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ABSTRACT

A unified study of the applications of Volterra functional series to

nonlinear system analysis is presented with special emphasis on frequency-

domain results which either have not been published before, or where rigor

had been lacking. In particular, an in-depth analysis of the harmonic and

intermodulation frequency components due to each Volterra kernel of a given

order will be presented and explicit formulas which complement those already

published will be given. The effects of manipulating various kernels, which

need not be symmetric, on the overall response, as well as on the composite

kernels will be investigated. These results are then applied to the analysis

of dynamical systems described by a system of nonlinear state equations and a

read-out map.
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1. Introduction

The Volterra functional series [1] has been used extensively in the analysis

of nonlinear circuits and systems characterized by weak nonlinearities [2-11].

Our objective in this paper is to present a unified study of this subject with

special emphasis on frequency-domain results which either have not been published

before, or where rigor had been lacking. In particular, new explicit

formulas will be presented which complement those already published [2-3]. These

formulas are derived in Section 3 and are of particular interest to the frequency-

domain analysis of nonlinear circuits. In particular, they show precisely

which harmonic or intermodulation frequency components are generated by a

Volterra kernel of a given order. Among other things, these explicit formulas

show that the frequency components generated by an nth order Volterra kernel

are disjoint from those generated by the (n+1)th order kernel. They also

reveal a widely held assumption concerning the incommensurability of input

frequencies as incorrect and the precise condition where this assumption

holds is given.

Another widely used assumption in this area is that all kernels are

symmetric so that one can freely manipulate them without questioning the

validity of such mathematical operations as addition, multiplication,

differentiation, etc., as well as other more complex system operations such

as cascading one system into another etc. We show in Section 4 the precise

conditions under which the above cited operations are valid even if the

kernels are not symmetric. Moreover, we show why the usual symmetry assumption

is undesirable for many applications.

The symmetrization results in Section 4 are then applied to develop a

Volterra functional series associated with dynamical systems described by a

nonlinear system of state equations and a read-out map in Section 5. Again,

explicit formulas for deriving the Volterra kernels of any order are given.

Finally, the generalization of the above cited results to multi-input

systems are summarized briefly in Section 6.

Since one of the objectives of this paper is tutorial in nature, some

well-known results are included in order to render this paper somewhat

self-contained. Indeed, much of the materials presented in this paper will

form the foundation for a subsequent paper on the applications of Volterra

functional series to nonlinear circuits.
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2. Functional Representation of Analytic Systems

For single input analytic systems [4-7], the output y(t) can be expressed

as a Volterra functional series of the input u(t). Thus

y(t)=E y„(t) (2.1)

where

n nn=0

and

h , n = 0

y (t) =\ M m n (2.2)
1 ... I h (t ,t ,...,t ) n u(t-T.)dr., n > 0
J J nlz n . - 11
* —00 * —oo i=I

is called the nth order output of the system, and h (t.,t„,...,t ), a real valued
"* ff— n 1 Z n

function of x^To,...^ , is called the nth order kernel or nth order impulse

response of the system. The multiple Laplace Transform of the nth order

impulse response

{h » h .
o o , n «= 0

is called the nth order transfer function of the system. Observe that the nth

order kernel, and hence also its transform is not unique in the sense that

several distinct nth order kernels may give the same nth order output for

the same input1. However, the symmetrized kernel and its associated symmetrized
transform defined by

iT(t ,r ,...,xn) 4tt E Vvt2 ^ (2,4)
n -1 z all permutations

of t. ,..., T
1 n

H(s ,s ,....sn) 4^" L4 VW'-8^ (2'5)
n i L all permutations

of s, »s«» •••»sn

respectively are unique [4,7].
To emphasize the correspondence between the time-domain and frequency-domain

quantities, let us replace the physical time variable t in (2.2) by n
nssoointod time variables t.,t., t :

Observe from (2.2) that an interchange of the argument of h (t1,t0,...,t )
n 1 z n

does not affect the input-output relationship. Hence there may be up to
n! distinct nth order kernels corresponding to the n! permutation of n variables.
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f ho , r. - 0
yn(t, ,t t ) 4 )

I ... [ h <t ,t,,...,t ) IT u(t -T.)dT.., n >0 (2>6)

2
The multiple Laplace transform

H , n = 0
o

Y (s.,s0,...,s ) = < n (2.7)
n X l n yH (Sl,s9,...,s ) n U(s,),n > 0

. n jl i n . i i
i=l

of (2.6) is called the nth order output transform, where U(s) is the usual

1st order Laplace transform of the input.

We will define two systems as equivalent if their respective symmetrized

transfer functions are identical. In particular, if g (t ,x0,...,Tn) denotes
n J. *- oo

the nth order kernel of an equivalent system with output z(t) = Jj z (t) ,
3 n~^

then for each n

h (x ,t ,...,t ) = g (tt ,...,t ) (2.8)
niz n n 1 z n

H (s ,s ,...,s) = G (s s ...,s ) (2.9)
n±z n niz n

Y (s ,s ,...,s) o z (s s9,...,s ) (2.10)
nlz n niz n

for all u(t) in the input ensemble, where the symbol "=" in (2.8)-(2.10)

is used to mean the symmetrization of both sides of each equation are equal.

The following are some operations corresponding to various combinat-ons

of analytic systems [4-7] which we will find useful in this paper. The
00 00

quantities a(t) A J] a (t) and b(t) = Jj b (t) denote the output of the
n=0 n n=0 n

two systems being combined, while v (t.. ,t„, ... ,t ) and w (x., >t«> •••>t ) denote
nlz n nlz n

their corresponding nth order kernels. The output of the composite system is
00

denoted by e(t) = ]£* e (^>an(^ ^ts associated nth order kernel is denoted by
n=0 n

1. Addition. For the system combination shown in Fig. 1, we have for each

n and for all inputs u(t),

e (t) = a (t) + b (t) (2.11a)
n n n

We shall use capital letters to denote Laplace Transform variables.

Tlio symmetrized h (•) may differ from the symmetrized g (•) trivially,
n n
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En(s1,s2,...,sn) =An(Sl,S2,...,sn) + Bn^s1,s2,...»sn) (2.11b)

Kn(Sl,s2,...,sn) =Vn(srs2,...,sn) +Wn(s1.82>.'...8n) (2.11c)

Notice that (2.11b) is the multiple output transform of (2.11a).

2. Multiplication. For the system combination shown in Fig. 2, it can be

shown using (2.2) that for each n, and for all inputs u(t),

e (t) = y; a.(t)b .(t) (2.12a)
n a i n_1

En(Sl,s2,...,sn) =t VsrB2 i)Bn-i(8i+l'8i+2 ^ (2*12b)

Kn(Sl,s2,...,sn) =t V8r82--8i)Wn-i(8i+r8i+2--'^ C2-12C)
3. Differentiation. For the system combination shown in Fig. 3 in which

the output a(t) is differentiated once, we have for each n and for all

inputs u(t),

e (t) = a (t) (2.13a)
n n

En(Sl,s2,...,sn) =(s1+s2+...+Sn)An(s1,s2,...,Sn) (2.13b)

WV"-V =<8l+82+—+8n)Vn(8r82-—^ (2'13C>
The Volterra Series representation (2.1) can be easily generalized to allow

multiple inputs [7]. Thus, for a multi-input system with output y(t) and
inputs u1(t),...,uN(t), we have

00 00 oo

yoo- Z £ - Eo vv-Vt} (2'14)
nl=0 n2 "n

where , n » o v i - 1.....H
oo...o

L - L\v-^(Tu,Ti2,''",vta,t22,'",tv'-',,-,,1ta,1%2i'"' h)*

N "i ^ B n -i o l N (2.15)H n u,(t-r..)dT ,, not all n± - 0 1-1.....M
i-1 j»l * J

A similar expression for the transfer function is given by

\V••nN(Sll,Sl2, *'' ,Slni;S21,S22"••>S2n2;•••;•••;SN1'SN2>''' >a**J
= r ... r h „(•> n n e ±j dx..

J.„> 3_„ nin2-"nN i-l j=l ^

N ni -sr. (2.16)
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3. Steady State Analysis

In this section the steady state output of analytic systems with several

sinusoidal inputs will be considered. Let the input u(t) be represented by
K . .

k (3.1)u(t) = £ \e
k=l K

where A, may be complex, and a>k may be any positive or negative real number.
00

Let y(t) = J y (t) denote the output. Since the zeroth order output yQ
n=0 n

does not depend on the input, when we refer to the order n xn the rest of
this section we mean n > 0, unless otherwise specified. Thus from (2.2),

4
the nth order output is given by

jMk(t"V „,„<t> - j" ... f hn(T1 Tn) t £ \
J-co J-at i=l k=l

K K K , , n ^V'-V
- e x:••• e f •••} \(\ v«v« *

k =1 k =1 k =1 *-» J-» i=l i
12 n

K K K n jV r r n "j"k/i
k =1 k =1 k =1 i=l Ki J-» •>— n l n i»l x

i / n

It follows from (2.3) that the nth order output due to the input u(t) in

(3.1) is given by

K K K / n J k \ / \

n k^i k^i kn-i u-i *i In \ ki K2 v

\\-\H"(J\'J\"-'J\)
K K K

- E E - E
k =1 k-=l k =1

1 z n

e X 2 n (3.2)

(See Appendix 1 for a specific example with K=2 and n=2). Observe that
A A ...A^ Hn(jo)k ,jiok ,...,jo>k )is the phasor associated with frequency
w +w + ... u>, . Different terms in (3.2) may give rise to the same
kl k2 n
frequency, and each permutation of (ju^ .jo^ ,...,ju>k ) in the argument of

12 n

H (•) gives rise to a term in the nth order output. Let us look at a
n n jwkt
specific example with K=n and A, =IVk = l,...,n, i.e., u(t) = Jj e • ^^

K k=l

JUL (t-T.)

