used for logic and timing
analysis and are described in Chap. 5. Once the circuit analysis module has deter-
mined which circuit block is to be processed for one unit of MRT it proceeds by
evaluating the timing element models for all devices connected to the external cir-
cuit nodes, as described in the previous section. This process is illustrated in
Fig410(b). The resulting circuit block is then simulated using algorithms similar to
those used in program SPICE2. The Trapezoidal method is used for the integration
of capacitor currents and a linked-list sparse matrix structure, described in Chap. 5,
is used for the solution of the linear algebraic circuit equations at each Newton-

Raphson step.

The circuit simulator may use an internal timestep smaller than one unit of
MRT and the extrapolation algorithm of Egn. 4-3 is used to evaluate the timing

element contributions at each Newton-Raphson step.

4.6. The Hybrid Interface

The timing analysis and circuit analysis are coupled directly since both simula-
tions use voltages to denote the signal level at a node and hence an additional
interface is not required. The logic simulation does require an interface to and
from the circuit and timing blocks so that logic levels may be converted to currents
and voltages and the voltages of circuit and timing nodes can be converted to logic
levels for use in the logic simulation. This interface is included in SPLICE by the

use of three types of elements: a thresholder (THRESH) for converting voitages to

47A

CIRCULT — e
BLOCK

-

(a) Circuit Block and Timing Elements

CIRCUIT
BLOCK

(b) Equivalent Circuit after Evaluation of the
Timing Element Contributiom.

Fig. 4.10 Circuit Block Processing in SPLICE.

48

logic levels, a logic-to-voltage converter (LTV) and a logic-to-current converter (LTC)
to convert the logic levels for use in circuit and timingz analysis. One of these ele-
ments must be included in the simulation whenever a connection is made between

a logic gate and circuit or timing transistors.

4.6.1. The Thresholder This element is used to convert the node voltages com-
puted in the logic or timing analysis into one of the four logic levels used in
SPLICE. The user can define two threshold levels for each thresholder as shown in
Fig. 4.11. Fér a voltage greater than the logic "1" level, a logic “1" is propagated
into the logic network. If the level is below the logic "0 level, a logic "0" is pro-

pagated. Any level between these two constitutes a logic unknown state "*".

The high-impedance state is determined by monitoring the equivalent node
current and output conductance used in the evaluation of the voltage at the node.
If both the current and the conductance values are small an "H" state is pro-

pagated.

4.6.2. Logic-to-Circuit Conversion Elements are provided in SPLICE for the
conversion of logic levels to voltages and currents. These are the LTV converter '
and the LTC converter mentioned above. They are identical in form and provide a
voltage-source and current-source output respectively for the circuit and timing
analysis. The operation of the LTV converter is shown in Fig. 4.12. When a transi-
tion occurs from one logic level to another, the converter outputs a ramp. The
user can specify the logic "1", logic "0" and logic ™" voltage or current levels as well
as rise and fall time. If a logic state becomes high-impedance the converter simply
holds the voltage or current at 'its present level. The converter does not include a

provision for voltage decay in the high-impedance state.

48A

*30T1dS UT ISPTOYSaIYL 9Yy3 jo uorieradp ayi TT1°y °*S1d

JWIL

0A

A

v Y

TIAGT DID01 JOVITOA IAON

48B

dH1L

*d0I'1dS UF 193134u0) 3383T0A-03-2F8077 3yl Jo uopreaadg ayg Z1°% 814

NI
0A —
0
) K
4 %A
11
4 TA 141

AIVIIOA FAON T4A3T 21901

CHAPTER 5

THE SPLICE PROGRAM

5.1. Introduction

The overall structure of SPLICE is shown schematically in Fig. 5.1. Program
SPLICE is written for use as a stand-alone batch program or for use with an intelli-
gent terminal for input and output processing. To aid implementation on an intel-
ligent terminal the program is written as three separate modules which communi-

cate via data files.

The input module reads the user’s input data and checks for obvious syntax
and circuit errors, such as missing device models or a node with only one element
connected to it. The input processor produces a binary data file which is then read
by the setup and analysis module of SPLICE. The setup and analysis module of the
program actually performs the analysis. During the analysis, an output data file is
generated for post-processing by the output module. The file contains the voltages
or logic levels at all nodes to be plotted by the user for each time the value at the

node changed and its fanouts were scheduled to be processed.

The output processor interprets this file and plots the logic or voltage
waveforms on an x-y plotter. Examples of the output from SPLICE are ‘~~nded in

Chap. 6.

SPLICE is written in FORTRAN and is approximately 8000 statements long. A

listing of SPLICE is included in App. 11. This chapter describes the operation of

49

49A

INPUT SETUP AND OUTPUT
PROCESSOR ; ANALYSIS PROCESSOR

7

D N WAN

Input from Output to
User f/
MASS MASS User

{ storace STORAGE

Fig. 5.1 General Structure of SPLICE.

s

50

SPLICE and the data structures it uses. The input processor is described with the
tvpes of circuit elements available to the user. A description of the setup and
analysis phase follows with a simple circuit example, and finally the output post-

processor is described briefly.

5.2. The Input Processor

The input processor reads model, element and analysis control statements
which are entered by the user. It links elements to the corresponding model and
compacts the input data into a file to be read by the setup and analysis module of
SPLICE. The program contains a variety of built-in models for logic gates, transis-
tors and other elements. A list of the elements available in SPLICE is included in
App. 3. The format of the input data provided by the user is very similar to that
of SPICE2. Some examples of inputs for SPLICE are included in App. 7. After decod-
ing the input data, the input processor generates a binary file whose format is

described in App. 4.
5.3. Setup and Analysis Module

5.3.1. Introduction A block diagram of the setup and analysis module of SPLICE
is shown in Fig. 5.2. The data file generated by the input processor is read by the
setup module and the data structures required for analysis are generated. All calcu-
lations that can be performed prior to the analysis are also done at this time. After
setup is complete, the analysis module is entered and the event scheduler takes

over for the duration of the analysis.

SPLICE uses a simple dynamic memory allocation scheme. The memory

manager used in SPLICE can allocate fixed blocks of real or integer data and the

50A

ADI1dS 3O doord sTsATeuy pue dniag 9yl jo meaderg yo07g 7°S "B14

1ndLao

HVY
200071 otINigy JIadY1d
3
T04I.N0D - .
SISAIVNY dnids N1avad LINL
4
a9deue)y

Lioudy pue

JOI'ldS

51

\

transportability of the program was considered in its design. The program uses
scratch files during the setup phase to reduce the maximum amount of memory
required by the program and to avoid the necessity to relocate data blocks which
can be an difficult process in FORTRAN. The scratch files are referenced via sub-
routine calls to aid conversion of the program to computers with a different file

structure.

5.3.2. The Setup Phase The operation of the setup phase is illustrated with the
simple example shown in Fig. 5.3. SPLICE reads the element models and allocates a
data array for the model type and its parameters as shown in Fig. 5.4. In this case,
three models are used: one model for the input source, one for the inverter and
the third model for both NAND gates. At the same time the program generates a
model map to aid the linking of elements and models which is to follow. Next the
circuit elements are read and sorted according to type (logic, timing or circuit) and
the size of the fanin and fanout tables are computed and stored in a node map.
The program proceeds to generate the data structures for all the nodes including
the allocation of storage for the fanin and fanout tables. The tables for the four
nodes of Fig. 5.3 are shown schematically in Fig. 5.5. The circuit elements are
read back into memory in the compact form described in the previous chapter, and
the scheduler table storage is allocated. The data storage for the four elements of
the example circuit is shown schematically in Fig. 5.6. By allocating the scheduler
storage last, should the linked-list of future events grow during thc =alysis, its

size is not limited by any other blocks allocated later in the setup phase.

Once all the data blocks have been allocated, SPLICE proceeds to generate the

fanin and fanout tables and link each element to its model. At this point, the

sl

Fig. 5.3 Example Circuit to illustrate the
Data Structures of the Setup Phase.

S51A

Locs =—®| SOURCE

(a) Model for the Source Sl

LOCN «=p=| NAND

(b) Model for the NAND gates N1 and N2

LOCI =] INV

(¢) Model for Inverter Il

Fig. 5.4 Model Storage for the Example of Fig. 5.3.

Y0

V1

Tdelay

Tperiod

brkptl

brkpt2

brkpt N

Trise

Tfall

Trise

Tfall

51B

NODE TABLE

FANIN LIST

(-1

Sl

C —»

I1

p———— (_l)

'LOGIC

Ts

VALUES

N2

51C

FANOUT LIST

(-1)
N1

Il

(-1)
N2

(-1)
N2

(-1)
N1

Fig. 5.5 SPLICE tebles for the nodes of Fig. 5.3.

~

a3

v,

Sl gy Pr—mentmmee 1,0CS
1
A
1
B
A
N1 O > 1,0CN
1
C
A
D
N2 ==b= L a == 1,0CN
) -
D
C

Fig. 5.6 SPLICE tables for the Elements
of Fig. 5.3.

51D

52

elements which comprise circuit blocks must be identified. All elements which
require circuit analysis are linked. SPLICE then generates a Mode! Control Block
(MCB) for the first circuit block and repeatedly searches the circuit element list to
coalesce all connected circuit elements. These elements are linked to the MCB as
illustrated in Fig. 5.7. Once all elements of the first circuit block have been
identified, a second MCB is generated and the process is repeated until the circuit
element list is empty. Once all the MCBs have been generated and the internal and
external circuit nodes associated with each block have been added to the MCB.
SPLICE begins to allocate storage for the circuit matrix. The matrix is stored with
the circuit nodes as shown in Fig. 5.8. A linked list is used to identify the upper
and lower triangular entries of the matrix. The internal circuit nodes are then re-
ordered using a Markowitz scheme [34] to minimize matrix fillins generated during
the LU factorization process. the external circuit nodes are not re-ordered as they
must occur first in the MCB data array of Fig. 5.4 to allow efficient evaluation of the
timing element contributions in the analysis. A mock LU factorization is not per-
formed but the matrix fillins are generated during the first iteration of the circuit

analysis.

Once the data structures have been set up, SPLICE reads the first set of
analysis requests (until a "GO" statement is encountered) and computes the analysis
control data. such as MRT and the voltage scaling factor (for a range of =32767
units). A number of pre-analysis data reductions are performed. such as the
conversion of gate delays to units of MRT, and all the elements are scheduled at

time t=0.

Device Models

4

/

o

CIRCUIT ELEMENTS

next MCB /
MCB gy v P, Py

o e
Nnodes
Nextn

ol

_—’

[]

. , NODE

. POINTERS

D e o

Fig. 5.7 Data Structure of a Circuit Model Control Block

and Associated Elements

52A

LOCNOD

O 10CFOL
@O—nteemeiin LOCFIL
TYPE
Ty
Vn—l
Vn
1> v..
~ 14
? N vy
S [—
nrow ncol
Yij Yii

To Other Entries in
the Lower Triangle (L)

Circuit Node.

To Other Entries in
the Upper Triangle (U)

Fig. 5.8 Storage of the Circuit Matrix with the

52B

53

5.3.3. The Analysis Phase The analysis phase consists of executing the aigo-
rithms described in the previous chapter. When an output event is scheduled
SPLICE enters the time and signal level at the node in the output file for pust pro-
cessing. After the requested simulation time has elapsed, any remaining analysis
control requests are executed and the program terminates. A list of analysis con-

trol statements available in SPLICE is included in App. 3

5.4. The Output Processor

The output processor has been implemented on an off-line HP21-MX minicom-
puter acting as an intelligent terminal. It can produce plots of selected node
waveforms on an X-Y plotter. The format of the output file read by this processor

is included in App. 6

CHAPTER 6

PROGRAM PERFORMANCE

6.1. Introduction

This chapter presents the results of a number of circuit simulations using
SPLICE. The results show that using a hybrid analysis for a large circuit, between
one and three orders of magnitude speed improvement and between one and two
orders of magnitude reduction in memory requirements can be obtained compared

to conventional circuit analysis.

The first example illustrates the use of the hybrid approach to improve
analysis speed and the input to program SPLICE is described. The second example,
a 256-by-1 bit dynamic RAM circuit, demonstratés the use of concurrent circuit,
timing, and logic analysis. The final example, a 700 MOS transistor digital filter cir-
cuit, illustrates the speed and stability improvements possil;le using an event-
driven analysis. The description of each of these circuits, as read by SPLICE, is

included in App. 7.
6.2. The Binary-to-Hexidecimal Decoder

6.2.1. Timing Analysis The circuit schematic of the Binary-to-Hexidecimal
Decoder is shown in Fig. 6.1. It consists of an array of NOR gates and sixteen out-
put inverters to provide an active-low output. The waveforms obtained from pro-
gram SPLICE using a timing analysis of the circuit are shown in Fig. 6.2. These

waveforms agreed with those obtained from a SPICE2 simulation to within 2% using

54

S4A

*{jopa° 10IS[SURI] IDATIPp pue prOT ® IIBJ UT
918 UMOYS S19119AU] 94yl pue sjuswary Jupwij aap sysAjeuy 931 jo sIudWITY
IT® IRY] 9ION 'ITNOAT) 19p0I3(Q TRUWEIIPTX3-031-Lieulg 94yl jo wexdeyq oTIewdyss 1°9 °*I14

5 T '

- .._w u.-.._w .w.w M_ .._“.__ M &—0(7)v
SR A0 11 | A RS
(R | LY I N T I T

AG+ AGH AGH AGH AGH

.

(ST (€)y (D) (1)y (0)y

A®
A

AR

A

RC D)
RCD
R(D
RCD)
RC &
RCS)
RCB)
RCT)
CR(®
RC)
RUD)
RAD
RUD)
T RAD

RU4

R(15

54B

e o1e®)

Fig. 6.2 Output waveforms for the Timing Analysis
of the Hexidecimal Decoder Circuit.

............... e
j"‘/___f—\—j-__/—_f__J
W
[\ e \
¥a \
S
[
—
r S
e
. e
e
e
(U
T
-
S
S
e
U
TR ettt seietasais Lt ee e i heierions M
) 208 408 660 808

equivalent device models in both programs. A comparison of analysis times
between the SPICE? analysis and the SPLICE timing analysis shows that SPLICE is
approximately 80 times faster than SPICE2 and requires 5% of the data storage.
Note the spikes in the output waveforms caused by the delay of the input invert-

ers.

Since SPLICE is an event-driven simulator, it only analyzes nbdes which are
changing at any time during the simulation. This is illustrated in Fig. 6.3 where
the "events” used to generate the plot of Fig. 6.2 are shown. Each dot in Fig. 6.3
represents an analysis at that node. Note that while the nodes are not active, they

are not processed.

6.2.2. Hybrid Analysis Once the circuit designer is satisfied that the circuit meets
the design specifications, a macromodel of the circuit may be constructed using a
combination of timing transistors and logic gates. A macromodel for the decoder
above is shown in Fig. 6.4. All the internal transistors have been replaced with
logic gates and the output inverters are still analyzed using a timing analysis. The
input voltages are converted to logic levels using thresholding circuits, and the

logic outputs are converted back to voltages to drive the output inverters.

The input file used to describe the circuit is shown in Fig. 6.5(a) and
Fig. 6.5(b). The model for each input source (type LSRC) is specified first. The
model parameters for the sources are the input levels, followed by a delay time,
period, and a set of breakpoints on the piece-wise linear input waveform. The list
of inputs is terminated with a —1. The two MOS transistor models follow. They are
used for the transistors in the output inverters. The parameters for these models

are described in App. 3. The first model is the driver device (NDRIV) and the

of the Binary-to-Hexidecimal Decoder Circuit.,

S55A

w TN TN TN NN TN TN T
A A
o / \ / \
A / Y
RC O r~- - - - °
RCD v 7 - 1
RCge = v f °
RCD ¥ s f -
R€CH+ ° v £ -
RCS) £ w s -
R(B) ¢ o7
RCD £ \or
RC® ¢ - U S
R(CD N7 v
RUD PO
RAD ¢ vy o\ r
RUD ¥ v 7 -
RUD F v -
R(14>;r v 7
e Y
) 289 460 668 808
TiKE x18%)
Fig. 6.3 Events processed by SPLICE for the analysis

55B

‘Sjuawora Juywil aae sajed 1sjaoaug anding
9yl Afuo sjoN °*Ifnday) aspoaag TeWTI9pTXal-03-L1eurqg oY) jo [opowoadey %'9 313

N fé

M==0 (1)v

e e o o o o @ ‘! L 4 L 4
A ® s o o o & o) 4
* e ® o o o . 4 I‘
P ¢ e 8 ¢ o o o
L.
AL Al AL L1
(SD¥

(2)u (1) (0)y

HL ——0 (0)Vv

AA

56

second model is for the depletion load transistor (NLOAD). The supply voltage for
the load is set to 5 volts in the model. Model§ for the logic inverter and NOR gates
are included, each with a rise time of 4ns and a fall time of 2ns, derived from the
timing analysis results of the previous example. The logic-to-voltage converter
model, LTV, defines the rise time ("0"-to-"1" transition time), fall time ("1"-to-"0"
transition time) and voltages corresponding to logic "0", logic "1" and logic unk-

nown "*" respectively. The final model defines C as a grounded capacitor.

The element list follows the ten model specifications described above. The
input sources, input logic inverter gates and the sixteen output liming inverters,
each of which consists of two transistors, a driver and a load, then follow. The
driver transistors have two nodes; a gate node and a drain node. The load simply
requires that its gate/source node be specified and the substrate node is assumed
to be node 0. The NOR gates follow in Fig. 6.5(b). These are all four-input gates
and the output node number is the first one specified. The logic-to-voltage con-
verters are specified and the capacitance at each output node is set to 0.08pF,

derived from the circuit layout.

The final data required by SPLICE is the list of analysis requests. The OPTS
statement sets the time for each output event (plot point) to correspond to each
unit of MRT when the node is active. This request also sets the maximum circuit
voltage to 7 volts. The TOPTS request sets the timing analysis options. These
include the internal step-size control parameters, the ratio of minimu...-permitted-
stepsize to one unit of MRT and finally the voltage change required at a node
before its fanouts are scheduled (0.1voit). The simulation time is set for 800ns

with each unit of MRT set to 2ns.

Y-AX!S OME-QF-SIATEEN DECTUOER: KRYBRID ANALYSIS (LOGIC AND

E]

s AGHEL
HOJEL
A00EL
MGOEL
MGDEL

AGCEL IDRS
N0DEL IL9D

MODEL |
RODEL N
MODEL L
nODEL

-

« INPUT
S0 t S0
si 2 si
sz 3 s2
$3 4 33
-

s INPUT
11 37
ia 33
13 39
1 40
.

* QUTPUT INYVERTERS

13 S
Is §
17 7
13 8

"~
T I
(]

4 e 0 0 0ot 1m0 04 40 >

. e e 4 e e ae
@D MO e -0
-
>

e e

O LA R) »e
S Y]
N -
o

5 21

S

So
31
s§2
$3

NY
R
TY

c

LERCY
LSRCC
[} $ 48
L3RCT
HORIY(
HLORDC
I8y <
NOR (€
LTY «(
GCAPR

(-3 - 2K - I -]

SJQURCES

I
t
2
3
)

41
42
43
44
45
48
a7
48
49
0
31
32
$3
sS4
3
36

HVERTERS

INY
IdY
LNy

iDRI
IDR1I
toR?
I1DRI
iDRI
ISRI
108t
10R1!
I0R!
ORI
ORI
10R?

(7]

2 3

Fig. 6.5 (a) Input Data for the Analysis of the Decoder

ONS 1OONS ONS 40NMS SONS 90NS
ONS 200NS ONS JINS L1OCNS 130NS
ONS 400M3 ONS (J0HS Z200HS3 390MS
ONS 3JCON3 ONS JIANS 300NS 7TIONS
.00 9 % J9U 2.7 2.5 0.9 3 109)
.00 -8 QoL V.7 U 5 3.9 3 100)
4NS 2NS)

4NS 2NS)

6NS 3HS 0 3 2.3)

e P e ¥yt e e

HOR

Circuit.

100NS
200HS
40CHS
330H4S

TINING)

-1
-1
-1
-1

~ e

56A

vis4
Y13
v1ié
.

* HO
€S
Cs
c?
8
c9
€:9
cit
ci2
c13
Cie
c1s
Cis
ci7z
c1ie
<19
€29
L]

o

woaNOrAMm

10
i
12
13
14
18
18
17
18
19
29

« (] o w w w

«
PN Kl e Iaiie ot Mool |

37

C-TO0-YOLTAGE

21
22
23
24
23
26
27
z8
23
30

©

COOMOOOOAO000Oa0a00

* ANALYSIS
.0

CPTS

t

-

rf

TOPTS 0.1
2.0NS BOOHS

TINE

1

TS

i

-
+r S

» 3

E

’

1

9
[
9
]
0
9
%
]
e.
0
L]
9
Q
0
<
¢

(=)
@
€ Gl LI
Gl L Ll G D DD 0 W Wl

LTy
LY
LTY
LTy
LTV
LTY
LTY
LTy
LTY
LTy
LTV
L3y
LTV
LTy
LTY
LTY

.06F
. 08P
. 08P
.09pP
.08°P
.68P
. 03P
. 08P
08P
. 08P
. 08P
. 08?2
.08pP
L8P
. 98P
.08P

REQ
9.
3

7,
4, ¢

Fig.

4 HOR
4 NCR
¢ HNOR
4 NOR
4 NUR
4 HOR

4 NOR
40 NOR
40 NOR
40 HNOR
40 HNOR
9 40 HOR
9 40 KCR
9 40 NOR
9 40 KGR

APACITANCES

UESTS

COMYERTERS

25" 1909 9 1

4
8, 9, 19,

5, 16. 17

6.5 (b) Input Data for the Hybrid Analysis of the

i2

il.,
15, 19, 22

Decoder Circuit.

56B

57

The output waveforms for this analysis are shown in Fig. 6.6. Note that they
are almost identical to those of Fig. 6.2 except that some of the spikes are missing.
This analysis is over an order of magnitude faster than in the previous case. If the
circuit simplification process illustrated here is performed carefﬁlly, substantial

analysis speed improvements can be obtained for a small penalty in accuracy.

6.3. The 256-by-1 bit Dynamic RAM

A block diagram of the RAM circuit is shown in Fig. 6.7. The row and
column decoders used in the analysis of this circuit are based on the decoder
described above and included both logic gates and timing elements. The
input/output circuits and storage transistors of the RAM are analyzed using a tim-
ing analysis and each sense amplifier is analyzed as a separate circuit block. The
sense amplifiers used in the simulation are a modification of the Intel design [35]
and the schematic for the sense amplifier and associated "dummy" cell is shown in

Fig. 6.8. The input data used for this analysis is included in App. 7.

Fig. 6.9 contains a summary of the statistics provided by SPLICE for the RAM
analyéis. It also includes estimates for the memory and time requirements of
SPICE2 for the same analysis. Fig. 6.10 shows the waveforms produced in a "write-
l-read-1" mode and Fig. 6.11 shows the waveforms for a "write-O-read-0". The

voltage at the storage node is indicated as Ay;.

The simulation time for this example was estimated to be approximately
twenty times faster than for SPICE2. This estimate is based on the Més model
evaluation time and other overhead required in the circuit analysis (App. 9). The
simulation could not be performed with SPICE2 as the memory requirement for the

SPICE2 analysis exceed 200000 words on a CDC 6400 computer and these resources

57A

AD WTW M:M{__Tu ___/‘“__./P__/
D r'—_____/'______,‘ __
¥e) i | !
A f ‘ \
RB |
RCD

RCD [

RC3) e
RC 4 e
RCS) e

RCE) g

RCD (.

R(8 | A
RCO) | |-
RUD I
RAD U
R(1D |
RU)

j—
R4 — - | gy
]

RGS)

e oiig®)

Fig. 6.6 Output Waveforms for the analysis of the
hybrid macromodel of the Decoder circuit

7993

57B

COLUMN DECODER

PTTY

(logic)
—
1
| I
—
STORAGE ARRAY | | ==="| | sToracE sRrmay
(timin | S timic T
8) L] (tining)

= s J

- : £

x e~ -

30} z FE D
S S3 L& 3
=z & - = D
< FndiR g L. 1~y

= = - =

g 2 _F

e L v)

= |

=z]

) —

—

T

J S|

input = =Output
: !
Read/Write
control

Fig. 6.7 Block Diagram of 2Z56-by-1 bit Dynamic RA!

colﬁel
+12v Dsel-R
I o
Slo
Sse'_L_';__' Row-R

Row-b~-
= -
Abit Dbit
}—o Stail == l_o Clxd

1

Fig. 6.8 Schematic Diagram of the Sense Amplifier
used in the Analysis of the RAM Circuit.
Parameter Values are listed in App. 7.

