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I. General Concepts Involved in a Learning Process

Learning is a very controversial concept and in human behavior its

complexity is far beyond our purpose.

Several processes, as creating habits or conditioning, are directed

towards repetition and, although they play an important role in natural

learning, we shall not look at them in our study. Other processes that

can be found in natural learning are of a more deductive kind, as extrac

tion of relevant features, inference of relations, or partitions of the

environment. We shall focus our interest in this second kind of process.

Learning is then considered as discovering a hidden concept or object

from an informative environment.

Perception and memorization are functions that must be present as

well as, possibly, a reward function or evaluation of the quality of the

decisions based on learning. The elementary situation can be described

in the following way: A set of objects X X is "percepted" sequen

tially and yields a sequence of observations Jy v = Y to the

system.

The learning process consists in the construction of

a) an estimation of the set of objects

3) an inferred relational structure on the set of estimated

objects

both based on the past information Y . That enables the system

a) to "recognize" the source of a new observation y .- , i.e., to

decide from which object X. this observation might come. This

recognition is obviously subject to eventual error

|0 to "produce" estimated objects consistent with the inferred

tv lat tonal HlriK'tniv.
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Sequential learning is restricted to the situation where no more

than one observation can be proceeded at the same time, and no storage

of observations is available. The system must start with an a priori

guess or after a previous learning period; the next observation gives

a new amount of information and it must confirm or contradict the

previous concepts memorized.

Two functions appear:

- modification of previous memory (estimation)

- modification of the confidence (or belief) in this previous

memory

The closeness of a new observation to an expected observation and its

frequence are the working materials from which these two functions can

be performed. Learning should then always include a statistic or

counting procedure and in many cases the essential feature will be the

estimation of a probability law.

II. Classifications and Partitions

A classifier is a system that, given a set fi, gives a class C± to

any element u£fl.. From that results aPartition 4^ =jcil _

A Partition ^P is equivalent to a set of characteristic functions

y-w f ^ N , s lif«l)^Cj

^Ti(W fi-l Where Xi =0if a,^cj
to which we add a decision ruleQ(- fl» °* classifier. A decision rule

is amapping Q-<P and <£(a.|<P) =^ such that <o £C.. The equivalence
relation generated by this decision rule is

a-Eq-0! «<£(a|<P) =<£(<"!<£> and <P is the quotient set n|CR(-i<T>)

-2-



This decision rule can be described as

jc =<£(w|<p) Xj(w) =max x±(m)1

We can then replace the characteristic function Jx±l by a set
I ii=1

of membership functions ^AA= JV^y without altering the partition, as

far as the decision rule remains unchanged; that is, if

y.(u)) - max u. (w) o X4M = max X... M V w
3 i x 3 i x

Figure 1 shows a simple case where this situation holds. In that case

we shall write the decision rule as follows:

<£(w|cp) =qj(o)|^A)

A particularly interesting case is when all functions v± belong to

the same parametric family such that \x±M = f(w,6i). Then the set ^M
is completely determined by the set of parameters

®•Ml,
and we may represent the classifier as ^R(u>|® )•

To determine the partition^ is, therefore, the same as to find

the set of functions^ or, if parametization is possible, to find the

set of parameters (|), and then to reduce to a problem of parameter

estimation. To transpose the analysis of parameter estimation to

partition estimation is not an easy task because a metric must be

defined on partitions and convergence theorems can only be deduced in

that space. An attempt is being made in a future publication.
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III. Learning a Partition

Figure 2 gives the learning process that might be fully (1) or

partially (2) directed by a teacher, or independent (3) in case of

self learning. In (1) the learning system takes the information

processed by the teacher without taking into account the classifier's

decision. In (3) no teacher is available and the classifier's decision

is considered correct. An intermediate situation is shown in (2) where

an evaluation of the error takes place, and a great number of situa

tions may then be generated.