Observe that J^g V j"̂ £"$^ \
5Equation (3.2) is given in [2,4].
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j((0- + ...+U) )t
n n n k k

y„(t) =, £ £*•• £ h„(jwv 'J^v »"-»juv )e n (3,3)
n k =1 k =1 k =1 n Kl K2 n

1 Z n

It follows from (3.3) that there are n! terms in y (t) with frequency
n

(0--HO-+.. .-ho , each corresponding to a permutation of (jw- ,jto0,...,j<o )
1 z n ± z n

in the argument of H (•)• Hence, if y(t) contains no component with

frequency 0)-+.. .-ho other than those n! terms in y (t) , then it follows

from (2.5) that

1 / j(o)1+u>2+...+a)n) t \
H (j<iL,juu,...,jb> ) = -r [coefficient of e in y(t)j (3.4)
n J 1 J 2 J n n! \ . /

This is one method usually used to derive symmetric transfer functions by

exponential inputs. It has been suggested by several authors [2,3] that (3.4)

holds since y(t) contains no components with the same frequency (o.-ho +.. .+(o ,

other than those n! terms in y (t), if the set of input frequencies
n

{(o, ,(0o,... ,(o } is incommensurable. Unfortunately, this need not be the case.
1 2 n

Indeed, if we choose (0 = /2, u = 2/2 -1and u>3 = 1, then {co^co^u^} are
incommensurable. Yet we have to -ho^+w- = to -Ho.-ho- = 3/2. To eliminate this

possibility, we must impose a slightly stronger condition as specified in

our next definition.

Def. 3.1 A set of frequencies {to ,w2,... ,o)k> is called a frequency base,
if there does not exist a set of rational numbers {r ,r2,...,r } (not all zero)
such that

r1u1 + r2w2 +...+ r^wK = 0

Since any output frequency to -ho +...-ho in (3.2) can be expressed as
kl k2 n

m co -hn (o +...+m^oK, where m., i= l,2,...,k, are nonnegative integers, it is
convenient to define a compact notation to denote the output frequencies.

Def. 3.2 Avector M = (m^n^,... ,mR) ,where nu, i= 1,...,K, are nonnegative
integers, is called a module vector of the input frequencies {to^,^,... ,(0^}.
For each module vector M, we define the corresponding output frequency

to 4 miwi + m2u2 +—+ mKWK

Module vectors have the following properties.
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Property a.

If m1+m?+.. .+ro = n, where n >_ 0,then to is an nth order output frequency;
JL Z K «

i.e., toM is generated by an nth order kernel.

Proof; "Obvious from (3.2) n

Property b.

Let the input frequencies {to. ,(0-,... ,toK} constitute a frequency base
and let M, M* be any two module vectors. Under these conditions

M=M» iff o^ =uy

Proof; Follows immediately from Definitions 3.1 and 3.2. n

Property c.

If the nth order transfer function is symmetric and the input frequencies

constitute a frequency base, then the sum of all terms with frequency u>M in (3.2)

K

where M=(m ,m2>... ,mR),J^ \ =n» and ^^k^ denotes "n^" consecutive
k=l

arguments in H (•) having the same frequency jto .
n k.

(See Appendix 2 for a specific example with K = 5, M = (2,0,1,3,5)).

Proof: Equation (3.5) is obtained by summing all terms in (3.2) with frequency

oil. This corresponds to terms in which the argument of H (•) contains 'V"

entries having the same frequency to., where i = 1,2,... Since (3.2)

contains all permutation terms of m {jto^m {jto2>,... .m^jo^} in the argument

of H(«) and T\ m. = n, there are —-^—-— of them. Thus

. m m_ m / \

Vi> •v^:..^! h\-k* Hn^<j.1>,vj«2}....,VJVje
ito t

M

Remarks:

1. In view of the preceeding properties of M, we will call M an nth order
K

module vector if 2^ m = n.
i=l X

A similar expression has been given in [2].
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2. It follows from property b that if the input frequencies {to, ,to„,... ,to }
12 n

in (3.2) constitute a frequency base, then y(t) does not contain output terms

with frequency to.-ho0+.. .-ho other than those n! terms in y (t) . Thus
J. z n •/n

(3.4) holds.

3. It follows from property b that if the input frequencies constitute

a frequency base, and if M is an nth order module vector, then the

output frequency to only appears in the nth order output y (t) and is

unique.

4. It follows from property b that if the input frequencies constitute a

frequency base, and if two module vectors M and Mf are not equal, then

y (t) does not contain terms in y ,(t), and vice-versa. Hence the terms

in the total output

00 00 00

y(t> = S yM(t) = E £ ... £ yM(t) (3.6)
all . ~ m1=0 m2=0 mK=0 ~

possible
M

do not have overlapping output frequency components. In any event (3.6)

holds in general regardless of whether the input frequencies form a

frequency base or not.

It is clear from (3.2) that the total phasor associated with the nth

order output frequency to, -ho, +.. .-hok is always a symmetric function of jto ,

jto, ,...,jto, . Therefore, unless otherwise specified, all nonlinear transfer

functions are henceforth assumed to be symmetric in the rest of this section.

Now let us consider a K-tone real input given by

"(t) =g |A1|co.(B±tf^) =£(?k J°S+£^V) (3.7)
where A. is the complex conjugate of A.. By Definition A . A A. and to . A -to.,

i r -' ° x y -x = x -x=i

(3.7) can be rewritten compactly as follows:

K A. jto t
u(t) = V ~ e 1 (3.8)

i=-K L
i^O

The jith order module vector of the input frequencies in this case assumes

the form MA (m «•>••. >m i »m-, »• • • »*0 » where m., i = ±1,±2,... ,±K are
- — -k —l IK x
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nonnegative integers with 2 m. = n.
i=-K x
i^O

{to ,... ,to n,oi-,... ,oi } in this case do not form a frequency base because
— K —1 1 K

to.-ho . = 0. For each nth order module vector, we have
x -x

Observe that the input frequencies

to.
M

K K K

=£ Yi =?. (miwi^-i(°-i) = £ (Vm-i)
x=-K x=l x=li=-K

i^O

and from (3.5)

to (3.9)

(See Appendix 3 for a specific example with K= 2, M = (2,0,2,3)).

To illustrate the significance of (3.10), we use it to derive Table 1

[2] which gives the output corresponding to each module vector M from order

0 to 3 for the 2-tone input case, i.e.

jto.t
X"(t) = E |A.|cos(to t+A,) = £ ye

i=l 1 x x i=-2 z
i*0

Since the constraints for M = (m ,... ,m ,m ,...,ro ) to be an nth order
•jr ** K —J. X K.

vector are 2 m. = n and m >_ 0 Vi = ±1,...,±K, it can be shown easily
i=-K * 1
i^O

that the number of distinct nth order module vectors for a K-tone input

is given by I J. Observe also that distinct module vectors of the
same order may give rise to the same output frequency because

{to_£,... ,io_- ,to-,... »toK} is not a frequency base.

We will now derive some properties of the output frequency

components when the input is a K-tone as defined by (3.7), where

{-(i3jr,-w~ -,...,-«-,w-,...,w} are the input frequencies. We will make the
standing assumption that the subset {ia ,to0,...,to } of input frequencies form

I Z K

a frequency base. Under this assumption, a module vector M that corresponds

to a d.c. output component (i.e., ay = 0) must have m -m . = 0 in view of
(3.9) ; i.e., m = m_., i = 1,...,K. Hence, the order

n =

K

i=-K

i^0

m

x=l x=l

2m. = even integer. Consequently,

-10-
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the order of a module vector that gives rise to a d.c. output component

must be even. Let us denote a ^rth order module vector which gives rise

to a d.c. output by 2L = (z_k,... ,z -,z.. ,... ,zk) ,where z = z_., 1 = l,...»k.
Property 1 „

For any output frequency to = ^ p.to., where p. is an integer
i=l

Vi = 1,..., K, the lowest order module vector M =(m ,... ,m ,m ,... ,1^)
K.

that gives rise to this frequency is at order n =J* |p.|. This module

vector is unique at order n and is given by

m_, = p. and m . if p. >^ 0
11 -1 1 Vi = l,...,k (3.11)
m = 0 and m_± if p± < 0

(See Appendix 4 for a specific example with K= 3, to = 4to + Oto2 + (-2)uO .

Proof:
K

By hypothesis, <o„ = to and M is of order n = 2~* IP•I• To P^ove
M ° i=l 1

that M is of lowest order and unique, assume that there exists another

module vector M' = (m' ,... ,m'_ ,m',... ,m') of order n or lower such that
-k -11 k

'„i = "w and M' ^ M« It: follows from (3.9) that
MM ~

(0.

K ~ K K

y\ (m'.-m1 ) to. = T* (m -m .) to. = >Z p.(».. Since {to. ,... ,<o } forms a

frequency base, m'.-m^. =m.-m_ = p., Vi = 1,...,K. This implies that

m^m. = m'.-m ,. As m! and m' are nonnegative integers and either m. or
x x -x -i x -i 1

m . or both are equal to 0, m'.-m. = m'.-m . > 0. Thus m'.+m'. > m.+m ..
-x x x -x -x — x -x — x -x

Since M' ^ M, by assumption, there exist an "i" such that

m'.-m. = m'.-m . > 0, i.e., m!+m'. > m.+m .. Therefore
i x -x -x ' i -x x -x

K K

E(m'+m'.) > Y\ (m.+m .) = n. This contradicts the assumption that M1
x=l x=l

is of order n or lower.

