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Introduction

The Lanczos algorithm is one of the most powerful methods for
finding a few eigenvalues (and eigenvectors if desired) from one or
both ends of the spectrum of a large sparse symmetric matrix. It has
been known since its introduction in 1950 that the Lanczos a1gorfthm is
unstable, in that the quantities computed in finite precision arithmetic
will diverge completely from their theoretical counterparts.

In his Ph.D. thesis of 1971, C. Paige showed that this "insta-
bility" of the Lanczos algorithm merely resulted in the computation of
repeated copies of the eigenpairs of the matrix. Despite the impor-
ténce of Paige's results to understanding the behavior of the Lanczos
algorithm in finite precision, many of them have never been published
in the open literature.

The main contribution of this thesis is an analysis of Selective
Orthdgonalization, a new and efficient method of implementing the
Lanczos algorithm, based on Paige's analysis, which prevents the
appearance of repeated copies of eigenpairs. To help the reader
understand the effects of Selective Orthogonalization some necessary
background material is given in the first two chapters.

Chapter 1 gives'a description of the Lanczos algorithm in the
context of exact arithmetic. Included are a derivation of the Kaniel-
jPaige a priori error bounds on the accuracy of the eigenvalue estimates
computed by the algorithm and some new results relating the choice of
the starting vectdr to the convergence of the algorithm.

Chapter 2 describes the surprising behavior of the Lanczos

algorithm in finite precision arithmetic. Since Paige's results are
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rather inaccessible we hope that the derivations presented here will
further the appreciation of the importance of his work.

Chapter 3 explores a suggestion of Parlett that nearly converged
Ritz vectors be explicitly purged from new Lanczos vectors as a means

of maintaining linear independence at little extra cost.
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1. The Lanczos Algorithm in Exact Arithmetic

This chapter will give an overview of the theory of the Lanczos
algorithm in the context of exact arithmetic. Section 1 will describe
the Rayleigh-Ritz proceduré, a general method for choosing approxima-
tions to eigenvectors of A from a subspace W SIR". Some of the
results in this section are not widely appreciated. Section 2 describes
the Lanczos algorithm, a special case of the Rayleigh-Ritz procedure.
Sections 3 and 4 investigate various aspects of the convergence of the
algorithm. Only Section 4 is new material. |

Throughout this thesis, A will be an nxn (real) symmetric
matrix with eigenvalues A\ £ A, £ <A, and eigenvectors
Zy3Zpsee0sZ,. Thus A = IAZ* where A = diag(A;s2ys...51 ) and
Z=(27s255...52,) with Z'Z=1. The symbol 1 will stand for the
appropriate size identity matrix. B-o will stand for the matrix

B-oal.

1.1 Approximations from a Subspace -- The Rayleigh-Ritz Procedure

One possible approach for computing approximations to eigenpairs
of A is to choose some j dimensional subspace wj SZ_IRn and compute
the Jj best approximations to eigenvectors of A contained in wj
and the corresponding best approximate eigenvalues. We refer to an
approximate eigenpair (y,8) as a pair. Of course this approach
requires some precise definition of the word "best." To motivate pos-
sible definitions of "best" we quote some of the most important theorems

for evaluating the accuracy of such pairs (y,6).



Theorem 1. Let y be any unit vector, et o be any scalar,

and let p = [Ay-y8l. Then there exists A, an'eigenvalue of

A such that
[x-8] <p .

Furthermore, for a fixed vector ¥, p 1is minimized as a

function of 8 by 6 = y*Ay.

Theorem 1 is best possible in that equality may hold.

Example 1. Let
A = diag(1,-1)

| and y = —‘g—z-,g)* .
Then
*
8=yAy=0,
r=Ay-y0 = Ay = (g.--/zz)* s
p=1lIrl =1,
and
min [A;-0] =1 . m]
i=1,2

The quantity y*Ay (or y*Ay/y*y for a non-unit vector) is now

called the Rayleigh quotient of y (with respect to A). For a given

unit vector y, the vector r = Ay-y8, where 6 = y*Ay, is the

residual vector of y and p = lIrl is the residual norm of y.

If j >1, more than one pair must be chosen and we would want
each pair to approximate a different eigenpair of A. Unfortunately
the obvious generalization of Theorem 1 to more than one vector fails

in this respect, even when the chosen vectors are orthogonal. That



is, it is possible to have two pairs (y],e]) and (yz,ez)' such that
y’]"y2 = 0 and yet only one eigenvalue of A Tlies in the union of the

intervals around 8, and 8, given by Theorem 1.

Example 2. Let

0 01 17 [o
A=|0 o T 0|,andy2= 1
110 0| 0

Then e] = 92 =0 and ﬂAy]-y]e]ﬂ = ﬂAyz-yzezn = 1. The eigenvalues
of A are 0 and */2 and only 0 1lies within [-1,1]. O

The best bound for locating the proper number of eigenvalues of A

was given by W. Kahan in [Kahan 1967].

Theorem 2 (Kahan). Let Y be an nx j orthonormal matrix,

let H be any jxj symmetric matfix, Tet 61,92,...,ej be
the eigenvalues of H, and let R = AY-YH. Then there
exist distinct integers 1',2',...,j' such that for
i=1,2,...,3,

|65-25:] < IRD .

For a fixed matrix Y, ORI is minimized by H = Y*AY.

Note that for Example 2, Y = (y],yz), YAY = H =10, and IRl = V2,
so that Theorem 2 is the best possible in that equality may hold.
A common method of choosing pairs from the subspace wj is the

Rayleigh-Ritz procedure, defined as follows.



The Rayleigh-Ritz Procedure. Given any subspace. wj of dimension

[N

and a symmetric matrix A, do steps 1 through 6.
1. Compute Qj’ an orthonormal matrix such that span(Qj) = wj'
Form H = Q*(AQ.).
;(aq,)
Compute S65*, the eigensystem of H.
Form ¥ = (yqs¥ps..0sy5) = Q;S.
Compute R = (r],...,r%) = AY-Y0 = (qu)s-.Ye.

O B W N
e e e e

Compute QORI and p; = nriu = “Ayi'yieiﬂ’ for i =1,2,...,].

The columns of Y are the Ritz vectors, the eigenvalues of H

are the Ritz values, and a pair (yi’ei) ~is a Ritz pair. The norms
‘computed in step 6 can be used in_Theorems 1 and 2 to bound the accuracy
of the Ritz values. The Ritz pairs are determined solely by the action
of A ‘on the subspace wj and they are independent'of the particular
matrix Qj used to compute them.
The word optimal is often associated with the Rayleigh-Ritz

prbcedure although‘there appears to be some confusion as to the sense
in which the Ritz pairs are indeed optimal. VThe following result is

hardly new but is included here to clarify this point.

Definitions. Let Pj be the orthogonal projector onto the sub-
space wj, that is PJ.]Rn wJ and PJ PJ For any orthonormal
matrix Y = (y],yz,...,yj) let R(Y) = AY-YO, where

. o .
Q= d1ag(e],ez,...,ej) and 8, = y;Ay; for all i.
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Theorem 3. Let Yj = (y],yz,...,yj) and @j = (61,92,...,6J

be the Ritz pairs derived from wj. Then
*
1. Y.AY. = 0..
JAYJ CG
2. For all i, (yi’ei) is an eigenpair of PjAPj.

3. Yj minimizes [R(Y)I over all orthonormal matrices

whose columns span wj.

Remarks. As shown by 1, the Ritz vectors are the distinguished
*
J

Furthermore YjY; is a matrix representation of Pj so that if A is

represented in a basis which has the columns of Yj as its first j

basis for wj- which makes the reduced matrix, H =Y AYj, diagonal.

elements then the matrix PjAPj takes on the simple form,

e 0
PjAPj = 0 0 .

Proof. Let Qj be an orthonormal matrix whose columns span wj

and let H = QgAQj. Then H = sejs* and Y; = Q;S. Therefore

*
YjAY.

*
j (QjS) AQ;S »

* %
= S*Q*AQ.

S QJ QJS s
S*HS ,

0. ,
J

since S*S = 1. This proves 1.
QjQ; is the matrix representation of Pj. Therefore

_ * *
PiAP5 = 0305040y »

- %*
- QJHQj s



and for any ¥; = sti’

= q,Ho*
PiAP.y; = Q;HESQ

= QjHSi »

i%i e

= stiei R

= yiei .

This proves 2.

Let Gj = (g],gz,...,gj) be any orthonormal matrix whose columns

Voo (¥ * . -
span wj and let ej (g]Ag],...,nggj). Since span(Gj) span(Yj)

= wj there exists a jx j orthogonal matrix L such that Gj = YjL.

Recall from Theorem 2 that [IR(Y,H)l = HAY-YHI] dis minimized for fixed
Y by H = Y*AY. Therefore

ﬂR(Gj)H = HAGj-Gjeéﬂ R
= HAYjL-YjLesﬂ » definition of L
= D(AY =Y HLD , W' = Le;iL*
= HAYj-YjH'H s L is orthogonal
> IAY-Y0.0 . 05 Y}’AYJ.
= HR(Yj)H .
This proves 3. a

It is important to realize that in general Ritz vectors are not
projections onto wj of eigenvectors of A nor are they local minima

of the residual norm. Consider the following example.