It has to be noticed that the estimated partition that stays in

memory is not necessarily the partition of the already processed

observations, nor is it the teacher's partition. This estimated

partition is a set of estimated functions ^AA= "S^i^H
t [ ji=l

or estimated parameters (§) = JS(t)l based on past information Y .

t
They are measurable functions in the a algebra induced by Y .

We shall call historical partition the record of the past decision

rules applied only to the elements of Y . As is normal in natural

learning, an element can be misclassified in the early stages of the

process and, therefore, is likely to change its class as the quality

of the estimated partition improves.

IV. Self Learning Algorithms for Automatic Classification

We shall give three examples of learning algorithms in this section

a) classification of strings of characters of a given lengtfy;

b) classification (or clustering) of points in an euclidian

space distributed with a multi-gaussian law;
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c) classification of sets (strings, arrays...) of imperfectly

perceived dichotomies with application to image processing.

For the first two examples, only a quick description will be given here

as they will appear wholly developed in 7 . The last algorithm will be

given more attention as it involves the concept of probability of

membership and is presented here for the first time.

V. Classification of Strings of Characters of a Given Length

Let us suppose that the alphabet is composed of n characters and

that the length of the strings to be classified is n . If we order our

alphabet arbitrarily, we may construct the possible array that repre

sents the setQ(of all the possible strings or events X. (Figure 3)

A particular event (or string) can be characterized by such an

array where one and only one case is darkened in each column. An

example is given in Figure 4. Assuming that strings can come from

different classes C-, C«..,C,...CN» we shall characterize each class by

p, = P(C.) matrix n x n whose elements are:

Pk(i,j) = prob jth character in string = ±t in alphabet/given that
the string comes from C.

If no dependence between characters of a same string is known, we

shall treat them as independent and then
[-| np ,
string X| comes from cA = n p (x. ,j) = p(x|k)

We may now define adecision rule or classifier ^XUPji =C^

where Cj is such that p(X|j) = max p(x|k). The set of matrices P and

this rule are a partition of the set yC.
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Estimation of p

If probability is defined as number of favorable events/total

number of events, we have at time tE |trt,t,...t 1
[01 NJ

Number of times x.=i n
k,. ., =— 2 = Jj_

Number of elements in C^ Tc

Each time a string is classified in class Ck, either by self learning or

by a teacher, n^ becomes n^+l and for the i's such that i = x. we shall

have n . = n . + 1Xj,j Xj,J

Initialization

When a teacher is available, he can start with n, = 0 and n .. =0

as no decision depends on those values. But in self learning, the

classifierfs decision is used to update the partition and the number of

classes is not known in advance, so we must define an "empty" class CQ

that gives an equal probability to all strings. This class is such that

0 __!__ n°ij_
P ij n

J v o

An element will be classified in this class - ('•«)•• -<tr
is greater than any p(x|k). Then a new class C will be created such

that 0
N+l nu +i .

P = ii if i = x.
n +1

o

J

n°..

n +1
0

if i ^ x.

The choice of n .. is subjective and determines the "intensity" of the

influence of the first element classified in the new class.
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VI« Classification of Points in an Euclidian Space

We shall give here a schematic view of an algorithm based on

estimation of gaussian probabilities using filtering equations. Let us

take the space ft =<~Bn. A fixed point of this space isx^Jl and if

Ci G r, we shall write x1 £ C±. We consider at each instant tanoisy

observation in the form y(t) =xj(t) + \r*(t). v^(t)is a gaussian white

noise of given covariance RJ, where j is to be determined. Moreover,

wo mippoKc UwiL all x for i = 1, 2...N are elements of gaussian

populations, the means of which are stationary and we modelize that by

a pseudo-dynamic equation x (t+1) = x (t) + w (t)