Corollaries

1. If an j^th order module vector does not have both m. and m nonzero

Vi = 1,2,...,K, then no other module vector having the same or lower

order can give rise to the same output frequency to .
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2. By relabelling the index i of to.,Vi = 1,2,...,K, we can always write
K 1

to = ^ P.w., where p is a nonnegative integer Vi = ±1,...,±K. In
U ^^ tt X X X

i=-K

i^O

this case, M defined in (3.11) is equal to (p_K» •••»P i>V-*»• ••»PK) •
Property 2.

K

Given any output frequency to_ = JJ P.to., where p. is an integer
U i=l x x :L

Vi = 1,2,...,K. Let M be the unique module vector of the lowest order
K

n4 J] |p |(as defined in property 1) such that ay = to . If
i=l

M' = (m'K,...,m' ,m',...,m^) is an n'th order module vector, then

«M " V «f M' = M + Z2r

where Zn is a module vector of order 2r = n'-n which gives rise to a d.c.
~2r

response.

Proof;

Suppose M' =M+ J2 = (m_K+z_K,...,m_1+z_1,m1+z1,...,mK+zK), where z± = z_±i
Vi = 1,2,...,K. Then it follows from (3.9) that

K K K

v 2 c»i-»:±> »± - £ (mi+zrm-i-z_i> \ - E (mi-m-i> wi • ^
i=l i=l i-1

Conversely, if m^ = to ,as in the proof of property 1, we have
m'-m' = m.-m . = p. so m!-m. = m'.-m . > 0. By defining
i -i x -x x i x -x -x —

Z =(z_-K...-,z_1»z1>-««»zK) such that zi =mi "mi -° Vi = ±:L»---'±K»
K

and r = £ z., it is clear that Z2r is a 2rth order module vector
i=l X

which gives rise to a d.c. response. Moreover, M' =M+ Z2r and 2r = n'-n.
n

Property 3.

All nth order output frequencies are present in the (n+2) th order

output.

Proof:

Follows immediately from property 2 with r = 1.
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Property 4.

Any consecutive pair of nth and (n+1)th order outputs do not contain

any identical output frequency components.

Proof:

If a pair of outputs share a common frequency component, their

orders must differ by an even integer in view of property 2.

Remarks:

1. It follows from properties 3 and 4 that only even order outputs have

d.c. components.

2. Even and odd order outputs do not contain any identical output

frequency components.

3. All output frequencies from order 0 up to n can be generated from an

(n-1)th and nth order output.

Property 5.

The total d.c. output of order 2r, r > 0 can be obtained from the
. 7

expressxon

E E E • •• E ^!
V° V° V° Vi-o

,2r

K-l

where t = r " ]C z.,
i=l

(See Appendix 5 for a specific example with K = 3, r = 2)

or the equivalent expression

k k kK *l *£U1 r-l

E-E-E E
k «=1 k =1 k *1 kKl x K2 e r=l

(2e))

~2v

'r 2^,
a ,Ai' / \

<-i ~r H?r(H 'j01. jl\ 'Ju b jt,k 'jw-k 1

where z. is the number of jto. in the argument of H. (•).

(See Appendix 6 for a specific example with K = 3, r = 2).

(3.12)

(3.53)

7The number of summation signs in (3.12) depends on the number "K" of
input frequencies, while the number of summation signs in (3.13) depends
on the order 2r of the output.
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Proof:

To prove (3.12), we will show equation (3.12) contains a sum of all

terms which correspond to distinct d.c. module vectors of order

2r; namely, Z2r = (z_R,...,z_1,z1»...,z ). Since z. = z_.,Vi = 1,...,K,
only the vectors (zn,...,z ) are needed. The only constraint on

X K

(z-,...,zK) are z-+z +...+z = r and z. ^ 0, Vi = 1,...,K. These constraints

are obviously satisfied for all such vectors contained in (3.12). Now

given any (z ,z^,...,zj satisfying the above two constraints, it can be
proved easily that this is one of the vectors produced by (3.12). So (3.12)

generates all vectors (z ,...,z ) that satisfy the above two constraints.
1 K.

To show that all vectors generated in (3.12) are distinct, let us write a few

of these vector generated in a systematic order as follows:

item
Zl

z

1 0 0

2 0 0

3 0 0

•

•

•

•

•

r+1 0 0

r+2 0 0

r+3 0- 0

ZK-2 ZK-1 ZK

0 0 r

0 1 r-1

0

•

2

•

r-2

0

•

r 0

1 0 r-1

1 1 r-2

Q

If we look at each vector as an integer of K digits z., z0 ... z of base
X Z K.

r+1, then the integers generated form a strictly increasing sequence as we

go down the list and hence all are distinct.

To prove (3.13) it suffices to show that the terms in (3.13) contain

all distinct combinations {jto, ,jto , ,...,jto >JW i. }» i.e., all distinct
lq 1 r r

combinations of {k ,k2>... ,kr>. Given any valid combination {k^k^... ,kr> such
that l^k. _< K, Vi = l,...,r, it can be proved easily that this is one of the com
binations generated by (3.13). To show that all combinations generated are distinct,

g
If base = 2, i.e., r = 1, then the integer is just a binary number.

o

For example, {1,1,2,3} and {1,2,3,1} are regarded as the same combination.
Hence each distinct combination corresponds to a distinct module vector.
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let us list the first few terms generated as follow:

item k. k2 k3 k^,

1 1111

2 2 111

3 2 2 11

4 2 2 2 1

Observe that ^ >k£ >k3 >... >kr for each row. Similarly, the integers

in each column form a nondecreasing sequence as we go down the list. Since

no two consecutive terms are equal, all combinations of {k-^k^... ,kr} are

distinct.

Property 6. K

Consider any output frequency <oq =£ v±u±, where p± is an integer
i=l

Vi =1,2,..., K, and let M=(m_^ ... ,m_1,m1,.. .,mR) is the unique module
K

vector of the lowest order n = £ M (as <*efined in property 1) such that
i=l

a) vr = to . The output with frequency m at order n+2r is given by the
Mo O

expression

r-z,
r 1 r"zl"*zk-2

£ £ ... £
zr° z2=0 zk-i=0

(n+2r)!
«n+2r

i?ir
K A.

Hn+2r ((m-l+2l) {du)-l}' (ml+zl) {Jul} '"-k**^ {jU-k}' (Vzk) {ja>k}) e
jto t
J o

(3.14)

K-l

where z = r - £ z±
i=l

(See Appendix 7 for a specific example with K» 3, <oq - 4to1-2io3)

or by the equivalent expression
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,K kl Vi Vl (n+2r)!
2 Z-) ••• £ ... 2

"V1 V '1^=1 k0=l k^=l k =1 2n+2r

"l+H
K A

i=-K (mi+Zi)!
i^O

Hn+2r(m-K{^-K} ''' *̂ -i^-lW^l>»''' •VKKJV^V' *' 'J\'3M-kr)'
jto t
J o

(3.15)

where z. = number of jto ,jto, ,...,jto, which are equal to jto . (See Appendix
i k^ k2 Kr x

8 for a specific example with K= 3, <oq = 4to.-2a>3.)

Proof:

From property 2, all distinct module vectors of order n+2r, such that

to f = to„, are given by M+Z0 . In the proof of property 5, it has been shown that
MM ~ ~zr

either the series of summation signs in (3.12) or that of (3.13) can be used to

generate all distinct Z . Now since corresponding to each Z2r> there is a
distinct M', the series of summation signs in (3.12) and (3.13) can be used to

obtain (3.14) and (3.15) with the help of (3.10). a

Remarks:

1. Equations (3.14) and (3.15) only give the output component at frequency uQ
and order n+2r. The total output at frequency toQ can be obtained by adding all
components at frequency to corresponding to all orders. By property 2, the total
output signal y (t) at frequency to can be written as

o

00 00

(t) - £ £ ... £ (n+2r)!
zl==0 z2!=0 zr0

m.+z.
i i

K (A./2)
n 1

i=-K <mi+Zi)!
, i#)

jto t
J oHn+2r ((m-l+Zl} {jU)-l}' (ml+Zl) {ja>l}»*''•(m-X+ZK) {JW-K} >(mK+ZK} {ja>K})6

K

where r= £ z. and (m ,...,m 1,m]L,...,mK) is as defined in property 6.
i=l

2. The real output waveform at frequency u> and order n+2r can be obtained by
10adding expression (3.14) or (3.15) and its conjugate. Thus the real output

10Notice that given any module vector M = (m ,....m^m^,...,!^), there exist
M' -(m^K,...,m^1,mj_,...,m^) of the same order defined as m^ =m_± Vi =+1,...,+K,

such that yMt(t) = yM(t)
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signal at frequency to and order n+2r is

|y| cos (to t+^Y)

J0^(jto t \

coeff. of e ° in (3.14) or (3.15)j
Property 7.

The nth order output can be given either by

n n"m-K

m-K=° miC+l=0

-1

-2 n-2 mi
n"'Z mi

i=-K

L

i=-K

m_1=0 m =0

K-2

n-2 m
i=-K

i^O n,

V-r0 2

Jw»*t
(\Mm_K{ jto_K},... ,m_1{ jto_1} ,m1{jtox},... ,mK{ jtoK}\ e ~

K-l K

where hl. = n - J* m. and to = £ (m.-m^to.,
* i=-K ~ i=l

i^O

or by the equivalent expression

in,

K AH
n

m.!
i=-K i

i^O

(3.16)

(3.17)

yn(t)
K 1

kx=-K k2=-K

n-1 ,^n n!_

k^-K 2n
n

K

n

i=-K

.i#)

X

m V^k^V
3V.,jtok )e M (3.18)

i*

k. ^ 0 Vi = l,...,n

where m. = number of jto.'s in the argument of H (•).
xx n

Proof:

n

The proof is similar to that of property 5 and is therefore omitted. H
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Property 8.