57¢C

57D

-yt

*IFTNOIT) RVE ITQ T-£9-967 @Yl Jo sysAyeuy 9yl 10j SOTISFILIS JO Laeuwumg 6°9 314

(spuooas) suwyrl
000T1¢ LE€ZT 30SS3aJ01g TeIAUd) TBIO]

(9%spiom) wawp 103

00002¢ G088 paxinbay ALaowsy TeEIO]
(@3jeuwTys9)
¢d014s J011dS

mv:ooummwwﬁnwsﬁumamhaw=<
Spuodas 4y : awt3l dnjag

o80T 8¢ ‘Suurl [Ty ‘ITNJATD 96 : SIUBWITD G9g
°¥807 8¢ ‘Surwrl Go¢ ‘ITNAIYD 96 sapou ggYy

$SJILS1LVIS SISATVNV A01'1dS

- e g e e T voo - pEmaOa g o
A ¢ ! A] \

i \ /

AG) ¢
eI \ Y \ .
A ¢
AR) r| _li
A(B) N/

AD r
CLXSle
CLKStqf
RN

data-]
Ssel

roweol

data-0
C RS

colsol

Dael-R
Dsel-L|

row—R

Stail L\
Dbit /1

Abit —

-
Ia
L/~ \
N/
rov-l b~
./
./
—

TIME 18%)

Fig. 6.10 Output Waveforms for a "Write 1 Read 1"
Operation on the RAM circuit.

57F

oy R S
A ¢ / L
A o / jS—
MG o [—\ 7
A .-_/ \ f —\—1
A n ‘
iﬁi T\ [\ N/
RY | j“‘—"—“ S
data-!
el L/ /T ‘ /]
.ronal,‘ / - / |
rorl LN _—— »
data~(—_— pi
(74 5

Ve)
;:‘;’f N/ _ / \

O/ \ /
Dael-L| —
‘rowR -
Stail N — i
Obie r - .
Abit — . -
8 %0
THE 18%)

Fig. 6.1l Output waveforms for a "Write 0 Read 0"

Operation on the RAM circuit.

58

were not available. The reason the analysis of this circuit does not show the same
improvement over SPICE2 as the previous example is that the program must per-
form a circuit analysis for the sense amplifier which is relatively time-consuming.
Another factor is the parallel nature of the circuit. For the short period when the
column line is switching, the fanouts of all the storage transistors in the column
must be processed. Since each sense amplifier is connected to one of these transis-
tors via the row, for that period of time all sixteen sense amplifiers are analyzed by
the program. The separate analysis of these circuits is more time-consuming than

a single circuit analysis in this case.

6.4. The Digital Filter

Fig. 6.12 shows the block diagram of an integrated circuit which performs a
digital filtering function. This simulation involved the analysis of 700 MOS transis-
tors which realize the blocks shown as solid lines in Fig. 6.12 and was performed
using a timing analysis. The integrated circuit layout for this example is shown in
Fig. 6.13 and the input data used for the analysis is included in App. 7. The input
data for SPLICE was derived directly from the integrated circuit layout file, which

produced the plot of Fig. 6.13, using another computer program [36].

The waveforms produced by SPLICE are shown in Fig. 6.14(a). The circuit is a
serial, pipelined filter and the first 10 clock cycles are used to clear the circuit by
clocking zeros into all the shift registers, adders, and multiplexers. A reset pulse is
then issued and data pulse is entered into the filter. Note that two power supplies
(7 and 12 volts) are used in the circuit, hence the different levels seen at the out-

put of the second adder (Sum.B2).

584

*d4J11dS uo pajeynuig o.a.u.:,mxm 193774 Te3r31d a4l jo weaSerq 32014 ¢1°9 "Fud

T =1 > D
r_.m.._.-:)

N | R N

". 1 -4 ' r |“
[T “nosi2 \ _ I
' _!ln_x&—..—lll..l..l (] [}
’ for o o o e
“ 8119 1T 83119 11
. ﬂ 4."' !"']‘ [XTIv]
) umfr.:.-i
— 'Y R}
. ity B el . 1)
' ...s."z:m“.»..m "l " ". |“
| LoLod Ut et] |
Ll Xdl " 3
o i i
e
r=-" me==n

SR S A

Lo V2N _y

RS

ADIHD
dHLIA

=
P
._.\:
HRER
L] -ﬂ.
N
L}
I

_---Lm

e e 5

1
nag
£33

g

HIs) L ::U
1S HE

 Jo=jat

0
. _ n m H*x LS
__nr:.; i, e

i .;_,__J ,_ @__

Jp—— |

eL)

D
Spg
- =

by 10 iz

-—
e *
— e

) et e
. -_:':F.’

Hlnlo\ L’h”uu- —ll.”] L\.—l’.].—.-\]ﬁl—.u U
= HERE TS L,J.L :

.J

e e e
T o et IR B

aligit: & ponf
ﬁ Rd;n..mm,mu JLJ... Hnﬂnﬂ.rm;...u :

.mr

i
- .m"_.r(:n—.r
,.n\.”v...ht*

Al aarEEn

Dx. m:ﬂ -

" m
s

N1 o

il 210
=M *n. [

:n_

iy

[[ealnlisl

Phi2
Phi1l

Reset

J L [

Data

cm——
.- —J——L—.—-.-—.—-”...“._..«-———-. e e et e e —————— o

SR->B1

I A

SRout3

SRout |~ — e mren

Badr1i

— o —

SRin

e - R | B R

e ———— v - ———— e .—--...y-.L—J_-‘_—----—.-—.-.- Cem—ea——— - —— e v e

Tt b At e tto————

e ——— e
T
- B A S

Aadrl
Ca. in

Preset

o om0]
S A /L

- ~d J S

Ca. out

I™ B V L]

—
Aadr2 /»,

Sum, 3

Sum, B2
"]

TIME «x10™%
Fig.6.14(a) Output Waveforms for the Digital Filter Example from Program SPLICE.

08¢

59

Fig. 6.14(b) summarizes the statistics produced by SPLICE for this example.
The simulation was performed for 4000 units of MRT (1ns) and the simulation
time is estimated to be over 100 times less than would be required using SPICE2.
The circuit was also simulated using a modified version of MOTIS-C [37] on an
HP3000 computer and the output waveforms from this analysis are shown in
Fig. 6.15. Note the numerical noise present in the MOTIS-C output, particularly evi-
dent at the output of the shift register (SR->B1 node). This noise is not present
in the SPLICE output due to the filtering effect of the event scheduler (small, oscil-
latory changes in node voltages do not cause the fanouts to be scheduled) and the

variable timestep algorithm used in SPLICE.

The savings obtained from the event scheduling scheme are illustrated in
Fig. 6.16. This plot shows the average number of events per node per unit of-MRT
and corresponds to the number of nodes processed by the scheduler at each
timepoint. The time average of these events indicates that the circuit is less than
20% active and only during clock transitions does the circuit become highly active.
This result supports the claim made earlier regarding the relatively low activity of

large digital circuits.

Fig. 6.17 shows the average number of timing analyses per node per unit of
MRT. Since SPLICE uses an internal timestep for the timing analysis (and hence a
number of internal steps may be used for each unit of MRT) this value can be

greater than the number of events per node per unit of MRT of Fig. 6.14

SPLICE ANALYSIS STATISTICS:

393 nodes :
705 elements :

Element Storage
Node Storage

Setup Time :
Analysis Time s

Events Scheduled:
Timing Analyses :

SPLICE

Total Memory Required 10102
for Data (wordslo)

Total Central Processor 475
Time (seconds)

Fig. 6.14(b) Summary of Statistics for the Analysis of the Digital Filter

393 timirg
705 timing

2786 words
5710 words

14 seconds
460 seconds

248626
455460

SPICE2
(estimate)

210000

50000

Circuit.

V6s

Phi2

Phil
Data

SR-B1
SRout3

SRoutl
Badrl

SRin
Aadrl
Ca.in
Preset
Ca.out
Aadr?

Sum3
Sum.B2

PN e S s WO

1 i Mll|'~~

Fig.6.15 Output waveforms for the pigital Filter Example from
Program MOTIS-C.

465

59¢C

*aTdwexy 1237F4 TeITTTQ
943 103 JYW Jo 3Tun 13d apou i1ad sjusad sysdteue I911dS 9T°9 ‘14

-BTIX> *wrl

|
‘

23 2

/[I ¢

dOVYIAV dHI

] I

AP

[, g

g2

By -

P9 °

92 °1

S /.POIJ /.‘;l-l.l\a

59D

*a7dwexy 193TTd [®ITSTA Y3l 103 JYW Jo 3ITun 1ad apou i1ad sesdTeuy Surw ‘g 8
GBI eWEL T TWEL [T°9 °*°oTd

oo’y 22 '€ 2@ e 28 °T 23 °

I~

I | ! I

= H 8S°T

= H 882

P S P U SO AU R VU VST N S S GHT UHr STy VU S U SIS VAN SIS VA SNy S S S [S VU G S S SO S | sm'N

3du/epouseeelbun Surws]

CHAPTER 7

CONCLUSIONS

Circuit simulation programs which accurately predict the voltage and current
waveforms. of an electronic circuit are generally too expensive to use for the
analysis of LSI circuits. Logic simulators can be used for first-order timing analysis
of digital circuits but do not provide the detailed waveform information required in

critical parts of the circuit or where tightly-coupled circuit blocks are present.

The hybrid analysis program SPLICE is a simulation_program for large-scale
integrated circuits which can perform circuit, timing and logic analyses in parallel.
While SPLICE is written for use on a CDC 6400 computer, it was designed for use

with a minicomputer or similar intelligent terminal as well.

The program uses event-scheduling algorithms, coupled with circuit analysis
and timing simulation techniques, to take advantage of some of the properties of
large integrated circuits. These techniques reduce the simulation time and memory
requirements of the analysis compared with an equivalent circuit simulation.
SPLICE is typically between one and three orders of magnitude faster than a

circuit-level simulation program when the hybrid analysis techniques are used.

The algorithms developed to permit the parallel analysis of circuit, timing and
logic blocks have been presented. Techniques developed for the partitioning of the
analysis which exploit the low circuit activity of large integrated circuits have aiso
been described and a number of exampie simulations for large integrated circuits

are presented. These examples include a 256-by-1 bit dynamic RAM circuit, which

60

61

was simulated using concurrent logic, timing and circuit analyses, and a 700 MOS
transistor digital filter circuit which illustrates the time savings of the event-

scheduling algorithm.

The use of an event scheduler for the control of all three forms of analysis
has proven very efficient and the analysis instability conditions which result from

the decoupling of the circuit elements can be resolved in most cases.

SPLICE was written for the analysis of MOS integrated circuits. The analysis
techniques used in the program can be extended to other integrated circuit techno-
logies, such as IZL, and possibly to high-speed bipolar technologies like Emitter
Function Logic (EFL). Before the program can be used by a circuit designer, a
number of enhancements must be added to both the input and the output proces-
sors. These include the ability of the input processor to expand nested subcircuits,

as in program SPICE2 [1], [11]. A users manual is also required.

Future work in the area of extending techniques of the type used in SPLICE to
Register Transfer Level and Functional level simulation seems promising. Errors
are often introduced in the process of converting a schematic circuit description to
integrated circuit layout, and visa versa. Efficient algorithms to perform these
tasks must also be developed to automate the entire design cycle and reduce the
chance of human error. In the simplification process used to generate circuit
macromodels, it is essential that the accuracy of the model be maintained. Tech-
niques for aiding the designer in the determination of macromode: parameters
(such as gate delays, node capacitances, etc.) are Valso required. This work may
include the use of efficient optimization algorithms for the adjustment of macro-

model parameters [15].

APPENDIX 1

A Table Model for an MOS Transistor

The drain current of an MOS transistor may be expressed in terms of the

branch voltages
Ips = F(Vps, Vgs, Vas) (Al1-1)

where Ips is the drain-to-source current and Vps, Vgs, and Vpg are the drain-to-
source, gate-to-source and bulk-to-source branch voltages respectively, as shown in

Fig. Al.l.

A table look-up mode! requires a table containing values of Ips which is
indexed by the independent variables Vps, Vs, and Vgs. If n discrete values were
chosen for each independent variable the resulting table would require n’ storage
locations. In practice, n should be at least 100 for circuit or timing simulation and
hence the resulting table would require 10° entries. This number can be reduced
substantially via two simple transformations, as shown in this appendix. The
transformations will be developed using a simple quadratic MOS model and then

extended to a more accurate set of model equations later.

Consider the Shichman-Hodges model{38] as follows:
. Vs
Ips(Vs, Vos, Vas) = K'(Vgs- Vii- ¥/és- Ves-——) Vos. (A1-2)

where V,, v, &, and K' are physical constants for a given device[18]. If the

effective gate voltage V,, is defined as

Al.l

Drain

4
Gate Bulk
\ Vps
\'J
Ves /BS
Source

Fig. Al.1l An MOS Transistor and the Branch
Conventions.

Al.2

VgeEVGS-Vbi-y ¢>5-VBS (Al°3)

= VGS - Vl (A1'4)

where V, is the effective threshold voltage, then a linear table may be used to store

the values of V,(Vgs)
V. (Vgs) = Tg(Vgs). (A1-5)

Hence Eqn.(A1-2) may be written in the form:
Vps
IDS(vgea VDS) = K'(Vge- T)VDS- (Al-6)

If the maximum permitted gate voltage (corresponding to the largest value of
the Vgs index) is Vg* and

AV = VE. v, (A1-7)
then Eqn.(A1-6) may be rewritten in the form:

(VDS + AV)

5)AV (A1-8)

)(VDs"'AV)‘K'(Vgrgax- Av

Ips(Vge, Vps) = K'(vsnem' D)

= Ips(VI, Vs + AV) - Ipg(VR, AV). (A1-9)

Thus the drain current at any given Vps and V. less than Vg** may now be
obtained from the single drain characteristic evaluated at Vg** and the second

linear table required is:
Ips(Vps) = Tp(Vps, V). (A1-10)

This transformation is illustrated graphically in Fig. Al.2 and corresponds to mov-

ing the origin of the drain characteristic along the characteristic evaluated at V2.

A third linear table is required to store the output conductance in saturation

for each value of effective gate voltage:

<SP mem-

‘flb

Ds ' DS

Fig. Al.2 The Effect of the Gate Transformation
is to move the Origin along the VGS(max)
Characteristic.

0.7}

0.6{

Ids (na)

Measured
\1

Table Model 2%

Fig. Al.3 Comparison of Table Look-Up Model with Real Device.

2 3 4

Vds(V)A

For the device, W= 1llu L=22u.

Al3

Gan(V) = To(Vie). (Al-11)

Hence rather than a table of n? entries only 3n locations and two additional subtrac-

tions are required to obtain the drain current at any device operating point.

This approach relies on the quadratic form of the Shichman-Hodges model.
The transformations may however be used with a more accurate model if some
pre-scaling of the current is performed. Consider the following model where the
first-order effects of variation of depletion charge stored under the channel with

drain voltage are included [39],[18]:

\"
Ips(Vgs, Vs, Vas) = K'(Vgs- Vyi- _705_)Vps
(A1-12)
-%'y[(VDS-!-d)S-VBs)"S-(¢S-VBS)‘~5]

where V,;, v, K' and &, are as before. It is necessary to maintain the threshold vol-

tage V, and the saturation current of the device Ip, under the transformation.

9lps
dVps

The saturation voltage Vp,, is defined as the value of Vpg for which = 0 and

hence from Eqn.(A1-12)

Vosa{ Vs, Vas, Vii) = Vgs- Vi + ‘%.[1 '-\/1 + _74_3(VGS'Vbi + ¢, + Vgs) (A1-13)

For the previous model, from Eqn.(A1-2)
Vosa{ Vs, Vas: Vii) = Vgs- Vii- yv/ds- Vs (Al-14)

Now substitute Eqn.(A1-14) into Eqn.(A1-12) and solve for an effecuve built-in

voltage V'y; to maintain V, under the transformation:
Vo = Vi-y/Vgs + &5-V, (A1-15)

where

Al4

V, = Vyi + y/ds- Vas. (A1-16)

A scale factor may then be computed at V7** and used to generate the linear table

To
Vosa = Vosal Vie™s 0. Vi) (A1-17)
V'osa = Vosa(Ve, 0, Vi) (A1-18)
Ipsae = Ips(V™, Vosaw 0) (Al1-19)
T'psar = Tos(VE™, V'psarr 0) ' (A1-20)
A= IT:T (A1-21)

The table is then generated by using Eqn.(A1-12) scaled by A
To(Vgs, Vos: Ves) = A Ips{ Vgs. Vos» Ves) (A1-22)

The back-gate table Ty and the output conductance table Tg are generated as

described for the simple model.

This table has been used successfully in simulation programs MOTIS-C(App.
8). spicE2(App. 9) and SPLICE(Ch. 5). An example of the table generated for an

actual device is included as Fig. Al.3.

APPENDIX 2

Floating Capacitors in Timing Analysis

The decoupling process used in a timing simulator introduces a numerical
delay between the circuit nodes and for tightly coupled nodes this delay can cause
inaccuracy. This problem arrises with both the floating capacitor and floating MOS
transistor, or transfer gate (Fig. A2.1), models which are included in SPLICE and

MOTIS-C.

An investigation of the stability and accuracy of the decoupling procedure
when used with these elements has shown that for floating capacitors the admit-
tance matrix must be inverted at each timepoint. For transfer gates the decoupling
scheme is satisfactory provided the change in drain to source voltage is kept small

_between timepoints.

Consider the floating capacitor shown in Fig. A2.2. It is connected between
nodes 1 and 2 which have conductances G, and G, to ground and are driven by
currents I, and I, respectively, If the Trapezoidal Rule is used to integrate the capa-
citor current, at time t,,:

et = Everve) -

(A2-1)
= lhg(sz-AV,)-lg
where AV, = V§Tl.ve | AV, = VPVl and h is the integration timestep.

Kirchhoff’s current law is then applied to nodes 1 and 2 respectively:

A2.1

-

Ves i

Is’ C/ — .rID
t f
i ¥

Fig. A2.1 An MOS Transfer Gate

V.

(:> V\ 1 v2‘~ (:)

A _
I1 Gl G2 . IZ

Fig. A2.2 Floating Capacitor and Terminations

n+l n+l n+l n+l
Il + IGl Gl+Gc I121 + IGZ
+1 - G oV
c c 1

n
-Ic - Gc6v2 GZ+G
c

Fig. A2.3 Equivalent Circuit Model for
Decoupled Equations.

A2.2

(G, +G)AV-GAV, = 1218 - 17 (A2-2)
-GAV,| + (G + G AV, = -17-12 - 137! ‘ (A2-3)
where G, = %

Eqns. A2-2 and A2-3 are coupled and a matrix inversion is required for their
solution. This inversion is relatively expensive in a timing simulation program. By
replacing AV, in Eqn. 2-2 by 8V, and AV, in Eqn. A2-3 by 3V,, where §V = V.

vn-l equations A2-2 and A2-3 become:

(G, +G.lav, = lJ‘-I&I-I{‘*‘ + GV, (A2-4)

(G, +Go)AV, = ~Ic"-1§,- 15+ Gav, (A2-5)

where all the quantities in the right-hand-side of Eqns. A2-4 and A2-5 are now
known following the solution at t,. This substitution has introduced a numerical
delay into the equations relating the voltages at nodes 1 and 2 and will adversely

effect the integration accuracy.

The equivalent circuit model for the solution of equations A2-4 and A2-5 is
shown in Fig. A2-3. A stability analysis of the above model produces the charac-

teristic polynomial:

hG,G, hG, . hG, h’G\G»
[. T T T 72—'2’23
(A2-6)
hG,G, hG, hG,],
[e e e 221 =0

The roots of this polynomial, for various values of stepsize h, are plotted in
Fig. A2.4. Since the roots lie within the unit circle for all values of h the scheme is

unconditionally stable. The presence of complex roots indicates the method

MODIFIED TRAFEZOIDAL METHOD.

Fig. A2.4 Root Locus for Modified Trapezoidal Method.
"S" Indicates Position of Root lim
"F" Indicates Position of Root im

R LT

A2.3

produces an oscillatory solution for large h.

The inclusion of linear and quadratic predictors to obtain a better estimate for
the voltage at the next timepoint does not significantly improve the accuracy of
this approximation. For this reason, rather than reduce the timestep to a very
small value to avoid oscillation, the admittance matrix for the floating capacitor

must be inverted.

The transfer gate is almost always operating in the linear region and hence is
not completely bilateral. For this reason, somewhat larger timesteps may be used
before the analysis begins to show oscillation and the decoupling scheme described

above is used for transfer gates.

Vet

APPENDIX 3

SPLICE Input Elements

The following tables describe the input format and parameters for logic, timing and

circuit elements used in SPLICE.

A3.1

MODEL TYPE DESCRIPTION PARAMETERS

BUF Buffer Tr Tf

INV Inverter Tr Tf

AND AND gate Tr Tf

OR OR gate ' Tr Tf

NAND NAND gate Tr Tf

NOR NOR gate Tr TE

XOR Exclusive OR gate Tr Tf *
XNOR Exclusive NOR gate Tr Tf *
ROM Read-Only Memory Tr TEf No Ni (data) *
RAM Random Acess Memory Tr Tf No Ni *
NALA NAND latch Tr Tf *
NOLA NOR 1latch Tr Tf *
TWOP Two Phase Flip-Flop Tr Tf *
DFF D-type Flip Flop Tr Tf) *
DFF2 Two Phase D-type Flip-Flop Tr Tf *
DSR Shift Register Section Tr Tf *
SAH Sample and Hold Tr TE *
LSRC Logic Source LO L1 D P (breakpoints) -1
THRESH Thresholder VO V1 Vv&*

Tr = Rise Time, Tf = Fall Time, No = Number of Output Ports, Ni = Number of Input Ports
10 = first logic level, L1 = Second Logic Level, D = Source Delay, P = Source Period,
VO = Voltage lLevel for Logic 0, V1 = Voltage Level for Logic 1, V* = level for Logic *,
* indicates the element has not been fully implemented or extensively tested.

Table 3.1 SPLICE Logic Elements and their Parameters

eV

MODEL TYPE

GCAPR
NDRIV
PDRIV
NLOAD
PLOAD
CINVT
FCAPR
NTXG
PTXG
NTTDV
PTTDV
NTTLO
PTTLO
NTTXG
PTTXG
TSRC
LTV
LTI

DESCRIPTION PARAMETERS
Grounded Capacitor C

N-Channel Driver Transistor W/L Vt Kp
P-Channel Driver (eqns) W/L VvVt Kp
N-Channel Load (eqns) W/L Vvt Kp
P-Channel Load (eqns) W/L Vvt Kp
CMOS Inverter W/L Vt Kp
Floating Capacitor C

N-Channel Transfer Gate W/L vVt Kp
P-Channel Transfer Gate W/L vt Kp
N~Ch. Driver (Table) W/L vt Kp
P-Ch. Driver (Table) W/L Vt Kp
N-Ch. Load (Table) W/L Vvt Kp
P-Ch. Load (Table) W/L Vvt Kp
N-Ch. Transfer (Table) W/L Vvt Kp
P-Ch. Transfer (Table) W/L Vvt Kp
Timing Voltage Source VOViIDP

Gam
Gam
Gam
Gam
Gam

Gam
Gam
Gam
Gam
Gam
Gam
Gam
Gam

Phi
Phi
Phi
Phi
Phi

Phi
Phi
Phi
Phi
Phi
Phi
Phi
Phi

Lam
Lam
Lam
Lam
Lam

Lam
Lam
Lam
Lam
Lam
Lam
Lam
Lam

Nst

Nst
Nst
Nst
Nst
Nst
Nst

sy ¢

vdd
vdd
vdd %

vdd
vdd

(breakpoints) -1
Logic-to-Voltage Converter Tr Tf VO V1 V¥
Logic-to-Current Converter Tr Tf I0 I1 I*

*

W/L = width to Length ratio, Vt=zero bias threshold voltage, Kp=Transconductance per unit
gate voltage, Phi = surface potential for strong inversion, Lam
for saturation region, Nst=Number of table steps, Vdd=effective supply voltage for loads,
VO = voltage first, V1 + second voltage, D=delay, P=period, Tr=risetime, Tf=falltime,

* indicates the element has not been fully implemented or extensively tested.

Table 3.2 SPLICE Timing Elements and their Parameters.

output conductance factor

€°EV

A3.4

*sa9romeavd apa3 puew sJudway IINVIL)Y ADLTIS €°C A1YnL

1ad aourjonpuossueai=dy ‘a8ragon proysaxy) sefq 013z=31\ ‘ofiex 1Juaf-oI1-\IpIM

anyra

anfeaA

¥ (sontea aqquey painseau)
¥ (sonfea apqul painseou)
wep yud wen dy A 1/M

wer fudq wen dy 3 1/m

we] 1ud wen dy I I/M

(1eoragdua)
(teofaydua)
(*tae1 p1)
(*19r3 P1)

(subg)

wep Tyq wen dy Ip 1/M (suby) 103181s5URIY

SUALARVUVL

*Po31591 A[OATSUIX 10
pajuowadut AT{ny uaaq Jou sey JUAUI[I Y] SVIVITPUT y ‘ucrdor uorlRINIEE 10 10191
?20uR1ONpUN? INdIN0 = we] ‘uofsasauy Buoals a0j frIIvalod BorJINS = T4 ‘@deITun A3Ind Jpun

a03pouden
1038189

‘11 SOW "H)-d
13 SOW “UYH—-N
13 SOH “W)-d
‘13 SON “Yd-N
13 SOH “YO-d
SO “Yd—N
NOLLJTYOSAA

AdAL

= /M

J

U
JSON
JSOHN
LSONd
LSONN
ISONI
ASONN

TAAON

STATEMENT

PRINT
PLOT
TIME
LOPTS
TOPTS
COPTS
GO
END
SETDC
SETTR
DCOP
SUST
UNDEF

DESCRIPTION

Print node voltages

Plot node voltages

Set simulation time and MRT

Set logic analysis options

Set timting analysis options

Set circuit analysis options

Begin analysis

End this simulation run

Set node voltages for a dc analysis

Set node voltages for a transient analysis
Compute the dc operating point

Simulate until stable (scheduler queue is empty)
List all nodes whose signal levels are not 1 or 0

% indicates command not fully implemented or extensively tested.