where w (t) are gaussian white noises with generally unknown covariances

Q . In this particular case those covariances shall be zero. The set

of probability density functions

|p[xi|y(0),y(l)...y(t)]|N

and the maximum likelihood decision rule gives an estimated partition at

time t and, as all those densities are gaussian, the set of parameters

{*. < is sufficient, where

x1 =E[xi|y(0)...y(t)J and R1 =cov Fx1 |y(0) .. .y(t)l

Adaptive estimation of those parameters replaces the self learning

classification problem. For this purpose Kalman-Bucy filter equations

are used where recursive estimators for covariances are added. The

overall equations give a set or "battery" of suboptimal filters and

asymptotic unbiasedness is proved in [2J. A threshold must be defined,

if self learning is to be achieved, that prevents making decisions based
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on too small values of probability densities, and enables us to create

a new class or cluster when needed.

VII. Classification of Sets of Imperfectly Perceived Dichotomies (fuzzy)

Probabilized dichotomies

Let us define a probabilized set (fyAP), a subset A C Qt a £^tt,

defines a dichotomy in ft as for any element oi £ ft, jiD^Aor u^Ar is

true. The characteristic function XaM = n if cd £ A is a measurable

function ft + iO,lf and defines a random variable x = X^M whose proba

bility law is prob [x=l] =p(A)

prob [x=0] = l-P(A)

Let us call p = P(A) and then we can write the probability distri

bution of x in the following way:

p[x] =px(l-p)(1"x) ,peJ0,1 [and xe|o,i|
Imperfectly perceived dichotomies

An imperfect observer is one that does not perceive the exact

position of the boundaries of the set A but who can point to at least

one element w. £ A and at least one element w & A. We shall, there
in ex

fore, associate afunction such that ^(^j,)3 !

^(»4= °
and 0 <_ y.(w) <_ 1 Vu> £ ft

This is a membership function and defines a fuzzy set A ; V^M is a

measurable function ft +|"o,lj where the dichotomy space J0,l| has been
replaced by the unit interval. A particular practical case is when only

a finite number of points of this interval are considered such that the

dichotomy is replaced by a discrete membership pa(oj), measurable
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function ft •*• <0,v.,,V2«..v ,1> where 0 <^ v. <_ v. <_ 1 if j>i

We shall first study the continuous interval 0,1 . In any of

those cases x = u.(u)) is a random variable. To keep the same type of

probability low as in the perfect dichotomy, we shall define the follow

ing probability density for x:

p[x] =K(p) px(l-p)1_X

where the constant factor K(p) stands for normalization; that is:

1 I •'x/i \l-x a 2p-l= J P x(l-p) dx = KK(p) JoK VA H/ ^ Log

te)
Any other function f(x) such that f(0)=(l-p) and f(l)=p /and particu

larly the linear function f(x) = xp + (l-x)(l-p)) could be chosen. The

interest of this particular function will be justified later when

studying the discrete space of membership.

Estimation of the probability law of the membership grade

The chosen probability law depends on the parameter p, and can be

written p[x|p] . In the case where this parameter is unknown, we shall

be interested in its estimation based on a number of available observa-

M
tions, <y-,»...yMf. If we choose the maximum likelihood estimator p

•such that

{yr...yM}.

p[yr...yM|pM] =max p[yr---yM|p]
It appears that _ M

P =n Z yiN i=l 1

because rr..yM|p] -p^(l-p)(^U)
This is the main justification of our choice because it extends, in the

simplest way, the algorithm for the classification of strings of
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characters, replacing the counting process by recursive calculation

in the following way: -Mfl ~M 1 / ~M\

P "P +»KL (yMfl "p)
Similar to the recursive counting, a modification can be

introduced to avoid steady state insensibility to new data, replacing

this statistical equation by

p = p + a(M) lyMfl -pi

where a(M) can be a constant or any decreasing function of M.

Learning procedure

When no observations are available, we may consider that a non-

characterized class would have the equiprobability of all values in

0,1 . That happens when p = 0.5 and, therefore, p° = 0.5 will be the

starting value for any class. The partition is, therefore, a set of

probabilities of membership for each class.