Example -3.

and let

Then

Thus S, Y,

Let
0 a O
A=]a 0 1
01 0
[1 0
Q=01
00
"0 «a
Hso;A02=l 1
o 0]
S-/Z-r] -1
7|_1 1]
0 = diag(a,-a) ,
1 -1
Y = QZS =-%? 1 1 s
0 O
00
R=AY-Y0 = %? 00 ’
1 1]
iRl =1, and
_ _ V2
ﬂr]“ = IIY‘zll =7 -

and R are independent of the size of a.

Do other

vectors in the span of 02 have smaller residual norms than N and

yz? The answer is yes, regardless of the size of «. To prove this,

let



cos ¢
y=|sin¢ | ,
0

which is an arbitrary unit vector in span(Qz). Then with some trigo-

nometric manipulation it can be shown that

0= y*Ay = asin2¢
and

p2 = ilAy-yel]2 = a2c0522¢ + sin2¢ .

The Ritz vectors 2 and Yo correspond to ¢ = /4 and ¢ = 3w/4

which both have p2 = 1/2 as expected. The derivative of p2 is
dp2 2 . .
iy = -4a.cos 2¢sin2¢ + 2singdcos ¢

sin 2¢ - 202sin 4¢ .

The value of the derivative at n/4 is 1 and at 3n/4 is -1. This
shows that p2 and hence p is never minimized by a Ritz vector for
any value of «a.

The unnormalized eigenvectors of A are the columns of

o 1 a
Z=| N+? 0 -/l+a?
1 -0 1

The projections onto span(Qz) are the columns of

o 1 o
A7 0 -/

0 0 0



For no value of a are any of these vectors parallel to either of the
Ritz vectors. That is, neither Ritz vector is ever a normalized pro-

jection onto wj of an eigenvector of A. a

Given only the subspaces wj and ij is it possible to obtain
better approximations to eigenvalues and eigenvectors of A than those
given by the Rayleigh-Ritz procedure? The answer is yes and many resﬁfts
along this line have been obtained. Some of the most important results
are contained in [N.J. Lehmann 1963] and [Davis and Kahan 1970] but we
will not pursue this question any further here.

We finish this section by considering the cost of applying the
Rayleigh-Ritz procedure when j <<.n, which will always be the case
when A is large. The bulk of the cost of applying Rayleigh-Ritz
normally lies in computing the orthonormal basis Qj and forming the
 matrix product AQj. Of course it may happen that wj is specified
-as the span of an orthonormal matrix which would eliminate the cost of
- the first step. However for arbitrary subspaces there is no way to
avofd the cost of forming AQj. ‘However for special subspaces the cost

of implementing the Rayleigh-Ritz procedure can be substantially

reduced, as is shown in the next section.

1.2 The Lanczos Algorithm

Section 1 described the Rayleigh-Ritz procedure, a method of extract-
ing good approximafions to eigenpairs of A from a given subspace wj.
In this section we show that a certain class of subspaces, called Krylov
subspaceé, are ideally suited for the Rayleigh-Ritz procedure in that
the bulk of the cost of using the procedure is eliminated due to the

special structure of these subspaces.
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. - -1 .
For any vector s # 0, Kj(s) = (s,As,...,A""'s) is a Krylov
matrix and Kj(s) = span(Kj(s)) is a Krylov subspace. The first step

of the Rayleigh-Ritz procedure is to find an orthonormal basis for

Kj(s), so for any j, let Qj = (q],qz,...,qj) be the result of
orthonormalizing the columns of Kj(s) from left to right. In particular
9 = s/lsll. The second step 6f the Rayleigh-Ritz procedure is to form
Q;AQj. This is made easier by the following.

Theorem 4. Tj = QEAQj is a symmetric tridiagonal matrix.

Proof. By definition, for all i, AKi(s) c Kiﬂ(s). In particular
- * - .
Aq,i € K,H_](s) = ;pan(Qi+]). Hence qk.l\qi =0 for all k > i+2.
Since A is symmetric, q;Aqk = q:Aqi and the result follows. O

We label the diagonal elements of Tj as “1’“2""’“j and the
off diagonal elements of Tj as 81,82,...,83_].

Theorem 4 implies that the columns of Qj satisfy a three term
recurrence. The Lanczos algorithm arises from the observation that the
coefficients of the recurrence, the a's and B's can be computed as
needed.

There are several mathematically equivalent formulas for computing

the a's and B's. We present only the most numerically stable version.

A comparison of the different possible methods is made in Section 2.4.
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The Lanczos Algorithm. Given 9 an arbitrary unit vector,

define qq = 0 and BO =0. For j=1,2,... do 1 through 5.

1o U5 = Agy-a;5.985
2. @y = qguj

3. rj=%-%%

4, Bj = Hrjﬂ

5. If Bj =0 stop

else qj+] = rj/Bj

One cycle of 1 through 5 is a Lanczos step. Each o is chosen to

force q?qi+] =0 and each B, fis chosen to normalize q.., to

+1
length 1. That is maintaining local orthonormality is suffiéient to
;guérantee orthonormality of Qj.
| We have introduced the Lanczos algorithm by assuming Qj was
orthonormal and proving the three term recurrence. A more common
approach is to define the a's and B's and then prove that Qj is ortho-
normal (cf. [Kahan and Parlett 1974]).

If the algorithm is interrupted after j steps, the computed quan-

tities satisfy

. = %*
(W Ay - 055 = 89513
and
. - ' *
(2) ]-QJQJ =0 s

‘where e; = (0,0,...,0,1) has j elements. Rewriting equation (1)

with appropriate sized rectangles yields
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&J\9=o

(3) J

—F X X X

Biq.

Ji+

(SN

Equations (1) and (2) are a compact way of displaying the Lanczos
algorithm and most of the analysis presented will start from these
equations.

At the jtI

step of the algorithm, if s.ejsg is the spectral
decomposition of T., where 0. = (e(j) (jg ...,e§j)) and
S5 = (s(J) (J) .,.,ng)), and Y, = (y(J),ng),...,ygj)) = 0;S; then
(y (J),e(J)), for i=1,2,...,j are the Ritz pairs obtained from
Kj(q]). We note that normalized eigenvectors of Tj are only deter-
mined up to a factor of #1. 1In later analysis it will be convenient
to assume that sji the bottom element of ng) is positive for all 1.
Unless otherwise stated, all Ritz pairs will be taken from Kj(q]) and
the superscript j will be dropped.

The Lanczos algorithm permits the first two steps‘of the Rayleigh-
Ritz procedure to be performed simultaneously at a substantial savings
in cost.” Only the vectors q‘]._1 and qj are needed for bomputing
qj+]. The rest of the vectors can be put into secondary store until
they are needed for forming Ritz vectors. If only the Ritz values are
desired, the Lanczos vectors (the q's) need not be kept at all. This
is a very attractive feature with respect to large problems. Also the
matrix H = Q;AQj is tridiagonal and this substant%al]y Towers the
cost of computing its eigensystem. Finally we are going to show that

the composite residual norm is computed by the algorithm itself (i.e.

Bj) and that the residual norm of each Ritz vector can be computed



without forming the Ritz vectors! This obviates the need for perform-
ing step 5 of the procedure and reduces the cost of step 6. We now

show how this can be accomplished.

Theorem 5. Let (Yj,ej) be the set of Ritz pairs derived at
the jth step of the Lanczos algorithm. Then
nRjH = HAYj-Yjejﬂ = Bj
and
p; = TAy;-y40;0 = By5 >
for i=1,2,...,j, where Bji = Bjsji and Sji >0 1is the
bottom (jth) element of S;» the ith eigenvector of Tj‘

Proof. Multiply equation (1) on the right by Sj to yield
*
AQ.S.-0Q.T.S. = B.q. .S. .
Q355 057555 = Bj954185%

Since Tij = sjej and Yj = Qij, this reduces to

: ] .
(4) AY; - Y05 = B.qs, €lS:

Taking the norm of both sides yields

A= BAY.-Y_ 0.0 = 1B.q., €3S,
HRJH [IAYJ YJGJI [lBJqJHeJSJ

S; s orthogonal and for any matrix B, UBPI = 0Bl if P is

orthogonal so

*

*
Bjqu+]ﬂﬂejﬂ s

Bj ,

ﬂRjH Hqu

13
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since luv*l = Jullv*l for any vectors u and v. Equating the i

column of each side of (4) yields

*
Vi Y38 = 85950855 »

Bjsjiqj,n ’

and by taking the norm of each side we obtain

©
e
[

= Bji . O

These numbers Bji’ which can be computed without forming the
Ritz vectors, explain how it can happen that some of the Ritz values
may be very accurate approximations to eigenvalues of A without the
appearance of any small off diagonal elements of T (B's), A Ritz
value egj) with a negligible Bji has converged. This definition is
justified by the following result.

~Theorem 6. Let egj). be any eigenvalue of T.. Then for
k)
k

11 k > j there exists an index ik such that eg (an

eigenvalue of Tk) satisfies

) (K
[e§3)-egk)l < B -

Proof. Let S; be the eigenvector of ng). Let s% be a
s
k-vector with s% = ( J). To prove the Theorem we compute

uTks;-s%e§3)u and then invoke Theorem 1. In pictures,



H
' 9
1 . .
o 1 (j) J__ DN B (J)
s {197 = o %

"
C
€y

odo

n
[ SN

l_l(j)_.._ =
Hence llTksi Siei l BJ.S:ji )ji' By Theorem 1 there must be some

eigenvalue of T,, call it e{k such that e(j)-egk) < B... 0O
k
T i i ' =3

These results show that the converged Ritz values can be identified
by inspection of the bottom row of the matrix Sj‘ They do not address
the fundamental questions of whether convergence will occur quickly
and to which eigenvalues of A Ritz values are most likely to converge.
The examination of these questions is put off until Section 3. In the
mean time we derive some useful algebraic properties of the Lanczos
algorithm.

