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ABSTRACT

A unified study of the applications of Volterra functional series to
nonlinear system analysis is presented with special emphasis on frequency-
domain results which either have not been published before, or where rigor
had been lacking. In particular, an in-depth analysis of the harmonic and
intermodulation frequency components due to each Volterra kernmel of a given
order will be presented and explicit formulas which complement those already
published will be given. The effects of manipulating various kernels, which
need not be symmetric, on the overall response, as well as on the composite
kernels will be investigated. These results are then applied to the analysis
of dynamical systems described by a system of nonlinear state equations and a

read-out map.
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1. Introduction

The Volterra functional series [1] has been used extensively in the analysis
of nonlinear circuits and systems characterized by weak nonlinearities [2-11].
Our objective in this paper is to present a unified study of this subject with
special emphasis on frequency-domain results which either have not been published
before, or where rigor had been lacking. In particular, new explicit
formulas will be presented which complement those already published [2-3]. These
formulas are derived in Section 3 and are of particular interest to the frequency-
domain analysis of nonlinear circuits. In particular, they show precisely
which harmonic or intermodulation frequency components are generated by a
Volterra kernel of a given order. Among other things, these explicit formulas
show that the frequency components generated by an nth order Volterra kernel
are disjoint from those generated by the (nt+l)th order kernel. They also
reveal a widely held assumption concerning the incommensurability of input
frequencies as incorrect and the precise condition where this aésumption
holds is given.

Another widely used assumption in this area is that all kernels are
symmetric so that one can freely manipulate them without questioning the
validity of such mathematical operations as addition, multiplication,
differentiation, etc., as well as other more complex system operations such
as cascading one system into another etc. We show in Section 4 the precise
conditions under which the above cited operations are valid even if the
kernels are not symmetric. Moreover, we show why the usual symmetry assumption
is undesirable for many applicatioms.

The symmetrization results in Section 4 are then applied to develop a
Volterra functional series associated with dynamical systems described by a
nonlinear system of state equations and a read-out map in Section 5. Again,
explicit formulas for deriving the Volterra kernels of any order are given.
Finally, the generalization of the above cited results to multi-input
systems are summarized briefly in Section 6.

Since one of the objectives of this paper is tutorial in nature, some
well-known results are included in order to render this paper somewhat
self-contained. Indeed, much of the materials presented in this paper will

form the foundation for a subsequent paper on the applications of Volterra

functional series to nonlinear circuits.
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2. Functional Representation of Analytic Systems

For single input analytic systems [4-7], the output y(t) can be expressed
as a Volterra functional series of the input u(t). Thus

() =2 ¥, (t) (2.1)
, n=0
where
ho ,n =20
v, (8) =q " (2.2)
Sm eee I h (t ,12,...,1 ) H u(t—T Ydr,, n > 0
i
~o —o i=1

is called the pth order output of the system, and hn(rl,Tz,...;Tn), a real valued
function of TysTyseeesThs is called the nth order kernel or nth order impulse

response of the system. The multiple Laplace Transform of the nth order

impulse response

[+] [+ ’ ' =
H (':pl se = s 0
sz 00 - -8
T,-5,T -...~s T
j o-.j h (-'l’ seeayT )e 11722 nnd
o o D1 n Teeedr, 1 >0 (2.3)

is called the pth order transfer function of the system. Observe that the pth

order kernel, and hence also its transform is not unique in the sense that
several distinct nth order kernels may give the same nth order output for

the same inputl. However, the symmetrized kernel and its associated symmetrized

transform defined by

1
b (t)3Tyaeees ) Ay > B (TysToseest) (2.4)
12 n " a11 permutations n 1t "
of Tl,...,Tn
and
1
H (Sl,S ,'°':Sn) é;—!' 2 Hn(sl,sz,...,sn) (2.5)

all permutations
of sl,sz,...,sn

respectively are unique [4,7].
To emphasize the correspondence between the time-domain and frequency-domain

quantities, let us replace the physical time variable t in (2.2) by n

associated time variables tl’t°""‘tn:

1
Observe from (2.2) that an interchange of the argument of h_(r ,12,...,Tn)

does not affect the input-output relationship. Hence there may be up to
n! distinct nth order kermels corresponding to the n! permutation of n variables.
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, =0

oot ) A n ’
lj hy l’T"""’Tn) iill u(ti—‘l’i)d'(i, n>0 (2.6)

y(t 't

The multiple Laplace transform2

Ho » 1

,0--’Sn) = n (2.7)
H (sl,sz,...,s ) I U(s ),n >0
g1

of (2.6) is called the pth order output transform, where U(s) is the usual

]
o

Y (51,32

1st order Laplace transform of the input.
We will define two systems as equivalent if their respective gymmetrized

transfer functions are identical. In particular, if gn(Tl,Tz,.. ,Tn) denotes

the nth order kernel of an equivalent system with output z(t) = 2: z (t),
n=0
then3 for each n
h (11,12,...,Tn) = gn(Tl,Tz,...,Tn) (2.8)
H (sl,sz,...,sn) =G (S Sys- ..,sn) (2.9)
Y (81’82’°"’Sn) = zn(sl’SZ""’sn) | (2.10)

for all u(t) in the input ensemble, where the symbol "=" in (2.8)-(2.10)

is used to mean the symmetrization of both sides of each equation are equal.

The following are some operations correspondlng to various combinat-ons
of analytic systems [4-7] which we will find useful in this paper. The
quantities a(t) A 2: a (t) and b(t) = ‘2: b (t) denote the output of the

n=0 n=0
two systems being combined, while vn(rl,rz,...,rn) and wh(Tl’TZ""’Tn) denote

their corresponding nth order kernels. The output of the composite system is
denoted by e(t) = 2: en(t), and its associated nth order kernel is denoted by

n=0
k(T Tysenes )

1. Addition. For the system combination shown in Fig. 1, we have for each
n and for all inputs u(t),

en(t) an(t) + bn(t) (2.11a)

. e e e im e —a— . —

ZWO shall use capital letters to denote lLaplace Transform variables.

3rhe symmetrized hn(°) may ditfer from the symmetrized gn(°) trivially.



E_(s)58y0re55) = A (ss6p0e-28) + B (51585500055 (2.11b)

K (Sl,sz"" Sn) = Vn(31332""asn) + wn(sl’SZ’;"SSn) (2011c)

Notice that (2.11b) is the multiple output transform of (2.lla).

2. Multiplication. For the system combination shown in Fig. 2, it can be

shown using (2 2) that for each n, and for all inputs u(t),

e (t) = }: a ()b _ (t) (2.12a)

i=0

n
En(sl’szs"‘,sn) = 2: A.(Sl,sz,...,s.)B .(S

RN CHRPLIVIREERLR (2.12b)

n
Kn(sl,sz,...,sn) = éé% Vi(sl’sz""’Si)wn—i(si+1’si+2"°"Sn) (2.12¢)

3. Differentiation. For the system combination shown in Fig. 3 in which

the output a(t) is differentiated once, we have for each n and for all

inputs u(t),
e (t) = én(t) (2.13a)

E_(81:5,50058 ) = (s ,+8,% - S )A _(81,5,50.4,5) (2.13b)

K (sl’ 2"”98 ) (S +s +‘-0+S )v (S ’ z’o-o,sn) (2.13(:)

The Volterra Series representation (2.1) can be easily generalized to allow

multiple inputs [7]. Thus, for a multi-input system with output y(t) and
inputs “1(t)"""uN(t)’ we have

-]

y(t) = 2 ) I Yo n...n ) (2.14)
n,=0 n,=0 nN=0 172" ™

e
wher h ym =0 ¥i=1,...,N
00440
b © =/ « o
RS ) H .o Sevsyesesd yeensT .
2 et j_m hnlnz...nN(Tll’le""'Tlnl’TZI’TZZ" T, 3TN1° W2 NnN)
n
N M
I il ui(t-rij)dtij, not all n, = 0 1i=1,...,N

i=1 j=1
A similar expression for the transfer function is given by

H

eesS
n

n e ( 11 12,00. ln 21 22,- znz;-..;-.o;SNl,SNZ,o.o,SNnN)

N n; -8t (2.16)
sm Sm n n, ( ) T 1oe g
i=1 j=1 ij

12

(2.15)



3. Steady State Analysis

In this section the steady state output of analytic systems with several

sinusoidal inputs will be considered. Let the input u(t) be represented by
Ju, t
k
u(t) = 2, Ae (3.1)
k=1

where Ak may be complex, and w, may be any positive or negative real number.
o

Let y(t) = 2: y’(t) denote the output. Since the zeroth order output Yo
n=0

does not depend on the input, when we refer to the order n in the rest of

this section we mean n > 0, unless otherwise specified. Thus from (2.2),

the nth order output is given by4

a n K Ju, (t-1,)
y,(0) = j_” . r h (t ) 7,) Y X A e 1oy s
- =1 kel
é(: é K o o n jwk (t-1,)
- J’ : j’ h(T,..,t) T Ao e 1 dv

- = — 1, ’

kl 1 k2-1 k =1 - -0 n i=1 Aki i
K K K n Ju € al

: 171 ksl kel 4=l - - 11 1

It follows from (2.3) that the nth order output due to the input u(t) in
(3.1) is given by

y (£) = n e H [, »Jw, yeees
o j‘:' K1 \1=1 By n ( My ey jwkn)
K K K j(wk-i-mk-r-...«mk )t
= 1 2 n
= H » ’ .y 3.2
k§1 kz';'l Z [Ak LA (jw“ e ! kn)] ) o

(See Appendix 1 for a specific example with K=2 and n=2). Observe that

Ak Ak Ak H (Jw »jW, sesssjw ) is the phasor associated with frequency
k1 k2 kn
0y + w0y + cee Wy . Different terms in (3.2) may give rise to the same
1 2 n
frequency, and each permutation of (jwk ,jwk ,...,jwk ) in the argument of
1 2 n

Hn(') gives rise to a term in the nth order output. Let us look at a

n w, t
specific example with K = n and Ak =1¥k=1,...,n, i.e., u(t) = 2: e k . Then
k=

) n (X ju (e=t )\ K X K o jmki(t—ri)
Observe that I (2 Ak e i Z . z I Aki .
] .

i=1 cl#l k. = kn=1 =

5Equation (3.2) is given in [2,4].