Table 3.4 SPLICE Analysis Commands

S LV

APPENDIX 4

Input Processor Data Structure

Fig. A4.1 shows the structure of the file produced by the input processor. Device
models are stored first followed by elements, control statements and the node map

which translates the user-defined signal paths to SPLICE internal node numbers.

A4.1

A4.2

Model Type

MNumpar
pl

p2

(-1)

Element Type

Numnodes
nl

n2

Numpar
pl
p2

(-1)

Control Typ4

Numpar
cl

c2

(-1)

NODE

Fig. A4.1 Structure of the file produced
by the Input Pre-processor. Numpar

is the number of parameters and Nummod
is the number of nodes.

APPENDIX 5

Setup and Analysis Data Structures

The following figures illustrate the setup and analysis data structures, with program

variable names used wherever appropriate.

AS.1

LOCNOD =it LOCFOL

LOCFIL

1

*
Ts

e

189

(a) Logic Node. Note the last two
Logic values are packed into
one word.

LOCNQD emmmmdin. LOCFOL

LOCFIL

2

—
]

Ts

Vn-1
Vn

LOCCAP

(b) Timing Node. LOCCAP is a pointer
to the node capacitance Value.

LOCNOD == LOCFOL ‘

LOCFIL
3 or 4

x
Ts

Vn-1

n

LOCDIA

LOCUPR
LOCLWR

(c¢) Circuit Node. Type 3 is external-circuit
Type 4 is intermal-circuit.

Fig.A5.1 Data Structure for Logic, Timing and Circuit Nodes

A5.2

42

The fanout list origin is then used by the scheduler to schedule the fanouts to be

processed at the appropriate time in the future.

Thus the lists for an element contains the element connection information
and a pointer to the model information. The node list contains information about
the state of the signal level at the node, pointers to fanout and fanin lists, and

some parameter information.

4.2.3. Data Structure of the Time Queue Efficient processing of the time queue
is critical to the overall performance of the program. The time queue contains the
fanout lists of all nodes scheduled to be processed and the time at which they are
scheduled to be processed. A simple way of storing these entries is the linked list
structure of Fig. 4.6. The scheduler moves along this time-ordered linked list
where each entry in the list contains the time the fanouts of a node are to be pro-
cessed and a pointer to the fanout list of the node. As each event is executed, the
scheduler processes each element on the fanout list in an arbitrary order. Once the
elements on th list have been processed, the simulator moves to the next entry in
the time queue. It may contain a list to be processed at the same time as the last
list or a list to be processed some time in the future. Any events generated as
each list is processed are inserted in the time queue at the time they are due to
occur. Unfortunately, if an event is scheduled to occur more than one unit of
MRT into the future, the process of inserting it in the time queue may involve
searching many entries already in the queue before its place can be de*~~mined and
hence this scheme is relatively inefficient. By observing that most events occur
within a few units of MRT from the present time (PT), a more efficient scheme

may be used [5], [33].

42A

(present time)

T1

T2

T3

T4

T4 2 T32T2>T1 = PT

Fig. 4.6 Simple Linked-List Time Quene

LOCELM ___g, LOCMOD

Noutput
Nopl

Nipm

(a) Structure of Logic and Timing Elements
Noutput is the number of output nodes.
Nopl-Nopn are the output node pointers and
Nipl-Nipm are the input node pointers.

LOCELMermp LOCMOD

LOCNXT

N1

.
R PR Eiahd

7
=]

(b) Structure of Circuit Element. Same as
above except the second word is used to
link the elements associated with the
same Model Control Block.

Fig. A5.2 Data Structure for Logic, Timing and Circuit
Elements.

AS.

3

ISCB1™¥
TIME =t Gt 1 OSFOL
+2
+99
ISCB2 o
+1
+2
+99
ISCB3 iy Tschedl
LOCFOLl1
Tsched2
LOCFOL2
(-1)

Fig. A5.3 Data Structure for the Scheduler.
TIME is the present analysis time
and LOSFOL is the scheduled fanout list.
See subroutine SWAP for more details

A5.4

APPENDIX 6

Output Processor Data Structure

Fig. A6.1 shows the structure of the file produced by SPLICE for the output post-

processor.

A6.1

Node Number

Node Type

Last Time

Last Value

This Time

This Value

Node Number

Node Type

Last Time

Last Value

This Time

This Value

Fig. A6.1 Format of the file produced for the
Output Post-Processor. Last Time and
Last Value are the previously
Scheduled Time and Value respectively.

A6.2

APPENDIX 7

Input Data for Example Circuits

This appendix contains the input data used by SPLICE for the analysis of the
Binary-to-Hexidecimal Decoder, 256-by-1 bit Dynamic RAM and Digital Filter

examples of Chap. 6.

A7.1

Y-AXIS OME-QF-SIXTEEN OECODER: HYBRID ANALYSIS (LOGIC AND TINING)
.

s RODELS

MODEL S0 LSRCK
MODEL St LSRC(
RODEL S2 LSRC(

I ONS 100KS ONS 4O0NS SONS 9ONS 100HS -1
I OHS 200H3 OHS 90NS 10ONS 1SO0NS 200NS -1
1 OHS 400HS ONS 17CHS 200N3 390NS 40GHS -1
2

© 0 0o
~

400EL $S3 LSRCY ONS 300NS OM5 JJO0HS 400NS 790NHS BOONS -1
NODEL IORI HORIVC 2.00 0.5 20U 9.7 0.5 0.0 S 100)

MODEL ILOD NLOADC 1.00 -3 20U 0.7 0.6 0.9 3 100)

ACDEL INY INY (4HS 2NS)

AODEL MOR NOR <« 4NS 2HS)

MODEL LTV LTY (¢ 6NS 3INS 0 5 2.5)

MODEL C GCAPR

.

¢ THPUT SOURCES

$0 1 S0

st 2 s1

s2 3 s2

$3 4 53

L]

* INPUT INVERTERS
11 37 1 INY

12 38 2 INV

I3 39 3 INV

14 40 4 INY

.

s DUTPUT INVERTERS
15 S 41 IDRI

Ie & 42 10RI

17 7 33 IDRI

18 3 44 IDRI

1% 3 45 IDRI

110 16 46 ORI
I1y 1! &7 IDRI
112 §12 43 IDRI
113 13 49 IDRI
114 14 S0 IDRI
I1S 1S S1 I1DRI
116 16 92 IDdRI
117 17 $3 1ORI
113 18 34 1DRI
119 19 SS IDRI
120 20 S6 IDRI

L3 S 1L0D
Lé 6 ILgo
L? ? 1L0D
L8 8 iLoo
Le 9 IL0D

Lio 1o ILo0
tit 11 I1L0D
L12 {2 1L0D
L13 13 IL0D
Lie 14 1L0D
Lis 13 1L0D
Lie 16 ILCO
Lie 17 1L00
Lig 18 1L0D
L9 19 1L0D
L20 20 iLoo
-

¢« NOR GaTES

N9 21 1 2 3 4 HOR

B 22 37 2 3 4 NOR
NZ 23 t 38 3 4 MNOR
N3 24 37 38 3 4 NOR
N4 25 1 2 39 4 HOR
HS 26 37 2 39 4 NOR
K6 27 1 39 39 4 NOR
K7 28 37 38 39 4 NOR
48 29 1 2 3 40 HOR
N9 30 37 2 3 49 HNOR
N10 31 1 38 3 <40 NOR
H1t 32 37 38 3 40 NOR
N12 33 1 2 39 40 NOR
N13 34 37 2 39 40 NOR
Hi4 33 1 38 39 40 NOR

N13 36 37 38 329 40 NOR

s LOGIC-TO-VOLTAGE COMYERTERS
YT 41 21 LTV
Y2 42 22 LTV
¥3 43 23 LTY
Ve 44 24 LTV
¥ 45 23 LTY
Y6 46 26 LTV
V7?7 47 27 LTV
vo 48 28 L7TY
v9 49 29 LTV
Y10 S0 30 LTV
Vi1 St 31 LTV
vi2 S2 32 LTY
¥13 33 33 LTV
vise T4 24 LTV
y1$ S35 33 LTY
¥is $6 36 LTV
.

s RODE CAPACITANCES
1] S C o.08P
Ca 6 C 0.08°

c7 ? C 0.08¢P
cs 8 C ¢.08¢P
cI 3 ¢ o0.08°P
Cl0 10 C 2.98°P
€1l 11 C 0.03P
€12 12 € o.08°P
€13 13 € 9.08°P
Cle 14 C 0.08°P
C1S 1S C o0.087P
Ci6 16 C o0, o8P
C1? 17 C 0.08?
Cl8 18 C 0.03P
€19 19 C 0.98°
CZ0 290 C o0.08°

.

* ANALYSIS REQUESTS

JPTS t 7.0

TOPTS 0.1 9.08 1999 0.

TiRE 2.0HS 8O9NS

PLOT 1, 2, 3, 4

PLOT 3. 6, 7. 8, %, 190, 11, 12

PL3T 13, 18. 1S, 15, 17, 185, 19. Q20
.

G0

Y-AK1S ONE-OF-SIXTEEN DECODER: TINING ANALYSIS
E J

« AQDELS

NEDEL S0 TSRCC
MGDEL S1 TSREC
MODEL S2 TSACC
MODEL S3 T3RCC
RGDEL IDRI NORIVC

MODEL ILOD NLOADC

MODEL HORI NDRIVC

MGDEL HLOD NLOADS

MODEL € GCAPR

.

s INPUT SOURCES

S0 1 S0

s1 2 s

s2 3 s2

S3 4 §3

e

» IHPUT INVERTERS

11 37 1 IORI

12 38 2 ID0R!

13 32 3 toRt

14 40 4 DRI

L1 37 1L0D

Lz 38 1L00

L3 39 LoD

L4 40 IL0D

t]

* JUTPUT [NVERTERS
IS S 21 DRI

16 6 22 IDR?

17 7 23 10R1

I8 8 24 IDR!

19 9 23 ORI

110 10 26 DRI

111 11 27 ORI

i1z 12 29 IORI

113 13 29 IORt

114 14 30 ORI

115 1S 31 3Rl

116 16 32 IDRI

117 1?7 33 10R!

118 18 34 IDRI

119 19 33 DRI

120 29 36 IDRI

Ls s IL0D

Ls ¢ 1L00
Lr7 1L0D

Ls 8 100

L9 9 1L00 -
L10 10 ILOD

L1l t1 o ILeD

Lti2 12 iLoo

L3 13 tLOD

Li4 14 TLOD

Lis ¢ 1Loo

L18 ié¢ ILOD

Li7 17 1Lo0

Lt18 13 troo

119 13 IL30

L0 20 ILAD

ONS 100HS5 ONS 40NHS SONS 9JO0NHS 100KS
ONS 200NS ONS 90NHS (OONS 190NS 200HS
ONS 400MS ONS |90NS 200MS 3IJIONS 400NS
ONS 80QNS ONS 3JFO0NS 400NS TIONS BOONS
.97 0.3 20y 0.7 9.6 0.0 100)
.00 -5 294 0.7 0.6 100)
.59 0.3 200 0.7 0.6 1900)
.78 -3 200 0.7 0.5 190)

© 000
S rrepatta
9 0 oo
(I WV T

.9
.9
. Q

— o

s HGR GATES

Hio

N1l
LB}
NIt
Nil

2t
21
21
21

22
22
22
22

23
23
23
23

24
24
24
24

23
25
25
]

26
26
26

26

&GN -

(7]
S WNN

o

37
39

49

NORI
NDRI
NORI
HORI

HORT
HORE
HDRT
HDRI

HDRI
HOR!
HDORI
NDRI

NDRI
NORI
NORI
NDRI

HDRI
HORI
NORTI
HDRI

NOR1I
HORI
NOR1
NORI

NDR1
NORI
HOR1I
NORI

KDR1
HDRI
HORIL
NDRI

NOR1
NORI
HOR1
HORI

HORI
NDRI
HORI
NDRI

HORI
HOR1I
NORT
NHORI

NDRT
NORI
NOR1
NOR T

N12

39
40

37

39
40

39
393
49

37
38
39
40

c
c
c
c
c
e
c
¢
¢
c
€
c
c
<
c
c
c
c
¢
c
c
c
c
¢
c

C OO GCOO0OOVOOOCO0O0O0OO0O0OO0OLOOCOCOODGCGO

NDRI
NDORI
HORI
HOR!

HORI
NCRI
HDRI
HORI

NOR1
ROR1
NDORI
NDRI

HORI
NOR1
NOR1
NDRI

NLOD
NLOD
NLOD
#LID
HLOD
HLOO
NLOD
NLOD
HLOD
HLOD
NLOD
HLOO
HLOD
HLOD
NLOD
NLDD

APACITAHCES

.o8°P
.o8P
.o8pP
.08p
.o8p
.o8°P
.o8p
. 08P
. 98P
.o8P
. 08P
.08P
. 08P
.o08p
.o8P
.o88
.l10P
.19P
.loP
.1oP
-10P
.10P
. 109
.l1oP

R7.

-

€29 29 C 9.19°P
€30 30 C o0.10P
C31 31 C ¢o.10pP
€32 32 C 0.10°P
€33 33 C 0.10P
C34 34 C .10°P
€33 33 C 9.19P
€36 36 C 0. 10P
CI? 37 C 0. 48P
€38 38 C 9.08P
€32 39 € 9.08P
C40 40 T 0.08P

*

* RHALYSIS REQUESTS

ogPTS 1 7.0
TOPTS 0.1 9.935
TINE |.SHS B300NS
PLOT 1, 2, 3, 4
PLOT S5, 6, 7, 8.
PLOT 13, 14, 15,
-

GG

]

END

1090 0.1

9
16,

19,
17,

11'
18,

12
19,

29

A7.

286-2IT RAM1I HYBRID ANALYSIS CCIRCUIT, TINING & LOGIC)

.

* RODELS -.
* INPUT SQURCE NODELS FOR ADDRSS3 LINSS AND CLOCKS ’
AODEL A0 LSRCS O | ONS 290NS ONS 29NS 23HS 190NS 209HS -1
MIDEL A1 LSRCC 9 9 5HS 203NS AN3 20HS 2IH3 190HS 200NS ~-|
RGDEL A2 LSRCC 0 ! ONS 200HS 945 24NS 23NS L1I0HS 200HS -1
TODEL A3 LSRCC 4 0 INS 200NS ONS 20NS 23IHS 170HS 200NHS -1}
.

MODEL A4 LSRCC
MODEL AS LSRCC
M30EL As LSRC(
HIDEL A7 LSRCC
.

MODEL C1{ TSRCC12 0 ON 200i ON 2SN 284 40N 43K B6H 90N 124N 127N 2004 -1)
MODEL C12 TSRCC 0 12 ONS Z00HS OHS 33NS 36HS 127HS 139NS 2008S -t)

NODEL AU TSRCC 0 12 ONS 40ONS ONS 19GNS 200HS 3I3NH3 450HS ~1)

AIDEL DI TSRCC O 0 OHS 490HS ONHS 199NH5 209.S JIUNS 400NS -1)

~ N

10HS 200M4S OHS 20NHS 23HS 190NS 200NHS -1
1ONS 200HS OHS 20HS 23HS 190HS 290NS -1
LONS 2060HS ONS 20NHS 23NS :90NS 200NHS -1
LOHS 200NHS OGNS 20NS 23IHS 190H3 200HS -1

© o0 0o
O = -0
NP o

* TINING TRANSISTOR MODELS FOR DECODER AHD 1/,0 CIRCULTS
HGOEL IDRI NDRIVC 2.00 0.3 20U 0.7 0.5 0.0 100)
HILEL ILCO MLOADC 1.00 -5 20U 0.7 0.6 0.0 S 109)
AODEL TASH HTXG ¢ 1.09 0.5 20U 9.7 0.6 0.0 S 100)
HODEL NSTG NTXG ¢ 1.00 0.3 20U 0.7 0.6 6.0 S 100)
MCDEL DRSH NORIVC 1.90 0.5 20U 0.7 0.5 0.0 S 100)
.

* CIRCYIT TRANSISTOR MODELS FOR SENSE ANPLIFIERS
HODEL TXSL NMOSEC 3.90 0.5 20U 9.7 0.6 0.0)

RODEL TXSF HMOSZ(30.0 0.5 20U 9.7 0.6 0.9)

MODEL TXSS HAOUSEC 1.00 0.5 20U 0.7 0.5 0.0)

EOCEL DSEN HAOUSEC 20.90 0.5 20U 0.7 0.6 9.0)

-

* MODELS FOR OUNNY-SELECT OECODERS
20CEL IHY INY ¢ 4NHS 2NS)

MODEL NOR HOR < 4M5 2NS)

»

® LOGIC-TO-YOLTAGE CONYERTER ANO CAPACITOR NODELS
MGDEL LTY LTY < 6NS 345 0 35 2.5)

RODEL C GCaPR
.

* COLUNH DECODER
-

* ADDRESS LINES: 1-A0, 2-Al, 3-2, 4-A3

-

» IHPUT INYERTERS

It 37 1 LNV

12 38 2 Lhy

I 39 3 INv

14 40 4 Iny

E]

b4)
s NOR GATSS

NO 21 1 2 3 4 NOR

NI 22 37 2 3 4 HOR

N2 23 1 38 3 4 HOR

NI 24 37 38 3 4 NOR

B4 25 1 2 32 4 NOR

43 26 37 2 33 4 NOR

%6 2?7 1 38 39 4 NOR

87 28 37 38 39 4 NOR

?
43 23 1 2 3 40 WOR
H® 39 37 2 3 49 NOR

N1d
NIl
812
N3
Nis
N1S
L]

* LOGIC

vi
¥2
V3

Yie

-

31
32
33
34
335
36

41

1
3?
1

«“

7
!
?

(7]

-T0-v0
21

22
23
24
283
26
27
28
29
30
31
32
33
34
33
36

38
38
2
2
38
38

LTY
LTY
LTY
Lty
LTy
LTY
LTV
LTy
LTY
LTY
LTY
LTY
LTy
LTY
LTy
LTy

3 4
3 40
39 40
37 4o
39 40
39 40

LTAGE

NOR
NOR
HOR
HOR
HOR
NGR

CONYERTERS

* Y-AX1S ADDRESS DECODER AMD I/0 SELECT

»

* INPUT ADORESS LINES:

CATA

INPUT
137
138
139
140

i

i 16

10t-q4,

1, DATA QUT: 162,

INVERTERS
101 INY
102 INY
103 INY
194 INY

= QUTPUT
1000
1100
1290
1300
1400
1500
16900
1200
1800
1900
2000
2100
2290
2390
2490
25990
1099
1100
12090
13900
1400
1300
1600
1700

13
15
i7
18
19
110
I
112
113
114
11s
16

iis
119
120

'
-

Ls
L?
Le
Le
L1o
(98]
Li2

INVE
141
142
143
144
1459
146
147
148
149
150
151
152
153
154
158
i88

1

I

1

1

I

I

1t

It

RTERS
IDRI
I1DRI
IDR?
10RI
IDRI
IDR1
IDR1]
10R1
10R]
10R1
I0R1
10RI
IDR1
IDR1
IDRI
1oR1
LoD
L0D
Loo
LoD
Lap
oo
(1]
00

102-45, 103-qs,

R/¥ SELECT:

163

104-A7

A7.

L13 1800 ILGD

Li¢ 1900 ILOD

L1S 2000 ILao

Li6 2100 ILOD

L1? 2200 ILOD

L18 2300 ILOO

Li9 2400 ILGD

L20 2500 [LOD

£

* HOR GATES

HO 121 101 102 103 104 NOR
H1 122 137 102 103 104 NOR
H2 123 101 139 103 104 HOR
H3 124 137 138 103 104 NOR
K4 125 101 102 139 104 NOR
NS 126 137 102 139 104 NOR
N6 127 101 {38 139 104 NOR
H7 128 137 138 139 104 NOR
M8 129 101 102 103 140 NOR
#9 130 137 102 103 140 NOR
¥10 131 101 138 103 140 NOR
NL1 132 137 133 103 140 NOR
N12 133 101 102 139 (40 HOR
M13 134 137 102 (39 140 HGR
N14 135 101 139 139 t40 HOR
H1S 138 137 133 139 140 HOR
»

* LOGIC-TO-YOLTAGE CONYERTZRS
Vi 141 121 LTV

v2 142 122 LTY

¥3 143 123 LTV

V4 144 [24 LTV

YS 145 128 LTY

V6 146 126 LTV

Y7 147 127 LTV

v3 148 129 LTV

V9 149 129 LTV

V10 159 130 LTV

Y11 181 131 LTV

V12 152 132 LTV

Y13 133 133 LTV

V14 154 134 LTV

V1S 185 135 LTY

v16 156 136 LTV

L

» 1/0 ROU-SELECT TRAMSNISSION GATES
T1 1001 159 141 HSTG

T2 1101 160 142 NSTG

T3 1201 160 143 HSTG

T4 1301 160 144 HSTG

TS 1401 3160 143 HSTG

76 1591 160 145 HSTG

T7 1691 160 147 HSTG

T8 1731 160 148 NSTG

T9 1301 160 149 HSTG

T19 1901 160 150 HSTG

TIl 2001 169 151 NSTG

T12 2101 189 152 NSTG

T13 2201 180 153 HSTG

T14 2301 150 134 KSTG

T1S 240t 160 1353 HSTG

T16 2501 169 1Ss HSTS.

* PATA READ/HRITZ CIRCUITRY
TOI 161 199 162 NSTG
TDQ 160 162 164 NSTG
IRY 164 163 10R1]
LAN 164 1L0D

€169 180 C 0.98P
Clé2 162 C 0.08P
Ci64 164 C 0.908P

DATA IN: NODE 161, T

.

* DATA OUT: HODE 162,

* R/W SELT: NOOE 163, T
*

*

-» NODE CAPACITAMCES

CS 10900 C 0.908P
€6 1100 C o0.08P
C? §200 C 0.98P
€3 1300 € 0.08P
€9 1400 C 0.98P
Cl0 1500 C 0.08P
Cl! 1690 C 0.08P
C12 1700 C 0.98p
C13 1800 C 9.99?
Ci4 1900 € 0.98pP
C1S 2090 C 0.98P
Cie 2100 C 0.98P
C17 2290 € ¢.98P
€18 2300 C 0.08P
T19 2400 C 9.08P
C20 25¢0 € 9.08P
.

»

-

*

¢« LEFT BIT LINE!
¢ RIGHT 81T LINE:
* STORAGE NODES:
= ROV SELECT '
= Y0D :
-

* SENSE ANP

TL! 10 10901 i1
TL2 10 1002 11
T50 1¢91 1002 1090
TFL 1091 1003 1902
TF2 1002 1093 1090}

TTO 1003 12
€91 1001 C o0.8P
Cd2 1002 C 0.8°P
Co3 1003 C ¢0.01P
L]

e DUNMY CELLS
Col 1001 (004

€02 1002 1040 49

CP1 10904 19000
€82 1040 (000
CO1 1004 C 0.01P
€22 1040 C 0.01°P
.

* STORRGE CELLS

SENSE ANP AND STORARGE DEVICES,

1001
1002
1041
1900

12

TXSL
TXSL
TXSS
TXSF
TASF
DSEH

TXSH
TXSH
ORSH
DRSH

IMING SOURCE

YOLTAGE

IRING SOURCE ¢«

~ 1048 (LEFT),

12-URITE, ¢0-READ)

RO¥ 1000

1049 -

1636

a7.

1t

Cc41
cd42
C43
C4s
C43
C46
C4?
c48
C49

cs1
cs2
€33
C34
css
€36
S41
S42
S43
Sd4
S48
S46
S4?7
S48
S49
$30
§$3!
332
$33
§54
$33
$36
.

L 2K BN BN IR B N N 1

TLL
TL2
TS0
TF1
TF2
TTO
N
co2
ce3
.

1001
1001
1001
1001
1001
1001
1001
1001
1092
1002
1002
1002
1002
1002
1002
1092
1041
1042
1043
1044
1043
10456
1047
1048
1049
1039
1081
1052
1033
10354
1033
1038

LEFT
RIGHT BIT LINE:
STORASE
ROY SELECT
y0O

10

10
1101
1101
1102
1103
110t
1102
1103

1041
1042
1043
1044
1043
1046
1047
1948
1049
1930
10351
1052
1033
1034
1083
10386

OO
CUVOOVOVDOOGOOCOCOOCOO

41
42
43
44
43
46
47

49
So
St
32

. 33

.06P
.06P
.06P
.96P
.06P
. 08P
.96?
.06P
. 067
.96P
.06P
.96P
.9%P
.06P
.06P
.08P

34
33
36

8IT LINME:

SENSE AnP

1191
1102
1102
1103
1103

12
c o,
cC o.
c 0.

s DUNmY CELLS

g6l
co2
CcPl
[s
cel
(s
.