<p x|x G C. L =^p x|p. I N= number of classes

f In
or equivalently a set of parameters J p. I

The learning process consists in the estimation of this set of

parameters. If a teacher is available, the algorithm updates the

Mestimates of each p. each time an observation is forced to belong to

class C. In self learning the decision rule is applied to select C..

and, therefore, to enable the system to create a new class when needed,

the partition must include an "indifferent class" Cq associated with

parameter p =0.5. Whenever this class is selected by the decision

rule, it becomes a "non-indifferent" class whose estimated parameter is

PN+1 =po +1(Vpo) "yt
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Discrete space of membership

We shall consider here the situation when y.(io) takes a finite

number V of equidistant values JvA in the interval 0,1 . V*M
\ \fi=0 L J

is a measurable function ft -»• jvA . Let us define a set of V
I XJ i=l

variables x.(a) in |o>lf such that xi(a)=l =*• xi_^(a)=l
V£>0

and where a is a positive integer such that

x (a)=0 and x ,(a)=l
a a-lx

1 v / x a
We have then v = rr E x.(a) = —

a V i=o i V

Let us consider the event «a>> as the set Jx. (a)i . It can be
I x Ji=0

associated to the following sequence of subsets such that

ft 3 A 3 A-...3 A 3...3L
o 1 a v

or to the sequence of characteristic functions Jx^i • The set of
I Ji=0

values taken by the last sequence is w„
V

a=0

Then the event <<a>> can be represented by any element to ^ ft such that

6 AJ V. > a. If. the probability measure of A. = p. the probability
i i — 11

of «a» is

to

a-1 V / v
pr [«a»] = x n p. • H 1-p. )

1 J i=0 i i=a V x/
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where X is the normalizing constant such that

V

E p[«a»] = 1
a=0

As we know that there is at least one to. such that uA/to. \ = 1
xn A\ in/

and as we defined p = P(A), we may define the event represented by to.

r i vand pr[«to. »] = P(A) =p = X n p <1

ex

v / \
Similarly for <<to >> we have (1-p) = X H fl-p.)

i=0 \ V

In the particular case where the p. s are all equal, we have

P. -r=ip^ and (l-r) -±(l-p)V

then the probability of event <<a>> becomes

a V-a

pr[«a»] =ra(l-r)V-a =Xp^l-p)'

and as 77 = v
V a

pr [««»] =XpVa/l-p)(1-v«)

and X is calculated by

i= I pv«Ci-p)a-v«>
a=0

Making V -»• » we may give a justification of the form of the probability

density of the continuous case.

The condition that all p. are equal, i.e., that in a monotonous

sequence of sets with respect to inclusion, each of thcim has the .same
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measure, may seem abnormal. Nevertheless, that gives an equal probability

to all intermediate grades of membership and, depending on the value of

p, enhances the cumulative effect of inclusion.

Application to image classification

Let an image be a two-dimensional array of points x

m = 1,2...M

n = 1,2.. .N

A point x can be black (^ n = 0) or white (x^ n = 1) . This image

will be called the object. This object is perceived as an array of points

y whose normalized light intensity is y € |o,l|. This value is

taken as a measure of the membership function of this point to the set

of white points. The source object being x and the observed image y, we

want to calculate the probability of getting the image y from the object

If for each point this probability is

P k JXm nex|= Pm J*'* (l-Pm „) (1_y*.n) K/p \I m,n' m,n J m,n \ ^,n/ y m,n/

and if all points are considered independent, we have

PH \L P»>«m'n K.^"ym,n)K(P"-.n)
So we can see that to an object X = Vxm n>, we may associate an image

ft 1 2 T
R = Jp >. If we do not know from which object x , x ...x the image\ m,nj

y comes, we shall calculate p y|x and choose xJ such that

pMx3 I=max p|y|xXJ.
Updating of parameters R shall be made using recursive averaging as

shown.
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Figure 5 gives the computer program for the classifier including

three options:

- learning with teacher

- self learning

- recognition without learning

Figure 6 gives an example of results given by this program for one-

dimension images. The vertical position of X's gives the light intensity

of the point. Images to be classified are on the left of the star line.