J(wk +...+mk )t

n n n
y (8 =, 3 - T H Gu sdw ,e.ode de 1 " (3.3)
=l k=l K =1 1 2 n

It follows from (3.3) that there are n! terms in yn(t) with frequency
w1+w2+...+w , each corresponding to a permutation of (jwl,jwz,...,jwn)
in the argument of Hn(°). Hence, if y(t) contains no component with
frequency w1+...+wn other than those n! terms in yn(t), then it follows
from (2.5) that

1 J(wl+w2 ...+mn)€
H (J 2,...,juh) =T coefficient of e in y(t) (3.4)

This is one method usually used to derive symmetric transfer functions by
exponential inputs. It has been suggested by several authors [2,3] that (3.4)

holds since y(t) contains no components with the same frequency wl+w +..t0 ,

other than those n! terms in yn(t), if the set of input frequencies

{ml,mz,...,mn} is incommensurable. Unfortunately, this need not be the case.

Indeed, if we choose w = 2, w, = 2v¥2 - 1 and wy = 1, then {ml,wz,w3} are

incommensurable. Yet we have m1+w2+w3 = w1+m1+w1 = 3/2. To eliminate this
possibility, we must impose a slightly stronger condition as specified in
our next definition.

Def. 3.1 A set of frequencies {wl,mz,...,wk} is called a frequency base,

if there does not exist a set of rational numbers {rl,rz,...,rK} (not all zero)
such that

T + row, oot rpwg = 0

1“1 7 %

Since any output frequency e +mk +...+mk in (3.2) can be expressed as
1 2 n
mlm1+m2w2 "'+mK°K? where m,, i=1,2,...,k, are nonnegative integers, it is

convenient to define a compact notation to denote the output frequencies.
Def. 3.2 A vector M = (ml,mz,. .. ,mK) , Where m, , i=1,...,K, are nonnegative

integers, is called a module vector of the input frequencies {wl,wz,...,wx}.

For each module vector M, we define the corresponding output frequency

Wy é=m1m1 + myw, +...+ M0

~

Module vectors have the following properties.



Property a.

If ml+m2+...+mK = n, where n > 0 then wM is an nth order output frequency;

is generated by an nth order kernel.

i.e., Wy

Proof: “Obvious from (3.2) =
Property b.

Let the input frequencies {wl,wz,...,wK} constitute a frequency base
and let M, @' be any two module vectors. Under these conditions

M=M iff wy = Wy

~

Proof: Follows immediately from Definitionms 3.1 and 3.2. H

Property c.
If the nth order transfer function is symmetric and the input frequencies
constitute a frequency base, then the sum of all terms with frequency Wy in (3.2)

-~

for y (t) is given by6 e
n = o

e - —

m.k

K Ak - jwMt
yM(t) = n! kzl E;T B ml{jml},mz{jwz},...,mK{ij} e ~ (3.5)

K
where M = (ml,mz,...,mK), 2: mo =, and mk{jwk} denotes "mk" consecutive
" k=1 :

arguments in Hn(-) having the same frequency jmk.

(See Appendix 2 for a specific example with K= 5, M = (2,0,1,3,5)).

Proof: Equation (3.5) is obtained by summing all terms in (3.2) with frequency
e This corresponds to terms in which the argument of Hn(-) contains "mi"
entries having the same frequency W, where i = 1,2,... Since (3.2)
contains all Eérmutation terms of ml{jwl},mz{jmz},...,mK{jmK} in the argument
n!

Peoom )

of H(+) and g;i m, =, there are mllm of them. Thus

al m1 m2 m jw, t

- K - - TR
yg(t) m1!m2!"‘mK! A A, ...AK Hn(%l{le},mz{jwz},...gnK{JwK}> e

Remarks:

2

1. In view of the preceeding properties of M, we will call M an nth order
K
module vector if 2: m, = n.
=1 1

A similar expression has been given in [2].



2. It follows from property b that if the input frequencies {wl,wz,...,wn}
in (3.2) constitute a frequency base, then y(t) does not contain output terms
with frequency w1+w2+...+mn other than those n! terms in yn(t). Thus
(3.4) holds.

3. It follows from property b that if the input frequencies constitute
a frequency base, and if M is an nth order module vector, then the
output frequency Wy only appears in the nth order output yn(t) and is
unique.

4. It follows from property b that if the input frequencies constitute a
frequency base, and if two module vectors M and M' are not equal, then
yM(t) does not contain terms in yM,(t), and vice-versa. Hence the terms

in the total output

y®) = L oy =X T ... L y,0 (3.6)
all . ~ ml=0 m2=0 meO ~
possible
M

~

do not have overlapping output frequency components. In any event (3.6)
holds in general regardless of whether the input frequencies form a .
frequency base or not.
It is clear from (3.2) that the total phasor associated with the nth
order output frequency wkl+wk +...+u)k is always a symmetric function of jmk s
jwk ,...,jwk . Therefore, uniess othérwise specified, all nonlinear transfe%

fungtions aré henceforth assumed to be symmetric in the rest of this section.

Now let us consider a K-tone real input given by

K K (A, j *
. Juw.t A ~juw.t
u(t) = 37 |A,|cos(uw,t+/a ) = i1 i ™ i) 3.7
, . = — e —
= 1 15y 12=1 2 Tge
* ]
where Ai is the complex conjugate of Ai' By Definition A_i é=Ai and w_, A W,
(3.7) can be rewritten compactly as follows:
K Ai jwit
u(t) = 2 —i— e (3.8)
i=-K
i#0

The nth order module vector of the input frequencies in this case assumes

the form MA (m_K,...,m_l,m ...,mK), where m,, i=11,+2,...,tK are

1’



nonnegative integers with f& m, = n. Observe that the input frequencies

i=-K
i#0
{w_K,...,m_l,wl,...,wK} in this case do not form a frequency base because
wi+m_i = 0. For each nth order module vector, we have
-3 2 3.9
Wy = z m.w, (myutm 0 ) = Z (m-m_Jw, (3.9)
~ i=-K i=1 i=1
i#0
and from (3.5)
m
n! K Aii j(UMt
yM(t) = ;E- E a7 Hn(m_K{jw_K},...,m_l{Jw_l},ml{le},...,mK{JwK}) e ~
~ i=-K i
i#0

(See Appendix 3 for a specific example with K= 2, M= (2,0,2,3)).
To illustrate the significance of (3.10), we use it to derive Table 1
[2] which gives the output corresponding to each module vector M from order

0 to 3 for the 2-tone input case, i.e.

2 2 Ai jwit
S u(t) = 2: |A.|cos(w t+z§ ) = 3, 5 e
i=1 i=-2
i#0
Since the constraints for M = (mK?...,m 1,ml,...,m ) to be an nth order
s 1 _ 1Tl
vector are_z: mo=n and m >0 vi=t+#1,...,+K, it can be shown easily
i=-K
i#0
that the number of distinct nth order module vectors for a K~tone input
is given by (2K:n—l§ . Observe also that distinct module vectors of the

same order may give rise to the same output frequency because
{w_K,...,w_l,wl,...,mK} is not a frequency base.

We will now derive some properties of the output frequency
components when the input is a K-tone as defined by (3.7), where

{-wK,-mK_l,...,—wl,wl,...,wK} are the input frequencies. We will make the

standing assumption that the subset {wl,wz,...,wK} of input frequencies form
a frequency base. Under this assumption, a module vector M that corresponds
to a d.c. output component (i.e., Wy = 0) must have m -m_, = 0 in view of

i
(3.9); i.e., m, = m_., i=1...,Kk. Hence, the order

i
> n - 3 %
n= :E: mi = ) (mi+m_i) = ) 2mi = even integer. Consequently,
i=-K i=1 i=1
i#0

-10-
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the order of a module vector that gives rise to a d.c. output component

must be even. Let us denote a 2rth order module vector which gives rise

to a d.c. output by ng = (z_k,...,z_l,zl,...,zk), where 2, =2_4» i=1,...,k.
froperty .
Property 1 K
For any output frequency W = 2: piwi, where pi is an integer
i=1
¥i =1,...,K, the lowest order module vector M =¢q4(,...,m_l,ml,...,mK)

K
that gives rise to this frequency is at order n = 21 lpil . This module
i=

vector is unique at order n and is given by

m, = p and m if p, >0
i i i Vi

1,ooo,k (3.11)

m =0 and m_j if p; <0

~ (See Appendix 4 for a specific example with K= 3, &; 4w, + sz + (-2)w3).