The number N of new frequencies in the .nth order output that are not present

in any lower order output is given by:

where r = min(K,n)

Proof: K

From property 1, to = £ p.w is a new output frequency in the nth order
0 i=l K

output which is not present in any lower order outputs iff n= JZ IPi I* Hence»
i=l

it suffices to prove that (3.19) gives the total number of distinct vectors

(p ,P2,...,PK) such that p± is an integer Vi =l,2,...,Kand £ IpJ =n* Let

qof the components of (p1,p2,... ,PK) be nonzero and let us denote them by the
vector (p. ,p, ,...,p, ). The number of distinct vectors (|pfc |,|Pk I..... IPk I)»

kl k2 q 1 2 q

such that 2 IPfc I=nand lpk I±S anonzero inteSer Vi =l,2,...,q, is(J.
i=l q i /_\

Since p, ,Vi = l,...,q, can either be positive of negative there are 2 L -J of such
distinctSectors (pk ,...,pk ). As the qcomponents can be any of the Kcomponents

of (Pl,p2,...,PK), there are"1(*J 2qH}j distinct vectors (p^,... ,PK> such
that q of the components are nonzero and £ IpJ = n# since ^ can be i*2*"-*

i=l

and up to min(K,n), the total number of distinct vectors <plf...,p ) such that

K ^^/K\2q/n-l\SlPii-is g ^2 ^y

We will close this section by presenting two examples which illustrate some

useful applications of the preceding properties.
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Example 3.1. Deriving the describing function from Volterra Series.

Suppose a system is characterized by symmetric nonlinear transfer functions

H (s.,,...,s ), Vn ^ 0. Now we want to find its describing function N(A,to), i.e.
given a sinusoidal input u(t) = A cos tot, its first harmonic is given by

|N(A,to)|cos(tot+/N(A.to)) . It follows from property 6that the unique module vector
M of the lowest order corresponding to an output frequency to = to is given by

jtot
M = (m.jUL) = (0,1). Using (3.14) or (3.15) the (l+2r)th order component of e

-1 1 11
is given by

l+2r v .
(l+2r) ! _£"*_* /,..,„, -.^^..Aji*
2l+2r r

x-rzr . \ *

roS)THi+2r(r{-^(1+r){^})e
The total coefficient multiplying e30)t is therefore given by

By adding together its conjugate, we obtain the describing function

H(A.») -t (1;22f- rfa^), Hl+2r(r{-^}» <1+r>{^) <^°>
In practice, N(A,to) can be approximated by summing only over those orders which

are more significant.

Example 3.2. Finding output when {to ,to2,...,to KHo not form a frequency base.
3

Consider an input u(t) = £ |A.|cos(uKt+Z^) where the input frequencies
i=l

{to-,to„,to«} do not form a frequency base. In particular, let

to- = 1 rad/sec, to_ = /z~ rad/sec ,to~ = 1 + ST rad/sec. Suppose we are interested

in obtaining the output at frequency 1 rad/sec. Below we list the first few
3

distinct vectors (p-,p2,p3) such that toQ = 1 rad/sec = 2J P^i* and the

corresponding lowest order module vector M = (m_3,...,m3) as defined in property 1

1:LIn the present case, K= 1 and n = 1. To use (3.14), observe that the number of
summation signs is equal to K-l = 0 and that ZK = zx = r- To use (3-15)» observe
that there is only one term which corresponds to k. = k = ... = k =1.
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output order p- p„ p. M = (m_g,m «,m_-,m-,m2,m3)

n=l 1 0 0 M = (0,0,0,1,0,0)

n=2 0 -1 1 M = (0,1,0,0,0,1)

n=4 2 1-1 M » (1,0,0,2,1,0)

Now treat {to-,to2,to3} as if it were a frequency base, and then apply property 6
for each M from the preceding table, one at a time. For each M ,(3.14) or (3.15)

can be used to evaluate the terms at different orders which give rise to the

desired component at to . Finally, all components corresponding to each M are added

together to obtain the desired output.

4. Symmetrization

Since analytic systems may not have unique nonlinear transfer functions,

some of the transfer functions of equivalent systems may have a much simpler

form than the others. For example, the j>rd order transfer function

-; x, 1, w r is simpler than its symmetrized form, but the symmetrized form(s1-a)(s2-b)(s3-c) v

of the 3rd order transfer function —=—• + —L— - —— is 0. In doing
S-. — a. o«—d o~ a.

manipulations of transform expressions, especially in a recursive process, it is
desirable to choose either the simplest form or some particular forms of nonlinear

transfer functions so as to obtain a simple final expression. However, we need
to investigate the effects of choosing different nonlinear transfer functions,
or output transforms, associated with equivalent systems before we carry out

any manipulation of transform expressions.

Theorem 1. Equivalent Systems

Let H and G be two analytic systems with the same input ensemble and the

same output ensemble Let hn(x1,.. .,tn), H^s.^.. .,sn), Yn(si»••-»sn) and ^n^
be the ath order kernel, nonlinear transfer function, output transform, and output,

respectively, of the system H. Let 8n(Ti»•••»Tn^ »Gn^8l' **" ,St^'Zn^8l,"',8n^
and z (t) be the corresponding nth order kernel, nonlinear transfer function,

output transform, and output, respectively, of the system G. Under these conditions,

the following statements are equxvalent.

12In the second statement, \(') may differ from in(0 trivially.
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1. H and G are equivalent.

2. hn(Tr...,Tn) =in(Tr....Tn) Vn

3. Vv-.-.s^ = Gn(Sl'-">V Vn

Vn and for all inputs of the input ensemble

Vn and for all inputs of the input ensemble.

4. Y (s-,...,s) =z (s.,...,s)
n 1* * n n 1' * «'n'

5. yn(t) = zn(t)

Proof:

It follows from the definitions of transform and symmetrization that

statements 2,3 and 4 are equivalent to one another. Since statement 1 implies

statement 2 [4,7], as mentioned in (2.9), and statement 5 implies statement 1,

it is sufficient to show only that statement 2 implies statement 5.

For any input u(t) of the input ensemble, y (t) is given by

rn(t) =1 ...I hn(Ti»...»Tn) n u(t-Ti)
J_oo </_oo i=l dTi-

Notice that yn(t) does not change for any permutation of t-.,...,t in the argument

of hn(T1,...,Tn). Thus

Cf° n

...| VTl,,",Tn) H «Ct-T±)dT1
—06 »—00 i=l

{f» J» n

...I 5n^Tl»,'.»Tn^ n u(t"Ti)dTi
—oo J—ca i=l

Therefore statement 2 implies y (t) = z (t). n

Theorem 1 shows that the symbol "=" introduced in (2.8)-(2.10) not only

means that the symmetrized expressions on both sides of "-" are equal, but that they

also represent equivalent systems. Sometimes it is helpful to have a method for

checking transform expressions of equivalent systems without doing symmetrization.

The following lemma provides an easy and useful method which follows immediately

from the definition of symmetrization.

Lemma 1.

If Fn(SL ,..., s ) is a function of 8 ,8 9

?D(sv...,sn) * Fn(8lf...,8)
any permutation
of s _,... ,s

1 n

-21-
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Examples

1. If Fn(s^,.... sn) = s^, then Fn( s,,..., sn) - s^ = 82= s3 = ... = s^

2. If F^....,^) --jij, thenF^ sn) --Lj *-JL-* ••• =7^

3. If Fn<V-•«) =(^(vb)' then Vsl»—8„> =(-7»)(-$*) aS X°ng
as no two of i, j, k are equal and all i,j,k <_ n.

The main advantage of the frequency domain representation is that, for

time-invariant systems, almost all types of useful mathematical operations in the

time domain are transformed into algebraic operations in the frequency domain.

Most of these operations are of the types shown in the following three lemmas.

This is true for example in the derivation of nonlinear transfer functions and

output transforms from differential equations, from cascade systems, from taking

the inverse of systems, from feedback systems, and from nonlinear circuits, etc.

These lemmas are useful in determining the effects due to the use of different

nonlinear transfer functions and output transforms for equivalent systems under

various operations.

Lemma 2.

If Fn^Sl,,,,,Sn^ ~ Gn^sl,,,,,sn^ and Hn^sl'*'*,sn^ &Kn^sl'"* *,sn^'

Fn(S;L,...,sn) ±Hn(Sl,...,sn) =Gn(sv...,sn) ±Kn(sr...,sn)
then

(4.2)

Proof:

Fn(s1,...,sn)+Hn(s1,...,sn) =Fn(sl»-",sn) ±5n(sl"",sn) =%isl"'"sn)

+ K (sp...,sn) n

Example:
n , „ / x 0.5 ^ 0.3 _,_ 3.1 3.9 . n

It follows from Lemma 2 that ^(s^..., sn) =~~ + s _a + _a ~ _a ~ u»

since = —±— i = from Example 2 of Lemma 1.
s^a s2-a s4-a ^-a

Lemma 3.

If F (s, s ) is a symmetric function of s ,...,s . and
n 1 n in

^(^•••••fi^) = Kta(&L»--«»Sjl)» then
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VS1 V VS1'-"'V * fn(V-"*V V'l 'o5 (4-3)

Proof:

W-'V \(SV~>sr? = Jn(sl ^ V8!'"*'8^

= ^n^si»...»sn^ ^n(s1,...,sn). n

Example:

Let H (Sl s ) = K (Sl,..,,s ). As in the case of differentiation shown
n 1 n n l n

in (2.13a)-(2.13c), by choosing ^(s^... ,sn) = s^^ + s£ + ... + sn, we have

(Sl+...+sn) Hta(sl»'--,8n) * (sl+-"+sn) Kn(sl»',-,sn)' observe that although
s,+So+...+s = ns_,which follows from Lemma 3 and Example 1 of Lemma 1,
1 z n l

(s-j+.. «+sn) ^(s-j^,.. •,sn) T ns1 Hn( s1,..., sn).