The algorithm must terminate (Bj==0) at some step j < n, since
n+l orthonormal n-vectors cannot exist. The exact number of stéps

taken before termination depends on the starting vector 9, as follows.

15
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Theorem 7. Let W SIRn be the smallest A-invariant subspace

containing 9 and let m = dim W. Then the Lanczos algorithm

started with 9 will terminate at the mth

Km(q] ) = W.

step (Bm= 0) with

th

Proof. Suppose the algorithm terminates at the j= step (BJ. =0).

Then
AQj-QjTj =0,
so Kj(q]) = span(Qj) is A-invariant. Since q € Kj(q]), w SKj(q])
and m < j.

On the other hand, since W is A-invariant and q, €W,

Aiq] €w forall i.

Hence Kj(q]) = span(q] ,Aq],...,A‘j']q]) Cw and j <m. 0

The Lanczos algorithm is invariant under certain algebraic opera-
tions. Since thesle results a.re needed in later analysis, they are
listed together here for easy reference. To express these identities
we use the notation Lj(A,q]) = (Qj,TJ.) to mean that j steps of
the Lanczos algorithm run on A starting with a9 yield Qj and TJ..
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Theorem 8. If Lj(A,ql) = (Qj,Tj) then

1. UvAq) = (0;,¥7;) forall y€ER,
(Av.ap) = (@.T-y) for all y €R.
LJ(P*AP,P*qj) = (P*Qj,Tj) for all orthogonal P.

S W N

13 - . .
L (Alw,q]) (Qj’Tj)’ where Alw is A restricted
to W and W is the smallest A-invariant subspace

containing qy-

Statement 4, which follows directly from Theorem 7, has an impor-
tant theoretical consequence. Any eigenvector orthogonal to % will
be orthogonal to all of W and will not be discovered by the algorithm.
In particular if A has multiple eigenvalues, only one representative
(at most) of the multiplicity will 1ie in ® and the multiplicity will
not be discerned. Therefore in analyzing the algorithm one may always
assume that A has no multiple eigenvalues at all. This feature of
the Lanczos algorithm must be viewed as a serious drawback in the con-
text of using the algorithm to find a few eigenvalues of a given

matrix A.

1.3 The Kaniel-Paige Theory

In 1966 S. Kaniel [Kaniel 1966] computed some bounds on the |
accuracy of Ritz pairs obtained from Krylov subspaces. Since this
paper is difficult to read and contains some significant errors,

C. Paige reworked the results in his Ph.D. thesis [Paige 1971].
Unfortunately this material is not readily available so we present the

theory here, correctinga minor error inPaige and adding a mild improvement.
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The foundation of the theory 1ies in the characterization
Kj(q]) = {¢(A)q]|¢ is a polynomial of degree<j} .

The point is that using Tchebychev polynomials it is possible to choose
a'polynomial ¢ which greatly amplifies the ql-component of one eigen-
vector while crushing down the components in all the other eigenvectors.
The remaining results account for the fact that the vector so con-
structed is not exactly a Ritz vector. A1l the results presented bound
the accuracy of the algebraically smallest Ritz values. Similar results
for the largest Ritz values can be obtained by applying the given results
to -A. There is a numerical example at the end of the section to
illustrate the theorems. |

As mentioned at the end of Section 2, we assume that A has no
eigenvectdrs perpendicular to - In particular A has no multiple
eigenvalues. Let A] < Az < eee < An be the eigenvalues of A and
let z],zz,...,zn >be the corresponding (normalized) eigenvectors. Let
(yi,ei), for i =1,2,...,j, be the Ritz pairs obtained from Kj(q]).

Then each Ritz vector can be expanded (uniquely) as
(1) g
1 y: = YisZy o
T2 kitk

For each Ritz vector define

(2)

m
- N
1}
=3
<

-de
1
~<
N
=
N
-

J
~1
<
=N
-—de
-

1
—t
1
<
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Note that €; is the norm of the component of Y3 orthogonal to z;
rather than ly;-z;l. It is confusion of these two possible defini-
tions of €; which leads to the errors in Kaniel's paper. The next

theorem gives a bound on the e?.

Th'eorem 9. For i =1,2,...,]

? i1,
e; < [ei-x1.+kz (A 417NV (g q725)

Proof. By equation (1) and Theorem 3 (in section 1),

[a=]
L]

*
i .V-A.Y' ’

Z Yk1*k ’

X 12 2
and since kzlYki = ly;8° =1,

>
1]

2
i kZ]Yki*i .

Combining these results and rearranging yields

i-1

2
0 -2, + { Vi (A1) = 2 -Y (Ae=25) s
ki k k=5+1 ki
> (J\. =) ) Y .
= T+ k-§+ ki

P 00505 LY (g AV Ogigay)

Yii < ei for k # i and the result follows. O
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The vector in Kj(q]),< which we will obtain with an artfully
choSenrpo1ynomia1 ¢, will not be a Ritz vector. Therefore this
vector's Rayleigh quotient will not be exactly a Ritz value. We now

compute a bound on the error introduced by this discrepancy.

Theorem 10. Let v € Kj(q1) with v*v =1 and z;v =0
for k < i. Then
* icl 2 * il 2

The first and last inequalities follow directly from the Cauchy
interlace theorem. To obtain the middle inequality we first prove the

fdl]owing lemma.

Lemma. Let A be negative semidefinite and let v be as

in Theorem 10. Then

. 1-12
0; < VAV~ kZ]ekek .

Proof of Lemma. Resolve v as

ii]
v=yv,+ v, Y
1 k=1 k”k

where v’{yk =0 for k < i. By (2) and the Schwartz inequality,

I\’kl |V*.Vk| s
= lV*(yk‘Ykkzk)I s

e -
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By Theorem 3 the Ritz vectors are A-orthogonal so

’ v*Av

H
.-a<*
b
<
omd
+
~1 ’
<
~
D
P~
-

v¥Av, /vEy -+ii]eze
Mt L eS8

IA

since V;AV] < 0. Using the Courant-Fischer characterization of eigen-
values of a symmetric matrix it can be shown that

9, = min (x*Ax/x*x) .
xEKj(q]).

x*yk=0 for k<i

_Since Vi is a candidate for x, the Lemma follows. Since the Lanczos
algorithm is translation-invariant (see Theorem 8), the Theorem follows

from the Lemma applied to A- An. O

We now use the polynomial characterization of Kj(q]) to obtain

i
spectral decomposition of Gy-  Then ¢(A)q] = E oi¢()\i)zi for any
i=1
polynomial ¢. What is needed is a polynomial ¢ such that

a good vector v for use in Theorem 10. Let 9 = E 0;Z; be the
=

o(x) =0 for k<i,
.¢(Ai) is "large", and
¢(Ak) is "small" for k > i .

Ideally ¢ should vanish at all the eigenvalues of A except Ai,
 but this takes a polynomial of degree n-1 which means j = n and
all the "approximations" are exact. For real applications j will be

much smaller than n and a different approach is needed.
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Partition the set {1,2,...,n} into three sets 1, T, and K. T
will consist of the number i alone, T will be the index set for
those eigenvalues of A at which ¢ will be made to vanish, and K
will index the rest of the eigenvalues at which ¢ will be made small
using a Tchebychev po]yhomia]. By the hypothesis of Theorem 10 T must
include 1,2,...,i-1. It may be advantageous for T tovbe larger.

The larger the set T the lower the degree of the Tchebychev polyno-

- mial for K, but the interval containing the eigenvaiues indexed by K
is also smaller. It is this trade off which determines the optimal
size of .T. Both Kaniel and Paige observed that it may be advantageous
for T to include i+1,i+2,...,s, for some s but neither mentions
that it may also help to include n,n-1,...,t in T for some number

t. Let |T| be the number of elements in T.

Theorem 11. Let I, 7, and K be a partition of
{1,2,...,n} such that {1,2,...,i-1} CT and I = {i}.
Let m=j-1-]|T|. Then

2
ké(["kng("k'*j” herid a0,
7+ 1 € (g2 )
I (xi-x.)] k=1
er ' J

1
[o;T,(1420)

J

th Tchebychev polynomial (of the first

where Tm is the m
n

kind), q; = ] 0.z s the spectral decomposition of q,,
k=1

and p = (Ak-li)/(xi-kk) where k and k are the largest

and smallest elements of K respectively.
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Proof. Let ¢(x) =T (x) I (x-1.), where T (x) is the mth
—_— m jeT A m
Tchebychev polynomial scaled and translated to the interval D‘k’)‘E]’

By the definition of m, deg ¢ = j-1. Ifwe let w= ¢(A)q] then

2 A 2
Iwi™ > [o,T (A, ):j gT(xi-xj)]

2
= [oiTm(HZp)j g‘r(k‘—)\J )]

and for k € K

lo(x, )| I?m(xk)ng(xk-Aj)l

IA

m (a-r)] .
IjGT )]

Now Tet v = w/liwll, apply Theorem 10, and use these bounds to obtain

the result. O

To illustrate the bounds obtainable from these theorems we consider

the following example.