1
Proof:

K
By hypothesis, w, = 0, and M is of order n = }E: Ipil. To prove
~ i=1

M
that M is of lowest order and unique, assume that there exists another
module vector M' = (m:k,...,mll,mi,...,mi) of order n or lower such that

Wyt = Wy and M' # M. It follows from (3.9) that

~

K K
'em! = ) - = i
E (m:,L m_i) wy Eil (mi m_i) wy iii pyuy- Since {wl,...,wK} forms a

baliss

i=1

frequency base, m'i—mli==mi—m_i = P> ¥i=1,...,K. This implies that
1 ]

m'-m, = m'.-m _.
ii -i -1 i

m ., or both are equal to 0, m'-m, = m',-m . > 0. Thus m!+m'., > m_+m ..
-i ii -i -i—- i -i—"i -i

Since M' # M, by assumption, there exist an "i" such that

m'-m, =m'.,-m , >0, i.e., m!+m', > m4m .. Therefore
ii -1 -i i -1 i -i

As mi and m', are nonnegative integers and either m, or

K
2: (m'4m',) > 2: (m,+m ,) = n. This contradicts the assumption that M'
4 i ~-i i=1 i =i ~

i=1

is of order n or lower. "
Corollaries

1. 1If an nth order module vector does not have both m, and m_, nonzero

¥i =1,2,...,K, then no other module vector having the same or lower

order can give rise to the same output frequency Wyge

~

~11-



2. By relabelling the index i of m ,¥i =1,2,...,K, we can always write

2: pi i where pi is a nonnegative integer ¥i = *1,...,iK. 1In
i=-K
i#0

this case, M defined in (3.11) is equal to (p_K,...,p_l,pl,...,pK).

Property 2.

Given any output frequency wo EE; P. ml, where p is an integer
¥i = t,Z,...,K. Let M be the unique module vector of the lowest order
na Egi |pi| (as defined in property 1) such that “@ W - If
y' = (m:K,...,m:l,mi,...,mﬁ) is an n'th order module vector, then

= t =
Wy mg, iff M M+ Z2r

where §2ris a module vector of order 2r = n'-n which gives rise to a d.c.
response.

Proof:

mWwe@=§+§h=({f{wn”%faP%ﬁP””%ﬂQ,Wueﬁ

vi =1,2,...,K. Then it follows from (3.9) that

E(m—m)w Z(m+z—m.-z_. z_:(m-m)u,:wu

~  i=l i=1 ~
Conversely, if wﬁ = wM, as in the proof of property 1, we have
1t o o = "o =m! — :
m-m', =m,-m =P, SO WM =W, m_, > 0. By defining
Zyp = (ZAK""’ Z_ysZyseees zg) such that z, = mi - m >0 ¥i=tl,...,:K,
K
and T = z: Z:s it is clear that 22 is a 2rth order module vector
i=1

M+ Z. and 2r = n'-n.

which gives rise to a d.c. response. Moreover, M' = M Zor

Property 3.
A1l nth order output frequencies are present in the (n+2)th order
output.

Proof:

Follows immediately from property 2 with r = 1.

-12-
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Property 4.
Any consecutive pair of nth and (nt+l)th order outputs do not contain

any identical output frequency components.
Proof:
If a pair of outputs share a common frequency component, their

orders must differ by an even integer in view of property 2.

Remarks:

1. It follows from properties 3 and 4 that only even order outputs have
d.c. components.

2. Even and odd order outputs do not contain any identical output
frequency components.

3. All output frequencies from order O up to n can be generated from an
(n-th and nth order output.

Property 5.
The total d.c. output of order 2r, r > 0 can be obtained from the

expression
r—-z -z, -7 T=Z, =2, 0ss~2Z
r 1 17" - ?
R IR N
zlvO zz=0 23“0 zx-l"O 22r 4=1 -(z—i;f- Hzr(zlfjm_l},zl{jwll,...,zK(jm_K},zK(ij}) (3.12)
K-1
where Z_, =1 - z .
K 4 230
i=1

(See Appendix 5 for a specific example with K = 3, r = 2)

or the equivalent expression

-k k k . 27.-\

TS 5 e [‘; al !

R I P L (P FITI M PPN Ot ) EREN
e L lf-l 0 | 2e {1 o R k30

where z, is the number of ju; in the argument of Hzr(').

(See Appendix 6 for a specific example with K = 3, r = 2).

7The number of summation signs in (3.12) depends on the number "K" of
input frequencies, while the number of summation signs in (3.13) depends
on the order 2r of the output.

-13-



Proof :

To prove (3.12), we will show equation (3.12) contains a sum of all
terms which correspond to distinct d.c. module vectors of order
2r; namely, Z, = (z_ps---52_3s21s--052). Since z, =z ., ¥i =1,...,K,
only the vectors (z ,...,z ) are needed. The only constraint on
(zl"'°’zK) are zl+zi+"' g = r and z; >0,¥%¥ =1,...,K. These constraints
are obviously satisfied for all such vectors contained in (3.12). Now
given any (zl,zz;...,zK) satisfying the above two constraints, it can be
proved easily that this is one of the vectors produced by (3.12). So (3.12)
generates all vectors (zl,...,zK) that satisfy the above two constraints.
To show that all vectors generated in (3.12) are distinct, let us write a few

of these vector generated in a systematic order as follows:

item z z eee 2 4 z

1 2 K-2 K-1 K
1 0 0 LN ] 0 0 r
2 0 o ... O 1 r-1
3 0 0 P ¢ 2 r-2
r+l 0 0 eee O r 0
r+2 0 o ... 1 0 r-1
r+3 0 o .. 1 1 r-2

. . . . . .
. . . . - .
. . - . .

If we look at each vector as an integer of K digits 2129 -e0 Zg of base8
r+l, then the integers generated form a strictly increasing sequence as we
go down the list and hence all are distinct.

To prove (3.13) it suffices to show that the terms in (3.13) contain

all distinct combinations {ka »jw X ,...,Jmk yjw Kk }, i.e., all distinct

1 1 T
combinations of {kl’kz""’k } Given any valid combination {kl’kz""’k } such

that 1 < k, < K, ¥i = 1,...,r, it can be proved easily that this is one of the com-
=% =2
binations generated by (3.13). To show that all combinations generated are distinct,

8If base = 2, i.e., r = 1, then the integer is just a binary number.

9For example, {1,1,2,3} and {1,2,3,1} are regarded as the same combination.
Hence each distinct combination corresponds to a distinct module vector.
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jet us list the first few terms generated as follow:

item k k k k R ¢

1 2 3 4 r
1 1 1 1 1 1
2 2 1 1 1 e 1
3 2 2 1 1 1
4 2 2 2 1 1

Observe that kl > k2 > k3 > e > kr for each row. Similarly, the integers
in each column form a nondecreasing sequence as we go down the list. Since

no two consecutive terms are equal, all combinations of {kl’kZ"“’kr} are

distinct. "
Property 6. K
Consider any output frequency w, = 2 PP where Py is an integer
i=1

¥i=1,2,...,K and let M = (m_K,...,m_l,ml,...,mK) is the unique module

K
vector of the lowest order n = Z |p il (as defined in property 1) such that
i=1

Wy = Wy The output with frequency W at order n+2r is given by the

expression
m,+z
r-2z T=Z,.002, K i1
é Zl 12 k-2 (n#2r)! I Ai
LN 4 '
2,20 2,0 2z 1=0 2 | g g (mytEy)!
i#0
jw t
. . . o
Hn+2r ((m_l+zl) {Jm_l} , (ml+z1) {le} ye ey (m_k-i-zk) {Jm_k} , (mk+zk){jwk}) e
[ (3.14)
"K-1
where zp =71 - Z zg
i=1

(See Appendix 7 for a specific example with K = 3, w, = 4m1-2w3)

or by the equivalent expression
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. k k k mi+zi
K - -
)3 L %;1 ilﬁiﬂ s S
k=1 ky=l 21 R M gex (gt
2 B T
.. i#0

jo t
Hn+2r(m_K{jw_K},...,m_l{jw_l},ml{jwl},...,mkﬁjmk},jwkl,jw_kl,...,jwkr,jw_kr)e o]

(3.15)

where z; = number of jmk ,jwk ,...,jwk which are equal to jwi. (See Appendix
8 for a specific examplelwith K= 3, mg = 4ml—2m3.)