1101
1102
1104
il140
1104
1140

1104

1100
c o
g 0.

i1
1t
L3

3p
ap
ILIP

otP
o1P

s STORAGE CELLS

4l

tio0}

141

NODES:

11
11
00
°2
(34

41

TXSH
TXSH
TXSH
TXSH
THSH
TXSHN
TXSH
TESH
TASH
TASH
TXSH
TESH
TSN
TESH
TRSH
TASH

{101
1102
1141
1100

12

TXSL
TXSL
TXSS
TXSF
TRSF
DSEN

TXSN
TSN
ORSH
ORSN

TXSH

SENSE AMNP AMD STORAGE DEVICES, ROW

1148 CLEFT),

11990

1149 - 1136

A?7.

12

C42
c43
T44
c4as
C4s
C47
€48
€49
csSo
€3}
€32
€353
CS4
CEs
Csé
S41
$42
$43
S44
548
§46
S4?
S48
$49
§5o
$§¢
§92
$S3
$94
S$383
$S6

L B B B B BE BN BN BN 4

L

TLL
TL2
Tso
TF1
TF2
TTO
cel
co2
co3
.

1191
1101
1101
1101
1101
1101
1101
1102
1192
1102
1102
1102
1102
1192
1102
1141
1142
1143
1144
1148
1146
1147
1148
1149
1130
1131
11352
1183
1154
1135
1136

LEFT
RIGHT BIT LINE:
STCRAGE
R0%¥ SELECT
Yob

1142
1143
1144
1145
1146
1147
1148
1149
1130
1131
1182
1133
1134
11355
1156

OO0
O Q0O0O0O0O0O0OO0V0COOCOODOCC

.06P
.06P
.06P
.06P
.06P
.06P
.06P
.06P
.06°P
.06P

BIT LINE:

SENSE AaNP

1201
1202
1202
1203
1203

* DUANY CELLS

Cot
co2
cP1
cp2
co1t
cp2
.

1291
1202
1204
{240
1204
1240

1204
1240
1200
1290
c 9.
co.

1P
o1ip

* STORAGE CELLS
C31 1291 1241

ca2

1201

1242

NDDES:

H

.
:

41
42

TXSHN
TXSH
TXSH
TXSH
TXSH
TXSH
TXSH
TXSH
TXSN
TSN
TXSN
TRSK
TXSH
TKSH
TXSH

1204
1202
1241
1200

12

TKSL
TXSL
TXSS
TRSF
TXSF
DSEXN

TXSH
TXSN
DRSH
DRSH

TRSH
THSN

SENSE AMP AND STORAGE DEYICES,

1248 (LEFT)Y,

ROV 1200

1249 -

1236

A7,

13

C43 1201 1243 43
44 J201 1244 14
C43 1201 1248 43
C46 1201 1246 46
C47 1201 1247 47
C48 1201 1248 43
C49 1202 1249 49
C30 1202 1230 30
€S 1202 1251 31
€S2 1202 12%2 H

€S3 1202 1233 33
€34 1202 12%4¢ sS4
C3S 1202 1238 3
€36 1202 1286 36

S41 1241 C 0.06P
$42 1242 C 0.06P
$43 1243 € 0.06P
S44 1244 C 0.06P
S43 1243 C 9.06P
S46 1246 C 9.06P
S47 1247 C 90.06P
S48 1248 C 0.06P
$49 1243 C 0.06P
$30 1230 C 9¢.06P
831 1231 C 9.06P
$S§2 1282 € o0.06P
§53 1233 € 0.906P
$S4 1254 C 0.05P
$38 1253 € 90.04P
§956 12%6 C 0.906?

TASN
TASH
TXSH
TXSH
TSN
TXSH
TKSH
TXSH
TASN
TXASH
TXSH
TASH
TASH
TASH

* SENSE AMP AND STORAGE DEVICES,
L]

« LEFT BIT LINE: 1301 '
* RIGHT BIT LINE: 1302
* STORAGE HODSS: 1341 - 1348 (LEFT),
» ROV SELECT 1 1300
TY) t12
L]

s SENSE ANP

TLI 1o 130f 11 TXSL
TL2Z 10 1302 11 TXSL
TS0 1301 1302 1300 TXSS
TFL 1301 1303 1362 TXSF
TF2 1302 1303 1301 TXSF
TTO 1303 12 DSEN
€91 1391 € 0.8P

€92 1302 € 0.8P

€93 1303 C 0.01p

-

s DUMAY CELLS

Co1 1301 1304 4 TXSH
CO2 1302 1340 40 TXSH
£P1 1304 1300 ORSH
CP2 1340 1390 dRSH
COL 1304 C 0.017

€D2 1340 C 0.017

 J

s STIRAGE CELLS

Cel 1301 1341 41 T4ASH
C42 1391 1342 42 TiSH
C43 1301 1342 43 TASH

ROV 1300

1349 - (336

A7.

v

C44 1301 1244 44 TASH
C45 1301 1245 43 TASH
€46 1301 1346 46 TXSH
C47 1301 1347 47 TXASH
€48 1301 1343 48 TRSH
C49 1302 1349 49 TASH
£50 1392 1330 50 TASH
51 1392 1351 $1 TASH
€52 1302 1352 $2 TXSH
€93 1302 1353 53 THSN
€54 1302 1334 54 TXSH
€S5S 1302 135S SS TASH
€Sé 1302 1336 56 TXSH
S41 1341 C 0.067

$42 1342 C 0.08P

$43 1343 € 0.068

S44 1344 C 0.06P

S4S 1345 € 0.05P

$46 1346 C 0.906P

S47 1347 C 0.08P

$48 1348 C 0.06P

S49 1349 C 0.06P

$S0 13%0 C 0.06P

$%1 13%1 C 0.06P

$52 1332 C 0.0%P

$83 1333 C 0.06P

$34 1334 C 0.06P

$53 1353 C v.06P

$S6 1356 C 0.06P

-

+ SENSE AMP AND STNRAGE DEVICES,
[]

e« LEFT BIT LINE: 1401
* RIGHT BIT LINE: 1402
s STORAGE HODES: (441
* ROW SELECT P 1490
.« Y00 1 12
]

s SEHSE aNp

TLL 10 1401 11 THSL
TL2 10 1402 11 TH¥SL
TSO 1401 1402 1400 TXSS
TFl 1401 1403 1402 TXSF
TF2 1402 1403 1401 THSF
TTO 1403 12 DSEN
¢o1 1401 £ 0.8P

€22 1402 C 0.8pP

£93 1403 C 0.01P

-

* DUHMY CELLS

€Ol 140! 1404 4 TXSH
€02 1402 1440 40 TXSH
CP1 1404 1400 DRSH
CP2Z 1440 1400 DRSH
CD1 1404 C 2.01P

Ch2 1440 T 0.01P

-

» STIRAGE CELLS

C41 1401 1441 41 TXSH
Cd2 1401 1442 42 TXSH
€43 1401 1443 43 THXSH
Cd44 1401 1444 44 TSN

1448 (LEFT),

ROY 1400

1449 ~ 1456

A7.

135

C4S 1401 144% 45 TXSH
T46 1601 1446 46 TNSHM
C37 1401 1447 47 TXSN
C48 1401 1448 48 TXSH
C49 1402 1449 49 TX3H
C30 1402 1450 SO TXSH
CSL 1492 1481 31 TXSH
CT2 1402 1482 32 TXSH
C3$3 1402 1453 $3 TXSH
CS4 1402 1454 S4 THSH
CSS 1402 1435 35 TXSH
C36 1402 1436 36 THSH
S41 1441 C 0.06P

$42 1442 € 0.06P

S43 1343 € 0.05P

S44 1444 C 0.05P

S4S 1445 € 0.05P

S46 1446 C 0.06P

S47 1447 € 0.967

S43 1443 € 0.05P

S49 1449 C 0.06?

$S0 1430 C 0.067

551 1451 € 9.05P

$32 1432 C 0.06P

$S3 1433 C 0.06P

SS4 1454 € 0.06P

S5 145% € 0.08P

SS6 1455 C 0.05P

.

» SENSE ANP AND STORAGE DEVICES, ROY 1300
®

» LEFT BIT LINE) 130!
» RIGHT BIT LINE: 1502
» STORAGE HODES! 1541 - {548 (LEFT), 1849 =
« ROV SELECT 1 1500
T vt2
L]

s SENSE ANP

TLL 10 1501 11 TXSU
TL2 10 1502 11 TXSL
TSO 1301 1592 1500 TX3S
TFL 1501 1503 1502 TXSF
TF2 1502 1503 1301 TXSF
TTo 1803 1z 0SEH
Co1 1301 € 0.3P

€02 1502 C 2.8P

£03 1503 C 0.01P

®

« DUNMY CELLS

£o1 1501 1504 4 TXSHN
C92 1502 1540 40 TXSH
CP1 1504 1So00 ORSN
CPZ 1340 1%00 ORSH
COY 1504 C 0.91P

CO2 1349 € 0.01P

.

* STIRAGE CELLS

C41 1301 1S54y 41 TXSM
£32 1301 1%42 42 TXSH
£+43 1391 1343 43 TASH
C44 1501 1344 44 TASH
C4S 1501 1245 4 TRSH

1386

A?

16

[y

C46

c4e
C49
-]
€51
€S2
€s3
C34

S43%
$46
S47
§48
849
S$So
§51
$352
$33
$54
SES

$56

(K BN BN R BN SR R BN J

-

TLL
TL2
TS0
TFt
TF2
TTO
col
co2
Co3
.

1501
1591
1501
1502
1502
1392
1502
1502
15902
1502
1302
1341
1342
1543
1544
1345
1546
1547
1348
1549
13S0
1551
1552
1353
1554
1583
1536

LEFT
RIGHT BIT LINE:
STORAGE
ROY¥ SELECT
Yoo)

10

10
1691
1601
16902
1603
16901
16902
1603

QOO0 0O00O00O00000
00000000000 OCOOO

. 069
.06P
.06P
.06P
.06P
.06P
.06P
.96P
. 08P
.06P
.96P
.96P
.06P
.06P
.06P
.06P

BIT LINE:

SENSE ANP

1601
16902
1602
1603
1603

12
co.
c o.
¢ 9.

s DUNMY CELLS

cot
€02
cP1
ce2
Co!

co2
.

1601
1602
1604
1640
1694
1640

1604
16490
16990
1600
€ 9.
t 9.

16
16
16

114
8P
o1Lp

o1P
o1ipP

* STORAGE CELLS

cat
c4z2
C43
€44
€48
C3is

1601
1601
1601
1691
1601
1591

1641
1842
1643
1644
1645
i6d46

NGODES!

11
11
090
02
91

TXSN
TASHN
TXSH
TXSH
TXSHN
TXSH
TXSH
TXSHN
TESHN
T4SH
TXSH

1601
1602
1641
1600

12

TXSL
TRSL
T8SS
TXSF
TASF
DSEN

TXSH
TXSH
DRSH
DRSH

TXSH
THSH
TXSH
TASN
TXSH
TASH

SENSE AMP AND STORAGE DEVICES.

1648 (LEFT),

ROV 15600

1649 -

1636

A7.

1?7

Ca7
C48
c49
€so
Cst
€32
€33
cs
-1}
1]
S41
$42
S$43
S44
S48
$46
§47
S48
S49
§50
$31
§$32
$33
$34
SS3
$S6
.

LN R R B B Y I}

-*

TLl
rea
T30
TF1
TF2
TTO
o1
coz2
€23
.

16901
1601
i692
1602
1602
1692
1692
1692
1602
1632
1541
1642
1643
1644
1649
1646
1647
1648
1649
1630
1631
1652
1633
1634
1638
1636

LEFT
RIGHT BIT LINE:
STORAGE
ROW SELECT
¥00

10

1o
1701
17¢1
1702
1703
1701
1702
1703

1547
1648
1649
1630
1631
1652
1633
1634
1633
1636

QOO0 00
000QCQO00C0O0HLSO0O0O0CO

.06P
0.06P
.06P
.06P
.06P
.06P
.o6P
.96?
.06P
.06P
.06P
.06P
.96°P
.96P
.06P
.06P

4?7
48
49
S0
St
32
33
34
33

BIT LIHE:

SEHSE ane

1701
1702
1202
17903
1703

12
C o.
c 9.
Co.

* DUNNY CELLS

cat
co2
cPl
CP2
cot
co2
.

1741
1702
1794
1740
1794
1740

1704
1740
1790
1790
C o.
€ o.

HGDES:

H
H

11
11

1709
1702
17903

arP
8p
01P

o1p
o1P

» STORAGE CELLS

Cét
cae2

C43.

Cad
€33
Cés

47

17¢1
1701
1701
1701
I7o1
1701
1791

1741
1742
1743
174
1733
1748
1747

1701
1702
1741
1700

12

TXSL
TXSL
TXSS
TXSF
TASF
DSEN

TXSH
TASH
ORSH
ORSH

TESH
TX3SH
TXSN
TXEN
TXSN
TXSH
TXSH

SENSE AMP AMD STORAGE DEVICES,

1748 CLEFT),

RO® 1700

1749 -

1736

A7,

18

n,

Ca8
49
€S0
€s1
€32
€33
34
€ss
c36
S41
S$42
$43
S44
$4S5
S46
S47
S48
S$49
$So0
$51
§392
$393
$54
333
$36

[2R BN 2N K B BE B B 4

*

TL!
T2
TS0
TF1
TF2
TTO
col
coz2
Ca3
-

1701
1re2
1702
1792
1702
1792
1702
1702
1702
1741
1742
1743
1744
174S
1746
1747
1748
1749
1750
17351
i7s2
17353
1754
1733
1736

LEFT
RIGHT BIT LINE:
STORRSGE
ROV SELECT
Yoo

1748
1749
1750
17351
17382
1753
1734
173§
1736

BN OOO0O0
QO0OO0O0OO0OCOO0OOCOCVLOO

. 06P
0.0%6P
.06P
.06P
.06P
.96P
.06P
.06P
.06P
.06P
.06P
.06P
. 08P
.06P
. 08P
.05P

BIT LINE}

SENSE AMP

180!
1802
1802
1803
1803

¢ DUNMY CELLS

col
co2
CP1
cr2
Co1l
€02
»

1301
1802
1804
1840
1894
1340

1804
18490
1800
18090
c o.
€ 9.

o1p
oie

* STORAGE CELLS

C4t
Cc42
L43
Cie
C45
C4s
C4ar
C43

1901
1801
1801
1891
1801
1801
1501
i8ao1

1841
1842
1343
1344
184S
1846
1347
1848

NODES!

'
H

T4SHN
TASH
TRASH
T4SH

1801
1802
1841
1809

12

T¥SL
TRSL
T4ASS
TXSF
TRSF
DSEH

TXSN
TXSN
DRSH
DRSH

TXSH
TXSN
TXSH
TXSN
TXSN
TXSH
THSK
TXSH

SENSE AMP AND STORAGE DEVICES, ROV

1848 CLEFT),

1800

1849 -

1836

19

C49 1802 1849 49 TXSH
€S9 1892 19%0 30 TXSH
€S1 1802 183! 31 TXSH
€S2 1802 18%2 S2 TXSN
€33 1902 1933 S3 TXSH
C34 1802 1854 34 TXSN
€SS 1302 1838 33 THSN
£36 1302 1836 56 TXSH
S41 1841 C 0.06P

S42 1342 C 0.06P

S43 1843 C 0.06P

S44 1844 C 0.06P

S43 1845 C 0.06P

S46 1846 C 0.906P

S47 1647 C 0.06P

S48 1848 C 0.06P

S49 1849 C 0.06P

$SO 1830 C 0.06P

§S1 1331 C 9.06P

$52 1882 C 0.06P

$33 18383 C 9.06P

$34 1834 C 0.06P

§3% 1833 C ¢.06P

§S36 1836 C 90.06P

o

¢ SENSE ANP AHD STORAGE DEYICES.,
L

o LEFT BIT LINE: 1901
® RIGHT BIT LINE!' 1902
® STORAGE HODES: 1941 -~ (948 (LEFT),
¢ ROM SELECT t 1300
« Y00 H 12
[]

® SENSE anmp

TLY 10 1901 11 TLSL
TL2 10 1992 11 TXSL
TS0 1901 1302 1900 TXSS
TF1 1901 1903 1902 TXSF
TF2 1902 1903 1901 TXSF
TTO0 1903 12 OSEN
Cot 130t C 0.8P

€o2 1992 € o¢.8¢

€33 1303 C 0.01P

L]

s DUMMY CELLS

Col, 1901 1904 4 TXSH
€02 1902 1940 40 TXSH
CPY 1904 1900 ORSHK
CP2 1940 1900 DRSH
CDL 1904 C 9.01P

C02 1940 C 0.01P

*

* STORAGE CELLS

€41 1901 1941 41 TXSH
C42 1901 1942 42 TYSH
C43 1901 1943 43 TXSH
Cé44 1201 1944 44 TXSH
C4% 130% 1948 43 T4ASH
C46 1%01 :%46 46 TXSH
Ca7 1901 (347 47 TESH
C48 1901 19438 48 TXSH
49 1902 1949 49 TYSH

R0W 1990

1949 - 1938

R7. 290

ny

@

8§51
$52
§53
S34
$§S
S$36

[3R BE B K R BE 2N SN

TLL
TL2
T30
TF1
TF2
TT0
col
co2
co3
s

1902
1902
1992
1902
1902
1202
1902
1941
1942
1943
1944
19435
1946
1947
1948
1949
1939
1991
1932
1933
1984
1983
19356

LEFT
RIGHT BIT LINE:
STORAGE
ROV SELECT
Y00

1950
1981
1982
1933
1954
19358
1956

oOOOnNOoa00O0OO0O0n00
0000000000000 0OCO

.06P
.06P
.986P
.06P
.06P
.06P
.06P

BIT LINE:

SENSE ane

2001t
2002
2002
2003
2003

12
c 9.
co.
c 9.

* DUNMY CELLS

co1l
co2
CP1
cP2
ch!¢
co2
.

2¢01
2002
2004
2040
2004
2049

2004
2040
2000
2000
c o.
c 9.

ap
8P
o1pP

o1P
01P

¢ STORAGE CELLS

C4l
€42
C43
Cas
€48
C46
C47
Cca8
cao
CSo

2091
2001
2001
2001

2041
2042
2043
2044
2043
2046
2047
2048
2049
2950

NODES!

41
42
43

43
46
47
48
49
590

TXSH
TASH
TXSHN
TXSH
TXSH
TXSH
TXSH

SENSE ANP AND STORAGE DEVYICES,

2001
2002
2041
2000

12

TRSL
TXSL
TRSS
TXSF
T4SF
DSEN

TESN
TXSHN
ORSH
DRSH

- 2048 (LEFT),

ROV 2900

2049 - 2036

A7.

21

cst
€32
K]
354
css
Css
S41
S42
$43
S44
S43
S46
S47
S48
49
$S0
$S51
$32
8§33
SS4
§$83
§$56

L 2K B BK R B BE BN BN J

TLl
T2
TS0
TFL
TF2
TTO
co1
co2
co3

2002
2902
2002
2902
2002
2002
2041
2042
2043
2044
2043
2046
2047
2949
2049
2089
2031
2052
2033
2054
20SS
2036

LEFT
RIGHT 81T LINE:
STORAGE
ROY SELECT
¥0D

10

10
2101
2191
2102
2193
2101
2102
2103

2051
2952
29383
2034
20835
2036

c

c
4
c
c
¢
c
c
c
c
¢
¢
c
c
c
c

0.04P
0.9%°
0.96P
9.06P
9.906°
0.906P
0.06P
0.06P
0.06P
9.06P

St
52
33
34
335
S6

9.06P

9.06P
2.906P
9.067
0.96P
9.067

81T LINE!

SENSE ANP

NODES

2101
2102
2102 21
2143 21
2103 21

€

12
¢.89

€ ¢.8P

c

9.01°

s OUMNY CELLS
2104
2140
2100
2100

cot
ce2
cPl
cPe
cot
co2

219!
2192
2104
2140
2104
2140

c

9.01P

C 0.901P

¢ STORAGE CELLS
2141
2142
2143
2144
2148
2146
2147
2148
el 49
2130
c131

C41
c42
c43
C44
C43
C46
Ce4?
cag
c49
cS9
cs1

2101
2101
2101
1ot
210t
2191
21901
21¢1
2192
2192
2102

41
42
43
44
S
46
47

49
20
St

TASH

TXSN .
THSN
TXSH
TXSH
TASHN

SENSE ANP AND STORAGE OEVICES, RfeCW 2100

2101
2102 -
2141 - 2148 C(LEFT), 2149 - 2136 >
2100

12

TXSL
TXSL
TKSS
TXSF
TASF
DSEH

TASN
TXSH
DRSH
CRSN

€S2
€53
C54
[}
CSe
S41
$42
S43
S44
8495
$46
S47
§48
S49
$50
§91
§52
$383
$34
§S§
S$38
[]

L 3R 2R BE B BN 2R 2R

-

L
TL2
141
TF1
TF2
710
cot
co2
co3
.

2102
2102
2192
2102
2102
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2132
2183
2154
2133
2156

LEFT
RIGHT BIT LINE:!
STORRGE NO
ROV SELECT
¥Yo0

10

10
2291
2201
2202
2203
2201
2202
2203

2132
2183
2134
2135
2156

OO0 0O000
COO0OCOVO0OO0CO0O0OOOO0OCOC

81T L

SENSE aNP

2201
2202
2202
2203
22903

12
co.

.06P
0.06P
. 08P
.06P
.06P
.06P
.06?P
.06P
.06P
.06P
.06P
.06P
.06P
.06P
.06P
.06P

IHE!

DES:
:
t

11
11
2200
2202
2201

14

C ¢.8P
C 0.01P

¢ DUNNY CELLS

cot
co2
ce1
cpP2
col
co2
]

2201
2202
2204
22490
2204
2240

2204
2240
2200
2209

C o.0tp
€ 9.01P

¢ STORAGE CELLS

c41
C42
c43
C44
€43
C46
Ca7
C48
C49
€so
cs1
cs2

2201
2201
2201
2201
2201
2201
2291
2201
2202
2292
2202
2202

2241
2242
2243
2244
2243
2246
2247
2248
2249
2230
2291
2292

TXSH
TXSH
TXSH
TXSH
TXSH

SENSE AMP AND STORAGE DEYICES.,

2201
2202
2243
2200

12

TXSL
TXSL
TXSS
TASF
TXSF
DSEN

TXSH
TXSH
DRSH
DRSH

TXSH
T4SH
TXSH
TRSH
TXSH
TXSH
TXSH
T¥SN
TXSN
TASH
TXSHN
TXSN

- 2243 (LEFT),

ROV 2200

2249 - 2236

23

€S3 2292 2233 $3 TXSH
C34 2202 2234 54 TXSH
€3S 2202 2235 S5 TXSH
£S6 2202 2236 %6 TXSH
S41 2241 C 0.06P

§42 2242 C 0.067

S43 2243 C 0.06P

344 2244 C 0.06P

S43 2243 C 0.06?

S45 2246 C 0.06P

S47 2247 C 0.06P

548 2248 C 0.06P

349 2249 C 0.06P

$30 2250 C 0.06P

$51 2251 C 9.06P

SS2 2232 C 0.06P

$S3 2253 C 9.067

ST4 2254 C 0.06P

S3S 2295 € 0.06P

$36 22%6 C 0.96P

]

s SENSE ANP ANO STORAGE DEVICES.
L J

* LEFT BIT LINE: 2301
* RIGHT BIT LINHE: 2302
» STORAGE MNODES: 2341 =~ 2343 (LEFTY,
e ROV SELECT : 2300
* Y00 112
L 4

* SENSE anp

TL1 10 2301 11 TXSL
TL2 10 2302 1! TXSL
TS0 2391 2302 2300 TASS
TF1 2301 2303 2302 TXSF
TF2 2302 2303 2301 TXSF
TT0 2303 12 DSEN
€01 2301 C ¢.8°P

C02 2302 C 0.8P

€03 2303 € 0.01°

»

s DUNMY CELLS

€Ol 2301 2304 4 THSH
€02 2302 2340 40 TASH
CP1 2304 2200 DRSH
CP2 2340 2300 DRSH
€01 2304 € 0.01P

£02 2340 € 0.01P

.

® STORAGE CSLLS

C41 2301 2341 41 THSH
C42 2391 2342 42 TXSN
€43 2301 2343 43 TASH
C44 2301 2344 44 THSH
C45 2301 2345 45 TXSN
C46 2301 2346 46 THSH
C47 2301 2347 47 TASH
€48 2301 2348 48 TXsSH
C49 2302 2349 42 TXSH
€350 2302 2350 30 TXSH
€31 2302 2351 $1 TXSA
€S2 2302 2352 52 THSH
CS3 2302 2333 53 TX9NW

ROV 23900

2343 - 2336

az.