Example. Let the eigenvalues of A satisfy

A3 = 004
.1 _<_)\k§ .9 for k=4,5,...,n-1
A, = 1.0

Let q’]"zi = .01 for i =1,2,3. Assume the Lanczos alaorithm is
interrupted at j = 53 and the three smallest Ritz values are computed.

To bound the accuracy of each of these Ritz values we choose,
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for i=1,2,3,

K=1{4,5,...,n-1} ,
I1={i}, and
T=1{1,2,3,n} \X1.

For all i we can bound the numerator appearing in Theorem 11 by

<1.

=N

- y12
) [o, ng(xk-xj)] (A -23) <

Y o
k€K keEK

Also Tm(cosh x) = cosh(mx) > e"™/2. Using these bounds, Theorem 11

assures that

-2
- T ] 2 “As Y
e] A] L [U] 49( + p)jg_r()\] AJ)]
< 01T, (1 +2(.125))(0-.01)(0-.04) (0-1.0)1°2 ,

< 10718,

Then Sy Theorem 9,

e <100,
=106,

By Theorem 11,

8y - Ay < [.01xT;g(1.225) x .01 x.03x 9912 +10716 |
215

< .103x10 .
By Theorem 9 again,
€5 < (.1031071°+.04x1071)/.03
14

.345x10 7 .

|A
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Finally,

8-y < [.01T,g(1.15) x .08 x .03 x .96] % + .99 x .35 x 10714

< .3x10712
and
e5 < (3107124110710 + .31x1077%) .06
< .51x1071 .
Summarizing:

8y - < 10718 ef _<__10']6
8,0y < -103x1071° | &€ < .3a5x 10714
83-23 < .3x10712 | ¢ < 51x107T

These bounds are slightly stronger than those obtained by Kaniel
and Paige on essentially the same example due to the assumed gap between

An-l and An. O

The results in this section are not often useful in practical

problems since the gaps in the spectrum are not usually known.

However
these results are important from a theoretical standpoint. Consider
Theorem 11 which, in the simplest case of i =1 and T = P, states

n
PEACHSS
k=2
0 28-2 <

2 1)
[U]Tj-] (1+2p)]
2
ta; w[kn-A]]
Tj_](1+20)

A




where ‘w is the (acute) angle between z, and q; and
p = (Am27)/ (A -2,). |

The role of p shows clearly that the larger the relative separa-
tion of A] and Ao the faster the convergence to Ay On the other
hand if ¢ = n/2, that is if 9 is almost orthogonal to z,, conver-
gence to A] wil be slow even if A] is well separated. Is it
possible to choose 9, so that no Ritz value converges quickly? This

question is examined in the next section.

1.4 Slow Convergence

- Llet A and T >0 be given. Define a Ritz pair (yi’ei) to be
converged if HAyi-yieiﬂ = Bji < 1. Is there a starting vector 4
such that no Ritz pair converges before j = n? For matrices with well
separated eigenvalues the answer is yes. Even for matrices with clus-
tered eigenvalues there are starting vectors which delay convergence
fér a long time. In this section we will derive formulas for these
pervérse starting vectors. |

Of course % and A determine everything in the Lanczos

algorithm. The main result of this section is the derivation of a
simple relationship between 9 and the Ritz values at the penultimate

step (the step before termination).

26



Theorem 12. Let A]<<k2<'-- <A, be the eigenvalues of A
and let Z = (z],zz,...,zn) be the corresponding normalized

eigenvectors. Let UysHoseee sty 1 be any numbers such that

A] <y < XZ e & Moo1 < An .

If the Lanczos algorithm is run on (A,q]) for n-1 steps,
then U ,ly,...,u ; are the eigenvalues of T, iff

q = Zp.I where

2 2 n n’] _]
J#i

and the constant nﬁ can always be determined.

2

Note that the formula for Pj; can be rewritten as

P21 = w0 M (AT

where xj(z) is the characteristic polynomial of Tj‘ In particular
xn(s) is also the characteristic polynomial of A since Tn is
similar to A.

Results similar to Theorem 12 have been used by D. Boley and
G.H. Golub [Boley and Golub 1977] and C. de Boor and G.H. Golub [de Boor
and Golub ] in the context of inverse eigenvalue problems fpr

banded matrices.

To prove the theorem we first prove two lemmas.

27



Definition. Let adj(R) be the transpose of the matrix of

co-factors of R. This is usually called the adjugate or classical

adjoiht of R. By the Cauchy-Binet Theorem we have

R adj(R) ='adj(R)R = det(R)I .

Lemma 1 (Thompson and McEnteggert). Let A = ZAZ* be the
spectral decomposition of A, where A = diag(ll,ké,...,xn)

and Z = (z],zz,...,z ). Then for i =1,2,...,n

n

adj(Ai-A)

y ( )z.2%
I (i.-X.)z.z.
j=1 V3T
j#i

1 *
XA()‘i )Zizi ]

where xA(E) is the derivative of the characteristic poly-

nomial of A.

Note that if li is a multiple efgenva]ue of A then XA(Ai) =0,

so that the ambiguity in the choice of eigenvectors is unimportant.

Proof of Lemma 1. Let u# A, for all i so that (u-A)"]

exists and

[det(u-A)1(u-A)""
Xp(W)2(u-1)"'2*
787"

adj(u-A)

(N

where A = diag(a],sz,...,sn) with

28
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8 = Xpu)/(u=2p)

T (u-a,)
m(u-2;) .
=1
i#k

Since computing cofactors does not involve division, adj(R) is a

continuous function of R. Therefore by continuity, equation (1) must

hp]d even for u = A,.

i Setting u = A,

i yields

adj(1,-A) = nz*

with
1 (h-2)
§, = I (A:-A;
k j=1 1
J#k
0 for k # i
xA(Ai) for k = i
and the result follows. ‘ a

Thompson and McEnteggert were working with general Hermitian
matrices. The application of their result to tridiagonal matrices was

made by Paige [Paige 1971].

Notatibn. Let

Br
Br @iy Bryy O
Tr,t - Bray " ?
O .. By
_ B1 o

let T, = T,,¢ as before, let xr’t(g) = det(E-Tr,t), the characteristic
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polynomial of Tr,tf let x,(g) = x],t(é), and let xr’r_](g) =

for all r.

"
o
-

Lemma 2 (Paige). Let Tn = S0S* be the spectral decomposi-
tion of T with o= d1ag(e],92,...,en) and

S = (51’52”"’5n)' Then for r <t and all i

Xn(83)81iS i = X7, po1(85)BBryy "By _1Xpay n(85) -

Proof of Lemma 2. By Lemma 1,

. o *
(2) adJ(Gi-Tn) = Xn(ei)sisi .
The (r,t) element of the R.H.S. of (2) is x)(6,)s ;s;;- Because of

the tridiagonal form of Tn’ the (r,t) element of the L.H.S. of (2)

is xl,r-l(ei)8r3r+1"'Bt-lxt+1,n(ei)' For example

- B
~B] ei-az -82 (:::)
-82 ei-a3 -83
"By 1857 By

i
O '64 Oi-as “85

-BS ei-as

The circled elements contribute to the (2,3) cofactor. The minus
signs associated with the B's cancel with the alternating signs assigned

to the cofactors. - a

This lemma gives many relationships among the elements of S. We

will need two of them for proving Theorem 12, namely for i - 1,2,...,n,



(3) Silsnixé(ei) = ByBy,"++B,_q =T , a constant,
and

2 _, -
(4) Snixn(ei) = Xn_](ei) .

Proof of Theorem 12. By the invariance properties aiven in

Theorem 8, if LI(A,q;) = (0.,T.) then LI(Z*AZ,Z%q.) = (2%Q..T.).
1 3’3 1 j*'d

. * = * = j = = *
Since Z°AZ = A and Z a4 = Pqs L (A,p]) (Pj’Tj)’ where Pj 727Q..

J

th

The Lanczos algorithm will terminate at the n° step with

APn = PnTn .

Thus Pn = S*, the transpose of the matrix of eigenvectors of Tn.
Equation (3) can now be interpreted as relating the first Lanczos
vector p; to the last Lanczos vector P, Equation (4) relates Pp
to the eigenvalues of Tn-] and the eigenvalues of Tn. The eigen-

values of Tn are just A],Az,...,l since Tn’ A, and A are all

n’
similar. Combining equations (3) and (4) and changing to the P nota-

tion yields

2

(5) pE (X, q () = 1,

for any starting vector Py-

If py fis given, then (5) gives the values of xn_](li), for
2
0
of degree n-1. By choosing an arbitrary value for ﬂi (say 1) the
roots of xn_](g) can be found by interpolation. The value of nﬁ

i=1,2,...,n 1in terms of the constant = xn_](z) is a polynomial

can then be found from the fact that xn_](g) is a monic polynomial.
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If HysHpseosl ¢ are specified then by choosing an arbitrary
value for‘ nﬁ (say 1), tentative values 6?1 can be calculated for
all i. Since ZP§1 = up]uz =1, wﬁ = (2351)'] and the tentative
values can be correctly normalized.
The choice in signs of the elements of A merely reflect the
choice of signs for the eigenvectors of Tn' A1l choices yield the

same Tn and hence the same u's. (]

For the original matrix A, the specified starting vector q,
depends on both the eigenvalues and eigenvectors of A. The expression

9 = Zp] clarifies their roles; Z ‘is independent of A and P is

independent of Z.