Average image for the class to which it has been classified is on the

right. That gives the parameters that represent this class.
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c

C SOUS-PROGRAMME DE CLASSIFICATION DE DONNEES CONTINUES ENTRE 0 ET I
C

C_

SUBROUTINE CLRO(X,NP,KV,IV,MMAX,RO,M,NK,KC,NO,MU)
REAL LAMBUArMlJMAX

REAL MU(MMAX)
DIMENSION X(NP),RO(NP,MMAX),NK(MMAX)
MUMAXsO

C

C CAS PARTICULIERtLA PREMIERE IMAGE SERT A INITIALISER CI

IF (M.EU.O) GO TO 3

C

C CALCUL DE LA PROXIMITE MU DE X A LA CLASSE CK

C

DO 1 K=1,M

MU(K)=1

DO 2 1=1,NP

LAM8DA=AL0G(R0(I,K)/(1-R0(I,K)))
P=LAMBDA*((1-R0(I,K))/(2*R0(I,K)-1))*EXP(LAMBDA*X(I))

2 MU(K)=MU(K)*P

C

C DETERMINATION DE LA CLASSE CKC DONT L'IMAGE X EST LA PLUS PROCHE

IF(MLKK).GT.MUMAX) KC=K;MUMAX»MU(KC)
I CONTINUE

IF(IV-l) «,5,6
C

C IV=0 CORRESPOND A L 'APPRENTISSAGE AVEC PROFESSEUR
C IV = 1 CORRESPOND A L 'AUTO-APPRENTISSAGE

C JVM SUPPOSE L'APPRENTISSAGE FINl:ON CLASSE
C

C
C ... X EST PLACE D'AUTURUE DANS LA CLASSE KV
C NO EST LA NOTE ATTRIBUEE AU SOUS-PROGRAMME
4 NO=NO*l

IF(KC.NE.KV) N0=N0-2;KC=KV
GO TO 7

C

C COMPARAISON DE LA PROXIMITE MU(KC) AVEC UN SEUIL
5 IF((MUMAX.LT.l).AND.((M+1).LE.MMAX)) GO TO 3
C

C MODIFICATION DU REPRESENTANT DE CKC
7 NK(KC)=NK(KC)*1

.. DO 11 1= 1,NP

._ DELTA=(X(I)-RO(I,KC))/(NK(KC)*l)
II RO(l,KC)=RU(I,KC)+DELTA .

RETURN

6 NK(KC)=NK(KC)+1
RETURN

C .... ..
C.__ ON CREE UNE NOUVELLE CLASSE
3 M= MM;KC = M;NK(KC)=0

DU 8 1=1,NP

8 RO(I,KC)=0.5
GOTO 7

END

t

Figure 5
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LA REPARTITION DES IMAGES EST LA SUIVANTE APRES 3 PROCEDURES DE CLASSIFICATION

L'IMAGE NO 1 APPARTIENT A LA CLASSE NO 1

vL'IMAGE NO 16 APPARTIENT A LA CLASSE NO 1
S *
. X X X * X

X X ft

i * X
I * X X X X X
; XXX * X xxxx
J.X X X * XX
IX * X X

I X *
! x x x *
I

^•'L'IMAGE NO 17 APPARTIENT A LA CLASSE NO 2
X X

: x xx
i X
I X X

: x x

x x

x x

x x

xx x

X XX XX

X

;L'IMAGE NO 18 APPARTIENT A LA CLASSE NO 2
X *

I

|X X X
i ..

«.

X X

*

ft

* X X X
*

*

*

L'IMAGE NO 19 APPARTIENT A LA CLASSE NO 4
X X

X X

X X

X X

X X

X X

*

ft

*

X *

*

*

X XX

Figure 6
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