24

£S5 2302 2354 54 TXSH
£35S 2302 2355 55 TXSN
€56 2302 23356 56 TASH
S41 2341 C 0.06P

S42 2342 C 0.96P

S43 2343 C 0.06P

844 2344 C 0.06P

$45 2345 C 0.96P

S46 2346 C 0.06P

S47 2347 C 0.06P

548 2348 C 0.06P

$49 2349 C 0.06P

550 2350 C 0.06P

$S1 2351 C 0.06P

§52 2352 C 0.06P

$53 2353 C 0.06P

$54 2354 C 0.06P

$SS 2355 € 0.06P

$56 2356 C 9.06P

L]

* SENSE AMP AND STORAGE DEVICES,
-

* LEFT BIT LINE: 2491
RIGHT BIT LINE! 2402
» STORAGE HGDES: 2441 - 2448 (LEFTI,
» ROV SELECT ! 2400
Ty Y]
[]

s SENSE ARP

TLI 10 2401 11 TXSL
TLZ 19 2402 11 TXSL
TSO 2401 2402 2400 TXSS
TF1 2401 2403 2402 TXSF
TF2 2402 2403 2401 THSF
TTO 2403 12 DSEN
Co1 2401 C 0.8P

C02 2402 C 0.3P

CO3 2403 C 0.01P

E

+ OUMMY CELLS

Col 2401 2404 4 THSH
C02 2402 2440 40 TASH
CP1 2404 2409 ORSH
CP2 2440 2400 DRSH
CO1 2404 C 0.01P

CD2 2440 C 0.01P

-

s STORAGE CELLS

C41 2401 2441 41 TXSH
C42 2401 2442 42 T4SH
C43 2401 2443 43 THSH
C44 2401 2444 44 THSH
C4S5 2401 2445 45 THSH
£46 2401 2446 46 TXASH
C47 2491 2447 47 THSH
€48 2401 2448 48 TASH
C49 2402 2449 49 TXSH
£SO 2402 2450 30 TXSH
CSi 2402 2451 1 TRSH
£52 2402 2452 52 T4SH
CS3 2402 2453 S3 TASH
CS5¢ 2402 2454 Sé TREH

ROW 2400

24349 - 24356

C3SS 2402 2435 35 TXSH
C35 2402 2436 $6 TXSH
S41 2441 C 0.06P

$42 2442 C 9.06P

S43 2443 C 0.08P

544 2444 C 0.06P

S43 2448 C 0.067

S46 2446 C 0.067

S47 2447 C 9.06P

S48 2448 € 0.06P

S49 2449 C 0.06°P

$S0 2430 C 2.06P

Sl 2431 C 0.06P

§32 2432 C 9.9¢6P

S$S3 2433 ¢ 0.06P

834 2454 C 0.06P

S353 2435 C 9.0%5P

$36 2456 € ¢.06P

.

* SENSE ANP AND STORAGE DEVICES,
]

* LEFT B8IT LINE' 2501
* RIGHT BIT LINE: 2%502
¢ STIRAGE MODES: 2341 - 2548 (LEFT),
¢ ROU szLECT 23090
¢ ¥0D t 12
» .

¢ SENSE ANP

TLL 10 2598 11 T¥SL
L 1o 2502 11 T4SL
TS0 250¢ 2302 2300 TXSS
TF! 2301 2503 2502 TXSF
TF2 2302 2593 2301 TXSF
TTOo 28503 12 DSEN
Co1 2501 C o.89p

o2 25¢2 ¢ o0.8°

€93 2303 € o0.01p

.

s DUNMY CELLS

Co1 2301 2504 4 TXSN
€02 2302 2340 40 THSH
CP1 2304 2300 DRSH
CP2 25490 2300 DRSH
C01 2504 C 9.01P

€02 2340 C 0.01p

.

¢ STORAGE CELLS

C41 2501 2541 41 TXSH
C42 2301 2542 42 TUSH
C43 2501 2543 43 TASH
C44 2501 2344 44 TXSH
€4S 2501 2343 43 TRSH
46 250! 2546 46 TKSH
C47 23501 2547 47 TASH
C48 2301 2548 48 TXSH
€49 2502 23549 49 TASH
€30 2802 2350 S0 TASH
€31 2302 2331 S1 TASH
€32 2302 23382 S2 TXSHN
€33 IJ02 2353 33 TXSH
C34 2302 29354 T4 TXSH
€33 2302 25SS S8 TXSH

RCGY 23090

2349 - 28%6

o

€36 2302 25356 56 TXSN
§41 2341 C 9.04P
S42 2542 C 9.06P
543 2543 € 0.086P
S44 2544 C 0.06P
545 23545 C 0.06P
S46 2546 C 0.05P
§47 2547 C 9.0%7
$48 2348 C 0.06°P
S$49 2349 C 0.06P
$350 2350 C ¢0.06P
$51 2351 C 0.06P
$32 2332 € 9.06P
$S3 2353 C 0.06P
$54 2554 € 0.06P
§$85 2855 € 0.06P
§356 23556 C 0.06P

* AHALYSIS REQUESTS
gPTS 1 1S5.0

TOPTS 9.1 0.0 1000 0.1

TINE 148 3J00NS

PLOT 1 2 3 14 101 102 103 104

PLOT 11 12 161 162 163 164

PLOT 1600 1603 1602 1603 1646 1640 147 46 13
.

GO

*

END

A7. 28
SERIAL ARITHMETIC UNIT FOR DIGITAL FILTER

.
* 30URCE MODELS

MODEL YD1 TSRCC T 7 ON L OM L -1)

RODEL ¥D2 TSRCC 12 12 oW 1 ON I =§)

NODEL CK1 TSRCC 12 0 L1OM 2994 ON 10SN L1SH 1SOH 208N -:)

MGDEL CKX2 TSRCC 12 0 10N ZOON ON 103N 113N 190N 200N -1)

AGOEL SI1 T3RCC 0 12 30N 2.20 60U 1.399 1.5U 1.790 1.8Y 2.2U0 ~{)
MOJEL SIZ TSRCK O 7 30N 3.0U OU 1.99U 2.0U 2.190 2.28 3.0 =1)
MGOEL YGN T3RCC 0 0 OM [oN 1 -1)

»

¢NCSFET MODELS ¢ TINING)

HODEL NOO1 NTXG ¢ 1.0000 0.3 10U 0.7 0.5 3.0 {2 100)
BODEL HOO02 HORIVC 4.5000 0.3 100 9.7 0.6 0.9 12 100)
MODEL 1003 HLOADC 0.8333 5.3 100 9.7 0.6 0.0 12 100)
AODEL NON4 NTXAG ¢ 2.2300 0.5 10U 0.7 0.5 3.0 12 190)
BRIDEL NOOS HDRIVC 2.23060 9.5 10U 0.7 0.6 0.9 12 100)
HODEL 1096 HLOADC 1.5000 -$.3 10U 0.7 0.6 0.9 12 300)
RODEL 1007 HTXG ¢ 1.5000 -S.3 198 0.7 0.6 0.6 12 390)
MODEL NO10 NDRIVC 7.2500 0.3 10U 0.7 0.6 3.0 12 190)
MODEL NOl1 NDRIVC 5.3000 0.3 10U 0.7 0.6 0.9 12 100)
NODEL I012 MLOADC 1.5667 =3.3 10U 0.7 0.6 0.0 12 100)
AGDEL 1013 MLOAOC 0.8333 -3.3 10U 9.7 9.6 0.0 7 100)
HODEL NO14 HORIYC 3.7300 0.5 10U 0.7 0.6 0.0 12 100)
NMGDEL NO1S NORIYC 4.0000 0.3 100 0.7 ¢.6 0.0 12 1090)
AQDEL 1016 NLOADC 0.6230 =3.3 10U 9.7 0.5 0.0 12 100)
AGDEL NO17 NORIYC 3.0000 0.5 10U 0.7 0.5 0.0 12 1060)
MADEL 1030 HLOADC 0.454% -3.3 10U 0.7 0.6 0.6 12 160)
ACDEL NO21 NORI¥C 2.7330 0.3 10U 0.7 0.6 0.0 12 100)
FODEL HO2Z HORIVC 3.3000 0.3 10U 0.7 0.5 0.0 12 100)
MODEL [023 MLOADC 0.3346 =-S.3 10U 6.7 0.5 3.0 12 190)
MODEL HOZ4 NORIVC 1.0000 0.3 10U 0.7 0.6 0.0 12 100)
AODEL MO2J NORIVC 2.5000 6.5 100 0.7 0.8 9.9 12 100)
AODEL 1026 HLORDC 0.4543 -5.3 10U 9.7 0.6 0.0 7 100)
BODEL NO27 NTXG ¢ 1.2%00 0.3 10U 0.7 0.5 9.0 12 130)
. MODEL 1032 NLOARDC 0.4167 -5.3 10U 0.7 ¢.56 0.0 ? 100 >
MODEL NO31 NDRIVC 1.2300 0.3 10U 6.7 0.6 0.0 12 106
MODEL 1032 HLOADC 0.6230 =-5.3 10U 0.7 0.5 0.0 7 1900)
RODEL 1033 HLORDC 0.3000 ~-5.3 10U 0.7 0.6 0.0 7 100)
MODEL 1034 HLOADC 0.5000 =-5.3 100 0.7 0.6 9.9 12 100)
NODEL NI3S HDRIVC $5.0000 3.5 10U 0.7 0.6 0.0 12 100)
AODEL 1036 NLORDC 0.7143 -S.3 100 0.7 0.6 0.0 12 100)
MCDEL 1037 NTXG ¢ 0.8333 -5.3 10U 0.7 6.6 0.0 12 100)
MODEL HO40 NDRIYC 3.2500 0.5 10U 0.7 3.6 0.0 {2 100)
MGDEL 1041 HLORDC 7.8556 =5.3 o0 0.7 0.6 6.9 7 100)
MODEL 1042 HLOADC 0.4167 -5.3 10U 6.7 0.6 0.0 12 100)
10DEL HO43 NDRIVC 6.0000 0.3 tOU 0.7 0.6 9.0 12 100)
HODEL MHO44 HDRIVC 1.7300 0.3 10U 0.7 0.6 0.0 12 100)
MODEL HO43 MDRIVC 4.2500 0.5 19U 0.7 0.5 6.9 12 100)
HODEL NO46 NDRIYVC 7.0000 0.3 10U 0.7 0.6 0.0 12 300)
MODEL 1047 HLOADC 0.3556 -5.2 1080 0.7 0.6 0.0 12 100)
AQOEL 1030 MLOADC 0.2632 -5.3 10U 0.7 0.6 0.6 12 100)
MODEL I0S! NLOARDC 1.0000 ~S.3 o8 0.7 6.6 0.0 12 100)
MODEL 1052 HLOARDC 0.3845 =S5.3 100 0.7 0.6 9.0 7 160)
MOCEL NOS3I NTXG ¢ 4.7500 0.5 10U 9.7 0.6 0.9 12 100)
HODEL NOS4 HORIVC 5.7330 0.5 190 0.7 0.8 0.9 12 100
MCGOEL MOSS HTXG ¢ 0.87350 0.5 108 0.7 0.6 0.9 12 165
NODEL I0S6 MLOADC 9.7143 =5.3 100 0.7 0.5 0.9 7 100)
ACDEL NOS7 NDRIV(19.0000 9.5 194 0.7 0.6 9.9 12 300)
MODEL 1059 MLOARDC 1.1657 ~%.3 1080 0.7 0.6 9.9 7 190)
#O0DEL 1061 NLJADC 1.6000 -5.3 10U 0.7 0.5 9.9 7 169 O
AGDEL 06T NTXG ¢ ¢.5000 =-5.3 19U 6.7 0.6 0.9 12 100)

HCDEL
HMOGEL
MODEL
MODEL

HO63
NOG4
1065
1066

NORI¥<(
NDRIV{
NLOADC
NLORD(

« CAPACITOR MODEL
NODEL € GCAPR

.
L]

IHPUT SGURCES

cCOoOMNW

.3333
.90090
.3571
.8125%

¢CIRCUIT GENHERATED FROM

S1 15 vdi
$2 6 V02
€3 83 CK1
§4 82 CK2
§§ { SIt
S6 10 SI2
$7 135 VGH
.

H0001 2
nooo2 3
neoe3 3
HOoO4 3
H000S§ ?
N3096 7
fooo0? 8
LR B 8
noott 9
neot2 9
noot3 12
nJ014 14
noots 14
nooté 16
nootv? 17
noo29 17
noozgi 18
moo22 18
Mn023 19
n0024 19
noe2s 19
H0026 29
noo27 21
Ho930 20
Moo31 22
§0032 13-
no033 16
H0034 2$
00335 15
10036 26
H0037 - 26
100490 27
LELE B! 27
noo042 28
no043 30
no044 32
nO04S 32
M0046 29
HOO47 29
19050 34
LB 33
moo0S52 34
40053 34
19054 35

[T W] N -

g
(73 N 1)

34
36
67
37

83

82

82

83
26

82
82

-5.
-3.

o
(VAR NI]

ARTWORK FILE

LE1-B}
HOO2
1003
Noo 4
NOOS
1909
1007
NO1 O
NolLl
1912
HQO |
LB B!
1013
HOl4
HO1S
1003
1016
NO17
1029
Nol7
No21
1920
NoO L
Ho22
HoO1
HoO!
1023
NO24
HOL7?
1003
HO1S
HO23
1026
No27
HO27
No24
HoO!
LTS
1026
1926
HOO1l
NO17
HQL?
Hol7

10U
1ou
{ou
10U

o9 oo

~N NN

0000
o

OO0 OV

S OO O

12
12

12

i0o0
100
100
100

R

A7.

29

Ho03S
n903S6
10087
19069
noo61l
noo62
80063
80064
ROOSS
H2066
no057
NoO?0
MoO?1
noo72
%0073
noov4
10073
80076
Hoo?7?7
Ro109¢
Noto}
noto
noto3d
HG104
nG193
LER R X
RO107
80119
a0111
No112
#0113
H2114
ne11s
Aa116
KO117?
70129
Net12t
no1zg2
net23
No124
no123
Ho126
Ro127
no139
19131
Ho132
no133
HO0134
n0133
no136
RO137?
net4d
LEBE D]
Mo142
not143
A0l44
nO145
n146
H0147
A3159
#0131
x0:32

8o

41
g7
39
10
42
43

44
43
46
47

43
49
Se

19

69
71

23
24
24

33

37

82

32

83
82

83

S5
33
3
33
Sé

83

82

83

25
83

82

$?7
?5
$9
57

Ko17
[026
HoOL?
NOL?
Hao1
Noo1
No22
Koo 1
1030
1030
NOR22
NoO1
NO22
Hoot
1030
1030
H022
HoO1t
Ho22
1039
1939
HO1?
1003
NO27
H027
Ho27
Ho27
MoR7
1003
NO031
NQOS
HoOS
LLA%4
NO17?
LT 2 %4
LE:L 3
NQO}
No22
1026
1932
NoR2
HoV!
HoOL
4022
1926
H022
1032
Koot
NgoO§
L LR
1023
1026
NOL?
Hdo 1
1903
No2?
No27
NaZ2?
Ho27?
i9093
NO3Y
NaoS

ar7.

30

<

K0153
n154
HO185
B2138
Mo1S?
Hotls9
H2161)
¥0152
Ho163
noi64
10165
Hdl66
nIL67
no1?Y
Mo1?71
no1?22
no1?3
noi1?4
nowes
Hei?s
Mo1?7
H9290
no201
no202
19203
Ho294
%0295
H02405
No297
NO2190
40211
no212
no213
10214
no218
Mocise
no21?
no229
#9221
noz222
no223
no224
n022S
10226
30227
noz239
#0231
nog32
9233
HO234
00233
402306
no237
N0240
Ho241%
noz42
%0243
Mo244
A0243
NI246
no247
n3230

59
Te

23
2S

58
’8

78

84

92
97?7

S4
51
88

89
20

91
94

3
86

103

194
163
196
io?

83
82

83
82

83

a2

32

<
(2]

HOOS
Nd2i
1903
i903
19¢3
§01?
Hoi?
1903
NOO)
NOO
Ho22
1028
1932
NO22
1920
No21
1029
1034
NO17?
Hot?
1026
LLLBY
Neol
Ho22
Hoot
No22
HooL
1039
1039
N922
He21
1003
HOL?
Not17?
1903
1903
NOL?
Ho1?
1003
Ho17?
HOL1?
NOL17?
No21
NO3S
HOl4
HO22
HoO4
1016
1036
1937
HOO1
NOOt
NOL!S
LB
HoZ22
Nool
1030
1939
NHO22
Ha01
H922
NOO |

31

no2s1
#0232
%0233
RO234
ROZSS
%02%s
%0237
0250
no261
14252
0263
o254
10268
0266
n0267
0270
o271
no272
no273
0274
no2?7s
Ko276
no227?
no3ao
HO391
10302
0393
Ho304
nO30S
n632%
80397
no310
MoS1t
0312
no313
no314
no3ts
no3ts
n031?
no329
No321
6322
‘no323
o324
NO32S
n9326
na327
10339
19331
%0332
n0333
0334
no32s
n033%
40337
HO3490
no3at
n0342
10343
R03J44
2348
R0346

19?7
129
129
2009
L1o8
199
199
110
109
111
112
112

74
122
122
123
123
124
124
123
126
126
137
129
129
129
130
130
139
131
131
132
132
133
133
133
134
135
123
i38
139
138
141
142
142
142
143
143
145
147
148

148

149
149
151
138
151
132
132

13
153
1354

z07?
120
110

111
109

74
74

73
9
108

129

129

127
127

139
133
132
131
124

79

79

124

126
138
140
128
139
147

144
146

139
147

189

133

83

82
82
83

83
32

1030
1039
HO22
LD B
H022
1032
No21
No27
1626
Hoo
NOt?
1032
HO27
No4o
1034
19016
NO49
1926
NO1?7
No17?7
1032
No22
Hgo|
1903
NoOS
HooS
No21
1903
NOL1?
NOol17
1903
1903
Hot?
No1?
1003
H917
1016
16032
NQo2?
104!
L1 DY
Nt 7?
Noo1
No40
NO22
1016
LILY
1933
N901
H927
1003
Ho22
NO1?
1333
LLLD
1942
NoOS
1034
Ho4o0
I3
1913
NGo4

A7.

32

1y

0347
R035¢
Na3S1
K152
%1333
10354
N03S5
%9356
H03S7?
no369
K0361
10362
K0363
M3364
n3369
H036%6
no367
no379
M0371
10372
n0373
no374
no3?rs
ne376
Ho377
H0400
no401
0402
%0403
no49d
R040S
10406
80407
no41o
no411
no412
K0413
no414
n041S
noaie
HO417
10420
noaz21
Ho422
no423
Ho424
K042S
no4z6
no427
N0430
10431
13432
H9433
no434
n435
19435
no437
A0440
0441
Un4dz
90443
Nodd4

153

157

162
141
182
162
163
163
163
164
124
188
163
166
186
166

135

171
299
193
172
174
174

15
163

177
127

179
139
190
179
157

1?78

123
159
123
i33
149

141
149
161
i49

166
163
165
163

154
142

169
169

142
133

1790
169
179
167

19

2%0
188
186

1?6
173
168

1?73
178

174
1?76

13¢
129
133
129
130

163
162
166
162
163

134
83
138

292

174

177

NOol4
NO23
1207
NGl
LS]
1006
HOL?
1903

A7.

()

N044S
%0446
nossz
no4%0
no4S1
n04S2
no4S3
n04S4
10453
10436
B04S?
n0469
n0461
#0462
n0463
N0464
no4ss
N0466
M0467
no4?790
no471t
10472
n0473
no474
noezs
no476
n0477
H0500
HosSo01
nos02
nosoe3
MIS04
n0SOS
nOS08
ROSO7
moste
nosi
Mos12
n0813
nos14
nosLs
BosStLé
noS17?
80829
nos21
nos22
80%23
n0S24
nos2s
nos2s
nos27?
n0S30
n0S31
A9832
#0833
n9S534
nos3s
nas36
nas3?
R9S40
nos4y
ROS4:Z

16?7
192
297
e29
299
174
133
184
183
196
172
i97
172
187
188
189
171
199
229
318
193
318
191
318
122
317
190
186
136
329
329
399

3?7

36
126

36

36

9?

9?
133
193
196
197

3?

37
197
197
196
198
128
128
199
201
201t
203
203
20S
208
293
298
299
210

181
136
128
297

184

183
183
188

173
189
187
173
173

149
316

192
191

10
313
186
182

83
330
33¢

36
ide
223
238
199

97

87

8?

87
128
197

37

199
199

202
202
208
204
206
193

208
299

82
33

82

83

186
82

190

82
93
33

82
82

291t
83

32

NO4O
No27
No27?7
Hol4
1047
NOOS
1042
8027
NO21
Hoo Y
1903
1903
NO27
NJ4S
No27?
N227
NOZ7
1034
HoL17?
022
1926
1030
Nog2
Noo1
NOOt
Noo1l
HoZ1t
No21
1980
Ho31
No27?
Ne22
1013
1013
NO1S
NoLS
HOo1S
NO1S
HOLS
NO1S
HO1S
RO14
HOl 4
013
NO1S
NOLS
[ot3
1013
1016
10S1
HO43
NOO |
1082
LL-2Y)
Noot
Hogl
NeS3
Hoey
HOS4
19235
NO22
NJa 1l

~ 4

N0S43
na544
HOS435
HOS46
noS47
Ho5So
nosS:
A05S52
80§53
10534
nos3sS
nosse6
NOSS7?
#0560
no361
10562
80563
80564
LEERH
R0S6¢
Ho367
HosS70
noS71
nesv2
10873
KoS74
40STS
no3?s
nosv?
N0600
Ho691
noega
N0603
Ho60d
n0603
HO606
nogo7
10619
Hoéll
Ho612
H0613
noe14
Ho613
nee6ts
No617
no629
no621
H0622
no623
no624
H0625
K0626
no627
no630
n0653:
noe632
no633
H0634
M0633
0635
no63?
o640

2190
211
212
213

214
290
2138
216

128
220
219

220
222
223

[
w
-

229
231
220
223
226

232

233
204
233
204

235
238
239
274
242
223

217
218
243
244

243
246
247

2438

33

82

83

o
(A}

33
128
203

1030
103¢
ho22
Hool
HO22
NOO1
{930
1039

No22 .

Hool
Ho22
NoO1
1039
1039
NOSS
Hoo!
K022
1026
1032
NoO22
Hoo|
NO22
1026
1032
No2§
1032
1056
HO1S
HOS57
NO21
HOO1
NOO 1
Nool
1082
NOl4
Moot
Hool
HOS3
1es2
1033
NOL1S
1960
1013
HOCS
8003
NO23
LEL R
NOOS
H003
1092
102¢
NO22
NooO
HO22
LKL B
193¢
193¢
H022
Hoo!
No22
LR
1939

A7

33

NOG41
Ho642
H0643
R0644
HOG4S
N0546
RI647
10639
126351
Ro632
R96S3
HO634
H0633
12636
NO06S7
LLLX X
LEEY B
10662
n0663
nO664
Ho663
10666
n0667
0670
no671
no6?2e
19673
no574
RO673
n0676
R0677
no709
novol
no7o2
307203
novo4
novos
n0296
#0707
no71
novit
noria
no7t3
%0714
o718
novis
80717
no729
Hor21
Ro722
noz23
no724
M0728
N0726
nar2?
Hov3o
40731
nor32
A9733
NCG734
AO0?3S
HO73H

230
230
224
223
232
254
234
233
238
238
233
257
237
23?7
238
233

96
238
299
239
238

kL
263
263
<62
262
261
251
269
269
263
251
262
237
237
2838
264
267
269
269
269
264
294
270
272
272
272
273
273
274
274
273
278
276
278
266
277
277
237
281

231
239

249
<31
231
223
233

232

Cwd
233
256
233

<38

269
260

263
26
87
8?7

<61

262

273

73

236
279
264
263
233
2568
267

263
264
271
279

271
276

82

83
92

a3

82

232

83
82

83

82

82

1030
N922
NGO !
No22
HOO L
Nool
Ho22
1026
1032
HoZ2
NoO1
Noot
NO22
1026
1032
Ho022
1061
NOZ3
NO21
1034
1062
NOLS
NOL1S
NO1S
L% |
NO13
NOlS
NO13
NOLlS
1056
1013
1013
1013
N0OS
NOOS
NoOoS
HO63
N§oo
HOOL
NQ22
1026
1032
NO22
Nool
LL1-B3
Ho22
1026
1032
Ho22
HO64
1068
1063
NoOoS
I96S
HO64
HooS
1068
Naot
1063
HOOS
§o0S
1055

A7

W,

RO737
Horao
n6741
no742
HOT43
10744
no74s
10740
LR g
Ho73S0
novsSt
noz7s2
no7S3
nO754
n6733
No?Ss
nozs?
nov?60
M0761
novéea
MmMo?63
noz64
H0763
n07T66
noT67
HO779
LIYES!
nor72
MO?73
Mo774
#o?vsS
107276
nov?77?7
11009
niool
Mico2
#1003
N1004
nio0s
LBY-1-E)
11007
nio1o
nio1t
fnio12
niot3
A1014
n1o013
LALBE)
nidLvy
n1029
nioz1
nio22
n1023
niocz4
m1023
H1026
nioz7?
A1030
n1e3t
nio32
nio33
LR RES

249

281
263
23s%
261
289
266
282
277
289
2890
2835
287
279
279
282
282
279
291
148
193
193
292
291
292
292
293
293
294
295
293
296
296
299
146
146
Joo
299
301
302
302
302
304
304
304
306
367
307
3909
311
311
312
3i2
313

233
234
236
313

289
241

2695

283
289
276
286
287
286
286

238
288

291
148
149

296
293
29%
229

227
227

396
298
300
291
301
303

303
299
308

308
308
319

310

97
314
2924
304
304
3

82

292
232
296
2923

82

82

83

82
232

ce?