Proof:

From property 2, all distinct module vectors of order n+2r, such that
Wyr = Wy, are given by y+§2r. In the proof of property 5, it has been ghown that
either the series of summation signs in (3.12) or that of (3.13) can be used to
generate all distinct §2r' Now since corresponding to each ZZr’ there is a
distinct y', the series of summation signs in (3.12) and (3.13) can be used to
obtain (3.14) and (3.15) with the help of (3.10). m

Remarks:

1. Equations (3.14) and (3.15) only give the output component at frequency v
and order nt+2r. The total output at frequency w, can be obtained by adding all
components at frequency W corresponding to all orders. By property 2, the total

output signal Yy (t) at frequency w, can be written as

m, +2
y (t) = e (n+2r)! I : .
“o zl=0 zz=0 zx=0 i=-K (mi+zi)'
i#0

jw t
H o, ((m_l+zl) Gu_ybs (mptapd b e s () (o_ds (2 ) { jm.K}) e
K
where r = El zg and (m_K,...,m_l,ml,...,mK) is as defined in property 6.
2. The real output waveform at frequency w, and order n+2r can be obtained by

adding expression (3.14) or (3.15) and its conjugate.lo Thus the real output

1ONotice that given any module vector M = (m_K,...,m;l,ml,...,mK), there exist

¥i= +l,...,%K,

M' = (m:K,...,mll,mi,...,u%g of the same order defined as m; = m_y +

~

*
such that yM,(t) = yM(t)
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signal at frequency 0, and order n+2r is

|Y| cos(wot+[i) (3.16)
jw t
where Y = 2(coeff. of e in (3.14) or (3.15))
Property 7.
The nth order output can be given either by
-1 K-2
.-2 n- 2 my n-.; o
n-m n- m ==K =-K m,
n -K i=-K i#0 [ K Ay
yn(t) = 2-10 z =0 ses o Z=0 nlz— s e Z=0 -2; iil-K .;]-.—'.— .
m_K m__K +1 m_y 1 Be-1 140 *
‘ jwMt
Hn(m_K{jw_K}, ceoam_y Uu_g Yomy (ug s ,mK{jmK}) e ¥ (3.17)
K—~1 K
where mK =n - _2 m, and Wy = ; (mi—m_i)wi,
i=-K ~ i=1
i#0
or by the equivalent expression
m
% ky -1 [ K Aii juyt
y (t) = cos — 1 I —— 1H_(Ju, ,j0, s...,jw,_ )e (3.18)
R T DT -Ro Ly PR TE B kg
1 2 n 140

ki #0 ¥i=1,...,0n

vhere m; = number of jw,'s in the argument of H_(°).
i n

Proof:
The proof is similar to that of property 5 and is therefore omitted. H®
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Property 8.
The number N of new frequencies in the nth order output that are not present

in any lower order output is given by:

Ne 3 zi(i)(i:i) (3.19)

i=1
where r = min(K,n)

Proof:

K
From property 1, w, = z: P Uy is a new output frequency in the nth order
i=1 ‘
K
output which is not present in any lower order outputs iff n = ) |pi|. Hence,
i=1
it suffices to prove that (3.19) gives the total number of distinct vectors
K

(pl,pz,...,pK) such that Py is an integer ¥i = 1,2,...,K and 21 |pi| = n. Let
i=
q of the components of (pl’pZ”"’pB? be nonzero and let us denote them by the
vector (pk 3Py seeesPy ). The number of distinct vectors (|pk |,|pk I,...,ka I),
1 2 q 1 2 q

d -
such that 2 [pk | = n and ka | is a nonzero integer ¥i = 1,2,...,q, is (n 1)
i

i=1 q q-1/°
Since Py s ¥i=1,...,q, can either be positive of negative there are 24 ::i of such
distinctivectors (pk seeesPy ). As the q components can be any of the K components
of (pl,pz,...,px?, tiere areq z 24 g:i géstinct vectors (pl,pz,...,pk) such
that q of the components are nonzero and 2%-|pi| = n., Since q can be 1,2,...,
i=

and up to min(K,n), the total number of distinct vectors (pl,...,pK? such that

K min(K,n) [/, -1 fon et :
2 |og =nis X (q) 29 (2_1) . - n

i=1 q=1

We will close this section by presenting two examples which illustrate some
useful applications of the preceding properties.
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Example 3.1. Deriving the describing function from Volterra Series.

Suppose a system is characterized by symmetric nonlinear transfer functions
Hn(sl,...,sn), ¥n > 0. Now we want to find its describing function N(A,w), i.e.
given a sinusoidal inpyt u(t) = A cos wt, its first harmonic is given by
|N(A,w)| cos wt+/N(A,0)] . It follows from property 6 that the unique module vector

M of the lowest order corresponding to an output frequency w, =W is given by
jot

M= (m;l,ml) = (0,1). Using (3.14) or (3.15) the (1+2r)th order component of e
is given by 11
(1+2r)1 ALY

. . jwt
2l+2r r!(1+r)! Bytor (r{‘Jw}£l+r){Jw})e

The total coefficient multiplying ert is therefore given by

® 1+2r j
Z%) (;.3'12?:' r?(l+r)! H1+2r(r{"j“’}’(]-"'r){jm}) et
r=

By adding together its conjugate, we obtain the describing function

1+2r

—~ (14+2r)! A
N(A,w) = rgo _( 22? TermY H1+2r(r{-jw}, (l-ijr){jm}) (3.20)

In practice, N(A,w) can be approximated by summing only over those orders which

are more significant.

Example 3.2. Finding output when {wligp,...guK}do not form a frequency base.

3
Consider an input u(t) = 2: |A1l cos(wit+[Ai) where the input frequencies
i=1

{wl,wz,w3} do not form a frequency base. In particular, let
w, = 1 rad/sec, w, = 2 rad/sec,w3 = 1 + /2 rad/sec. Suppose we are interested

in obtaining the output at frequency 1 rad/sec. Below we list the first few

3
1 rad/sec = 2, pywys and the
i=1

corresponding lowest order module vector M = (m_3,...,m3) as defined in property 1

distinct vectors (pl,pz,p3) such that w,

llln the present case, K= 1 and n = 1. To use (3.14), observe that the number of
summation signs is equal to K-1 = 0 and that 2y = 2] = T. To use (3.15), observe
that there is only one term which corresponds to kl = k2 = ...=k =1,
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output order P, Py Py M= (m_3,m_2,m;1,m1,m2,m3)

n=1 1 0 0 M= (0,0,0,1,0,0)
n=2 0 -1 1 M= (0,1,0,0,0,1)
n=4 2 1 -1 M= (1,0,0,2,1,0)

Now treat {wl,mz,wB} as if it were a frequency base, and then apply property 6
for each M from the preceding table, one at a time. For each M s(3.14) or (3.15)

can be used to evaluate the terms at different orders which give rise to the

desired component at Wye Finally, all components corresponding to each M are added

together to obtain the desired output.

4, Symmetrization

Since analytic systems may not have unique nonlinear transfer functions,
some of the transfer functions of equivalent systems may have a much simpler

form than the others. For example, the 3rd order transfer function
1

(sl—a)(sz-b)(SS-c)

is simpler than its symmetrized form, but the symmetrized form

of the 3rd order transfer function 0.1 + 0.9 __1 is 0. In doing
s;-a  s,-a s3-a

manipulations of transform expressions, especially in a recursive process, it is
desirable to choose either the simplest form or some particular forms of nonlinear
transfer functions so as to obtain a simple final expression. However, we need

to investigate the effects of choosing different nonlinear transfer functioms,

or output transforms, associated with equivalent systems before we carry out

any manipulation of transform expressions.

Theorem 1. FEquivalent Systems

Let H and C be two analytic systems with the same input ensemble and the
same output ensemble Let hn(Tl,...,rn), Hn(sl,...,sn), Yn(sl""’sn) and yn(t)
be the nth order kermel, nonlinear transfer function, output transform, and output,
respectively, of the system H. Let g“(Tl,...,Tn), Gn(sl,...,sn), Zn(sl,...,sn)
and zn(t) be the corresponding nth order kernel, nonlinear transfer function,
output transform, and output, respectively, of the system G. Under these conditions,
the following statements are equivalent.12

12

In the second statement, ﬁn(-) may differ from gn(-) trivially.
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1. H and G are equivalent.

2. ﬁn('rl,...,'rn) = §n(tl,...,‘rn) ¥n

0

3. Hn(sl,...,sn) G(Sl,...,s) ¥n

n n
4. Yn(s 500058 ) = zn(sl"°"sn) ¥n and for all inputs of the input ensemble
5. yn(t) = zn(t) ¥n and for all inputs of the input ensemble.
Proof:

It follows from the definitions of transform and symmetrization that
statements 2,3 and 4 are equivalent to one another. Since statement 1 implies
statement 2 [4,7], as mentioned in (2.9), and statement 5 implies statement 1,
it is sufficient to show only that statement 2 implies statement 5.

For any input u(t) of the input ensemble, yn(t) is given by

n
yn(t) = Sm ...Sm hn(Tl,...,Tn) Hl u(t-Ti)d’ri .
-00 - i=

Notice that yn(t) does not change for any permutation of TyseeesTy in the argument
of hp(ty,...,7). Thus

n
yn(t) = Sjm...jiw hn(rl,...,rn) izl u(t-ti)dti

L n
Similarly zn(t) = siw...STQ gh(Tl,...,Tn) 121 u(t—ri)d-ri

Therefore statement 2 implies yn(t) = zn(t). u

Theorem 1 shows that the symbol "=" introduced in (2.8)-(2.10) not only
means that the symmetrized expressions on both sides of "='" are equal, but that they
also represent equivalent systems. Sometimes it is helpful to have a method for
checking transform expressioné of equivalent systems without doing symmetrization.
The following lemma provides an easy and useful method which follows immediately

from the definition of symmetrization.

Lemma 1.

1f Fn(sl,...,sn) is a function of Sl""’sn’ then

(4.1)

ceeyS ) = —_— .
1 ’'n n* 1 ’ n) any permutation

Oof S, ,¢..,8
1 *n
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Examples

1. If Fn(sl,...,sn) = 55 then Fn(sl""’sn) =5 = Sy = 83 = ... = Sy

2. If Fy(s),.ee,s) , then F (sy,...,8) = —— =52 ... 2

1
8 ~a

1\/5%2 hen . ( y = (=L %5 ) 1
Sl-a S3“b ’ then nslgo.cgsn = Si"a Sk-b as Ong

as no two of i, j, k are equal and all i,j,k < n.

3. If Fn(' Sl,‘. . .y Sn)

The main advantage of the frequency domain representation is that, for
time-invariant systems, almost ali types of useful mathematical operations in the
time domain are transformed into algebraic operations in the frequency domain.
Most of these operations are of the types shown in the following three lemmas.
This is true for example in the derivation of nonlinear transfer functions and
output transforms from differential equations, from cascade systems, from taking
the inverse of systems, from feedback systems, and from nonlinear circuits, etc.
These lemmas are useful in determining the effects due to the use of different
nonlinear transfer functions and output transforms for equivalent systems under

various operations.