Example. Let A = diag(1,3,5,7,9) and let My = 2i for
i=1,2,3,4.

x'(l)xu(l) = (1-3)(1-5)(1-7)(1-9)(1-2)(1-4)(1-6)(1-8) = 40320
x'(3)xu(3) = (3-1)(3-5)(3-7)(3-9)(3-2)(3-4)(3-6)(3-8) = 1440
x'(S)xu(S) = (5-1)(5-3)(5-7)(5-9)(5-2)(5-4)(5-6)(5-8) = 576
x'(7)xu(7) = (7-1)(7-3)(7-5)(7-9)(7-2)(7-4)(7-6)(7-8) = 1440
x'(9)xu(9) = (9-1)(9-3)(9-5)(9-7)(9-2)(9-4)(9-6)(9-8) = 40320

ﬂsl/40320 .00498w

P11 = Pgy 5
Py = Pgq = mg//1880 = .02635m,
Pgy = mg//576 = .04167n,

By normalization, Mg = 17.749 and

Py = (.0880, .4677, .7396, .4677, .0880)% .



The Lanczos algorithm run on (A,p]) yielded a T4 with eigenvalues

2, 4, 6, and 8 correct to the precision of the machine used. ~ O

Theorem 12 shows that an appropriafe choice of the starting vector
can place the eigenvalues of Tn-l anywhere between the A's. Let
MysHos...5i, ¢ be fixed and Jet 9y be chosen. What can be said
about convergence in this case? The following result gives a lower

bound on all the Bji for j < n.

Theorem 13. Let the Lanczos algorithm on (A,q]) yield

Hy:Hgse.esl 1 as the eigenvalues of T ;. Then for all

j<n and all i<

where §, = min luj-xil.

Proof. Let (yi’ei) be a Ritz pair with residual norm Bji‘ By

Theorem 5 there must be a A such that
By Theorem 6 (with k=n-1) there must be a p such that

Iej'ul 5-Bji .

The smallest value.of Bji which can satisfy both inequalities is

ci = . ' O
B\]1 Gu/Z

33



Corollary. Let 6A = min |A1~Aj|. If 1 (the given con-
i#]

vergence tolerance) satisfies T< GA/4, then there exists

a starting vector 9, such that the Lanczos algorithm run

on (A,q]) will have
e. P
J1 =

for all j<r and i< j.

Proof. Let uy = (xi+xi+])/2 for i = T,Z,...,n-]. By Theorem 12

there is a q; such that the u's are the eigenvalues of T ;. Then

6u = GA/2 and the result follows from Theorem 13. a

This result does not imply that no Ritz value will be accurate
enough. It only guarantees that the corresponding Bji will not
reveal such accuracy. In the previous example of A = diag(1,3,5,7,9)
and By = 2i, for 1 =1,2,3,4, e£3), the middle eigenvalue of T3
is. 5, correct to working accuracy. B3y = 1.25 which shows that this
fortuitous‘accuracy is due to the symmetry of the example, rather than
the accuracy of the Ritz vector.

If GA/4 < 1t then the corollary does not apply, but it is still
possible to findvperverse starting vectors which delay convergence for

a long time.
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Theorem 14. Let W be an A-invariant subSpéce of maximal
dimension such that &z/4 > 1, where A is A restricted

to W. Let m=dimW. Then there exists a starting vector

for A which delays convergence until j = m.

Proof. Apply the corollary to A to obtain a starting vector %

for A which delays convergence until j = m. By Theorem 8 the

algorithm run on (K,q]) and (A,q]) produces the same Tj for all j.

Hence this %G will delay convergence for A until j = m. (]
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2. The Lanczos Algorithm iﬁ Finite Precision

Chapter 1 paints a very rosy picture of the Lanczos algorithm.

If these theoreticaT results were closely apbroximated in practice, the
Lanczos algorithm would be the preferred method of tridiagonalizing any
symmetric matrix. However as was known to Lanczos when he introduced
the algorithm the computed quantities can deviate greatly from their
theoretical counterparts.

At this point we make an important change in notation. From now
on Qj and Tj will represent the quantities actually computed with
finite precision arithmetic. However the spectral decomposition
Ty = sjejsg, with o, diagonal and Sj orthogonal, will be assumed
to hold exactly. High quality subroutines exist for accurately comput-
ing O, and Sj and the small roundoff errors comﬁitted therein are

J
always dominated by the errors inherent in T.. Recall that the columns

of S are normalized so that the bottom row 2f S 1is all positive.
The eigenva}ues of Tj will still be called Ritz values and the
columns of Yj = Qij will still be called Ritz vectors even when Qj :
is not even close to orthonormal. In principal it is possible to
compute the true Ritz vectors from span(Qj) but this would be very
expensive and nullify the advantages of the Lanczos algorithm. We will

never consider the true Ritz pairs so no confusion should arise.

2.1 Description and Example

In exact arithmetic the quantities computed at the jth step of the

Lanczos algorithm satisfy the equations



A i
(1) QJ - QJ ={0 rj
and

*n o
(2) 1 -Qij 0.
Equation (1) can be written compactly as

- %

(3) AQ; - Q5T = 74€;

where eg = (0,0,...,0,1) has j elements. In finite precision
arithmetic neither (2) nor (3) will be satisfied exactly. Instead

they must be replaced by

*
. =Q.T. = r.e. +F.
(4) AQJ QJTJ rJeJ FJ
and
* -—

where Fj and Gj account for the rounding errors. Bounds on ﬂFjﬂ
and HGjH depend on the specific implementation of the algorithm but
the surprising fact is that while any reasonable implementation will
keep HFjH tiny (“Fjﬂ = ellAll, where € 1is the relative machine
precision), no implementation of the simple Lanczos algorithm (the
three term recurrence) yields a small a priori bound on nejn. This
"loss of orthogonality" among the Lanczos vectors (columns of Qj) is
the infamous instability of the algorithm.

W. Kahan has shown that the bound given in Theorem 2 of Chapter 1

for an orthonormal matrix Qj fails gracefully as Qj loses

37



38

orthogona1ity. The number c](Qj) = (x][Q;Qj])]/Z, the smallest

singular value of Qj,, appears as a measure of the loss of ortho-

gonality in Qj'

Theorem 1 (Kahan). Let Qj be any nx j matrix, let H be
a jxJj symmetric matrix with eigenvalues 61,62,...,ej, and
let R = AQj-AjH. Then there exists 1',2',...,j' distinct

- integers such that for all i

l65-2;] < /fl!Rll/o](Qj) .

where o](Qj) is the smallest singular value of Qj'

The proof is in [Kahan 1967].

Unfortunately computational experience indicates that the graph

of 01(Qj) looks qualitatively like:

'l = = = — = — -

o,(Q;)

That is, o](Qj) rapidly approaches 0 once it has moved away from 1.

We give an example of this phenomenon.



Example 1.
10

n

.6x10"7 (relative machine precision)
diag(0,.01,.02,...,.08,1.0)
(1,1,...,1)"

€

A

q1 = u/llull, where u

Step j | 0y(Q;)
1 |1.00000
2 |1.00000
3 |1.00000
4 |1.00000
5 .99997
6 .99852
7 .92250
8 .08190
9 .00104

10 .000001

Parlett and Kahan also give graphs of o](Qj) in [Kahan and Parlett
1976].

In theory B]O = 0 since 11 orthonormal 10-vectors cannot exist.
In Example 1 orthogonality has been lost completely by step 10 and
“there is no compelling reason why B0 should be tiny. Indeed for

Example 1 810 = ,01033 which is not small at all compared to (Al = 1.
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The Ritz values at step j = 10 are

ande

(10)
8;

.000002
.010116
.020998
.033318
.045409
.058857
.069857
.079996
1.000000
1.000000

W 00 N OV OV & W N~

]
o

and these values shed some Tight on what has happened. A spurious
multiplicity has appeared at 1.0 where A has only a simple eigen-

- value. The two Ritz vectors, y, and y,., are both good approxima-
9 10 —

tions to the one eigenvector Z10° Therefore Yg and Yo 2re essen-

tially parallel and 01(010) must be tiny. O

This example will be examined more closely in the light of later

results.

2.2 A Misleading Example

Theorem 5 of Chapter 1 shows that the residual norm of a Ritz
vector y; can be computed without computing Ys- Namely
TAy;=y;8;0 = By
where Sji = Bjsji' Therefore it is possible to bound the accuracy of

8 without computing ¥; and if only eigenvalues are desired the
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Lnaczos vectors need not be saved at all.

In finite precision arithmetic we obtain the following analog of

Theorem 5.