10638
1065
N00S
NOosd
1963
10635
1063
NOGS
1063
1063
NOO3
No64
NoOS
NOOS
Hool
Hoo1}
HUB 4
1082
Nool
1030
HOo64
No27
NOQ7
Ho27?
Ho27
1003
Ho3t
HooS
HOOoS
No21
1003
1003
1003
Ho17?7
NOL7?
1003
1034
1020
Ho40
No27
HoCS
No2?
HOL?
NOo27
1934
1047
No17?
Ho17
HoZ?
1003
HotS
NO27?
No27
1016
NO1S
1903
NO4O
K927
NOL17
L

Hot?
§n22

AT,

ni1o3s
11036
N1037
%1040
Ri1041
R1c42
N1043
H1o44
H104S
B1046
N1047
nioeso
nioSg
"1io32
11033
Ni0S4
LRCEL]
#1036
nios?
11060
#1051
n1062
H10863
R1064
nio6s
H1066
R1967
n1o70
n1o071
noz2
A1e73
niove
nio7s
B1076
n1027
mii¢o0
niio
N1102
nL1e3
Bllo4
Rtios
nit o6
niio7
LA
LRRB S
LERE ¥
n1it3
Kill4
LASRE-]
nitié
ni1z
ni120
ni12t
ni122
miias
Hii24
H112s
ni12s
a1:27
M1130
nit31
a1132

319
313
329
320
321
322
322

iz
324
324
329
326
327
326
328
309
31
234

331
331
334
334
333
308
308
3¢5
331
261
332
286
28§
273
338
338
338

349

340
341
41
342
343
344
344
343

87
346

347
341
349
349
349
313
313
314
3so
33t
331
3S¢
3492

319
3290
321
322

123
324
328
326

309
283
294

192

333.

332
333
334
333
333
338
334
337

2835
337
339

339
273
335

37

374
307
349

312

82

33
82

83
e2

332
336
3%
333

33
33

312
Jo7

(7]
)
[3]

Noo1
1030
930
NOZ2
H00 !
NoZ22
NooO1
103¢
[03¢
No22
NOO}
HOZ2
Necot
1039
193¢
1066
LEL 1
Hoolt
N927?7
1036
NO27
No1?7
1003
No27?
NoZ?
HOQ?
HO27
NoLl4
No27
No27
Ho40

" 1082

HoO S
LELBY
§00S
1982
NoO1L
NOO
Hod0
NoL1?
1047
1026
1032
Ho22
NO31
NOR27
Hoz2?
No3i
1042
1042
No27
Nod o
Nos4o
HO49
1016
Ho27
NO27V
4318
NO27
1003
icls
HO27?

az.

Hit33
H1134
%1135
H113%
H1137
nit4o
Mii141
n1142
Mi143
Mi1144
ni14s
nil4se
Hi147?
niise
11131
#1182
N1183
Hi154
M11SS
M1136
411357
Nligo
nilel
n1162
ni1ed
niie4
81163
nilesé
M1167?
n1179
Mil71
w172
ni173
Ni174
X175
Mil76
LES X a4
Hi290
M1201

11292

81203
nizo4
#1205
Ri2o06
N1207
nizio
mi21t
niz12
11213
¥1214
11218
#i2tio
ni217?
H1220
N1z2l
M1222
niz223
N:zZ24
niz22s
ni226
ni2a?
ni239

352

-332

352
3s2
353
353
3s3
334
334
338
333
35%
356
335
328
357
338
339
338
360
360
361
362
363
362
364
364
341
347
342
366
356
366
368
367
367
367
369
369
369
369
372
379
343
343
382
3ee
377
377
378
378
386
381
381
381
382
382
383
395
383
383
336

3s
333
386

325

334
347

314
314

347
327
328
397
338

339
369
361
362

363
363
363
333
369
345

367

345

371

343
261
330
371

. 373

374
373
379
376
373

376
379
389
373

380
I7¢
334
383

83

82

83

82

32

307

83
82

83
a2

32
32

%1231
81232
niz33
n1234
n1233
ni236
R1237
niz24o0
R1241
m1242
Ni243
R1244
ni24S
R1246
n1247
n12950
n123g
81232
n12s3
ni2Se
n1233
11236
ni2s?
ntiz60
ni2sg

n1262
n1263
Bi264
11253
1266
ni267
A1270
n1271

ni272
.

4 HODE CAPACITANCES

C0091
€002
€0093
o004
Cocos
€C0996
Co007
Cooto
coott
Coo1t3
Coot4
Coois
Cooté
CooLr?
€00g9
Coc2t
€o022
ca023
Coo24
cJ02%
coo026
€a027
Ccoo30
Co031
Co032
o033

386
387
3ge
399
388
390
390
391
392
393
392
370
379
394
394
372
366
333
333
333
393
372
393
393
396
326
396
397
33?7
399
398
329
399
399

QOO0 000000

384
364
387
Jjge

389
39¢
391
392

393
366

&
372
366
394
366

329
396
392
398

397
339
348
348

350

33
82

33
82

396
39S
399
398
396

¢ COMPUTED FROM ARTUGRX FILE)
.9617°P
.0836P
.0631°9
.2714P
.6971P
.0744P
.0688P
.0790p
.0668P
.1172p
.4862°P
.06354P
.4672pP
.0696P
.1368°P
.1214p
.1334P
.06449
.0624p
.0689P
.0606P
.1842p
172759
.1344P
.0674P
.07832

Ho22
NOOL
No22
Noot
{930
1030
Ro22
Noo1
No22
NoO1
1030
1030
NO22
Net1?
1003
No27
NO27
Noz?
No2?
NO27
19003
NO3t
H00S
NOOS
No21I
1003
NOL7
NO17
1003
19003
Not7
NOl7
1003
NO17

-

A7.

40

Co034
Cv93S
€o¢36
Cov37
Co0490
€004
Co6042
Co043
Co044
Co045
Co046
0047
Coo59
CooS1
coos2
C00S3
€054
Y055
Co0S6
087
tno6o
3061
Co062
€063
Cod64
€063
Co066
Cooe?
Coo79
coovt
coo?2
o073
Cao74
Coo?S
Coo76
€oo77
€o1909
cetot
€o192
Co1903
Co104
€otLos
Co196
Coi07
Cotto
catte
co112
cott3
Co114
Cot11s
colte
Cottv
€ot129¢
cot21
€e122
co123
co124
ce123
cot28
€127
Cei30
£2131

OO0 0O00000O0O00O0NO0OON00000000OCOO00ANOO0000000O0O00000N0O0O00O0OO0

.0939°P
.0733°?
.1095P
.0673P
.o737P
.9801P
.4301P
.4709F
.0672P
.o772°P
.0631P
.0737pP
.0742P
.0602P
.0701tpP
.1lelpP
.0742P
.9602P
.0701tP
.06235P
.0742P
.9602P
.0623P
.0627°P
.9783P
.59202
.1628P
.1610P
10107
.1563°P
.0746P
.0704P
.06865P
.0607P
.0746P
07049
.06886P
.0989F
.1870P
.0683P
.2767P
.0623°P
.0694°P
.0627P
.0908P
.0920°P
.0%69°P
.0746P
.0704P
.0686P
.1019P
.4022P
.1465P
.0046P
.1o19pP
.1703P
.1366P
117

.0701tP
.0724P
.0¢02°
ATt

41

Cot32
co133
Co134
€o138
Co136
co137
Cc140
Cot4t
£0142
Co143
Col44
CO143
£o146
Cols7
co130
€o131
co132
€o133
Co134
Co138S
Co136
Co166
cot7o
co1?7t
cot1?72
€o173
Cot74
o173
€217
co177
€o290
o201
co202
€a2¢3
Co204
cozgot
Co296
ce2e7
co2t9
co211
co212
o213
o214
co213
coz216
co2iv?
coz220
co221
co222
€9223
Co224
cozz2s
o226
co227
€o239
ce23t
co232
€y234
Co233
cez23s
€o237
Co240

92

93

94

93

96

9?7

29

29
Lto0
191
102
103
104
1935
105
107
108
199
110
111
112
120
122
123
124
1239
126
127
128
129
130
131
132
133
134
138
137
138
139
140
141
142
143
144
143
146
147
148
149
1$-1]
{31
182
183
154
159
136
157
1359
160
181
162
163

QOO0 00000NaOOOO0000O00O0OON0OA00O0OO0000000ONO0

.1034P
.1010P
.0962°P
.1363P
.6314P
.6641LP
.e728P
L0579
.133%6P
©.0691P
.07429
.0602pP
.o701pP
.0625P
.0742°9
.0602P
.229%0P
.0639P
.0627P
.0638°9
.0671°P
.1137p
.0769°P
.2139°P
.1381°P
07719
.0689P
.0668P
.7281°%
.9920°P
.1623°P
-{olo0p
.09699
.1583P
.1087p
.0628P
.9610pP
.0686P
.0668P
.9692°
.0624P
.1493P
.o728°P
.9601°P
.1013P
.1%16P
.1319P
.262722°P
.1443P
9710P
.0630P
.9773P
.0631P
.1839p
.07S0P
.3383P
.S345P
.0627°P
.1609P
.0627°P
.0920P
.1623P

A7.

42

0241
coz242
CH243
C0244
C6243
0246
C0247
co2se¢
€025}
€o2s2
€o283
€0253
0256
€02s7
0269
coz261
co262
C0263
co2s4
Co265
0266
Co267
co270
coart
coz272
co273
Co274
gears
2276
€o277
Co30¢
Co301
Co3902
€303
Co304
0308
o306
o307
€o3l9
a3ty
co312
co313
Co314
Co31S
Co3té
o317
co32¢
€032t
co322
coe323
€o0324
co32s
co32¢
€o0327
€0339
Co331
€0332
€0233
Co334
0335
0336
0337

164
1635
166

168
169
170
171
172
173
174
176
177
178
179
1890
181
182
183
184

186
187
188
189

191
192
193
194
19$
196
1937
198
199
200
201
202
293
204
298
206
207
208
209
210
211
212
213
214
213
16
217
218
219
2290
221
222
223
224
223
226

nnnonnnnnnnnnnnnnnnnnnnnnnnannnnnnnnnnnonnnnnnnnnnnnnnnonnnnnn

.1010P
.0963P
.1563P
.0673P
.4328P
.0809P
.0632P
11219
.0808p
.1817P
.1176P
.1191P
.0628P
.0801P
.1517P
.0698P
.0636P
.2795p
.0609P
06747
.0659P
.1753P
.0528P
.0809P
.0790P
.06867
.0682P
.0743P
.3353P
.0794p
.1385P
.1242P
.1275P
.0605P
.1037°
.1921°
.1352P
.1221P
.0633P
.0903P
.1321P
.0662P
.0701P
.0742P
.0602P
.0701P
.0625P
07427
.0602P
.0701P
.0742P
.0602P
07019
.0625P
.0744P
.0704P
.0636P
.06072P
.0711P
06867
. 1924P
1113

R7.

43

c0349
C0341
Co342
Co0343
Co344
C0343
o346
C9347
0389
€033t
ce332
€0333
o334
co03ss
co3%s
Co3s87?
Co0369
Co361
Co3é62
€0363
Ca364
€036S
€0366
€0367
co37o
€0371
co372
co373
Co374
co37s
co376
co3?77
C0400
€401
co402
Cod403
Co404
Co403
Co406
Co407
Co419
Cod1l1
Co412
o413
Codtie
Coe13
Codts
Co417
0420
Co421%
£o0422
Co423
Co424
Co042S
o426
Co427
9430
Co438
Coa32
C0433
C2434
Coa43s

227
229
229
230
231
232
233
234
233
236
237
238
239
2490
241
242
243
244
243
246
247
249
249
259
231
232
233
234
<33
236
237
238
239
260
261
262
263
264
269
286
267
268
269
279
271
272
273
274
273
276
277
278
279
280
281
292
293
284
288
283
287
238

OO0 ANOOOAONOOAOOOANONO0N0NO0O00O00O00D0A0

.2255P
.0618P
.0745P
.0601P
.1629p
.0677P
12169
.0673P
.1323p
.1086P
.1153p
.2232¢
10729
.1019pP
.9920P
.07848P
.0742P
.0602p
.0701p
.0623P
07429
.0602P
.0701P
.1142P
.0704p
.0616P
.Q704P
.0616P
07469
.Q0704P
.0636P
.1490P
.0748P
.1319p
.53289
.1161P
.1336P
.2319P
.0974P
.1211P
.0746P
.0704p
.0686P
.0746P
.0704P
.0686P
.1802P
.1997P
.1838p
.2410P
.0602P
.0630P
.1885P
.1657P
.1386P
.0692P
.0788pP
.0618P
.1831P
.2312P
.0673P
.0699P

R?.

44

0437
o440
Co441
Co442
£o443
Cos4e
Cod43
Co446
Co447
Co450
Co431
C04S52
€0433
Co4S4
C0433
Co436
Co437
C04690
Cod461
Cosé62
Co453
Co464
C0463
Co4656
Code?
Co479
€0471
o472
C0473
Co474
co47s
Co476
Co477
Co309
CosS01
€os902
Co503
€o504
€050S
€o0S06
Co397?
Co3t19
costt
cos12
Cos13
CoS14
CoS1S
CoS1s
Cost7
co3S29
cos21
cos22
€o523
Cas24
co82s
cos2e6
€o0s27
€o539
CoS531
€0332
€9533
CoS34

290
291!
292
293
294
293
296
297
298
299
300
301t
302
303
304
Jos
306
307
308
309
310
311
312
313
314
313
316
317
318
319
320
32l
322
323
324
323
328
3z7
328
329
330
331
332
333
334
338
336
337
338
33¢
340
341
342
343
J a4
345
345
347
348
349
350
351

OO0 OO000O00OO00O000000000O0O0N0N0O000000000

.0627P
.0639P
.0920P
.1625P
.1010P
.0969P
.1563°
.0709p
.0614p
.1293P
.0624P
.0628P
.0684P
.0604P
.1827P
.1081P
.0686P
.2345P
.0744P
.1071P
.0842P
.0698P
.2220P
.1401P
1711P
.0625P
.0703P
.0742P
.0602?
.0701p
.0625P
.0742P
.0698P
.0701P
.0625P
.0742p
.0602P
.07017
.1083P
.06979
.1004P
.0637P
.0665P
.2217P
.0627P
.0720P
.0638P
.0643P
.06767
16739
.0673P
.0682P
.0814P
.0686P
06177
.0813p
.e922p
.1796P
.1487P
.0643P
.1724p
.0627P

A7.

45

.9920P
.1623P
.1010P
.9969P
.1363P
.0742P
.0602P
.0701P
.0625P
.0742P
.0602p
.0701P
.1100P
.0611P
.13979
.0630P
.0823P
.0672¢9
.0793P
.0602P
.0634P
.Q744P
.0704P
.07467
.0704P
.0686P
.9607P
.0746P

.0704p
.0686P
.0607°P
.07469
.0794P
.0686P
.9607°P
.07429
.0602pP
.0701°
.1163P
.0742p
.0602P
.070LP
.0627°P
.0920p
.13329
.1010pP
.9969P
.1363P

8 ¢.1
124, 169,
1, 19

€¢535 352 ¢
o836 333 ¢
£os537? 354 C
0S40 3s5 ¢
Cos4t 3%6 ¢
CoS42 3s7 ¢
Cos43 358 C
Co544 3359 ¢
CoS4S 350 C
C0%46 361 C
Cos47 362 C
C0s30 363 C
cossi 364 C
co8S2 363 C
Co$S3 366 ¢C
CoSS4 367 C
085S 368 C
cossS6 369 C
coss? 370 ¢
CosS60 371 ¢
cosét 372 ¢
cosé62 3?3 ¢
co%$s3 374 C
Cos64 375 C
£0S6S 376 C
cos66 377 ¢C
cosér 378 ¢
cosvo 379 ¢
cos?1 380 ¢
cos?2 38t ¢C
cos?73 382 ¢C
Cos74 383 ¢
CosS?S 394 C
Cos?6 363 C
cos?? 396 C
co600 387 ¢
coso1t 388 ¢
€0802 389 ¢
0603 390 ¢
co604 391 C
£ogos 392 ¢
0606 393 ¢
Cos07 394 C
cos10 395 €
coétt 396 ¢
cos12 337 ¢C
co613 398 ¢
cos14 399 ¢C
.

¢ CONTROL STATEMENTS
OPTS 1 14.0 ¢
TOPTS 0.1 0.0S
*TINE SH 4000H
TINE 1H 420N
PLOT 70, 123,
pLOT 92, 83,
L]

6o

-

END

137,

149,

144

av.

46

-~

APPENDIX 8

MOTIS-C: A New Circuit Simulator for MOS LSI Circuits

Presented at the 1977 IEEE International Symposium on Circuits and Systems,

Phoenix, Arizona, April 1977.

A8.1

B30 2Y2 d2UDY ‘SAITAPP SOW FO LATIdWYI0D

® Jo Sujaxyruad 3v¥ IIN0T ® £ uAWILH IFND3YD
ude3 (*1 313 s® pIpNIdUY KT D-S1I0K 03 I1j
Indul ur o FTdwexXd uUy) "TINILS BraBoigd vy pasn
PS0YI €3 JUIIDIS AIDA HPIVIDI ¥IEP JO IIS U A§
wra8oad ay3 03 PIQIIIEAP ST IINIITD pdILISUIV] uy

uo13d§ansag AIN211y °7

TRITQ INAUI D-SILOK TUITAAL T -85y

(L}

€ va

$8)i3wenve WYY :

?CT 10w

RTuan li‘q 8 .t 10w

u $HE0L iy
SLSINDs STSAWNY o
.

B3ant § 1
SEI183AN] WADLS [Nen

L[]
G b7 %1 ¢ wix
G €2 o1 11 Cix
S 32 ol 9 23x

L]

CSHOT S1dn SHLT 35 8 § 1336n0% 1) 1300w
(8 3 SO0 281 421 D6 1 1 1590 Cuwe 330w
120 S801 901 401 TT0 L 1 10CHy e 3330w
€V 8 5991 201 91 2°0 1 % iQuy gieel VoW
SOMI 139w JINNIIMAG ¢

8330338 WiSO-01-aswuls

‘9238 IINDITO y31m LTItAury ISOWT

$IFEIIDU} D-SIIOW JO DWI3 S}ciTeur Yl sIoITINCS
ITADATD [LUCTIUIALOD 03 ISLIILAD U IBLI PIIOL

®q OSTP PINUNF 11 °PIUTFaI aDY3IIn) s} wra¥oad
Y43 ST paISAXD aie IpnIjules 3o 30pa0 suo 03 dn
Jo SIUBWDAOdEY -3uj0dO;II yATI 30) AIe8 Jod
Swg 0 JIpun Jo SBT3 30863501d Jraiudd 2Sviaae ue
Y3TA ‘AaTanadg 3¢ J3andwod QNsAnG) 843 UO Alowam
TEID0 051 UY pazicue aq ued £33vS Qpg'z 03

dn $93¥dTpur weiSoad adA3oz0ad 24l Jo douRwiIojiIag

*Ae1dsip £o1ydrad xjuclINRL T 20

323307¢ A-X ur jo Suy3sord dUIT~330 303 I02CTNITCD
d1qrunrcsBold OLEAdH UV ©3 EITP puAK UED D-SILON Pur
PTQETTTAT d1® swiojdanra ofeltoa jo siord Iv3uyad
~DUT! *1Uds01d 3¥y *D=S1IOK JO Iinpem IndIno

o431 Aq POITHOIIDIUT IVIEY K] UNTUS I} I8P ©

uo saSvi10a 2POU 3ITNOITO TTr saieds weadoad a1

00L

*SSIAPPY DAOYF IY) v

UOS3ITPIg "0 *Q A08SIJOIU IDPIUCD PINOYS soylavd
P#ISIIIU] -uFEwOP “ITYNd Y3 UT FIGrTICAr Sy
I=S1L0K “23a2mdH *[e “T1IH Aviang ‘sajacarioqe]
1198 v3YIIn wraSoad Laeivtadosd v s SXLOR‘

, *SuOT3

=37 33pcs wraSead Joupm an3je 393nduadjuln e uc

Unl 99 PIREd> pur *sauyydtu 21D uo dTQTITrar paos
334-09 #43 U0 L1332 30U KWOD D-51I0W ‘ARYewang
‘vjuloyied 3o A3¥s3aaju) bU3 e 3dIncwod 00%920)
Y1 uo una BuIIQ ST JUDSIIL 3T puUe NYUINO3 up
£19321dudd ©AI313A $T D-51108 “{£°Z] Z3D1dS s@ yors
SANITIARIK ITNDITD TEUOTIUNAULOD uryl $NOads ayfpy
Ydhw IV EOONPOIE STIOIPALN UTBUOP-DWLII S§I ITNEDI
2yl °*S30IVINURS OTLO7 U} PUSn Pyl O3 a0} juwlS

$7 SpoU O3 Ipou medj syrulis abeatos SujpscIedoad

40j PISO PoYIIT SYI dnQ TIADT DIYAIP IYI IE
F2IND3TD $2IP[NWIS D-SIION ' (TIVIOJITTI) D-S1IOW
‘wraBold jo #d43 STyl jo uOTSIDA ARU B U} DN

30; po3dere UAIg IaPYy SII0K YT Pasn sanbjuydel
SISAILUT Ju3l jo Auex ©303ndmOITUTI QOITdH LE uo
d3vriue] L1Cu9SSE UY UPIS}am GOm SIIOKR *s3indags
PAI¥Ide3L] SOW ATTIS-BRIT] jo uojIeTNLIs oy 03
A731917dx? pousisap wraRead sysdTewve Itndayd 3o ad43
Adu © 51 (T] S1ION wradold pasunouur ATILIDNI Yyl

uo33Idnpoasuy °7

°Z3014S ST YONS SIOIPTAWES ITNDITH UTETOP-DUTI
TrUO1ILIAU0D jOo dSoyl uwryl 333T38 apnijulrw

Jo $aep3o or) 1DAD e D-S1I0W 20 AIFTIGrded azys

¢ IINDITO pue poads SY2 IITLTIPUT SITNSAI Lavuragtoag

*uoracIndwud

PTJLFUIT €7 PITIPOTOISLE Iae $2308 jo syITIIP
342 PuUE IDUITUIAUOD 33sh 103 #ArnSuey nduy ouyt
=3D1dS ® SCY ‘KVHINO4 U uP33Tam 67 welSoad ayy

“$3UB1IND DITADP ITIUTTUOU JO UOTITNTEAD BY3

203 TIN5 4n-x00; PIQTI T pur 3ujodawyl yces v
SPOUIIT UOTINTOS 2IDITP UO $ATTVa SITNI3TD 3380f
983e7 Nuzacynuls jo SSJUDAITONI IO MYl *s2pou Ind
=3IN0 PIIORTIS IT SWI0JIATH UTEWON-wII $307¢ pur
12427 23e¥ >7807 3yl e 3Indul vavp soyel weiRoad
YW “SIIJOW UT PSP ISOYI WNI3 PRATOAD Sanbruysaz
SISATRUR ADU TT33A25 ZujAoTdwd PadoTaAdp udaq

SBY J-SI110K ‘we3foad 3o 9d4{3 sTYI jo uolsiaA

AU ¥V °SITRIITD OF807 SOK ‘poIes¥adul ‘atens
=2Z2PT JO UOTIPINEIS JUDFITIJO e 30) pd330doz sta
‘SILON ‘103e1MO1s 31Ind33> jo oddl Avu ® A13uaday

3de338qy

0ZL%96 BIUICITIPY ‘ANTaIdE ‘KTUI0JITE) jo Kapsasatun
$95U233s Inyndwe) pur Bujssauiduz TTOTIINNTI JO Junmizedan

UOSIDPI4 "0 ' PUT UOINIK Y °V ‘HINKH ‘A K ‘ueg °g ;s

SLIADKID 1ST SOH ¥OJ BOLVIAWIS 1IAMMID N3N ¥ $0~S110H

Z°8V

macromudel, the parameters of vhich are described
using & MODEL stacement. Flouting capacitors, as
well as grounded capacicors, are tncluded so that
brotstrapping and dynamic logic tamllics can be
analyzed.

The ncn-linear device tables are generated by
MOTIS-C using a modified form of the Frohmann-Grove
MOSFET c¢quations [4]. These tables are written on
a [fle vhich can be saved on disc. They are
dutumatically attached and mav be used Ly the pro-
fram during later analyses. The input and out-

put capacitances fuvr the gate macromodels are
obtained by cumparing switching simulations on
SPiCE2 and MOT1S-C and then chousing the
appropriate values to match the results.

3. DProgram Structure

The program is written in a modular style with a
main program calling three sub-programs in sequence.
All modei and device data is storad in labeled
common blocks with a format decided during the
read-in phase. To improve program speed during
analysis, the prougram bypasses any macromodel

whose driving volcages have not changed significant-
ly over the past two timepoints. It also writes
only node voltage changes to the output file for
lacer tnterrogaction by the post-precessor.