Lemma 2.

If Fn(Sl,...,Sn) Gn(Sl,..o,Sn) and Hn(sl""’sn) = Kn(sl""’sn)’
then

Fn(slgooo,sn) i Hn(sl,ooo,sn) = Gn(sl,o'o,sn) iKn(sl’°'°’Sn) ’ (4’2)

Proof:

Fn(sl,.-.,Sn)iHn(Sl,...,Sn) = Fn(sl"”’sn) _"_'ﬁn(sls'-°’sn) = an(sl"”’sn)

-_l-_l-(n(sl,...,sn) H

Example:
It follows from Lemma 2 that Fn(s'l,...,sn)==S

0.5 , 0.3, 3.1 3.9
1 a 82 a 84 S

n
1 1 -1 = ].a from Example 2 of Lemma 1.

sl-a S 2-a S4"a sn-

since

Lemma 3.
If fn(sl,...,sn) is a symmetric function of SyseeesSps and
Hn(sl"",sn) = Kn(slgcco,%), then
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B (5,0,8) B (S),..0,8) 2 F (5,.00,8) K (5,00058) (4.3)

Proof:

Fn(sl,...,Sn) Hn(Sl,...,sn) = Fn(sl,-..,sn) Hn(sl,...,sn)

= fn(sl""’sn) Izn(sl’o'o,sn)o =

Example:
Let Hn(sl,...,sn) = Kn(sl""’sn)' As in the case of differentiation shown

in (2.13a)-(2.13¢c), by choosing Fn(sl,...,sn) =81 + sy + ... + s, we have

(sl+...+sn) Hn(sl”"’sn) = (sl+...+sn) Kn(sl""’sn)' Observe that although

Sl+32+"'+sn nsl,which follows from Lemma 3 and Example 1 of Lemma 1,

(sl+~--+sn) Hn(sl”"’sn) # nsy Hn(sl""’sn)'

Lemma 4.

Let Akl(sl,...,skl) 2 Aﬂl(sl,...,skl)
Bk2(31’°°°’sk2) S Bﬂz(sl,-.-,skz)
Ck3(sl"f"sk3) = C£3(Sl’...,8k3)
.Nk (sl,...,sk ) £ NL (Sl""’sk )

n n n n
and An(sl, ces ,sn) = Ar').(sl’ cee ’Sn)

Let both An(sl""’sn) and A;(sl,...,sn) in the last equation be partially
symmetric in the sense that if any of the above equations, say the
Bys Bys eees and Bm equations, are identical, then An(°) and Aé(-) need only

be symmetric with respect to all variables other than among those associated
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with the Bl, Bz,..., and Bm equations.13 Under these conditions, we have:

Akl(sl,...’skl)Bkz(skl"'l’.‘.,Skl-'-k )--.N (skl_'_k +... +1’o--’8k +..-"'k )

k, kgt kb otk
+ A 2 s, Y Siseees Y s,
1 1 n-1
éA' ( LI 3 ) )B' ( Y )o.-N' ( ,-..,S + )
koL g L A N T PRt S eyt ot
k) k+k, kyte oot
ALY S5 Sirenes 84 (4.4)

Proof:
For simplicity, we will only prove the case for which the 81,82,...,Bm
equations are the only subset of identical equations. Other cases are similar.

Let gs denote the left hand side of (4.4) by Fk1+"‘+kn(sl,...’sk1+‘"+kn) and

the right hand side by Fkl_'__“ K (Syseees k1+“'+k ).

Let

S '
Hk +...+k ( 1’0.0’Sk +’..+k ) and Hk +...+k (Sl"."sk +.'.+k ) denote
1 n 1 n 1 n l n

Fk F. .tk (*) and Fk +...+k (+) ,respectively after replacing An(sl,...,sn) and

1 n 1

A;(Sl,...,s ) in F ,...

oot (+) and F. kl +'kn(-),maspect:i.vely,by Kn(sl,...,sn).

~

13That is to say, if the B1sBoseees and Bm equations are the only subset of

identical equations, then A_(s 3 Sgsee25S ) = sym A () = sym
n n o n
Sﬁl,sﬁz’...’sﬁ SB ,SB ,...,SB

m 1 2 n

A;(-), where " sym " denotes the symmetrization operation is with respect to
S »S ,...,S
Bl 32 B

m

sB ,sB ,...,SB only. As an example, for n=5, if there are two subset of identical
equations (namely,the 1lst and 3rd, and the 2nd and 5th) then Kn(-)

= sym sym A()}
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We first show Hk1+...+kn(') = F +"'+kn(.) and Hé1+"'+kn(.) = Fé +”.H(n(-)-

1 1
To prove this, let us divide (sl,...,skl+...+kn) into subgroups, such that
(Sl,...,Skl) is the 1lst subgroup associated with the 1lst equation, (skl+1,-~o,skl+k2)

is the 2nd subgroup associated with a 2nd equation, and so on. Now consider

each subgroup as a whole and perform a symmetrization on Fk otk ()
1 L n

with respect to the B;,8,,...,8 subgroups. Thus,F _ (Sl”"’sk +.. .4k )
1 e o n 1 e e o n

= sym F, (S35242458 )
k.+...+k_""1° kot .otk
61,82,...,Bm subgroup 1 n 1 n
) kl k1+...+kn
= Ak (.)Bk (.)"'Nk (.) Sym An 2 Si,ooo, Z Si
1 2 Bl,...,Bm subgroup i=1 i=k1+...+kn_l+1

This follows from the fact that the Bl,Bz, «es, and Bm equations are identical.
By the partial symmetric property of Ah(sl""’sn)’ we have

k1 k1+...+kn kl k1+...+-kn
sym An Zsi,..., 2 84 =An Esi,..., Z Sy
81,...,Bm subgroup i=1 i=kl+...+kn_l+1~ i=1 i—kl+...+kn_1+l

= . 1 . = ' .
Thus B, , 44 () 2B o 4 (). SimilarlyBy 0 g () = F g 4y (). Now
1 n n : 1 n 1 n

1
H (*) = sym sym
+...+k S, 3e%esS s 5eeesS
1 n 1 kl k1+l k1+k2
sym H (*)
Sk Ltk AL Sk bk STy
1 n-1 1 n
) ) ) ) k1 k1+...-+-k.n
K (B ()...F (IR 2 5iseens > s,
1 2 n  M\i=l i=k,+...+k_  +1
1 n-1
Similarly, this last expression is also equivalent to Hﬂ $. .4k (+). Thus
1 L ] n
F (°) = H = H' () =F (). -
kb bk kpte. ot (4 Pyt e Rk oty |
Remarks:

1. In deriving nonlinear transfer functions from cascade systems or from

nonlinear circuits, expressions of the type shown in (4.4) will be encountered.
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2. As an example illustrating Lemma 3, let AZ(SI’SZ) = Bz(sl,sz),
C3(s1,sz,33) = D3(Sl’32’53) and EZ(Sl’SZ) = Fz(sl,sz). It then follows from (4.4)
that

Ay(s1587)C3(53,8,,85)E) (s1+5),5346,485) = B,(8,,5,)D3(s5,8,,85)Fy(s+s,,85%s,+5;)
holds if F2(31’52) and Ez(sl,sz) are symmetric. However,
A2(sl,sz)Az(s3,34)E2(s1+32,s3+s4) = B2(sl,sz)Bz(s3,54)F2(sl+sz,s3+s4)

holds even if EZ(Sl’SZ) and FZ(Sl’SZ) are not symmetric because Az(sl,sz) = BZ(SI’SZ)
and A2(83,84) & 32(83,84) are identical equations.

3. Observe that (4.4) does not hold without the partial symmetric property, even

if An(-) and A;(-) are identical.

Corollary .
If Fm(sl,...,sm) = Gm(sl”°”sm) and Hf(sl""’sr)é Kr(sl,...,sr),then

Fm(sl,...,sm) Hr(sm+1""’sm+r) = Gm(sl,...,sm) Kr(sm+1""’sm+r) (4.5)
Proof:

This is obtained by choosing n=2 and AZ(-) = Aé(-) = 1 in Lemma 4. ]
Remarks:

1. The type of operation shown in the left hand side of (4.5) has already been
encountered in (2.12) for the multiplication case.
2. Instead of simplifying an expression, sometimes we may want to decompose it

into a convenient form, say for synthesis purposes. For example, Pn(sl,...,sn)

s
_ a 2 .
= <§I:%)<%3_ ) can be decomposed into the form Fi(sl""’Si)Hn-i(si+l""’Sn)‘

Suppose n=10 and we want i=4. It follows from Example 3 of Lemma 1, that

b Sg~

s .
. a 5
PlO(Sl""’slo) = (%I:{) (}——E>' We now use (4.5) to do the decomposition. Set

S

— a y T e——
FA(Sl""’SA) = ;I:; and H6(sl,...,s6) sz—d' I; follows from Lemma 1 and 2
1 a a a 1/ 51 S3
tha‘t F&(sl"",sé) = —3-‘ s _b + s -b + s -b and H6(sl"'.’86) = '2— S -d + S —d .
1 2 4 2 5
Applying (4.5) e have P, ( y i+ 2_4_2 /85+S7
pplying f8-2), we have Byglepr--+®10) T E \s; b T 5, T 5,0b \56-d oy
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Most of the operations that we need in the frequency domain are of
the types described in the left hand sides of (4.2)-(4.5), and the conditions of
Lemmas 2-4 are generally satisfied by the corresponding equivalent component

systems. Our next theorem follows from Lemmas 2-4 and the above corollary.