Lemma 4.

Let A, (s^,...,s^ ) = A£ (s-^j.'.jS^ )

*Hc ^si»...,sk ^ = ^k (si».."»sk '
Z 4. Cm *•

Ck3(8i»---,8k3) "Ck3(8r,,,»8k3)

Nk (si»."»sk ^" Nk (si»...»sk ^
n n n n

and A (s,,l..,s ) = A'(s..,...,s )
n x n n x n

Let both An(s-,,...,s ) and A* (s.,... ,sn) in the last equation be partially

symmetric in the sense that if any of the above equations, say the

3,, &2, ..., and 3 equations, are identical, then A (•) and An(0 need only
be symmetric with respect to all variables other than among those associated
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13
with the 3n» $«»..., and 3 equations. Under these conditions, we have:

l z m

Ak (s^..,^ )B (^ ...^ )...Nk (a +...-* +l'---»sk1+...+k }
1 121 12 nl2 n-1 1 n

/ kj_ k1+k2 k1+.. .+kn
* An\ 2 st» £ si £ s±l\i=l 1=^+1 1-1^+.. .-He j+1 '

=A'fc (sv...,S )H< (s *.*>—•£ <%+—*« 1+1 V"'4kn)
1 121 12 nl n-1 l n

/k. k.+k0 kn+.. .+k
T / 1 12 1 n

An E v £ v— 2 si <4-4>
,i=l i=k,+l i=k+...+k ..+1

x i n—x

Proof:

For simplicity, we will only prove the case for which the ^i»^2'**,,^m
equations are the only subset of identical equations. Other cases are similar.

Let us denote the left hand side of (4.4) by F, . (s .,.,s ^) and
1 *" n 1 *** n

the right hand side by F' +fc (s^ ... ,sfc + +fc ). Let
1 * * * n 1 ** * n

V--* (si'•••'%+...-* } and "m--* (Sl V--* } denoteIn In In In

F, , (•) and F' , (•)Respectively,after replacing A (s ,...,s) and
In 1 n

AA(Sl'-"'Sn) in Fk1+...+k (-) and Fk1+...+k (•).respectively,by A^,.. .,sn),
1 n 1 n

13
That is to say, if the 3i,32»»... an<* 3_ equations are the only subset of

symidentical equations, then A (s s2>...,sn) = sym An^*^ ~
£VaS '""\, s31,S39,*,,,S3ri

1 L m l z m

A'('), where " sym " denotes the symmetrization operation is with respect to

31 h 3m

so »so .....Sn only. As an example, for n=5, if there are two subset of identical
31 32 6m

equations(namely,the 1st and 3rd, and the 2nd and Jjth) then A (•)

s sym Jsym A (•)! •
V S3 IV S5 n J
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We first show a +_+fc (•) = F (•) and H^ (.) = F> +fe (.)
In In In 1 ~n

To prove this, let us divide (s,,...,s ) into subgroups, such that
1 n

(s .,.,s ) is the 1st subgroup associated with the 1st equation, (s, +i»**.»s]c +fc )

is the 2nd subgroup associated with a 2nd equation, and so on. Now consider

each subgroup as a whole and perform a symmetrization on F , (•)
iC- • • • • •K.
1 n

with respect to the 3-j^, 32» ••• >&m subgroups. Thus,Fk+^ +k (si>•••>sk+.. ,+k )
1 *** n 1 *** n

sym Fk,+...+k (sr* •*'%+...+k }
n In31,B2,—,3m subgroup 1

k-+...+k

- ^» n

nX '-" 1 i=k-+...+k -+1
1 n-1

= Afc (.)Bk (.)...Nk («) sym
h 3;,,..., 3m subgroup \i=l

This follows from the fact that the 3X,32, .... and 3m equations are identical
By the partial symmetric property of An(s1,•••,sn), we have

'k- k„+. ..+k \ /k

Thus

sym

I
m

kn+...+k
1 n

Anl£V". , . ?, .vSi) =An\SSi»--"
k,+. ..+k

1 n

?. . 8i-8,,..., 3m subgroup " \i=l * i=k1+.. •+kn_1+li 7 " \i=1 * i=kT+. •.+kn-i+1

(•). Now
V--* (° ' V"-+k (<)- S±mLlarly\+...+\0) =Fk1+-+knIn in xn j. u

1 n 1 k-

sym

sk1+l,,*',Sk1+k2

s Sym s Hk + +k (0V+...+k ,+1' *'' ,Skn+.. .+k V'" n
1 n-1 1 n

k,+...+k
1 n

=A, (-)B, (•)...N. (.)A\ £s ,..., 2 si
^1 k2 kn n\i=l 1 i=ki+-+kn-l+1

Similarly, this last expression is also equivalent to H£ +> #+k (')• Thus
n

1+...+kn(,) *\+...+kn(.) 1Hk1+...+kn(0 "Fk1+...+kn(•).k

Remarks:

1. In deriving nonlinear transfer functions from cascade systems or from

nonlinear circuits, expressions of the type shown in (4.4) will be encountered.
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2. As an example illustrating Lemma 3, let A2(s1,s2) = B2(s1,s2),
C3(s1,s2,s3) = D3(s1,s2,s3) and K2(s1,s2) = F2(s,,s2). It then follows from (4.4)
that

A2(s1,s2)C3(s3,s4,s5)E2(s1+s2,s3+s4+s5) «B^s^s^D^s^s^s^F^S-^s^s^s^+s^

holds if F2(s,,s2) and E2(s.,,s2) are symmetric. However,

A2(s1,s2)A2(s3,s4)E2(s1+s2,s3+s4) = B2(s1,s2)B2(s3,s4)F2(s1+s2,s3+s4)

holds even if E2(s..,s2) and F2(s.. ,s2) are not symmetric because A„(s1,s_) = B2(s..,s«)
and A2(s3,s.) = B„(s3,s,) are identical equations.

3. Observe that (4.4) does not hold without the partial symmetric property, even

if A (•) and A?(•) are identical.
n 11

Corollary

If Fm^sl,,,,,sm^ " Gn/Sl,,**,snr) and Hr^sl» **°sr^ Kr(si» •••»sr> >then

Fm(si »• •• .O H (s_.i >• • ..s. ) = Gm(s-,...,s ) k-.(s.t »• ...s_. ) (4.5)mN 1» » m r ntfl m+r m 1 m r m+1 m+r

Proof:

This is obtained by choosing n=2 and A«(«) = A'(«) = 1 in Lemma 4. n

Remarks:

1. The type of operation shown in the left hand side of (4.5) has already been

encountered in (2.12) for the multiplication case.

2. Instead of simplifying an. expression, sometimes we may want to decompose it

into a convenient form, say for synthesis purposes. For example, P (s.,...,s )

S2 \-tJ can be decomposed into the form F.(s-f...,s.)H .(s.-,...,s ).
sr7\s3

Suppose n=10 and we want i=4. It follows from Example 3 of Lemma 1, that

P1Q(s1,.. .,S-0) =I a, I/——7). We now use (4.5) to do the decomposition. Set

F. (s,,. ..,s.) = a. and H, (s,,... ,s£) = j. It follows from Lemma 1 and 2
4 1 4 s1-b 6 1 6 si~**

that FA(Sl>...(s4) iI^-J^ +-^ +-A_\ andH6(s1(....s6) =\ Mj +j^
Applying (4.5), »e have P^tSj s1Q) =Hi^b +7pb +J^b) fc^d +l^s) '
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Most of the operations that we need in the frequency domain are of

the types described in the left hand sides of (4.2)-(4.5), and the conditions of
Lemmas 2-4 are generally satisfied by the corresponding equivalent component

systems. Our next theorem follows from Lemmas 2-4 and the above corollary.

Theorem 2. Systems combination property

If an expression is obtained by a sequence of operations between transfer
functions (or output transforms), such as those shown in the left hand sides of
(4.2)-(4.5), and for each operation the conditions of the corresponding lemma
or corollary are satisfied, then the symmetrized form of this expression is an
invariant of the combined system in the sense that it does not depend upon whether
the component functions are symmetrized or not during the intermediate manipulation

steps.

Remark:

It follows from Theorem 1 and 2 that two systems are equivalent if, for each
n their nonlinear transfer functions are obtained by performing the same sequence of
operations (described in the left hand sides of (4.2)-(4.5)) on corresponding
nonlinear transfer functions derived from equivalent subsystems.

We will close this section with an example which illustrates some applications

of the above lemmas.

Example.

Let us look at the cascade system shown in Fig. 4. Systems G and K are

differentiators while F and H represent systems whose only nonzero transfer
functions are F^,... ,sm) =1and Hn(sr .. .,sn) =1. respectively. The functions
u(t) and y(t) are the input and output, respectively. The relationship between u(t)

and y(t) in the time domain is given by y(t) =7- l-rr um(t)J . Using the formulas
from cascade systems [4-7], the overall nonzero transfer function has an order

equal to n*m and is given by:

Pnm(sl>•••••„•> * (»1-**2+- ••+sm) <W-•-+s2m> <8&H-1+'' •+S3m)••' (s(n-l)mfl+-' •+"n.) '

This is in the form as shown by the left hand side of (4.4), with An(.) = Sj+s2+. •.+sn

being symmetric. Set A, (s,,...,s, ) = B, (s^,...9s. ) = .... = Nk (s-,,...,sk )
112 2 n n

= s,+.. .+s with k- = k0 = ... = k = m. Since s-,+s0+.. .+sm = ms , it follows from
lml2 n xzmm

14Consider a cascade system with the input of system B being the output of system A.
If B is a linear system, the combined nth order transfer function is
A (s ,s ,s )Bn(s,+s0+...+s ). If A is a linear system, the combined nth order
n 1 2 n 1 1 2 ntransfer function is A^s^A^s^ .. .A-^s^B^s^s^... ,3^; .