4. Table Functions for Nonlinwar Elements

For each nonlinear device type, MOTIS-C stores a
table of output curreats which is {ndexed directly
by the appropriate cembination of controlling
voltages. Circuit voltages are scaled to permit ¢
Jdirect indexing from rounded node voltages; for
MOS devices and positive supply volcage is

scaled to an internal voltage of 50 volts. In
order to ailow a limited range of capacitive boot~-
strapping, the device tables are stored for
controlling=voltage values to twice the positive
supply volcage.

Load devices are indexed directly by their independ-
ent node voltage as in MOTIS. Driver and transfer
gate currents are dore difficuit to calculate.

Fig. 2(a) shows a typical device with fts threc
controlling voltages. MOTIS uses a two-dimensional
areay, indexed by both Vg and V4., and a one-
dimensional back-gate bias tahle to modify the
final current in accordance with back-gate thres-
hold skift. Ian MOTIS-C, however, 100-¢nctry one-
dicensional tables are used fcor all device
characteristics. A vector of 1d's, indexed by

Vgy 4t the highest expected zate voltage, Vpg(max),
a vector of output conductances for 100 different
gate voltages up to Vgs(nax) and a back-zate bias
vector are stored. ’

Drain curreats at any gate voltage below V, s
are obtained by an origin shifeing opctatisn
on the single scored churacteristiq:

(max)

‘d(ng'vds) - !d(Vssfme). vds + 4v)

- ld(Vus(max). av) (1)
where

AV = Vgs(aax) - vss)

70%

A8.3

The drafn characteristics of 4 real device and
those generated by the proxran using the above
transtermation ace compared in Fig. 2(b).

Fig. 20 MOSFET Traunsfer Device

v -
v
0.4 Nearorrd

mris-c

". ™

Fiz. 2b Comparison of MOTIS-C MOSFET modecl and a
typlcal device

5. Macromodeling of Logic Gates

At preseat, MOTIS-C hus three logic gate macromodels,
the AND-OR-INVERT, OR-AND-INVERT, and the transfer
3ate. (The AND-UR-INVERT and OR-AND-INVERT '
Structures are shown in Fig. 3.) While these gates
arc analyzed using techniques very similar to

those used in MOTLS [1}, the transfer gace macro-
modcl prescats a more difficulc problem. Since

the device curreat is a funczion of two independent
fuantities, a set of two simultaneous equativns
must be solved at each timepoint, which in turn
vwould substantially increase solution time.

The transfer gate may he tepresented as a nonlinear,
voltage controlied current source s shown in
Fig. &(a), with nodes (1) and (2) as the controlling

nodes:
IT - f(v1 - vz) = f(x) (3)

A first-order Taylor serics expansion vields:

1 =1, +Géx =1 rG_o(sv, - av,)
ter Tq T, "t e

(%)

whare
[aL d 4x = AV, - 4V 5)
T " A 1 2 (
At node (1), Equation (4) may be rewritzen as:
1 G AV, + (I, = G_av,) (6)
Tn+1 ™1 Tn T2

The equivalenc circuit of Fig. 4(b) may be used
Lo represent this cquation. Sinze aVa is noc
kuewn at this stage, racher than use Esn. (6),
an explicit substitution i{s wmade for Vo

T = G AV, + (1. = G.8V.) (0)]
Torl ™1 T, T 2

where
SV, =V, -V (8)
2 zn zn-l
A simtlar process is carried out ac node (2) and
. the resulting equivalent circuit for the aV's is
shown in Fig. 4(c). The equations are nov de-
coupled and may be solved scparately.

)
'°‘.-"§ 'o""

Fig. 3a U2-AND-INVERT Gate Struccure
o

v, T v,

et

Fig. 3b AND-OR-INVERT Gate Structure

L
: "y
(1) W)
e l‘ - "
(2]
l'.
[
l'.4'1v' T .
™
) av, s ae,
- Ly 6 17,
by, <y 1\
. <,
<y (4

Fig. & Transfer Cate Models

702

A8.4

6. Analvsis Algorithms

HOTIS uses che backward Fulec method, s firse-
order meched, for integreting the capacitor
equations. Previous programs of this type have
used che inhuroutly unscable torward Zuler wethod.
MOTIS=C uses Trapesotdal !ategraction, a second-
order mechud, which requires the saving of
capacitor currents and only one more subtraction
at each iceracion. MUTlS-C solves for incrumencal
node voltages at each timepoint using nodal
analysis. lInternul circuit voleayes, capacitors
and device lovk-up tables are scaled to permit

the tables to be indexed Jirectly by rounded node
voltages.

While MOC1S~C is similar to MOTIS in that it uses
only one iceration per timepotnt, it maintains
dccuracy by austucatically selecting a ticestep

Lo li{mit the maxizum 4V ac cach nede. Fortunately,
as the guce outpu: reaches either the positive

or negative supply voltage, accumulated voltage
errors are lost and che accuracy of the simulacion

. 13 eshanced,

Floating capacitors cannot be handled using

the decoupling process described for the transfer
gate. The decoupling scheme results fa a stable
but inaccurate {ntugration method. Instead, the
two simultandous equations describing the
capacicor nude viliauges are solved directly. By
insuring that the {ategracion step size is less
than the zero-valued time constant at each
capacitor nod¢, the number of long operacions for
an accurate solution at each timepoint may be
reduced to 6 per floating capacttor, significancly
reducing the overhead.

7. Tizescep Seiection

At preseat MOTIS=C does not use automatic timestep
control during analysis, b mOst ¢ lonal
timestep control scnemes are too expensive. How-
ever the program doas select an iaternal timescep
during the equation steup phase prior to analysis.
As the program accunulates the node capacitances,
it saves the value of the smallest node capacitance
it finds, in+ At any node other than & source
node. The maximua node veltage swing, Vmax» 13
eatimaced from the positive znd negative supply
voltages and the maximum gate pulldown currenc,
Imaxs 13 obtiined from the driver table. The
prugran then computes an internal cimeseep, h,
usings

[+ av
he ain — max (9)
nax
vhere
Avuax b r'vmnx (10)

F 13 an empirical constant chosen to maintain the
difference between 5SPICE2 and MOTIS-C outpue
vaveforms at less than 10X for most circuits,
wvhile maximizing the speced of MOTIS~C.

8. Simulation Resules

Table (1) shows a comparison betwecen SPICE2 and
MOT1S-C for cwo typical logic circuits. In boch
cases, SPICE2 was using assembly language roucines

A

on the CDCHLO0 computer tu svulve the scet of linear
equativns at each Newton=-Raphsun fteration. It
should be noted thaz in the 4-bit adder example,
the SPICE2 sfwrulation was performed on a Cyber 73
and not on the Berkeley CDC6400. MOTIS-C uses
fixed length arrays for data storage. In bhoth
these examples, a substantfal amount of wstorage
remained for more elements and MOTIS-C wias over
two orders of magnitude fuster than SPICE2 for

10X accuracy in the ncde voltage waveforms.

A8.5

SPICE 2 MOTIS-C
CIRCUIT Number of Iterations CPL_Time(s) Sumber of Analysis L CPU Tire (s) |
MOSFETS Timepoints Mumory (KA) Gates Foincs Mamory (Ka)

e -

Binary~-to- 1883 359 1.95

QOctal 48 17 200

Decoder 422 120 27

4-bic 14865 6435 36.4

NMOS Binacy 108 36 2200

Adder 3305 150 27

9. éoncluslong

MOTIS-C has displayed a definite speed and size
advantage over conventional circuit simulacion
programs for a special class of integrated
circuics, namely MCS digital LSI circuits. The
analysis technigques rely on saturating devices,
repetitive structures such as gates and a relative-
ly low circuit connectivity.

For handling circuics of this size, both convenient
data input schemes and output data processing
techniques must be employed. For this reason,
MOTIS-C allows repetitive post-processing of data
within che large computer or on an off-line,
intelligent terainal. Ease of program modificacion
is also most important and the modular struccure
and FORTRAN language of MOTIS-C permit the addicion
of new macromodels without detailed knowledge of
the entire program operation.

10. Acknowledgements .

The authors wish to thank G. R. Boyle and

R. Smith for helpful discussions. This project
was suppocrted by Corporate Engineering ac the
Hewlett Packard Company, Palo Alco, California.

11. References

(1) R. R. Chawla, K. K. Gummel and P. Kozak,
"MOTIS-An MOS Timing Simulator,” Trans. IEEE,
Vol. CAS-22, No. 12, pp. 901-910, Dec. 1975.

{2} L. W. Nagel, "SPICE2: A Conmputer Program to
Simulate Semiconductor Circuits,” ERL Memo
No. ERL-i1520, Rlectroaics Rescarch Laboratory,
Universtty of California, Berkeley, May, 1975.

[3} E. Cohen, "Program Reference for SPICE2,"
ERL Memo Wo. ERL-M592, Elecirconlcs Research
Laboratoury, Universtity of California, Berkeley,
June 1976.

{4} A. S. Grove, Physics and Technology of Semi-
conductor Devices, New York: Wiley, 1967.

703

Table 1: SPICE 2 and MOTIS-C Comparison

for two typical circuits.

APPENDIX 9

Analysis Time, Accuracy and Memory Requirement Tradeoffs in SPICE2

Presented at the Eleventh Annual Asilomar Conference on Circuits, Systems and

Computers, Asilomar, California, November 1977.

A9.1

A9.2

ANALYS1S TIME, ACCURACY AND MEMORY REQUIRFMENT TRADLOFFS 1IN SPICE2

A. R, Newton and D. 0. Pederson
Department of E£lcctricai Encineering and Computer Sciences
and the Electrunics Ausearch lLaboratory
University of California, derheley, California 94720

Adbscract

ARl LY

SPICE2 has proven to be an effective elactronic circuit sioulacion program. ‘onetheless,
necds exist for faster comoutationsl performance and cthe ability to simulate economically

larger circuics, especially large MOS circuics.

Tradeoffs are necessary begween accuracy

and zesory with circuit size and between accuracy and computacional sprved. For a benche
oarx example of 2 binary-co-octal decoder, the dbove aspucis are illustrated. Ia addition,
cemputational time that is required for differcnt levels of device mndels is 1llustraced
together with the savings achieved using 3 device bypass scheme and table lookup models,

1. INTRODUCTION

Many decisions must be made in the design of an elec~
troaic circuit simulacion preogran which ars based on
the types of circuits the progran is intended to sim
ulace and the computer on vhich the program is to be
executad. As circuit and device types and computars
hang ic is ry to raviev these decisions sad
nake adjustxments and improvemants vhate possible.

STICE2 (1], {2] 4{s an' integrated-circuic simylacion
program vhich performs dc operating point, traasfer
curve and sensitivity analyses, szall-signal ac, noise
and low-level distorction analyses, and large-signal
nonlinear tine domain transienc analysis, SPICE2 was
vricten for a CIC6400 computer with 40000 words of
available memory. Increasingly, & large percentage of
both the instructiornal and research use of the progran
is for the tine-domain analvsis of larze, MOS trans-
iszer circuics. These analyses prove to be relatively
expensive. Thersfore {t is worchwhile to identify cthe
areas vhere most of the computaticnal effort is being
expended ia the program, reducing this cost whers
possidle. For large circuits, cantTal memory size is
3is0 limited. Most computer systass have either a
lizic on maximum memory particion size or apply &
succhargs to the analysis cost based on the amoung of
aezory used.

SPICE2, sinca {cs trelease in 197S, has proven to be an
effective integrated-circuic simylacor. As expected,
godifications and addicions have becen made sinco its
rel2ase to imorove its effectivencss, repair and correect
inevitable bugs, etc. Further, ve are faced with a
continuing need for fascter performance and che abilicy
to handle larger circuits. .

For economic teasons, there have to be tradeoffs betuesa
accuracy and circuit size, and detveaen accuracy and
cooputational speed. In addition, tradeoffs ara nsce
essary becveen the menory requiremencs necassary for
new features and the abilicy to handle large circuics
for a given computer capabilicy.

In this paper a lecatiled breakdown of .thase factors is
presented for SPICE2. Computational ctime that is
required for differenc levels of nonlinear electronic
device modeclling is devaloped tor both YOS and bipolar
duvices as well as models including table look-up
schumes. The «f{feccts and savings of Jevice-level by=
pass schemcs are evaluated. Finally, the cose of
extensive uscr oricnted feacures now available in
SPICE2 s descrided {n tcrms of requircd memory snd
speed.

CH1315-1/78/0000-0006500.75 (c) 1978 IEEB §

2. DATA STORAGE

SPICE2 provides built-in models fof circuit elezeats
vhich can be iacluded. The parzacters for all accive
device @odels may be modif{ied during tha inpuz phase
but in guneral the samc =odel is usud for many devicas.
For this reason tne device sCotage requirements
dominace che total inpuc data sctorage. Table 1 coatains
4 summary of the CDCHL00 60-bit words tequired for
typical devices. E£ach device requires 3 number of

words to store 3 model pointer, device-dependenc
parametars, such 3s resiscor vaiue cr a MOSFET channel
length, and 2oincters to zhe locaticns {n the Modified
flodal Analvsis (MNA) matrix {n vhich the device circuige~
codel elexents are included. These poincers are used
during the analysis to save the search time othervise
requiTed to find ine corresponding diagonal and offe
diagonal entrics in the sagrix. The nuaber of words
used by cach device for these funcitions is shown ia

the secornd colwmn of Table 1.

element device | four state | total
storage vectors |words

resistor 4. 14 .
copacitor 12 28
inductor 14 2

16

[
i

voltage source| 16
current source| |1

WD ®® o W ™

8JT 3 $6 gt
HOSFET 45 88 133
JFET 30 S2 82
DICOE 23 28 49

Outputs: words = (noutpridrnuattp

Codgen : words = 2.5 »iops
Table 1 Storage Rcquirezents ia SPICE2D.8.

For the trapezoidal iategration scheme used in SPICE2,
four past {teration values of capacitor charges and
{nductor fluxes are usca to estimate the local ctrunca-
cion error and compute the next timestep value. This
information, topether with pasct coptes of device branch
voltages, partial derivatives aad ocher {nformation is
acored in the "state vector”. The sturage required for
the four past state vectors used by ecach device is
shown !n the third column of Table 1 and the total
storage tequirtements for each device Ls included ia the
last coluazn.

The derivacives and other i{nformacion mencioned above
ate used to rcduce model evaluation tize by allowing a
device to be "bypassed" 1 {ts branch voltages have noc
changed signifizancly since the last Newton-Raphson
iteration. In bypass, the parcisl derivatives and
currents evaluated at the last tteration are simply
teloaded into the MHA matrix and righct-hand side vector.
For digical ciccuits, ki~ technigue proves very
valuable as 1s shown later. For MOSFETS the bypass
schene uses 12 vords/device in the present implcmenta-
tion. This storage could be reduced to 8 vords/device
wichout altering program performance.

Experizents with SPICE2 have shown that truncation error
estimation for timestep conzrol is of limlced value in
digital circuits and that the alternacive machod of
fteration count is often more eifective [l]. With
{teration count timascep concrol only three stace
vectors are requiced by the progran in its presenc form
and another 22 words/device are saved.

SPICE2 stores its outputs in central memory. The
menory used for this storage is prohibitive for large
circuits, e.g., a circuit with greacer than hundreds
of devices. The total number of storage words required
1s equal to the number of user-requested dutput
variables (noutp) plus one, times the total number

- of converged time-points (numcep) as shown fa Table 1.

The program also has the facilicy to generace loopless
machine code for the factorization and solution of the
MVA equations. As indicated in Table 1, the memory
used for this code is direccctly prcportional to the
cunber of operations performed during the solutiocn
process.

3. EXAMPLE: THE BINARY-TO-OCTAL DECODER

Speed and memory tradeoffs that can be achieved in
SPICE2 are illustraced based on the transient analysis
of the M0S circuit shown in Fig. l. This circuit can
be implemented with 48 MOS devices and provides 35
equations in SPICE2. The transient wavefornm outputs
for the benchmark run are shown {n Fig. 2. The input
excitations ace chosen to keep a portion of the circuit
changing at all times.

The central nemory required by the program for this
eircuit i3 summarized in Table 2. The element and
output storage requirements doainate the total daca
scorage. The generated machine code does not produce
a significant overhead in mecocy usage.

4. MODEL COMPLEXITY VERSUS SPEED

There are three MOS models available {a SPICE2D.8.
The most complex of the three (H0S3) is based on the
tormulation of ElMansy and Boothroya [3]. The MOS2
eodel is faster to evaluate., It i3 based va the work
of a numbor of auchors and {s described in detail in
[4]. The sioplest model, MOSL, is siatlar to the
Shichman and licdges model as tmplumcnted in SPLCEL
[1]. Both M0S2 and MOS) comtain voltage-dependent
capacitors to mudel thin-oxide charge scorage vhila
M0S1 contains only constant capacitocrs.

___¥\

A9.3

]

1/
N

L]
=

x=Dg

bfj:)**

=peilk
=pS

Fig. 1 Binary-to-Octal Decoder.

"1

¥2)

)

v"e)

ws

ws)

[{32]

¥"e)

:

—

mark rua.

IDe8 (20as per tick) 0.0
Pig. 2 Outputs of Binary-to-Octal Decoder for bench=

total
words

Elements : 7508
Outputs : 3200

Codgen
Others
Total

: 1100
: 1200
: 13000

percent

S8
25
8
g
100

Table 2 Storage requirements for Binary-to-Octal

Decoder,

Table 3 shows ths modcel evaluaction time per device per
tteracton (¢p/d/1t) and che peccencace of total time

A9.4

by the patamuter RELTOL, which deternines the point
of convercence. If the number of fteracions required

to converce exceeds 10, the tizepotnt 3 uncondition-
allv rejccted and the timestep s cut. Othervise an
estimate ot the local eruacation crror (LTE) incurred

moaal | ep/a/it nep 1t/tp [ep/pp {cp/pp
(ms) | oad averg | {==) norm
GP 2.9 8t 45 | 2.68° | 12
EMI 2.3 77 4.7 | 2.3° | 18°
MOS3 9.8 88 -3.7 2.2 18
MOS2 4.3 79 3.1 1.3 6
MOS1 3.7 78 4.1 2.9 4
MOS8 9.24 21 4.6 9.22 !

fer capacitor currents and Inductor voltages is com=
puted and corparud to the maximum permicted value.

1f thas cest fails the Cimeseep is alsor cut. For
stif{ lincar or "weakly nonlinear” circuits, the LTZ
stepsize control 1s essensiial co maincain reasonable
aceuracy. For hichlv aonlinear circuits, hovever, the
iteration count stupsize conirol can provide comparable
accuracy in voltage waveiurms ac much less cosc.

A comparison of vaveform accuracy and central processor
time using both iceration count alone and iteration
count with LTE, plocced against RELTOL, is shova ia

*normal ized by device count €48/88)

cp : cenltral processor time for aonalysis
d : aqctive devica -

it : Newton-Raphson iteration

tp : time point

PP : user requested print point

Table 3 Relative codel performance for Binary~-to-Octal
Oecodes.

per Nevton-Raphson iteration spent evaluating the aodel
and loading sne ‘NA sacrix entries. These codels ace
* " in all of the sense that the bypass schema is
included censisteasly in the models.

The benchmark circuit has also been izplemanced using
bipolar devices vith dboth the Gumael-Poon (CP) and
level-one Zbers-Moll (EM1) codels available in SPICE2
{S] for comparison. [t is evident that scdel evalua-
tion and Datrix loading dominates the total soluciea
tize, typically 80Z of the tocal.

The results above prompt the inclusicn of a table
look-up model in the program similar to that usad in
MOT1S [6] and MOT1S-C {7]. Results using this codel
as implemented in MOTIS-C are included ia Table 3

as MOSO. The rasuits are for almost identical output
vith respect to the other models for this circuit and
vat model evaluation cime vas less than 15 times thac
using MOS1. The speed increase is not cntirely
rellacted in the run time howaver. The simpler codels
tand to have more abrupt switching points and transe
icions waich increase tha average number of ftcracions
cequired per timapoinc. This, in tutn, increases the
nutper of rejected cimepoints. Both effects slov dows
the analysis slighcly.

For MOS0, the cedel evaluacion cime is only 212 of

the total analysis tine. The othar 792 is spend
solving the matrix equations and computing the next
timepoine. Since all of these analyses are made using
the program-genectated =achine code, the macrix solucion
time i3 3 very small percentage of the :otal time (less
than 3 percenc of the total time for MOS1l). The
remainder of the time is spent in the estinucion of
local truncation error and in overhead assoctlated with
the analyeis.

5. ACCURACY VERSUS SPEED

SPICE2 uses both the relacive change in active-device
branch currents and node voltages, as well as chelr
absolute change, o test for coavergunce of the
Newton=Raphson Lterations at a timcpoint. In most cases
it is the maximun pemitted relacive change, defined

Fig. 3. Run time is normalized to the progran defaule

100 v

80

L .

\‘f*’
&0
ke .
° - - PN MZ:

[B] 1.0 10.0 109.0

RILTOL (percent)

MAXDUN VOLTACT CRROR, ITERATION COUNT (X)

FAXUNY VOLTAGE ERROR, LTEZ @)
RELATIVE CLNTPAL PROCISSOR TIME, LTE (X)
RELATIVE CENTRAL PROCLSSOR TINZ, 1€ [¢4]

PERCESTAGE OF MIDLL EVALUATIONS WiICH
RESULTED TN A BYPASS, LIZ

Fig. 3 Program perforzance for different convecgence
criteria,

b +Xxo0 g

condition of LTE stepsize control vwith RELTOL = 0.1X.
PELTOL is varted froo tts default value to 1002 at
wnich point the analysis is peaningless.

These plots show that LTE i3 excremely conservative and
can cost almost twice as nuch as iteration count ogm

a large dtgital circuit. LTE wmatncains voltage vave=
form 3ccuracy over a much vider range of values of
RELTOL but with reasonuble valuws of RELTOL the results
are Ldentical for the benchmark circuit of Fig. 1.

6. THE MODEL EVALUATION BYPASS SCHEME

As centioncd earliar, the nonlinear device models oay
not Y¢ evaluated it every ttecraction. lf the change
1 device branch voltages (x sufftciently small, the
derivatives and currcncs evaluated ac the previous

timepoint will be loaded instead. Earliecr cxperiments
tndicated that this scheme provided an average of only
42 saving in run time for a variety of circuits (1.
Our prescat studics tndicate chac for large dixical
circults savinzs of over 40X are posstble. Flgure 3
includes a ploc of the percentage of total model
evalvacions which resulted Ln a bypass, using LTE and
the M052 model. These savings juidtily the extra oemory
required to ioplement chis schenme.

If a cuch faster model evaluation scheae i3 used, such
as table look-up, the advantage of bypass is signifi-
cantly reduced. In fact, the time required to tesc
for bypass nay be comparable to the total model
evaluacion tize.

7. SUMMARY

There are a3 number of areas where SPICE2 may be im~
proved for the analysis of large, digital MOS circuics.
The reduction of storage Ln the state vectots and the
use of ifteracion-count cimastep control reduce sub-
stantially cthe memory required for elements. The
storage of outpuczs-on disk, racher chan in central
mesory, is also desirable for large analyses.

The nachine code generated by the program does not
require a substancial amount of memory and significance
ly izproves tun tize if che device aodels can be
evaluated cheaply.

In SPICE2D.8, model evaluation time scill dominates
total run time. Techniques such as table lock-up
need to be investigated further to provide a more
uniform spread of ccmputational effort while not
degrading the sclutiom accuracy. Finally, the bypass
schene used in SPICE2 is worthwhile for digital cir-
cuits. It provides substantial time savings for a
telacively small penalty in zemory requirements for
cases vhere a model cvaluacion tice is significanc.

8. ACKNOWLEDGEMENTS

The authors wish to thack E. Cohen for helpful dis-
cussions and assistance vith soze of the programming
decails. L. Jensen and J. Crawford helped with many
of the SPICE2 runs required co gather the staciscics
presented in this paper.

Research sponsored by the U.S. Army Research Office
Grant DAAg29-76-G-0161 and the Hewlett Packard Company.

9. REFERENCES

{1) L. W, Nagel, "SPICE2: A Computer Program to
Sizulate Semiconductor Circuics,” ERL Memo
No. ERL-M520, Electronics Research Ladoratory,
University of California, Berkeley, May 1975.

[2]) E. Cohen, "Prograz Refarcnce for SPICE2,”
ERL Memo No. ERL-}592, Electronics Research
Laboratory, University of Californta, Berkeley,
June, 1976. .

[31 A. R. Boothroyd and Y. A. El-Mansy, "A New
Accurate Model of the ICFET for CAD Applicactions,”
laternacicnal Electron Devices Mceting Technical
Digesc, pp. I1-34, washingeon, D.C., 1974,

[4) D. R. Alexander, et al., "SPICF2 MOS Modeling
Handbaok,” Report 3DM/A-77-071-TR, BCM
Cocporation. Albuquerque, New Mexico, 1977.

[S] lan Getreu, "Modeling the Bipolar Transistor,”
Tektronix, Inc., Beavercon, Oregon, Macch, 1976.