Theorem 2. Systems combination property

If an expression is obtained by a sequence of operations between transfer
functions (or output transforms), such as those shown in the left hand sides of
(4.2)-(4.5), and for each operation the conditions of the ccrresponding lemma
or corollary are satisfied, then the symmetrized form of this expression is an
invariant of the combined system in the sense that it does not depend upon whether

the component functions are symmetrized or not during the intermediate manipulation

steps.

Remark:

| Tt follows from Theorem 1 and 2 that two systems are equivalent if, for each
n their nonlinear transfer functions are obtained by performing the same sequence of
operations (described in the left hand sides of (4.2)-(4.5)) on corresponding
nonlinear transfer functions derived from equivalent subsystems.

We will close this section with an example which illustrates some applications

of the above lemmas.

Example.
Let us look at the cascade system shown in Fig. 4, Systems G and K are

differentiators while F and H represent systems whose only nonzero transfer
functions are Fm(sl,...,sm) = 1 and Hn(sl,...,sn) = 1, respectively. The functions

u(t) and y(t) are the input and output, respectively. The relationship between u(t)

and y(t) in the time domain is given by y(t) = 4 (ﬁ% u®

n
it (ti) . Using the formulas
from cascade systems [4-~7], the overall nonzero transfer function has an order

equal to nxm and is given by:

an(sl”"’snm) = (sl+32+"'+Sm)(sm+1+’"+82m)(82m+1+"’+53m)"’(s +...+snm).

(n-1)m+l

(sl+...+snm) (4.6)

This is in the form as shown by the left hand side of (4.4), with An(.) = sl+82+"’+s
n
being symmetric. Set Ak (Syseee38;, ) =B (S,,00458, ) = .... =N (s s )
1 1 kl k2 1 ’ k2 kn 1’ ? kn

hnﬂmﬁmkl=%=.“=k = m. ﬁmeﬁﬂf“&%ém%,ufdhwfmm

1 .

ACon81der a cascade system with the input of system B being the output of system A.
If B is a linear system, the combined nth order transfer function is
An(sl,sz,...,sn)B (s,+s +...+sn). If A is a linear system, the combined nth order

transfer function is Al(sl)Al(SZ)'"Al(sn)Bn(Sl’SZ""’sn)°

L



(4.4) that an(sl""’?nng = (msm)(mSZm)"'(msnm)(sl+'"+snm)

n
m S SooeseSpn (s oot nm?' Applying Lemma 4 again, we have an(sl""’snmg

L) n
= m smgzm...snmn(sl+...+sm). This last expression follows from the fact that

An(.) = sl+...+sn ns, need not be symmetric in the present case. Now,

n _ .. n2 n
nm smszm...snm(sl+...+sm) = nm sms2m'°'snm.+ nm (sl+"'+smrl)

an(sl’°°"snn9

S S, eeeS__o
m 2m nm

eeS and from (4.5) that

1)s "'Sn+l'l Thus

' 2 . 2
it follows from Lemma 1 that Sm?Zm"'s = 1 2 3
= (m

(Sl+o . .+Sm_1) Smszmo «eS = (m"’l) Slsmszmo . osm

nm

s _.n2 n
an(sl,...,snm) = nm slszs .ee8 + n(m-1)m 818y 8

3 n+l (4.7)

Transforming back into the time domain, we have

nm-n 2 » - |
_n » d . d n-1 nm—-n-1 n+l
y(t) = nm G(t» <—;;2 u(.t)(:l‘__é_t.)) + n(m-l)mnéx(t)> (d:lt'(:t)) (4.8)
n

which is precisely the original expression c;it(c;it u (t)) in expanded form. Using

Theorem 2, (4.8) can also be obtained by simplifying the nonlinear transfer

functions or output transforms after each intermediate stage in Fig. 4.

5. Formulation of Nonlinear Transfer Functions for Dynamical Systems Described

by State Equations

Tn this section, we will consider a single input analytic system defined by:

N

x(t) = g<g<t),u<t>, o, i“—éﬁ) (5.1a)
: dt
N

y(t) = <x<t) aey, BB, 9—-‘%—’-) (5.1b)
dt

where x(.) 4 [xl(-),xz(-),...,xr(')]T is the state vector, u(.) is the input, and
y(+) is the output. ’
Remark:

The actual input may be u(t) + Ssu(t), where u(t) is a fixed time function and

su(t) is a small signal compared with u(t). If u(t) is a constant, then after
substituting u(t) = u(t) + du(t) into (5.1a) and (5.1b), the resulting set of
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equations is still in the same form as (5.la) and (5.1b) but with input Sdu(t)
instead of u(t). If u(t) is a time-varying function, the resulting system will be
a time-varying system with input Su(t), and is therefore outside the scope of this

paper.
Assume each state variable xi(t) and the output y(t) are represented by a

Volterra Series as follows:

x(t) = JEE) xij(t) ¥i=1,...,r (5.2a)
and o
y(t) = 2, y.(t), (5.2b)
j=o0 1

where xij(t) and yj(t) are the jth order component of xi(t) and y(t), respectively.
The_ith order transfer fumction Hj(sl""’sj)’ j > 0 of the system corresponding

to input u(t) and output y(t) can be obtained recursively by substituting (5.2)

into (5.1), and equating the output components of the same orders in both sides of the
equations. For the zeroth order output, we set u(t) = 0. If then follows from

(2.2) ,that x(t) ='[-x1’0,x2’0,...,xr,0]T A X, and y(t) = Yo where X, is a constant

vector and Y, is a constant scalar. It follows from (5.1) that

{=]
]

f(go,0,0,...,O) (5.3a)

Yo g(§°,0,0,...,0) (5.3b)
Hence, each X satisfying (5.3a) is an equilibrium state of (5.1a). Since the
Volterra Series may not converge everywhere, it is desirable to choose an
equilibrium state located within the dynamic range of interest. In any event,
we can always choose the coordinate with X and y, as the new origin. Hence
without loss of generality, we can assume X, = 0 and Yo = 0.

The procedures for deriving the transfer functions associated with (5.1) can

be readily explained via an example. Let (5.1) be a dynamical system defined by

k) (£) = ay %, (E) + a1y (£) + pyxa(e) + byi(e) + epu’(e) . (5.4a)
iz(t) = a21x1(t) +'322x2(t) + ple(t)xz(t) + bzu(t) + e2u(t)ﬁ(t) (5.4b)
y(t) = clxl(t) + czxz(t) + qxi(t) + du(t) (5.4¢)

which can be rewritten as
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. blu Py%, + e,
:..{ = é}f + . + . . , (5.53)
ou plex2 + e2uu

- 2

y=cx+ qx] + du (5.5b)

Nk N et e ¥ A :
where x = . A= and ¢ = [cq, ¢,]. Although (5.4) may have more

 1*2 821 222 i 12

than one equilibrium éiate with u(t) = 0, let us choose X1 0 =x = 0 and Yo = 0.
H]

In (5.5), and the rest of this section,the time variable t is omitted for convenience.

N i =Z = =
ow substitute the Volterra series x; = & ¥;45 ¥ ggi X4 and y Eéi Yy

T
into (5.5), and let x, - i’XZi] .

2
= . - P:L( 21) +eu
2 X, = Z Ax, + [b u] (5.6a)

i=1 i=1 ii
X + e uu
<i—1 11)( -1 21) 2

Toyg= Xl ot q(Z xh) + du (5.6b)

Since both sides of (5.6) repreéent equivalent systems, it follows from Theorem 1
of section 5 that the output components of the same order can be équafed from both

sides of (5.6). It is clear from (2.2) that the nth order terms on both sides of
(5.6) can be identified as the coefficientsof ¢ after substituting eu(t) for

u(t). In general the order of a term can be determined by inspection. For example,

if ve  let a(t) = 2 a, (£), b(t) = Z b, (£) and c(t) = Z ¢, (t) be the
- i=0

Volterra series with respect to input u(t), then ai(t) bj(t) is a term of order
(i+j) and a (t) b (t) ck(t) is of order (i+j+k). Thus each term in (2.12a) is
obviously of order n. Although (2.12) is only for multiplication of two Volterra
series, for multiplication of more than two Volterra series we just apply (2.12)

more than once. For example, the total nth order term of a(t) b(t) c(t) is

n
E ei(t)c -4 (t) = E Z ay (t)b (t)cn—i(t)’ where ei(t) is as defined in
=0 i=0 j=0
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(2.12a).