. . -Q.T. = + . = Q.s.
Theorem 2. Let AQJ QJTJ B. qJ+]eJ FJ Let Y; QJS1
with Tjsi = Siei and ﬂsiﬂ = 1. Then

HAyi—yieiﬂ g_B +ﬂF S5 I < B +ﬂF i

Proof. The second inequality follows from Bsi“ = 1. To obtain
the first inequality multiply the matrix equation on the right by S5
to find

which simplifies to

Ayi-yie = B, sj] 541 F S5

Since ﬂqj+1n =1 and Bji = Bjsji’ the result follows from taking

the norm of each side. a

Theorem 2 shows that Bji is a good estimate of the residual norm
of Y3 provided that Bji 3_quu. For the simple Lanczos algorithm
ijﬂ is always tiny, like roundoff in A (see Appendix 1), so
Bji
good estimate of the residual norm of Yy-

Z_Han will hold in almost all cases and Bji can be used as a

Unfortunately this need not lead to a good estimate of the accuracy

of 8- Since Qj is not orthonormal, Y; © sti need not have



length 1. The best obtainable bound for the accuracy of ei in the

absence of further information is
(1) m;n Iei-xkl g_ﬂAyi-yieiH/Ryiﬂ .

A lower bound for ﬂyiﬂ is given by the following lemma in which the

smallest singular value of Qj again appears.

Lemma 1. Let Y = sti with Bsiﬂ = 1. Then

Iys 2 0(Q;)

where 6T(Qj) = (A][Q}Qj])]/z, the smallest singular value

of Qj.
: : 4l _
Proof. !yiﬂ = ¥3¥;
- akn%
= 55050554

> ;\][QSSQJ.] (Q}'QJ. is symmetric) .

Since Qng is nonnegative definite, the square root of both sides can

be taken. R 0

Thus it would appear that it is necessary to either calculate
ﬂyiﬂ or estimate o](Q;Qj) to obtain an error bound for 8- This

suspicion is further strengthened by the following perverse example.

Example 2. Take as an instance of AQ, = QZTzi—rzezq-Fz,

(110 -1] = [ -1]] 1001 1000
[ 1000 1001
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where both Fz and r, equal zero. Observe that T2 is similar to
0, = diaa(1,2001)

and since 82 = Hr2H = 0, both 82] and 822 are zero. Furthermore,
since F2 = 0 as well the residual norms of both 2 and y, are
zero by Theorem 2. If A were hidden from us we might be led to
believe that 2001 was an eigenvalue of A. This paradox is resolved

by computing the Ritz vectors. We have

wn
]

2 ° (”2-/2)[-} 1]

and _

Yo = Q,5, =[v2 0].

Thus Yo = 0 and uAyz—yzezu = 0 even though 62 = 2001 1is not an
eigenvalue of A. The vanishing of Yo is possible because the

columns of Q, are linearly dependent and so o4(Q,) = 0. a
2 1472

Examp]e‘z itself is not an example of the Lanczos algorithm since
aps the (1,1) element of T2, is 1001 whereas o for the Lanczos
algorithm would be q;Aq] = 1. In order to analyze the Lanczos algorithm
it is necessary to find a characterization of it which distinguishes the
true examples (1ike Example 1) from the spurious ones (like Example 2).
To do this we must investigate the specific manner in which orthogonality

is lost in the course of the algorithm.



2.3 Loss of Orthogonality

In his Ph.D. thesis, C. Paige derived a powerful characterization
of the manner in which orthogonality is lost in the course of the simple
Lanczos algorithm. This result is central to understanding the behavior
of the algorithm in the context of finite precision arithmetic. Since
it has never been published in the open literature its full derivation
will be given here. »

It is the vector ngj+1’ ‘which would be zero in exact arithmetic,
which displays how well orthogonality is preserved at the jth step.
However the elements of this vector are difficult to analyze and little
insight can be gained from them. A change of basis is needed to clarify

the situation. It is the vector S3Q%a... = Yiq which can be easily
NI R

i
described. '

Theorem 3 (Paige). At'any step j of the simple Lanczos

algorithm and for any Ritz vector ¥ © sti’
Qe | = elAly, ./
|¥595491 = elAly;5/8;

where Bji = Bjsji’ e 1is the relative machine precision,

Remarks. By Theorem 2, B is essentially the residual norm of

Ji
y; so Theorem 3 states that the smaller the residual norm of Y5 the

greater the loss of orthogonality of gq in the direction of Ys-

jf
This can be stated as

loss of_orthogonality < convergence .

- 44



The proof of Theorem 3 is rather long so we break it into several

lemmas starting from the basic equation

1 , AQ. = Q.T.+r.e¥+F. .
(1) Qj = Q5Ty+rse;+Fy

Lenma 1. If (1) holds then

* 'k= _* - _* *-*
Q:r.e. = (1-Q%Q.)T. Tj(l Qij)+-Fij QiF.+e

iT3%; i 5F 5+ e5r50; -

*
J

Proof of Lemma 1. Multiplication of (i) on the left by Qg yields

*AQ. = Q%Q.T. +Q*r.e*+0Q%F. .
(2) - QAQ; = Q3055+ Qyrye + O5F 5

Since Q;AQj is symmetric we may subtract (2) from the transpose of (2)

and rearrange to obtain

* .k _ (1_0* _ _a* *0 _a* *
(3)  Qjryey = (-050y)T4-T50-050;) + Fi0; - Q5F ; +eyriy . O

Notation. Let V(R) be the upper triangular part of the matrix
R (including the diagonal). For any conformal R and S,
V(R+S) = V(R) +V(S) but V(RS) # V(R)V(S) in general. Let
-Q*Q. = C¥+A.+C. wi . di . i
1 QJQJ CJ A CJ y1th AJ diagonal and CJ strictly upper

J
triangular.

Lemma 2. If (1) holds then

%* *
r.e. = -To‘T- -+ o+ s 9
Qjriey = C5T5-TC5* By *Ey

* *
. = .Q.-Q.F. . = T.-TLA.
where EJ V(FJQJ QJFJ) and BJ. V(AJ 3 TJAJ)

+ *T.-T.C*¥) + .r*q.).
V(C3T5-T5C5) + vleyrily)
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Proof of Lemma 2. Taking the upper triangular part of each side

of (3) we find

*  ky _n* - _n* *n _a* *
(4) v(Q§rie}) = v((1 Q50;)7; - 7,01 Qij))+v(Fij Q3F ;) +vleyri0y) .

Substituting 1--Q§Qj = C}i-Aji-Cj and using the definition of ej we
find |

‘ %*, *
.r.e.) = dJ.-T.C.) + le=1.A. de=1.0C.)+E.
(5) V(QJrJeJ) v(cJTJ TJCJ) V(AJTj TJAJ)+V(C T.-T.C:) EJ+V(e

X
i'J i joj)"

jr
The matrix Qgrjeg is zero except for the lasf column which is Q}r..

Therefore V(Qgrjeg) S Qgrjef. Furthermore Cj is strictly upper

triangular and Tj is tridiagonal. Hence V(chj'chj) = CJ.TJ.--TJ.Cj
and the result follows. a

Lemma 3. If ¥; = sti with Tjsi = Siei then

* -—
|¥{95,91 = €lAly ;3785

. L%k . ' =
with Yy = lsi(Bj+Ej)si|/eHAH and Bji Bjsji'

Proof of Lemma 3. Multiplying the assertion of Lemma 2 on the

left by s? and on the right by S; we obtain

* %k . %k * *
..... = s.(C.T.-T. . +s.(B.+E.)s. ,
(6) s1QJrJer1 s,‘(CJTJ TJCj)s1 s,'(BJ EJ)s1

which simplifies to

- * * *
(7) y = (s.C.s.)ei-ei(s.C.s.)-+si(Bj+Ej)si .

*r.s
i joii i7§%i i“joi

Since ry = qj+18j, (7) becomes



(8) B.S..Y:q

- *

and the result follows. .CJ

Lemma 4. Bj (of Lemma 3) is a bidiagonal matrix with

*
byy = 9y
b, = qir: - qF ,r,
LU for i =2,3,...,5 .

* *
by 1,1 = B4-1(95957951944)

Proof of Lemma 4. From Lemma 2

. = TJ.-T.A,) +9(C*T.-T.C%) +v(e.r*q.) .
(9) BJ V(AJTJ TJAJ) \7(cJTJ TJCJ) V(eJrJQJ)
Aj is diagonal so that AjTj-TjAj js tridiagonal with zero diagonal.
T.-T.A, i j .
Hence V(AJ 3 TJAJ) is super diagonal |
C; js strictly lower triangular so that C;Tj-chg is lower
triangular and V(C;Tj-chg) is diagonal. Finally er}Qj is zero

except for the bottom row which is r}Qj. Thus V(ejrgoj) is zero
except for the (j,j) element which is rgqj = q}rj.
Therefore Bj is bidiagonal and the formulas for its elements can

be derived from the fact that ry = Biqi+1 for all i < . a

Logically it only remains to prove that ﬂBjﬂ = eflAll and
ﬂEjﬂ = ¢llAll. We will not do this for two reasons. The bounds for ﬂBjﬂ
and ﬂEjﬂ depenq on the specific implementation of the algorithm which
we have not yet discussed. Furthermore these bounds depend on several
characteristics of the matrix A which obscures the basic simplicity

of the result. Therefore the statement and proof of the final lemma
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are relegated to Appendix 1 which completes the proof of Theorem 3. O

Corollary. For all i< j

Bji 3_eﬂAﬂyji/ﬂyiH

Proof. By Theorem 3 we have
* - .
Bji lyin+] | = eﬂAﬂin
and so by'the Schwartz inequality
Bjiﬂyiﬂﬂqj+]l z,eﬂAﬂin .
Since :ﬂqj+]ﬂ = 1 the result follows. O

The Corollary indicates the importance of the in' No Bji can
be much smaller than eBAﬂin. Thus the smaller the values of the ¥y
the smaller the Bji can be, and the better the accuracy which can be

obtained in the Ritz values.