(6}

(7]

A9.5

B. R. Chawla, H, K. Gummel, P. Kozak, "MOTIS =~
An MOS Timing Simulator,” Trans. I[EEE, Vol. CAS-22,
No. 12, pp. 901-910, Dec. 1975.

S. P. Fan, M. Y. Hsueh, A. R. Newton and

D. 0. Pederson, "MOTIS-C: A New Clreutt
Simulator for MOS LSI Clrcuics,” Proceedings,
1977 1EEE lncernaciunal Symposiun on Clrcuits
snd Syatems, Phoenix, Arizona, April 25-27, 1977.

@}

APPENDIX 10

A Simulation Program with Large-Scale Integrated Circuit Emphasis

Presented at the 1978 IEEE International Symposium on Circuits and Systems,

New York, New York, May 1978.

Al0.1

A10.2

A SIMULATION PROGRAM WITH LARGE-SCALE INTEGRATED CIRCUIT EMPHASIS

A.R.Newton and D.0.Pederson

Depantment of Electrical Engineering and Computer Sciences,
Umiversity of Califocnia, Berkeley, Ca., 94720

Absiracr SPLICE is a computer program for the simulation
of large digital electronic circuits which combines circuit,
timing and lozic analyses into a single package. It provides
detailed analog circuit simulation for critical parts of the
aetwork while signals between the circuit blocks may be
pracessed using timing or logic analyses. All three types of
analysis are performed simuitaneously, while event control
is used to enhance execution speed.

1 INTRODUCTION

A number of simulation techniques are availabie for the
analysis of electronic circuits. For small circuus where analog
voitage ieveis are critical 10 circuit performance, or where
ughtly coupled feedback loops exist, a circuit simuiator such
as SPICE2 [1] can accurately predict circuit performance. As
the size of the arcuit increases, the cost and memory
requirements of such an analysis become prohibitive. Fore
tunateiy, 2 large fraction of a typical LSI system is digital in
nature. For this reason. certain simplifications may be made
during the analysis which greatly increase execution speed
and vet provide adequate information about circuit pertor-
mance.

For circuits where a verification of the logical operation
of the circuit and only first-order timing information is
sutficient. a logic simulator may be used [2]-($]. If dynamic
charge-storage effects or bilateral circuit elements are impor-
tant, or if a waveform analysis is required and the accuracy
and expense of circuit simulation is not justified, a timing
simulater can be used (S.[6).

A comparison of circuit, timing and logic analysis pro-
grams for the analysis of the same problem on the same
computer (7] has shown MOTIS-C [6] to Be typically two
orders of magnitude faster than SPICE2, and SALOGS-3 (2]
to be three crders of magnitude faster than SPICE2,

It is evident that for the analysis of large digital systems
which contun tightly coupied circust blocks or cntical paths a
simuiator 1s required which will combine the accuracy of cir-
cunt simulation (for cnitical parts of the network) with the
speed and memorv-saving advantages of uming und logic
simuiation for the remainder of the circuit [3]. SPLICE
(Simulauon Program with Large-scale Integrated Ciscuit
Emphasis) has been written with this goal in mind.

This work was sponsored by Hewlett Packard, Palo Alto, Ca.

2 PROGRAM STRUCTURE

The block structure of program SPLICE is shown in
Fig.l. The program has been partitioned into three distinet
blocks which communicate with each other via mass-storage
files. This permuts the input and output processing modules
of SPLICE to be imoiemented on machines other than the.
main computer. The :nput processor for SPLICE processes
data with 2 syntax which is very simiiar to that used by pro-
gram SPICE2. It 1s responsible for circuit macro expansion,
satisfying back-referenced models. identifying element types
and reducing arithmetic expressions wherever possible. The
nput processor praduces a binary file to be read by the Setup
and Analysis segment of the proyram. (This binary file could
2lso be produced by programs such as direct circuit extraction
from integrated circuit artwork data.)

Input Setuc and Cutpue
Compilar Analyais Processcr|
User @) @ User
lrput / Cutput

Casputer Cenersted [aput

Fig. ! ~ Goneral Structure of SPLICE

Ceruin 2nalysis constants and variables are initialized
and the mnput file 15 read and processed. After reading the
circunt description and anaiywis requests. the program per-
forms a aumber of preprocessing operations to Mminimize the
overhead which will occur during the analysis. This Setup
Phase includes the generation of node famin and fanout
tables, the reduction of Jata required for each element to
signal-path values and a model ponter, the compaction of

node-to-ground capacitors [S], mock decomposition of the
sparscly-stored circuit matricies to mumimize and compute
fill-ins. and the reduction of many ndirect address chains (0
reduce the number of memory reterences periormed during
analysis. Most of the data used by SPLICE s stored in
dynamically allocated arrays controlied by a memory manage-
ment package included,in the program. A number of tem-
porary mass-storage files are used by SPLICE to reduce the
maximum memory requirements of the program during the
Setup Phase. These files are released prior to the analysis.

The circuit is then analyzed using an event scheduling
scheme similar to that used in muny modern logic simulators
{9]. However. in contrast to a logic simulator the ‘events®
scheduled 0 SPLICE may be any one of the three types:
logic, timing or circuit. After the analysis of a scheduled
block. any other blocks affected by its change of state are
also scheduled for analvsis. The siorage of selected circuit
variables on mass-storage as they change is aiso controlled by
the schedular, as dascribed in Section 3.1. If a circuit block
exhibits no significant change in state over a period of time.,
1t may be released from the event list just as a logic or timing
block would be.

After the analysis the output file may be processed
repeatedly by the output module of the program to produce
waveform plots and logic output tables. This task may be
performed on the host machine or the data may be shipped
to an off-line intelligent terminal.

3 ANALYSIS ALGORITHMS

The program can perform a static analysis, which will
allow for the propagation and solution of initial conditions,
and a time-domain non-linear transient analysis for circuit
node voltages and logic levels. The logic simulation uses four
states: logic zero. logic one. undefined and high impedance.
All logic elements may have different rise and fall delays, a
necessity for MOS logic. As an event occurs, control is
passed temporanly to the circuit. timing or logic analysis con-
trol module. Each block of the circuit uses a model control
block ({MCB) ol data which contains either the information

or the addresses of the information required during analysis.

To reduce the overhead imposed by the scheduling
operation for a circuit analysis, the concept of minimum
resolvable time (MRT) is used. One unit of MRT is both the
mimmum permitted non-zero gate delay of the logic simula-
tion and the minimum time for which 2 circuit or liming
block may be analyzed for the siorage of changed values or
propagaticn of events. For example, once a circunt analysis is
scheduled. the circuit block is analyzed repeatedly until at
least one unit of MRT has elapsed. In general, this shouid
not require more than one solution uniess one or more of
the circuit vanables is changing very rapudly at that ume.
Another advantage of MRT is that since piece-wise input
sources are constrained to have their breakpoints at integer
multiples of MRT a breakpoint table, such as is used in
SPICE?2, is not required.

Al0.3

One time consuming aspect of schedular operation is
the searching of the event list 1o nsert a4 new event. Since
most events occur within 160 MRT units of the present
event and hecause of the umiform discretization of time pro-
vided by the MRT algonthms, o seiccted number of events
near the present event may be addressed directly. SPLICE
provides direct addressing for 200 MRT units sround the
present event. This scheme imphes a small penalty in storage
but reduces the event access time during analysis (10].

iSCBl"G -— —
-1 -1)
PT ==
3 (-1) ’
i Lscel x : N
+q9 Fancut Tables

[SCB2+8 == -1)
+ Llscee X
+39 (=1)

\

IsCB3 -~

time

W

A\

- SCB3 -

timo

Fig.2 - Structure of the Schedular
Control Blocks

3.1 The Schedular

The structure .of the schedular event list is shown in
Fig.2. The event list is partitioned into three blocks. The first
block SCB! is addressed by ISCB1 and contains the eveat
presenuly being processed as indicated by pointer PT (Present
Time) in Fig.2. The entries-in this block and in block SCB2
are separated in time by one unit of MRT. Multiple events at
the same time are handled with a linked structure, as shown.
Many of the MCB pointers in these blocks will be aull (-1)
for a relauvely nuctive netwark. Any events scheduled to
occur outside the range of SCBI and SCB2 are stored in
biock SCB3 and are tagged with 1h :hey are due 10 be
processed. As PT moves down the list to ISCB1+99,
pointers ISCBI and ISCB are swapped. block ISCB2 is
cleared and the catnies s SCB3 are searched for inclusion in

the new SCB2 block. Should the network become dormant,
that is if SCBI and SCB2 are empty, a provision 1S made (0
branch directly to the next change in input excuition waich
would be present in SCB3.

3.2 Model Coantrol Block (MCB)

All network macro-modeis use an MCB during analysis.
The structure of the MCB for 1 crcuit block is shown
Fig.3ta). Examples of circuit blocks siored in this way are
floatung capacitors or resisiors. operational amplfiers, or a
aumber of MOS transfer gates connected to a siagle circuit
node. The sparse circuit matrix is stored as 3 set of linked
elements associated with the solution vector and the circuit
MCB contains a set of pointers to these nodes, ordered such
that the number of fillins generated during the mutrix elimi-
nation processed is minimized. The circuit elements are

stored as a linked list associated with the MCB. Elements.

stored in the eiement list contain pointers to directly address
their matrix eatry locattons. as is done in SPICE2. These
pointers are yenerated during the Setup Phase to minimize
mainx load ume dunng the circuit analysis. To further
reduce ihie ume overhead associated with finding the matrix
locations for each element, the modified nodal snalysis
(MNA) martrix is only updated between Newton-Raphson
iterations at a single umepoint if' variable charge-storage ele-
ments are present in the block or the timestep has just been
cut. Otherwise, the LU factors computed at the first iteration
of the timepoint are used {11).

LOOACE ~=

ramber . _\-qdol -~

of ncdes posnter -

ELEMENTS

ardered
o LU =

. (@) Cirouit Black

LOOHCE === SmemeP aodel posmtar

rueber of
cutput nodes

rode

o =

- pointere

@) Logio o= Timing Slack

Fig. 3 - Oata Storage for Slements

Al10.4

The MCB for a typical timing or logic clement is shown
in Fiz.3(h). The structure is very similar o the c¢lement
storage structure for a circuit block. No parameters are stored
with the clements, but rainer 3 new model 15 generated for
each Jiferent element type or device geometry. While this
implies 3 sinrage penaity for smail circuns, for large crcusts
where one type of device may be used many hundreds or
thousands of times this approuch results in sigmificant storage
savings. Tae device model block may contain a plece-wise
linear look-up table. the parameters required for a simple
analytical model. or the paramsters required (or 2 mote com-
plex model. For example an’ MOS transistor may be modeled
using the table look-up technique empioyed in MOTIS-C, the
simple Shichman-Hodges model of SPICE-1 (1] or the MOS2
model of SPICEZD (12). These models are available for
both the circuit and timing analyses,

3.3 Solution 'Vecxot s0d Fanout Tables

The structure of the solution vector and fanout tables is
shown in Fig.4. For each node tvpe, the output vector cone
tains ponters to the node famin and fanout tables, the node
type (logic, timing, external circuit o¢ internal circuit) and
the last time at which a logic or voltage change occurred at
that node. In all cases the [lanout table contzins the
addresses of all elements which are driven by the node.
Should the state of a node changs sigmficantly at any time,
the fanout table is scheduled for processing and thus the
effect of the change is propagated throughout the circuit.

For logic nodes the fanin pointer is only used if the
logic node is a buss, that is if more than cae logic element
may determine the logical state of the node. In this case the
fanin table is used to check for buss contention. The past
two logic states of the node are packed into a single word at
the end of the list.

LOCNGD wof St fanout list

Pemm— Y LYV I VY
node type
Te
logia atatee
or valtagea

S——— POPUBtOre ana/or
Paree sotrix

Fig. 4 = Nede Jats Structure

For timing nodes the fanin table contains the addresses
of all elements whicn drive the node. These may include
driver transistors, loads, transmission gates or floating capaci-

Y

PR

tors. Grounded capacitors are treasted as a special case 10
improve efficiency. The past two node voltages and the
address of the node cupacitance cntry are stored at the end of
the hst. Timing node voitages are scated and stored as
integers with 30000 discrete levels of voltage spanning twice
the ranye of the network power supplies.

Circuit blocks are treated as timing macromodels, com-
municating with the rest of the network via timing nodes.
When a circuit block is scheduled. all iming nodes to which
it is connected are processed 1o generate a Norton equivalent
at the node. The circuit block, together with the current
sourcs and conductance equivaients at these external circuit
nodes. 15 processed. Shouid internal or external circuit node
voliages change significantly, the circuit block and its associ-
ated timing nodes are scheduied one unit of MRT ahead.

4 PROGRAM PERFORMANCE

The program has been used 1o simulate a number of
circuits. so far the largest being a 600 MOSFET PLA circuit.
For logic elements an average of 12 words per gate or 12
words per logic node are required. This includes the storage
required for the element itself’ and its share of node, fanin
and fanout table storage. The speed of a pure logic simula-
tion is approximately 10us per gate per unit of MRT or ims
per gate-event, For timing simulation approximately 8 words
per device or 25 words per timing node are required. The
speed of a pure timing simulation is typicaily 50us per MOS
traasfer cevice per unit of MRT. For both logic and timing
simulations the execution times may vary up 10 an order of
magnitude depending on the properties of the circuit being
simulated, The time and memory requirements of a circuit
simulation are variable but in ganeral they are significantly
lower than those of SPICE2D.

5 SUMMARY

SPLICE is a simulation program for large-scale digital
electronic systems and can perform circuit, timing and logic
analyses in parailel. While SPLICE is written for use on a
CDC6400 computer. it was designed with use on a minicom-
puter or similar inteiligent terminal in mind.

The program uses event-scheduling algorithms coupled
with modern circuit analysis and timing sitnulation tech-
niques to take advantage of some of the properties of large
integrated circuits and enhance both programm execution
speed and data storage requirements. For logic analysis an
average of 12 words per simple gate is required. Timing
analysis resuits show an average of 8 words per element. For
cizcuit blocks the storage reguirements vary but are
significantly less thaa those ol SPICE2. Preliminary results
indicate that SPLICE typically requires 10us per simple gate
per umit of MRT for logic simulatton and SQus per MOS dev-
ice per unit of MRT for timing simulation oa the CDC6400.
A combined simulation would lie between these two limits.

Al10.5

6 REFERENCES

[1] L. W. Nagel. "SPICE2: A Computer Program to Simulate
Senuconductor Circuns.” ERL Memo No. ERL-MS20,
Cruversity of Cabifornia, Berkeley, May 1975,

[2) G. R. Cuase. "SALOGS -- A CDC 6600 Program to Simu-
late Digital Logic Networks, Vol.l - User’s Manual,” Sandia
Lab Report SAND 73.0441, 1975.

{3] P. Wilcox and A. Rombeck, "F/LOGIC - An Interactive
Fault and Logic Simulator for Dignal Circusts,” Proc. 13th
ACM Design Automation Workshop, pp. 68-73, 1976.

(4] Several large-scale logic and fault analysis simulators are
commercially available, such as CC-TEGAS3, D-LASAR,
and LOGCAP.

{S] B. R. Chawla, H. K. Gummel. P. Kozak. *MOTIS - An
MOS Timing Simulator,” Trans. IEEE, Vul.CAS-22, No.13,
pp.901-910, Dec.1975.

[6] S. P. Fan, M. Y. Hsueh. A. R. Newton and D. O. Peder-
son, "MOTIS-C: A New Circunt Simulator for MOS LSl Cir-
cuits.” Proceedings, 1977 1EEE International Symposium on
Circuits and Systems, Phoenix, Arizona, Apnl 25-27, 1977.

{7) M. Y. Hsueh, A. R. Newton and D. O. Pederson, "New
Approaches to Meodeling and Electrical Simulation of LSI
Logic Circuits.” Journees d’Electronique, 1977, Lausanne,
Switzerland.

(8} G. Arnout, H. De Man. *The Use of Threshold Func-
tions and Boolean Controlied Network Elements for Macro-
modeling of LSl Circuits," Digest of Technical Papers,
ESSCIRC'77, Ulm, F.R.G.

[9] S. A. Szygenda and E. W. Thomgson, “Modeling and
Digital Simuiation for Design Verification and Diagnosis,”
Trans. IEEE, Vol.C-25, No.13, pp.1242-1253, Dec.1976.

[10] M. J. Flomenhoft. Private Communication

{11} A. R. Newton and G. L. Taylor. "BIASL.25 - Aa MOS
Circuit Simulation Program for a Programmable Calculator,”
Proceedings Tenth Annual Coaference on Circuits, Systems
and Computers, Asiiomar, California, 1976.

{12] *SPICE2 MOS Modeling Handbook,” D. R. Alexander

et al, Report BDM/A-77-071-TR, BDM Corporation, Albu-
querque, New Mexico, 1977.

(1]

(2]

(3]

[4]

(5]

(6]
(7

R.1

REFERENCES

L. Nagel, "SPICE2: A computer program to simulate semiconductor circuits,”
Electronics Research Laboratory Report No. ERL-MS520, University of Cali-
fornia, Berkeley, May 1975.

G. R. Case, "SALOGS — A CDC 6600 Program to Simulate Digital Logic

Networks, Vol. 1 - User’s Manual," Sandia Laboratory Report No. SAND 74-

" 0441, 1975.

G. Case, "The SALOGS Digital Logic Simulator," Proc. 1978 IEEE Interna-

tional Symposium on Circuits and Systems, New York, pp. 5-10, May 1978.

P. Wilcox, A. Rombeck, "F/LOGIC — An Interactive Fault and Logic Simu-
lator for Digital Circuits," Proc. 13th ACM Design Automation Workshop,
pp. 68-73, 1976.

S. A. Szygenda, "TEGAS2 — Anatomy of a General Purpose Test Generation
and Simulation System for Digital Logic,” Proc. 9th Design Automation

Workshop.
"LOGCAP-II User’s Guide," National CSS, Inc., Norwalk, Conn.

B. R. Chawla, H. K. Gummel, and P. Kozak, "MOTIS — An MOS Timing
Simulator," /EEE Trans. Circuits and Systems, Vol. CAS-22, No. 12, pp. 901-

R.2

909, Dec. 1975.

[8] J. D. Crawford, M. Y. Hsueh, A. R. Newton and D. O. Pederson, "MOTIS-C
User’s Guide," Electronics Research Laboratory, University of California,

Berkeley, June 1978.

[9] M. Y. Hsueh, A. R. Newton and D. O. Pederson, "New Approaches to
Modeling and Electrical Simulation of LSI Logic Circuits,” Journees
d'Electronique, 1977, Lausanne, Switzerland.

[10] G. Arnout and H. J. DeMan, "The Use of Thresholél Functions and Boolean-
Controlled Network Elements for Macromodeling of LSI Circuits," /EEE J.

Solid-State Circuits, vol. SC-13, pp. 326-332, June 1978.

[11] E. Cohen, "Program Reference for SPICE2," Electronics Research Laboratory

Report No. ERL-M592, University of California, Berkeley, June 1976.

[12] SCEPTRE, Air Force Weapons Laboratory Technical Report AFWL-TR-69-
77, Kirkland AFB, NM, 1969.

[13] W. T. Weeks er al, "Algorithms for ASTAP — A Network Analysis Program,"
IEEE Trans. Circuit Theory, vol. CT-20, pp. 628-634, Nov. 1973.

[14] G. R. Boyle, "Simulation of Integrated Injection Logic,” Electronics Research
Laboratory Report No. ERL-M78/13, University of California, Berkeley,
March 1978.

(15] M. Y. Hsueh, A. R. Newton and D. O. Pederson, "The Development of
Macromodels for MOS Timing Simulators,” Proc. 1978 IEEE [nternational

R.3

Symposium on Circuits and Systems, New York, pp. 345-349, May 1978.

[16] L. O. Chua, P. M. Lin, Computer Aided Analysis of Electronics Circuits: algo-

rithms and computational techniques, Prentice Hall, New Jersey, 1975.

[17] C. W. Ho, A. E. Ruehli, P. A. Brennan, "The Modified Nodal Approach to
Network Analysis," Proc. 1974 IEEE International Symposium on Circuits and

Systems, San Francisco, pp. 505-509, April 1974.

(18] D. R. Alexander et al, "SPICE2 MOS Modeling Handbook," Report BDM/A-
77-071-TR, BDM Corporation, Albuquerque, New Mexico, 1977.

[19] A. Vladimirescu, E. Cohen and D. O. Pederson, "SPICE2 User’s Guide,"
Electronics Research Laboratory, University of California, Berkeley, April

1978.

[20] M. Y. Hsueh and D. O. Pederson, "An Improved Circuit Approach for
Macromodeling Digital Circuits," Proc. 1977 IEEE International Symposium on

Circuits and Systems, Phoenix, pp. 696-699, April 1977.

[21] L. O. Chua and L. K. Chen, "Diakoptik and Generalized Hybrid Analysis,"
IEEE Trans. Circuits and Systems, vol. CAS-23, No. 12, pp. 694-705, Dec.
1976.

[22] F. F. Wu, "Solution of Large-Scale Networks by Tearing," /IEEE Trans. Circuits
and Systems, vol. CAS-23, No. 12, pp. 706-713, Dec. 1976.

[23] G. Guardabassi and A. Sangiovanni-Vincentelli, "A Two Levels Alg~rithm for

Tearing," IEEE Trans. Circuits and Systems, vol. CAS-23, No. 12, pp. 783-791,

R4

Dec. 1976.

(24] A. Sangiovanni-Vincentelli, L. K. Chen and L. O. 'Chua, "An Efficient Heuris-

tic Cluster Algorithm for Tearing Large-Scale Networks," /EEE Trans. Circuits

and Systems, vol. CAS-24, No. 12, pp. 709-717.

[25] A. E. Ruehli, N. B. Rabbat and H. Y. Hsieh, "Macromodular Latent Solution
of Digital Networks Including Interconnections,” Proc. 1978 IEEE International
Symposium on Circuits and Systems, New York, pp. 515-521, May 1978.

[26] A. E. Ruehli, R. B. Rabbat, H. Y. Hsieh, "Macromodelling - an approach for

analysing large-scale circuits,” Computer Aided Design, vol. 10, No. 2, pp. 121-
129, March 1978.

[27] G. Kron, Diakoptics — Piecewise Solution of Large-Scale Systems, MacDonald,
London, 1963.

(28] N. B. Rabbat and H. Y. Hsieh, "A Latent Macromodular Approach to Large-
Scale Sparse Networks," [EEE \Trans. Circuits and Systems, vol. CAS-23,
No. 12, pp. 745-752, Dec. 1976.

_[29] F. H. Branin, "The Relation between Kron’s Method and the Classical
Methods of Network Analysis,”" Matrix and Tensor Quarterly, vol. 12, No. 3,
pp. 69-115, March 1962.

[30] A. Ralston, 4 First Course in Numerical Analysis, McGraw Hill, New York,

{

-\,

R.S

1965.

[31] S. Seshu and D. N. Freeman, "The Diagnosis of Asynchronous Sequential
Swithching Systems," /IRE Trans. Elec. Comp., vol. EC-11, No. 4, pp. 459-465,
August, 1962.

[32] S. A. Szygenda and E. W, Thompson, "Modeling and Digital Simulation for
Design Verification and Diagnosis," /EEE Trans. Computers, vol. C-25, No. 12,
pp. 1242-1253, Dec. 1976.

[33] M. J. Flomenhoft and B. M. Csensitis, "Minicomputer-Based Logic Circuit

Fault Simulator," Proc. 11th ACM Design Automation Workshop, 1974.

[34] M. M. Markowitz, "The Elimination form of the Inverse and its Application

to Linear Programming," Management Science, vol. 3, pp. 255-269, April 1957.

(35] C. N. Ahlquist, J. R. Breirogel, J. T. Koo, J. L. McCollum, W. G. Oldham
and A. L. Renninger, "A 16384-Bit Dynamic RAM," [EEE J. Solid-State Cir-
cuits, vol. SC-11, No. 5, pp. 570-574, Oct. 1976.

[36] This program was developed by L. Scheffer, Corporate Engineering, Hewlett-

Packard, Palo Alto, Ca.

[37] The version of MOTIS-C used here has been modified for efficient execution
on the HP 3000 computer by L. Scheffer, Corporate Engineering, Hewlett-
Packard, Palo Alto, Ca.

[38] H. Schichman and D. A. Hodges, "Modeling and Simulation of Insi*'~ted-Gate

Field-Effect Transistor Switching Circuits," [EEE J. Solid-State Circuits, vol.

R.6

SC-3, pp. 285-289, Sept. 1968.

[39] A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, New
York, 1967.

(40] E. B. Kosemchak, "Computer Analysis of Digital Integrated Circuits by

Macromode;‘j'?.g", Ph.D. thesis, Columbia University, USA, 1971.

[41] N. B. Rabbat, "“Macromodelling and Transient Simulation of Large Integrated

Digital Systems,” Ph.D. thesis, The Queen’s University of Belfast, UK, 1971.

=~ -

	Copyright notice 1978
	ERL-78-52 (1 of 3)
	ERL-78-52 (2 of 3)
	ERL-78-52 (3 of 3)