Now let us start by equating the first order output terms in (5.6):

blﬁ
% = é?v{l + b2u (5.7a)

yp = ¢%, + du (5.7b)

The first order transform of (5.7) is given by:

b,s

]

b.s
¥, (sp) lQ(sl'}-z})—l[ §21]+d\u<51) | (5.8b)

It follows from (5.8b) that the first order transfer function is simply

b.s

Next, equating the second order output terms of (5.6) and using (2.11)-(2.13) we

obtain
2 2
P.X,.te.u
5, =mg,+| THL (5.9a)
p2x11x21 + ezuu
— 2
Yy = €% + 9%y, (5.9b)

It follows from (2.11b), (2.12b) and (2.13b) that the 2nd order transform of
(5.9a) is given by:

PyXy;(5)%y; (5,) + e,5,U(s)) ulsy) (5.10)

(sy+s,) X,(sy58,) = AX,(sy,8)) +

Applying Lemma 2 from section 4, we have:

PyX11 (810 %1 (59) + €8,U(s;)U(sy)

[ (sl+sz) .]:-é] 32(31982)

Using an analogy to Lemma 3 from section 4, Xz(sl,sz) is obtained by multiplying by
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[(si+sz)l-é]-l on both sides:

p,X,.(s.)X; . (s,) + e,U(s;)U(s,)
1%21(81)%51 (59 1U(s1)U(s, )] (5.112)

. _al-1
X,(sy,8,) = [(51"'52)1, é] [szn(sl)le(sz) + ezszU(sl)U(sz

Observe that (5.11a) can be obtained from (5.10) by considering (5.10) as a set
of two scalar equations in two unknowns: X’ZI(sl,sz) and x22(sl’82)‘ Applying
Lemmas 2 and 3 of section 4, a sequence of additions and subtractions between the
two scalar equations, along with multiplications on both sides of the two scalar
equations by symmetric functions, can be carried out to obtain (5.11a).

Now from (5.9b), we obtain
Y,(s1,8,) = ¢X,(81,8,) + q%;4(57) Xp9(s5) (5.11b)
Hence, the second-order transfer function is simply

YZ(Sl’SZ)

H2(31, 82) = U(Sl)U(S

) (5.11c)
2

From (2.12) the nth order terms contained in x%, X X, and xi are given

n-1 n-1 n-1

by Z x2,ix2,n-i’ Exl,i 2,n-1 and 2 xl,ixl,n—i’ respectively. Thus by
i=1 i=1 i=1
equating the nth order terms on both sides of (5.6) for n > 3, we obtain
n-1
P1 & %2,1%2,n-4
X, = é}_gn + n-1 (5.12a)

X, .X .
p2‘j§[ 1,i"2,n-3i

n-1
v, = X, +q ig]_ xl,ixl,n-i E (5.12b)

Following the same procedure as above, the nth order transforms are given by
n-1
P Xy 1 (8poee8)%y o5 (Sg4p0e 0008

i=1

. -1
X = -
~n(sl’ ces ,sn) [(sl-l-. . .+sn)!: é] n-1

P2 j§|_ xl,i(sl’ see ’s:i.)XZ,n-i(si+1’ e ,Sn)
(5.13a)
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n-1
Yn(sl"'°’sn) = an(sl,...,sn) + q P2 Xl,i(sl""’si)xl,n-i(si+l’°"’sn)

(5.13b)
Hence the nth order transfer function is simply
Y (S;5¢0055.)
_nl’ *°n
Hn(sl,...,sn) = U(Sl).--U(Sn) (5.13c)

Observe that the right hand side of (5.13a) only involves transforms of

state responses of ordersless than n. Consequently, all order output transforms

and transfer functions can be obtained recursively.

In general, normal form equations such as (5.1) can be decomposed into the

following form:

N N
i{=é}~c+§<u,%,...,‘—i—§)+ E(gg, u,%,...,%) (5.14a)

dt dt

N N
y=g:5+D<1,%,...,-d—§)+ G(g, u,%,...,%) (5.14b)

dt dt

du Ny
where D(.) and each component of B(*) are linear combinations of u, W’ N
dt

and F(*) and G(-) only contain nonlinear terms. By changing coordinates in (5.1)
if necessary, we can-always choose the zeroth order component X = 0 and Yo = 0
~ so that both F(:) and G(.) vanish when x = 0 and u = 0. Using the same procedure

as above, we obtain the following general relationships:

lst order component:

X (s;) = (5,1-8)"" B(1,5,...,8))U(s;) (5.15a)

¥,(s)) = X (s)) + D(1,5,,.--,8))U(s)) (5.15b)
D

1 (5.15¢)

Hl(sl) = g(sl}-é)-l §(l,sl,...,s§) + D(l,sl,...,s

nth order component:

e

nth order transform terms of F(:), which
35(81""’sn)

(84+...+s )i-A| ~ |only involve input and state responses
1 n’+ 2
of order lower than n
(5.16a)
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Yn(sl,...,sn) = gxn(sl,.{.,sn) + |which only involve input and state

nth order transform terms of G (°)
responses of order lower than n

(5.16b)
Y(s,-o.S)
n 1 ’"n
U(sl)...U(sn) (5.16c)

Hn(sl’ eoe ,Sn) =

Hence, all higher order output transforms and transfer functions can be obtained
recursively.

6. Generalization to Multi-input Systems

Extension of the results in the preceding sections to multi-input systems
are generally easy and straightforward. By means of vector representations, we
can write expressions which are similar in form to those derived for single input
cases. Indeed if u(t) = [ul(t),uz(t),...,uN(t)]Tis the input,then (2.14) can be
written as

(®3®y 00 ey®)

y(t) = . yn(t).
n=(0,07...,0) ~

(®50005®) ©

where n 4 (nl,nz,...,nN) and
g=(0,...,0) nl=0 n2=0 nN=0
We can call yn(t) the output of order n, which is given by (2.15). The kernel
i A
at order n is hg(zl’EZ""’IN)’ where s (Til’TiZ’°'°’Tin.)' The transfer
function at order n can also be written as Hn(sl;sz;...;sN), where
A n | n'~1°> S
S: = (S,,58.n5+05S,_ ). Module vectors and other expressions can be similarly
~ i1°742 ing :
written. As an example we show below how property 3 and property 4 from section 3

can be generalized for the multi—inputhase.

i=1,‘..’N,

i
Let each input component ui(t) = 2: |Aik| cos(wikfz@“é
k=1

ne>

and let all input frequencies form a frequency base. Let r (rl,...,rN), where

ri,Vi =1,...,N, are nonnegative integers. = We then have:

1. All output frequencies of order n = (nl,nz,...,nN) are present in the
. output of order nt2r = (n1+2r1,n2+2r2,...,nN+2rN).
2. Output components of order n = (nl,nz,...,nN) and output components of order
n+r can never contain identical output frequency, if one of the components, T
in r is an odd integer.

Further extensions to allow system combinations, such as those of (2.11)~-(2.13),
for the multi-input case are also straightforward. Consequently, the nonlinear

transfer function formulations given in section 5 can also be generalized.
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7. Conclusion

We have derived the relationships between the input and output frequencies
and amplitudes at steady state. Expressions for the amplitude and phase of a
certain output frequency of a certain order are given. Relationships between
the output frequencies of different orders are also given.

We show that symmetrized transfer functions are not required when
operations are carried out between transfer functions of corresponding
equivalent systems. Lemmas in section 4 also provide conditions under which the
simplification or expansion of transfer functions to equivalent forms can be
done. Finally, we show a method for obtaining transfer functions from state

equation representations recursively.
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APPENDIX

This appendix contains specific examples showing the detailed expansion of
various general formulae given in section 3.
1. For (3.2), let K=2, n=2
jlw, 4w, )t
ko ky

il

2 2
y (t) ‘ H (ju, ,jwu, e
n kgél kzgl AklAkz k) Tk,

2 j‘“l*“kz)t
= A H (ju,,jw, e
. kzgl lAk2 nt30p 3%

2 3 uytey, It
+ L AA H (Guy,ju, e 2
K,=1 2 © 2

= A1A1Hn(1ml,3m1)e + A1A2Hn(3m1,3w2)e

+ AzAlHn(jwz,jwl)e + A2A2Hn(jw2,jw2)e

2, For (3.5) let K=5, M = (ml,mz,m3,m4,m5) = (2,0,1,3,5)

. n= m1+m2+m3+m4+m5 = 11

m
. 5 AF
. k=1 "k
.ej(2w1+0w2+m3+3w4+5m5)t
2 . 0.,1.,3.,5

Ay By Ay AL Ag

: 2—!‘ 6-!' ‘i’T 3‘!" 3_!‘Hll(jwlajwlsjw3’jw49jw4,jm4sjw5’j(’-‘S’jws,ij,jws) .

|
[
[

ej(2ml+m3+3w4+5w5)t

3. For (3.10), let K=2,M = (m-Z’m—l’ml’mZ) = (2,0,2,3)

«e N = m_2+m_1+m1+m2 =7, wM = (ml-m_l)w1 + (mz-m_z)w2 = 2w1+w2



m
71 2 Aj_i jw t
vy = S 1 =) 8, @{je_,},0{ju_;},2{ju },3{ju,De
Y 2 op Tyt
i#0
2 0 ,2.3 .
71 Ay Ay A Ay . . on 100 J(2uytwy)t
= “2-7‘ 2—" m"‘ '2—!' ﬁ H7(Jw_2sj“)_293w1!jw1’jw2sJ“’ZSsz e

j (2ml+w2) t

7!Ai|A£4A2
= H',(jw_zajw_z,jmla jwltjwzsjwsz“’z)e

27 x21x21x31

3
= = = - . . 1 t
4. For (3.11), let K=3, wo iz-]_ P4y luol + sz + ( Z)m3 Thus, the lowes

order n = |4| + |0| + |—2| = 6, and the unique lowest order M which gives rise

tow_ 1is
(o]
M= (m_3sm_2,m_1’m19m29m3) = (2,0,0,4,0,0)

5. For (3.12), let K=3, r=2.

The total d.c. output at order 2r=4 is:

2z
2-2 i
~tar| 3 14l

24 %
zllo z2=0 2 [:lml (z 1

] H, (zl(jm_l} , zl(jml} 1zp{dw 1, zz{jmz } ,23{jm_3} .za{jw3})

where 23 r - L 2, =2-zl 2y

i=]
2(2-2z,)