2.4 Implementation

The Corollary at the end of Section 3 provides a natural way to
discriminate between various implementations of the simple Lanczos
algorithm. The smaller thg bounds on ﬂEjﬂ and ﬂBjﬂ the better the
.implementation.

A11 four versions of the algorithm whigh we consider keep EFjﬂ
and hence ﬂEjﬂ tiny. Therefore we analyze these choices to determine

which yields the smallest bounds for the elements of ij

jie
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Lanczos Algorithms. Start with 0q1ﬂ =1 ahd uy = Aq]. For

j=1,2,... repeat

(1a) o = q;qu or (1b) oy = qguj

(2) l"j = uj -q\].or.:j

(3) 8y = lryl

(4) if By = 0 STOP else 94 rj/Bj
(52) n; = qj,qAq; or (5b) ny =B

(6)  ujyg = Adjyy - ayny

These same implementations were analyzed by C. Paige [Paige 1972].
The conclusion is the same but the approach used here is different from
that of Paige.

Recall Lemma 4 of Section 3 which gives formulas for the elements

of Bj’ namely

_ %
by = 4%y
R S .
bji = N 7% for 2<1<].
: _ *_* - -
bi1,i = Bi-1(939379594¢)
We now give an informal analysis of the choices between (1a)-(1b) and

(5a)-(5b) in the light of these formulas.

Remark 1. (1b5 is slightly better than (1a).

If (1a) is used, oy is chosen to force q;(qu-qjaj) 20 and
thus

Ee)
. %
1
13

*
93(A0570;05795185-1)
B

* *
aj(Aaz-az05) - 9395

*
"93%3-185-1

J-1
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“51"5-

Thus the size of |q3.‘rj depends on q and may grow (slowly)

J- 1" j-1
as . j increases.

If (1b) is used “j is chosen to force qgrj = 0 and there is no
depehdence on earlier steps. |

Thus the diagonal elements of B. are kept smaller by (1b) than

J
(1a) while both (1a) and (1b) keep the off diagonal elements tiny. 0O

The more interesting choice is between (5a) and (5b). Historically
(5a) was recommended (cf. [Ni]kinson 1965], p. 395) despite the extra

computation involved. This was unfortunate since

Remark 2. (5b) is better than (5a).

Recall that (5a) explicitly computes N = qj Aq as the coeffi-

cient of qj in the formula for “j+]’ namely

\

U1 = Ay 9y

‘while (Sb) merely sets ny = sj ﬂrjn. If (5a) is used the resulting
‘tridiagonal matrix has n's on the subdiagonal and B's on the super
diagonal. Thus it is not symmetric and we denote it Té.

Since Tj is asymmetric the analysis of Section 3 does not apply

directly to

*
.-Q.T  =r.e.+F. .
(7) AQJ QJTJ rJeJ FJ



If any of the n's are negative then T3 will have compiex eigenvalues

which is clearly wrong. If all the n's are positive we need the follow-

ing standard result to finish the justification of Remark 2.

Lemma. If all the n's in T& are positive then there

exists a diagonal matrix Ej = diag(gl,gz,...,gj) such

that gj =1 and = IT'= s symmetric.

Proof of Lemma 3. Llet EJ and for i = j-1,j-2,...,1, let
. 172 =lqiz - .
g'i = E“](Bi/ni) . Then -J- T.-J Tj with
B .
% 5
&1 % %o,
Ty = 23
L] Cj-]
| 5.1 %5 -

We note that the greater the asymmetry of Té, the greater the
ratio between successive &'s.
Now let Ej be the diagonal matrix that symmetrizes Tj. Then

the quantities computed using (5a) satisfy

(8) MQgE;) = (04F,) (5] T3E) +ryels, +F iz

3] J Ji’d J 373

o, .+r. .+ oA
(QJ By)T; +ryey+ FiE,

since gj = 1. Now the lemmas of Section 3 can be applied to equation
(8) but the result is not encouraging. The lengths of the columns of

(Qj:j) are not 1 but are E],gz,...,gj instead.
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Therefore the off diagonal elements of Bj are of the form

| o 2.2
(9) bi-1,i = S (BivEi) -

Hence the greater the asymmetry in T&, the greater the variation in
the £'s, the larger the elements of Bj’ and the larger the in will
be.

On the other hand (5b) always maintains symmetry of T and always
normalizes the q; to have length 1. Hence the off diagonal elements
of Bj are always tiny when (5b) is used and (5b) is better than
(5a). : O

In the rest of the thesis we will consider only the most stable

‘version of the Lanczos algorithm which uses (1b) and (5b).

2.5 Distinguishing the Lanczos Algorithm

To analyze the Lancios algorithm in the context of finite precision
arithmetic it is necessary to have a tractable definition of what

constitutes an instance of the algorithm.
Definition. The matrix equation
1 AQ.-Q.T. = B.q.,,e%+F.
(1) Q- QT; = 85954185+ F

is an instance of the Lanczos algorithm if ﬂFjﬂ = eflAll and Yii 2

for k<Jj andall i<k, where v, ; = B;lyjay,ql/elAl.

We note that this definition is justified, for the most stable
implementation of the Lanczos algorithm, by Theorem 3 and the analysis

given in Appendix 1.
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Recall the following perverse Example.

Example 3.

10D -11=01 -1171001 1000
' 1000 1001

Since B8, = 0, both B8, and B,, are zero and hence Yo7 and v,
are zero. On the other hand B] = 1000, S11 T 1, Y1 = 9y and

- * - = = * =
BAl = 1. Hence ¥9, = -1, 811 = 1000 and Y11 BlllquzlleﬂAﬂ =

= 1000/e.. Thus Example 3 is not an instance of the Lanczos a]gorifhm.lj

To show the power of this definition we prove a theorem which
gives a bound for Iy;ykl, the inner product for two different Ritz

vectors at step j.

Theorem 4 (Paige). Let Y5 and Yi be two Ritz vectors at

the jth step of the Lanczos algorithm. Then

L
05-84 | 153¥il < Dy (B50/854) + ¥4, (B33/85, ) + vy JelAl

where v, = |s;‘(Q3fFj-F3qu)si|/enAn £,

Proof. Recall that Y5 = sti and Tjsi = siei' Multiply the

basic equation (1) on the left by y? and on the right by Sk to

obtain

. * * - * * * %

which simplifies to
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* * = * * A~k
(3) ViV B = ByS5iYi9547 +5505F 55 -

On the other hand if (1) is multiplied on the left by y: and on the
right by S, the result is

- % * _ * %
(4) YAV -y Y585 = ByS;5ivk541 ¥ Sk QGF 555 -

Subtract (4) from (3) to discover

_ * - * - * % % - ) K
(8)  (85-8,)(¥¥,) = ByS351¥39547 -~ B555i¥4 %541 +51Q5F 55k - 5k Q5F554 -

Taking the absolute value of each side of (5) and observing that

* ke R .
stijsi = siFijsk we obtain

’ * * * % ¢~k J
(6). Ie-i"ek| l.Y].YkI =< Bjklyqu-.Hl + Bji |kaj+]| + |Si(Qij'Fij)Sk! .

By Theorem 3, Iy’;qjﬂl = v;;€IAl/855, for all . By definition of

an instance of the Lanczos algorithm UFjH = ellAl so Vi =1 and

the result follows. O

Theorem 4 shows how the loss of orthogonality in the matrix Qj
is manifested in the matrix Yj = Qij. If two Ritz vectors have equal

B then they'will be orthogonal unless their Ritz values are almost

ji
equal. If two Ritz vectors have very different values of Bji (that
is, one is well converged and the other is not) then they will never

be orthogonal.

2.6 Behavior of the Lanczos Algorithm

With Theorem 3 and Theorem 4 in hand it is possible to givé a
detailed description of what occurs during a Lanczos run. To illus-

trate the various stages of the process we will intersperse the verbal
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description with selected output from Example 1, which was first dis-

cussed in Section 1.

Example 1.
n=10
e=.6x10""
A = diag(0,.01,.02,...,.08,1.0)
q = u/lul , u=(1,1,...,1)*

Note the large gap between .08 and 1.0. Thus by the results in
Section 3 of Chapter 1 we would expect the Ritz value with the smallest
4Bji at any step j to approximate 1.0.

The algorithm was arbitrarily terminated at j = 11. The elements

of T]1 are
J alpha | beta
11 .1360 | .2890
2 | .8964 | .0810
3 | .0465 | .0227
.4 | .0401 | .0215
5 | .0401 | .0203
6 | .0401 | .0190
7 | .0614 | .1423
8 | .9653 | .1114
9.l .0532 | .0143
10 | .0404 | .0103
11 | .0405 | .0032

As noted before B]O’ which would be zero in exact arithmetic, is not
tiny at all. This behavior is quite common. Rarely, if ever, are tiny
off diagonal elements encountered in large problems even for j > n.