-?7-



(4.4) that P^ 8m) * ^sm)(ms2m)---(mSnm)(sl+'--+Snm)

=mnsms2m.. .8^+...+3^). Applying Lemma 4again, we have PTUn(s1,...,sj

= mns s„ ...s n(s,+...+s ). This last expression follows from the fact that
m 2m nm 1 m

A (.) = s.+...+s = ns, need not be symmetric in the present case. Now,
n 1 n 1

Vl *rJ *™XS2m ••Snm(sl+-" •+Sm) =̂ 'l'* •'»«. +"""'V'''+V-1)'
s s,. ... s •
m 2m nm

9 2It follows from Lemma 1that s^.-.s^ =s^Sj..^ and from (4.5) that

<Sl+-"+sm-l)sms2m'"Snm= ^V.V>' ^^•"Vl1 ThUS
F (alt ....«„.)* nm^s^..Sn +n(»-l)»\s2....^ (*-7)

Transforming back into the time domain, we have

^rmrn'1 Llt)\™ (4-8)/ \ nm-n / 2 \/ A n-1 / Vy(t) - nm11 fu(t)\ (—2 u(t)jWSj +n(m-l)mn(u(t)l
which is precisely the original expression -^(± um(t)j in expanded form. Using
Theorem 2, (4.8) can also be obtained by simplifying the nonlinear transfer
functions or output transforms after each intermediate stage in Fig. 4.

5. Formulation of Nonlinear Transfer Functions for Dynamical Systems Described

by State Equations

In this section, we will consider a single input analytic system defined by:

./ n J ^ /«.% du(fc) dVt) ) (5.1a)x(t) = flx(t),u(t), dt , ...» N /

du(t) dNu(t)\ (5.1b)
y(t) « gl?(t),u(t), -jj—, ....

dt

where x(.) *Lo),x2(.) ,... ,xr(.)]T is the state vector, u(.) is the input, and
y(«) is the output.

Remark:

The actual input may be u(t) + 6u(t), where u(t) is a fixed time function and
6u(t) is a small signal compared with u(t). If u(t) is a constant, then after
substituting u(t) =u(t) + 6u(t) into (5.1a) and (5.1b), the resulting set of
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equations is still in the same form as (5.1a) and (5.1b) but with input 6u(t)

instead of u(t). If u(t) is a time-varying function, the resulting system will be

a time-varying system with input 6u(t), and is therefore outside the scope of this

paper.

Assume each state variable x.(t) and the output y(t) are represented by a

Volterra Series as follows:

and

cjCt> = £ x„(t) Vi -1 r (5.2a)
1 j=0 1J

y(t) = £ y,(t), <5.2b)

where x (t) and y.(t) are the jth order component of x±(t) and y(t), respectively.
The jth order transfer function H. (s.^ ... ,s.), j >. 0 of the system corresponding
to input u(t) and output y(t) can be obtained recursively by substituting (5.2)
into (5.1), and equating the output components of the same orders in both sides of the

equations. For the zeroth order output, we set u(t) = 0. If then follows from

(2.2),that x(t) =[X]L Q,x2 0,...,xrj0]T =xq, and y(t) =yQ, where xq is aconstant
vector and y is a constant scalar. It follows from (5.1) that

0=f(xo,0,0,...,0) (5.3a)

y = g(x ,0,0,...,0) (5.3b)
o

Hence, each x satisfying (5.3a) is an equilibrium state of (5.1a). Since the

Volterra Series may not converge everywhere, it is desirable to choose an

equilibrium state located within the dynamic range of interest. In any event,

we can always choose the coordinate with x and y as the new origin. Hence
~o o

without loss of generality, we can assume xq = 0 and yQ = 0.
The procedures for deriving the transfer functions associated with (5.1) can

be readily explained via an example. Let (5.1) be a dynamical system defined by

xx(t) =anXl(t) +a12x2(t) +Pxx2(t) +bxu(t) +e^t) (5.4a)

x2(t) =a21xx(t) + a22x2(t) + p2X;L(t)x2(t) +b2u(t) + e2u(t)u(t) (5.4b)

y(t) =clXl(t) +c2x2(t) +qx^(t) +du(t) (5.4c)

which can be rewritten as
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x = Ax +

V" Plx2 + elU
(5.5a)

,Vj p2xlx2 + e2uiJ

y = ex + qx- + du (5.5b)

where x =

*i A
all a12

. A =
~ x2 a21 a22

and c= [cv c2]. Although (5.4) may have more

than one equilibrium state with u(t) =0, let us choose x1}o =x2,0 "°and y0 =°'
In (5.5), and the rest of this section,the time variable t is omitted for convenience.

Now

00 „, oo

substitute the Volterra series x± =^ x1±, x2 =E x2i and y»E vi
A T

into (5.5), and let x. = [x...,x9.] .
'li' 21-

E ?< = E Ax± +
i=l 1 i=l

b-u

b2uj

E y±- E «± +<Z xii) +du
i=l i=l .i=l

rpi(£ x2i) +eiu"
ii=l

%X-)(l '-J
(5.6a)

+ e2uuj

(5.6b)

Since both sides of (5.6) represent equivalent systems, it follows from Theorem 1
of section 5 that the output components of the same order can be equated from both

sides of (5.6). It is clear from (2.2) that the nth order terms on both sides of

(5.6) can be identified as the coefficientsof £n after substituting eu(t) for
u(t). In general the order of a term can be determined by inspection. For example,

if we let a(t) =Z a.(t), b(t) -E b(t) and c(t) =E c±(t) be the
i=0 x i=0 :L=0

Volterra series with respect to input u(t), then a±(t) Dj(t) is aterm of order
(i+j) and a±(t) b.(t) cfc(t) is of order (i+j+k). Thus each term in (2.12a) is
obviously of order n. Although (2.12) is only for multiplication of two Volterra
series, for multiplication of more than two Volterra series we just apply (2.12)
more than once. For example, the total nth order term of a(t) b(t) c(t) is

f. e.(t)c 4(t) =E E'a.(t)b. .(t)Vi(t), where e±(t) is as defined in
W) X n" i-0 j=0 J J
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(2.12a).

Now let us start by equating the first order output terms in (5.6):

x- = Ax.. +

b-u

V

y1 = ex- + du

The first order transform of (5.7) is given by:

-1^(s^ = (s^-A) Vl U(sx)

Vsl> = c(s 1-A)
-1 Vl

b2 J
+ d U(S;L)

It follows from (5.8b) that the first order transfer function is simply

-1HjU^ = c(SlJ.-A) Vl
+ d.

(5.7a)

(5.7b)

(5.8a)

(5.8b)

Next, equating the second order output terms of (5.6) and using (2.11)-(2.13) we

obtain

?2 = Ax2 +

2 2

Plx21+elU

P2X11X21 + e2uu

(5.9a)

y2 = ~~2 + qxll (5.9b)

It follows from (2.11b), (2.12b) and (2.13b) that the 2nd order transform of

(5.9a) is given by:

(Sj+sp X2(S;L,s2) = AX2(s1,s2) +

Applying Lemma 2 from section 4, we have:

P1X21(s1)X21(s2) + e1U(s1)u(s2)

^^l^l^l^^ + e2s2u^sl^u^S2^

r, . mmv, >• P1X21(S1)X21(S2) +V(S1)U(S2>[(s1+s2)l-A]X2(s1,s2) - p2X11(s1)X21(s2) +e2s2U(Sl)U(s2)

Using an analogy to Lemma 3 from section 4, X^s-^s^ is obtained by multiplying by
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[(Sj+s^H-A]- on both sides:

X2(s1,s2) = (sl+s2)1~~
-1

P1X21(s1)X21(s2) + e1U(s1)U(s2)

P2X11(S1)X21(S2) + e2s2U(Sl)U(s2)
(5.11a)

Observe that (5.11a) can be obtained from (5.10) by considering (5.10) as a set

of two scalar equations in two unknowns: Xoi/8!*8?^ anc* X22^sl,s2^* Applying
Lemmas 2 and 3 of section 4, a sequence of additions and subtractions between the

two scalar equations, along with multiplications on both sides of the two scalar

equations by symmetric functions, can be carried out to obtain (5.11a).

Now from (5.9b), we obtain

Y2(s1,s2) = cX^s^s^ + qx11(s1) X11(s2)

Hence, the second-order transfer function is simply

Y2(srs2)
H2(S;L,s2) -u(S;L)U(s2)

(5.11b)

(5.11c)

2 2,From (2.12) the nth order terms contained in x2, x^ and x^^ are given

n-1 n-1 n-1

b? E x2,iX2,n-i' 2*1,1 2,n-i «* £ xl,ixl,n-i> *"P"t±vly. Thus by
x=l x=l ±-±.

equating the nth order terms on both sides of (5.6) for n >_ 3, we obtain
n-1

x = Ax +
~n ~~n

•pl ^ x2,ix2,n-i_
n-1

W E Xl,ix2,n-J
x=l

(5.12a)

n-1

y = cx^ + q E xi ,-xi « 4•'n ~~n ^ ** l,x l,n-i
(5.12b)

Following the same procedure as above, the nth order transforms are given by
n-1

rpl S X2,i<8r---8i)X2fn-i(8i+l,---8n)
r l-i i=1Xn(S]L,...,sn) =^s^.-.+s^l-Aj ^

Lp2 E xi,i(si"--'Si>X2,n-i(si+l,*,,,Sn) J
i=l

(5.13a)
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n-1

Yn(slf...,sn) =9Xn(s1,...,Sn) +qE ^.i^i'-'-'^^.n-i^i+l*---*8^
1-1 (5.13b)

Hence the nth order transfer function is simply

Y (s-,...,s )
H (s1f...,s ) =7#-r 7T\ (5.13c)
nv 1' n' U(s.)...u(s )

1 n

Observe that the right hand side of (5.13a) only involves transforms of

state responses of orders less than n. Consequently, all order output transforms

and transfer functions can be obtained recursively.