20 4 141 Il Fiayl R (ou 10036, o2, (u_y b2, L30,04(2-2,) (J_y b, (2-2,) {Ju,}
- - w 13,00 ey}, 2, {Jw ,},2,{ju},(2~2 w .}, (2-2 w, !}

Ao 2% O (2,12 (o i? 5 (00de 1 7plde_ghazylgugd(2-2) -3 2) {duy )

2z,  2(2-1-z,)
+2§ o 17 Il 7 ; (10801000 12y (Y2, U)oLz Ua b, (-12p) (50,))
— w w .z l.u k4 "] -1-2 w ;, ~l=Z
zz 4 1.) (z ') [(2;1_22)'12 4 1° 2 272 2 -3

1'10 IA I %2 ,A |2(2-2-z )
2 H, 2! 2{ 3 e
[(2_2_1‘2)”2 ( [Jw_y }o203u zZ(Jm 212, (Ju,}, (2-2 zz){.‘lm_3).(2-2—zz){j.,5}}

222 4y
Z:; 2 zl)"[u )]

4 2 2
e ial” a 412 Iyl
o Uo_ 03w adw,juw.) + - — 3 (
(2!)2 Hy(o_gedo_sedug, 30, 2% ans (“) LA CIPYS [P35 ') 3r3uy)
4
! IAzI la, 12 1a,)?
vy H, (Ju_,,jw_,,Juw u,) + PR A S 3
4 » ¢ s
2 an? sl 2 an? an? teleogepaie_gguy)
2 p .
TR l”ltm Jopdo_yedug) + !A"Au(- Ju_y»duy s Jay)
T - [N [ (NP [3) e RIS IS [, )
2‘ (“) an* -177Te2r 2 24 (2!)2 AR ECAS RE hs Rl s |



6. TFor(3.13),let K=3, r=2 (same as in Appendix 5). The total d.c. output at

order 2r=4 is

K 224
3 1o, |3 lal
2 E é—. I _j_.'—'i' H4(jmk ’jw_k ’jwk ’jw_k )
k1=1 k2=1 27 |i=1 (zi!) i 1 2 2

where z; is the number of jwi in the argument of H4(~)

2zi
1 3 |a,|
= z % I L 2 H[’(jwl’jw_l’jwk ,jm__k)
K1l 20 [i=1 (z1) 2 2
2z
)gj | g 1 : H, (Ju,3 )
+ —y - 9 jwys w_ sJjw sJw_:
K1 O Il B e
1
ot
3 3 |A
41 5
+ 3 0 | B Gegde_g,du sJuy )
K71 2% | =1 (zi')2 47273277-3"ky 2

4 0
g 18,10 1% .
2 H4(Jmlsjm_133w1’.]w_l)

= 4!
2% 2n? ©n? on

o 1817 18,17 4y
t LT 2 2
27 @an° @an- oy

0
2 Ha(ij’jw_Zijl’jw_l)

0. 141, 10
4l 18,17 18,17 |4,
2% on? @n? on?

Hlp(ij’jw—Z’ij ’jw_z)

2 1. 10 2

L4 18,17 18,17 [a,4] B Gn i aadun e )
2 0 30_nsdwqs300_
% anZ N an? ladeadeedinda

2

0 2
a0 a1 1]

2% (on? an? an

2 H4(jw3sjw_3’jw2’jw_2)
0 0 4
i 10310 110 1

+ H, (jo ’jw_ sjw3sjw_ )
24 (0!)2 (0!)2 (2!)4 4 3 3 3

This gives the same answer as in Appendix 5, as it should.

A-3



7. TFor (3.14), let K=3 and w, = 4w1—2w3, as in Appendix 4. So n=6 and
M= (m_3,m_2:m_1sm19m2:m3) = (2,0,0,4,0,0)

As in Appendix 5, let r=2. Thus output with frequency W, at order 10 is:
m,+z,

2-z 3 A i 7i

2 2%
(6+4) ! i
X X e R CETRY

z.=0 z,=0 2
12 140

Ju t
HlO ((0"'21) {j w_l}s (4+Zl) {j w].}’ (0+zz) {j w_z} ’ (0""32) {j mz} ’ (2"'23) {3 03_;3} > (0+z3) {jw3)% °

where z3 = 2-21-22

(2+z,) (0+z,) . (0+z,) (0O+z
37 2 A(0+0) (4+0) A 2 A

220 4 A4 T A, 10N 2 3

: zz--o 210 (2+z3)! (0+22)! (0+0)! (4+0)! (0+z.2)! (0+z3)!'

3)

2
jwot
Hlo ((0+0) {jw_l} » (410) {jwl}s (0"'22) {jm__z} ’ (0+22) {ij) ’ (2+Z3) {jw_3]' , (0+23) {ij}) -3

(2+z,) (0+z,) (0+z,) (O4z,)
3 2) (0+1) ,(4+1) 2 3

N 22‘1 101 A3 " A, A T A T A

e

210 (2+z3)! (0+zz)! (0+1)! (4+1)! (0+zz)! (0+z3)!

jwot

o ((0+1) {jo_; 5 (441) {jwy I, (04z5) {Ju_y}, (O+2,) {juy}, (2+23) {ju_g}, (0+24) {j“’B}) e

(2+z,) (0+z,) (0+z,) (O+z,)
_ 3 20 (042) , (442) 2 3
LB wmAs - A A A h A
2520 210 (2+z3)! (0-!-22)! (0+2) ! (4+2)! (0+22)! (0+23)! *

v A Ju t
Hlo((0+2){jm_1},(4+2){jw1},(Mzz){jm_z},(o+z2){jm2},(2+z3){jw_3},(0+z43){jw3})e °

' A43 Ai A§ | 3 (o, —20,)t
T OI0%T 12 Hlo("{j“’l}’A{Jw_3},2{3w3})e

3 4
REUIIE B B o o I YT WP TS et
,10 31 11 4t 1t 1! 710 JugdsJuwysjuw_n,JwgsItiw_g



to A5 4%, 41 7 BN
£ 20023 2 7 L g (buy) 20y 203 g 2050 g e

! _ j(4w1-2w3)t
+ 031 1T 5111 “10(1‘”-1’5{3"*1} juys303u_g})e

j(4w1-2w3)t

+=53T 11 1T O 11 Hlo(j"il’S{j‘*’l}’3“’-2'j“’2’2{j“’-3})e

j(4wl—2w3)t

6
A
101 -3 o1 Ly 2{jm_l},6{jwl}’2{j‘”-3})e ‘

10(

8. TFor (3.15), let K=3, and w, = 4w1-2w3 (same as in Appendix 7).
Thus n=6 and M = (m;3,m_2,m;1,ml,m2,m3) = (2,0,0,4,0,0). For r=2, the output

with frequency w, at order n+2r = 10 is:

k m£+zl
R
K71 K571 10 45 (myFz;)

140

‘ jo t
ulo(z{jm_3},o{jw_2},o{jw_l},a{jml},o{jwz},O{jw3},jmkl,jm_kl,jwkz,jw_kz)e 0

vhere z; = number of jwk ,jwk equal to jwi, ¥i=1,2,3.

1 2
+ o+
L A?+z3 A9+z2 A9+zl Aé 2 A z, Ap+z3
2: 10! -3 -2 -1 1 2 3

} 21 10 @t TRyt Oz Uz 1 (Orap)t (0F2,)!

jmot
Hlo(Z{jw_3},4{jml},jwl,jw_l,jwkz,jm_kz)e

2+z3 AF)+z2 A9+zl A.4+zl A9+z2 A0+z3
-2 -1 1 2 3

. 22: 101 A3
k2=l 210 (2+z3)! (0+22)! (0+zl)! (4+Zl)! (O+z2)! (0+z3)!

jw t
HIO(Z{jm_3},4{jw1},jmzij_zsjmkzﬁjw-kz)e °



3
A
+ 10! "3

Otz
A;Z

0+z1 4+zl O-I-z2 O+2

2
Ay, N ) Aq

3

3
2

Hlo(Z{jw_3},é{jml},jw3,jw_3,jwk2,jw_k2)e

=071 21 61 Hlo(Z{j“‘-3}”’{j‘“1}’j“’l’j“’-l'j“’rj“’-l)e

=1 210 (2+z3)! (0+zz)! (0+zl)! (4+zl)! (0+zz)! (0+23)!*

jmot

jw t
J o

2 5 ,
A2, A A KA ju_t

101 A A A Y e o'
*oI03r 1T IT STt By o(200u_g), 40501}, 30y0 30 5 duy 30y Je

1ot A3 &, A1 4 . ) 3¢t
+ 57T 70 7 2t o2l ghbling 3y 3 ,50p30 )

10! Af:s A,y A?. A3 : 7 ‘ ) %t
*030 I ST Ir By (2000336050} 30g. 303030y 30 Je

101 823 4 Al{ A, A - ) "y
+—‘—2 031 11 &1 1t 1t HlO(Z{jw_3},lo{jwl},Jw3,Jw_3ajw2st_2 e

jw t
! . . o
T AR —T>HlO(Z{jw_3},4{jml},ij,Jm_3,jm3,Jm_3)e

This answer is the same as that of Appendix 7, as it should.
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FIGURE CAPTIONS

Equivalent system resulting from the addition operation.

Equivalent system resulting from the multiplication operation.
Equivalent system resulting from the differentiation operation.
An example of a composite system obtained by cascading various

subsystems.
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