In general, normal form equations such as (5.1) can be decomposed into the

following form:

x=A?+b/u, &,..., £*\+jL, u.f!,...,£jA (5.14a)

y=ex+d(u. £..... £t)+ 4* "' £*-' 5/ <5-Ub)
A A&_ du d u

where D(.) and each component of B(*) are linear combinations of u, -rr ,..., —zz ,at dtJN

and F(') and G(«) only contain nonlinear terms. By changing coordinates in (5.1)

if necessary, we can always choose the zeroth order component x = 0 and y = 0

so that both F(«) and G(.) vanish when x = 0 and u = 0. Using the same procedure

as above, we obtain the following general relationships:

1st order component:

X1(s1) =(s^-A)"1 B(l,s1,...,s^)U(s1) (5.15a)

Y1(s1) =cX^) +D(l,s1,...,s^)U(s1) (5.15b)

H^s^ =cCs-jl-A)"1 B(l,s1>...,s^) +D(l,s1,...,s^) (5.15c)

nth order component:

Xi/Sl,'"*sn* * |^l+'"+snH"^j"
nth order transform terms of F('), which
only involve input and state responses
of order lower than n

(5.16a)
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Yn(Sl,...,sn) = c.xn(s1,...,sn) +
nth order transform terms of G (•)
which only involve input and state
responses of order lower than n

(5.16b)

Yn l'**"*sn
H (s-,...,S ) = rr, r rr} r- (5.16c)nv 1* * n' U(s1)...U(s )

Hence, all higher order output transforms and transfer functions can be obtained

recursively.

6. Generalization to Multi-input Systems

Extension of the results in the preceding sections to multi-input systems

are generally easy and straightforward. By means of vector representations, we

can write expressions which are similar in form to those derived for single input

cases. Indeed if u(t) =[u^t) ,u2(t),.. .,uN(t)]Tis the input,then (2.14) can be
written as

(«>,«,...,«)

y(t) = E • yn(t) •n=(0,rf^...,0) ~

(°°,...,°°) . °° °° *
where n = (n, ,n9,... ,ix-) and V* B E E *•• ^

L L W n=(0TT..,0) n^O n2=0 ix^O

We can call y (t) the output of order n, which is given by (2.15). The kernel
£ A

at order n is h (t^t,,; ... ;tn),where t± » (T:Ll>Ti2,•' ,,Tin.^* The transfer
function at order n can also be written as Hn(§i»s2'* *,;~N^' where
s. = (sJ,,s.0,...,s. ). Module vectors and other expressions can be similarly
-x v il' i2' ' xn '

written. As an example we show below how property 3 and property 4 from section 3

can be generalized for the multi-input^case.

Let each input component u.(t) =E lAiiJ cos(Wik+^W '*=1»".»N»
k=l

and let all input frequencies form a frequency base. Let r = (r^,...,rN), where
r.,Vi = 1,...,N, are nonnegative integers. We then have:

1. All output frequencies of order n » (n^n^... ,1^) are present in the
output of order n+2r = (n1+2r^,n2+2r2,... ,^+2^).

2. Output components of order n=(n^n^ ... .x^) and output components of order
n+r can never contain identical output frequency, if one of the components, r±

in r is an odd integer.

Further extensions to allow system combinations, such as those of (2.11)-(2.13),

for the multi-input case are also straightforward. Consequently, the nonlinear

transfer function formulations given in section 5 can also be generalized.
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7. Conclusion

We have derived the relationships between the input and output frequencies

and amplitudes at steady state. Expressions for the amplitude and phase of a

certain output frequency of a certain order are given. Relationships between

the output frequencies of different orders are also given.

We show that symmetrized transfer functions are not required when

operations are carried out between transfer functions of corresponding

equivalent systems. Lemmas in section 4 also provide conditions under which the

simplification or expansion of transfer functions to equivalent forms can be

done. Finally, we show a method for obtaining transfer functions from state

equation representations recursively.
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APPENDIX

This appendix contains specific examples showing the detailed expansion of

various general formulae given in section 3.

1. For (3.2), let K=2, n=2

2 2 j(\ "^k }t
yn(t) - "E E \ \ Hn^\ »j\ )e * 2n k1=l k2=l h k2 n kl k2

2 J(V«^)t
= E Al\A(^l^V)ek2=l -2" -2

2 j(W)t:
2

+ E VkA^V^k >*lc2-l l l

2jw1t j(o)1+a)2)t
= A1A1Hn(j-w1,j«1)e + A1A2Hn(ja)1,ja)2)e

jCu^+w^t 2ja>2t
+ A2AlHn^a)2';'aiPe + A2A2Hn^tU2,^w2^e

2. For (3.5) let K=5, M = (m^nu,!^,!^,m5) = (2,0,1,3,5)

n = mi+nu+m.+m.+m,- = 11
1 2 3 4 ->

m

•'' yM(t)-ll!f n^kl^2{ja)1},0{ja)2},l{ja33},3{jo34},5{ju)5}]
j(2a)1+0a)2+a)o+3a),+5aje) t

A- «« "•*} **/ c

= 11! 2ToT IT 3T JTH1]fJwi'iwi»Jw3»Jw4»Jw4»Jw4»Jw5»iw5»3w5»Jw5»Ja)5)

j(2a)-+0)0+310, +5o)(.)t
•e

3. For (3.10), let K=2,M= (m_2,m _,m ,m2) = (2,0,2,3)

n - m__2+m_i+mi+m2 = ^» ^M = (m-i"~m i^wi + (m^-m «)a)_ = 2a)-+u)«
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yM(t) -
7t

m,

2 A *\ J^m'j I n ^T)H7(2{ju)__2},0{ja)_1},2{j(01},3{ja)2})e
i#)

A2 A° A2 A^ j(2^+0)2) t
="T TT OT 2T IT H7(3"_2,ja)_2,ja)1,ja)1,ja)2,ja)2,ja)2)e

7!A2|A2|4A2 j(2u1+w2)t
H-(jo) 0,ju) 0,ju>.., ja)1,ja)9,ju)9,ja)?)e

2' x2!*2!x3! 7-2-2 1 1 z z

3

4. For (3.11), let K=3, u> = E P^i =4a)l + 0a,2 + ("2)(03*

order n = |4| + |o| + |-2| =6, and the unique lowest order M which gives rise

to a) is
o

M = (m__3,m_2,m_1,m1,m2,m3) - (2,0,0,4,0,0)

5. For (3.12), let K=3, r=2.

The total d.c. output at order 2r=4 is:

Thus, the lowest

£ Ds3 »
3 |A±| *n

21*° z2**° 2 I1"1 ^zi!'
H4 (z1{jW_1}|21{j(D1),22{jto_2),Z2{jli»2},23{j(il_3},Z3{jfJ3}j

where z. • r3 •" E *4 " 2-2jL-z2

n 2z, 2<2-z.)
2-0 4| |aJ| |a2| 2|a3| 2
£ ^T—S- "I 2" Hj0{ju J.OCjt.,},^ {jo, -},z {joU^-z ){jU ,},(2-z ){J.o3})
£^0 2* (0!)Z (z,!)2 [(2-Z,)!]2 ** l lZZZ^ ^ J z "W

, 2z, 2(2-l-z,)
2-1 4I lAj2 |A2| l IA3I 2
£ ^T^S" ~^? !^ j-M1^ 1).llj«*1>.82{j« ,},z {jU },(2-l-z ){jU },(2-l-z,){j».})
b^0 2* (1!)Z (z,!)Z [(2-l-z,)ir X 2 37

2z2 u ,2(2-2-z0)2-2 „ IAJ- |A2| ' \H\^-~2>
4*0 2* (2«)4[(z2rf fC2-2-Z2>!J2 ^(2'JW-l}'2{jft»l};22{^2>.z2f^2}^2-2-z2><^-3>'(2-2-2)0-})

„ 1^' |2 1. ,2

7 ^7 V>-3-1"-3'>3^3> *^ ~^2 ^ W».VUVU_y*J

4! 'A2|4 4, lA !2 |A (2
+7 ^7 "*Cj-.2.J--2«J-2^> +7 7^2 ~^2 •4(J-.1.J-1.J-.3.J-,>

M lAjl2 lAj2 .'.! 'Aii
:A

2 (1!) (1!) * X L l l 2 (2!) ' " l - i
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6. For(3.13),let K=3, r=2 (same as in Appendix 5). The total d.c. output at

order 2r=4 is

3 kl

k1=l k2=l 2
4]_
4

2z.~

3 Ki x

i=l (zi!)ZJ H4°\J"-»1'3"k2'],'-k2)

where z., is the number of jio. in the argument of H^-)

k2=l 2"

«-* 4'

k2=l 24

+ E ^k2=l 24

2z.~

3 |A.| X
H -i-j-

li=l (z±0 .

3 |Aj *
n —-—r-

H4(>l.^-l»JV'jU,-k2)

1=1 (zi!)

3 A,

2z.l
x

i=l (z±!)A j

H4(j«J2,ju_2,juk ,ju_k )
2 ^

H4(jo)3,ju)_3,ja) ,jo)_k )

4I lAj4 |A2|° |A3|°
h-^T-^-T—^ H4(ja) ja) ,3(0 ,30)^)
24 (2!)2 (0!)2 (0!)2

|A1|2 lA,!2 |A3|°
24 (l!)2 (1!)Z (0!)Z

|A |° |A |4 |A |° .

2q (0!) (2!) (0!)z

4I lAj2 |A2|° |A3|2 .
+^f o—=-V 2tVja)3,;,a)-3,:,aJl,:,aJ--l

24 (l!)2 (0!)2 (1!):

41 .A/ |A2|2 |A3I2
+ ^f—^-o 9 9 ha(3wvjo)_vju)9,jw__9)

24 (0!)2 (I!)2 (I!)2

4I \A±\° |A2|° |A3|4 .
24 (0!)2 (0!)2 (2!)4 *

This gives the same answer as in Appendix 5, as it should.
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7. For (3.14), let K=3 and u) = 4o) -2w , as in Appendix 4. So n=6 and

M= (m_3,m_2,m_1,m1,m2,m3) = (2,0,0,4,0,0)

As in Appendix 5, let r=2. Thus output with frequency u)q at order 10 is
m.+z.

2 2~Z1
E E

(6+4)!
6+4

zl=0 z2=0 2 i=-3 <mi+zi)!
#0

jw t
J o

hofc0**!* {j(0-l}» (4+Zl) {j Wl}' (0+Z2} {j(0-2}» (°+z2H3w2}'(2+z3){jaj-3},(0+Z3){ja)3r

where z. = 2-z^-z^

20 A(2+Z3) A(0+Z2) A«*°> A<4+°> A(0+Z2) A^_ 2^5 10! ^-3 A-2 A-l ^ tl ^3
- 2-o 210 (2+z3)! (0+z2)! (0+0)! (4+0)! (0+z2)! (0+z3)! *

Hlo((0+0){jw-l},(4+0){j^ e

2-1 A "A+ yT 10! -3 -2
(2+z3) (0+z2) ((>fl) (4+1) (0+z2) (0+z3)

A2 3A-- A£
-Q 210 (2+z3)! (0+z2)! (0+1)! (4+1)! (0+z2)! (0+z3)! '

H10 ((C>fl) {ja)-l}' (4+1) {jUl}' (0+Z2) {ja)-2}'(0+z2) {jt02}' (2+z3} {jW-3}' (0+Z3) {jul3})
(2+z3) (0+z2) (4+2) (0+z2) (0+z3)

A:i""' Ar'"7 ^ " A-2^2 10! A-3 " A-2
-0 210 (2+z3)! (Ofz2)! (0+2)! (4+2)! (0+z2)! (0+z3)! '

H1Q ((0+2) {ja)^}, (4+2) {ja^}, (0+z2) {ju)_2>, (0+z2) {j^}, (2+z3) {ja)_3>, (0+z3) {ju^j

4 A A2 j(4o)1-2u)3)tA_ AT At v 3(4a)^ 4T 47 if Hl0(4{ja)1},4{ja).3},2{j.3})e
ln, A3. A9 A4 A? A . v j(4m1-2u3)t

"̂ IT TT 4T IT It H10(4{J«1}J«2.J«.2.J»3.3{j»_3};e

A-4

jw t
J o

ja) t
J o

jw t
J o



ini a2 a2 a? a2 x Kta^^t
+P> IT 2T 4T 17 H10(4{jV2{>2>'2{^-2>'2{>-3})e

,„. A3, A, A? A, . j(4<o-2a>)t
+p3FiF5tiT "aoK."^.^-3^^)*
+„,. 4 A_2 A., 4 A, _ L _ x4 ^ ^(^^H

2
35 ir ir ir i if h10K>5<jv,J»_2.:iv2<**-3})

A2 A2 A6 \ j(4w -2o) )t
52T2T 6tHlo(2{^-l}*6{3Ul}'2{Jl°-3})e+2io

8. For (3.15), let K=3, and u =Acu^Uj (same as in Appendix 7).
Thus n=6 and M=(m_3,m_2,i»_1.'VVm3) =(2,0,0,4,0,0). For r-2, the output
with frequency oa0 at order n+2r = 10 is:

k mi+Zi3 kl in. 3 A,1

1 * ~2 i^0

10! n A

*1 l£l 210 i=-3 <V*i> !
10) t
J o

where z. =number of 2\ »3\ eclual to j^* Vi =1»2,3,

2+z„ 0+z9 0+z7 4+z 0+z 0+z3

* 10^-3 3 ^_^jL^_I_^ h .
" -L 210 (2+z3) ! (0+z2)! (0+Z;L)! (4+zx)! (0+z2)! (0+z3)!

jw t

H10(2tJ"_3}.«J'"1>.^i.JM_i.J\2»>-k2)e
2+z, 0+z, 0+z 4+z, 0+z 0+z-

2 10,A-33 ^_^_h2-h ^-.+ 2^± ^[0 (2+z3) ! (0+z2) ! (0+zx) ! (4+z^ ! (0+z2) ! (0+z3) !

jU) t

A-5



2+z 0+z„ 0+z 4+zx 0+z2 0+z3
3 10! A-3 A-2 A-l *1 __*2 A3

+ 2J}f*1 210 (2+z3) ! (0+z2) ! (O+Zj^) ! (4+z^ ! (0+z2) ! (0+z3) ! •

J»tH10(2{j<o_3},4{j(1,1},j1o3,ja._3,j(ok ,ja>_kJe

pf IT IT Tt Hio(2<3-.3}'*«-i}'J"l'J--i'3-i'3-J'3"0
10!. ^3 A-2 A-l *i A2 „ /„„ w„.. .,.. ... \.3V
210 2!

A A £\- A \

TT IT 37 IT \o{2^^^i\}^2'^-2'iaViu-l)'

A A A A \5YT 2T 47 27 H10(2{ja,_3},4{jUl},jio2,j»_2,Ja,2,jU_2j.

A A A A / \ jw t+P 3T IT 3T if Hlfl(2{j._3},4{JUl}.J«3,J»_3,J«1,J-.iJe

+Tff IT TT ?T if I?" H10(2{ja)_3},4{Jlo1},jU3,j»_3,jlo2,jo3.2)

+Jo" 41 47 27 H10(2{jU_3},4{jUl},jc3,jlo_3,j«l3,jo»_3;e

This answer is the same as that of Appendix 7, as it should.

A-6

JO) t
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e



Table 1. Steady-State Reaponee of a \ -tone -Input

Drder J
of

utput j
icaa

Module Vector M_ Output Complex Amplitude
of Output

0
B

-2 •-,
_ _ Frequency

1 l %

0 1 0 0 0 0 o H
o

1 0 0 0 1 w2 TA2W

1
2 0 0 10 «1 Kvj-!>

3 0 1 0 0 -w. 1 A* HjC-JWj^)

A 1 0 0 0 -ttj TA5HW

1 0 0 0 2 2u2 1 A* H2(jw2.J«2)

2 0 1 I Mi'*w2 I^Aj H2(j«1(ji(2)

3 0 0 2 0 2mx 1 A2 H2(J«1,j«l)

4 0 1 0 1 u2"*l 1 A*A2 H2(-jMl,j»2)

2
5 0 1 10 0 ll^l2 H^-j^.J^)

6 0 2 0 0 -2«1 £ A*2 HjC-j^.-J-j)

7 1
0

0 1 o ||A2|2 H2(-jo,2,-j»2)

8 1 0 1 0 *\*i 1 AXA* B2(Jh1(-J»2)

9 1 1 0 0 "*,i"w2 2 A*A| EjM^.-J-j)

10 2 0 0 0 -2u2 iA52H2(->2,-jo.2)

1 0 0 0 3 3u2 ^l^V^l^T*
2 0 0 1 2 "i+2(*2 |axA2 HjCj^.jWj.jUj)

3 0 0 2 1 2«1-hu2 | A2A2 HjCjt^.j^.jUj)

A 0 0 3 0 3«1 i Aj Hj^.J-jl.JV

5 0 0 2 -^+2*2 1 A*A2 H3<-JVJV Jw2)

6 0 1 1 «2 flAj2 A2H3(-JUl,jWl.Ju2)

7 0 2 0 Wj flAj.12 AX HjM-j.J^.J-i)

8 0 0 1 -2w."hi»2 IA*2a2 H3<-Jui'-Jui'iw2)

9 0 1 0 -w1 f AjlAjl2 H3(-J-1.-j«1.j-1)

3

10

11

0

0

0 0 -iu1

0 2 «2

iA*3H3(-J«-1.-j«1,-J«1)

|A2|A2|2 H3(-Ju.2,Ja,2,Ju)2)

12 0 11 Wj |A1|A2|2 H3(J«1.-i«o2,jw2)

13 0 2 0 2u, -J,
1 2 !A1A2H3(JW1-JW1'-JU2)

14 1 0 1 -«.
1

|aJ|a2|2 ^(-j^.-j^.j-j)

IS

16

1

2

1 o -«2

0 0 -?u,-«.i2

2IAJ2 At HjC-J-j.J-^-J-!)
i *2 *
f Aj A2 H3(-j-1.-j«1,-J«2>

17

18

0

0

0 1 -«2

1 0 w.-2«2

||A2|Z A* H3(-Ja.2.-j«-2.J«-2)
1 *2
fAlA2 HjO^-J-j.-J-j)

19

20

1

0

o o -,-a.j

o n ->•).,
-

|A^ H3(-jUl.-jW2.-ju,2)

;-a2 h3(-i...2.->2.-».-2)



FIGURE CAPTIONS

Figure 1. Equivalent system resulting from the addition operation.

Figure 2. Equivalent system resulting from the multiplication operation.

Figure 3. Equivalent system resulting from the differentiation operation,

Figure 4. An example of a composite system obtained by cascading various

subsystems.
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