This phenomenon will be explained later.
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In the early steps of the algorithm (j < 3 for the example) no
Bji is small and orthogonality among the columns of both Qj and Yj
is well maintained.

i=3 (e=.6x10"

. . * - *
i | Ritz value B lyiq4| in-'Bjilyiq4|/(eHAﬂ)
.01366 | .158x10"' |[.358 x 10~

.0094
2 06527 | .163x107 ||.116x 1078 .0313
3| 1.00000 | .183x10°2 [{.140x10°5 .0425

*
11-Y3Y,]
.48x10°°  .29x1077  .ssx10~’
29x10°7  .2ax107®  agx10°®
.88x1077  .48x10°8 .24x10°®

After a while (j = 6) some Ritz value begins to converge. The
smaller the corresponding Bji the greater the loss of orthogoha]ity.
Since Qj is no longer orthonormal, neither is Yj (= Qij). This
Toss of orthogonality does not affect the converging Ritz vector y.
Instead each of the other Ritz vectors is contaminated by a spurious
component in the direction of y. The greater the convergence the
greater the contamination. Note that the Bji of the unconverged

Ritz vectors are larger at j =7 than j = 6 because of the areater

contamination.



i=6

. . *

i | Ritz value B ly3a,1 Y54

1| .784x1073| .a05x1072 | .308x107% | .027

2 | .o170 .959x 1072 | .157x1078 | 025

3| .037 118x107) | e72x1077 | Lo13

4| .0625 .976x1072 | .173x107° | 028

5 | .o0719 .421x10°2 | .800x107 | .006

6 | 1.00000 164x1077 | .149 .041

*

12x10°%  .7ax1077  .23x10°®  .16x10°® .49x1077 {.60x10°3
76x1077  .95x10°%  .12x107%  .62x1077 .11x1077 |.15x1072
23x107%  .12x10°® 12x10°%  Lo1x1077 | .18x 1072
16x107%  62x1077  12x1078  .72x107%  .29x1078 | .16x 1072
49x1077  mx107 erx1077 L29x107%  2ax107° {68 %107
601073 .15x10% .18x1072 .16x10°2 .68x10°3) .12x10°
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=17

. . *

i Ritz value Bji Y;ag Y3

1| .a17x1073 [(ax10-0)] .1z1x1077 | 002

2| .os8 .329x10° V|| .335x1077 | .018

3| .0348 5291071 || .410x1077 | 036

4| .0564 7081071 || .894x1077 | .104

5 | .0733 .902x 107" || .224x1077 | 034

6 | .0811 561107 || .521x1077 | 049

7 | 1.0000000 |{.516x1078)| .982 085

*

12x1078 11721076 L 25x1078 .17x1076 311076 _11x10°6 [11x107
171078 12x1075 .24x1078 .31x1076 .68x1078 .48x10"7 [.33x10"]
.25x107% .24x1076 .48x1076 .67x1076 .23x10° _46x10"7 | 5ax10"]
17107 31007 L67x1077 .24x10C 38108 76x10°77 . 73:107!
311078 68x1078 .23x1078 .34x1076 .18x10° .70x10"7|.96x10"]
11x107° 481077 4641077 .76%1077 .70x1077 181075 60x10°]
(a1xi07" L3307 L5407 731077 g6x107] .60x101).24x1078

Suddenly at some step (j = 8) the contamination-of the unconverged
Ritz vectors decreases and is transformed into a second copy of y.
When it first appears the second copy is much less accurate than the
first. Note the improvement in the unconverged Ritz Vectors with the

lessening of the contamination.
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j=8
. N *
i Ritz value Bji ¥;9 Vi
11 188 1073 | 2231072 | .576x10° | 021
2 | .o128 .662x1072 | .455x10"6 | 050
3| .0299 954x10°2 | .201x107% | .046
4| .0493 .967x1072 | .151x107°% | .o24
5| .0669 692x10°2 | .2a5x107% | 028
6 | .0797 .228x10°2 | .263x10°6 | .om
7| 987 110 .536x10°% | .985
8 | 1.000000 .159x10°8J| .116 .003

The bottom row of 1-Y§Y8 is
.26x1073 . 77x1073 .11x1072 .12x1072 .86x1073 .31x1073 .99 .24x107®

which shows that Yq and yg are almost identical.

On succeeding steps the poorer copy gets better while the more
accurate Ritz vector gets worse. That is, the appearance of the second
coyp perturbs the first copy away from z, the eigenvector of A,
until both are equally accurate (Bji's approximately equal). This
usually occurs at about Bji = JelAl.

Then both Ritz vectors will improve and spurious components of z
in the other Ritz vectors will grow again until a third copy makes its
appearance. Thus the algorithm grinds out more and more copies of z.

The other Ritz pairs will continue to improve despite the appearance

of repeated copies of 2z.
Most computational examples will be more complicated than the one

given here. This example was chosen so that only one Ritz vector
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converged quickly. In general, at any one step, there will be Ritz
yéctors at all different levels of accuracy. 4However the same basic
cycle can be discerned for each individual eigenvector.

The cycle time for a particular eigenvector, that is, the number
of‘steps between the appearance of one copy and the next, seems to be
fairly constant. Of ﬁourse the’cycle times are different for different

“efgenvectors and depend on the locations of the correspdnding eigen-
values in the spectrum of A. Predicting the average cycle times from
the spectrum of A -alone appears to be quite difficu1t;

The concept of cycles and cycle times does explain why tiny off
diagonal elements are rarely ever encountered in the Lanczos algorithm
~even for j>n. Atiny B can occur only if a very large fraction of

the cycles condense on the same step. Since this is statistically

unlikely, small B's are rarely seen.

2.7 The Lengths of Ritz Vectors

In exact arithmetic, Qj is orthonormal and so Yj = stj is
also orthonormal and all the Ritz vectors have length 1. However once
Qj has lost orthogonality the Ritz vectors need not have length 1.

In Lerma l‘of Section 2 we established a lower bound for the lengths

of Ritz vectors. Namely
(1) Iy;1 > 0(0Q;)

where o](Qj) = (A][ngj])]/2 is the smallest singular value of Qj'
In Example 2 we found that this maximal shrinkage of Ritz vectors

can occur:



(2) [V -11=[1 -11[1001 100071 ,
1000 1001

Q, = [r -11, 61(02) =0, and ly,l = 0. As shown in Section 5,
Example 2 is not an instance of the Lanczos algorithm (y]] =1000/¢€).
Can this same maximal shrinkage occur in a Lanczos example? The answer

is yes. Consider

Example 3.

o0 -1 =0 -1][1 e] + [e][0 11+ [e 0] .
e 1 "

Here r, = [e] and F, = [e 0]. It can be verified that ﬂFzﬂ = €,
Y1 =1 Yy = V2, and Yo = 0. Therefore since DAl =1,
Example 3 is an instance of the Lanczos algorithm. TZ = 529255 with

0, diag(1-e,1+€)

VZ72)[ 1
1]

_and so Y, =Q,S, = [/2 0]. 0

S

There is a great difference between Example 2 and Example 3. In
Example 2 the zero Ritz vector Yo ijs associated with the spurious
Ritz value 2001 and is completely misleading. In Example 3 Yo is
associated with 1+e which is an eigenvalue of A correct to working
accuracy. Furthermore there is another Ritz value close to the same
eigenvalue of A whose Ritz vector has length at last 1, namely

e]'= 1-€¢ and ¥ = [v/2].



Both of these facts are characteristic of the Lanczos algorithm.
In the next two sections we will establish bounds which show that
ﬂyiﬂz 21 holds for an isolated Ritz vector and that Zﬂyiﬂ2 2m for
the Ritz vectors associated with a cluster of m Ritz values.

We first give an intuitive explanatibn of why it is impossib]e to

establish a robust lower bound for the length of a single Ritz vector

whose Ritz value is notwell separated from the rest of the Ritz values.

Consider the simplest case of two copies of a single eigenpair of
A where there will exist two orthogonal eigenvectors of Tj, call
them $ and Sos such that ¥ = st] and Y, = st2 have length
1 and are equal to working accuracy. The corresponding Ritz values are
also equal to working accuracy and eigenvectors of very close eigen-
values are not well determined. A1l that can be computed in practice
are two orthonormal vectors si and sé which span the same space as
S and Sy

Thus there exists a 2x2 orthogonal matrix P such that S = S'P,

' - 1 ' = | - ' ' - [

where S = (s].sz) and S (s],sz). If A st] ‘and y, stz
then

|2 12 1hn* ]
Iy +lysl trace(S Qijs )

*e 1 kak 1
trace(P™S QijS P)

%k
trace(S QijS)

Ly, 0% + 1y,
2,

but since'~Qj has lost linear independence we need not have Uyénz = 1.

If s; = (sJ-sz)//? then
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<
N -
L]

Q355

= (QJS]-QJSZ)//Z-
(y]'yZ)/*fz—

0

since i = Yo- This is exactly what happens in Example 3.

2.8 Bounding the Length of an Isolated Ritz Vector

Let (yi’ei) be the it Ritz vector at the jth step of the Lanczos
algorithm. We wish to bound the departure of ﬂyiﬂ2 from the expected

value of 1. The obtainable bound depends on uy = min lei-ekllﬂAﬂ,
k#i

the relative separation of ei from the rest of the eigenvalues of Tj.

The following result shows that if Y; is not too small then inﬂz

cannot be too small ‘either.

Theorem 5 (Paige). Let (yi’ei) be the ith Ritz pair at

th

the j= ' step of the Lanczos algorithm. Let 1--03'()j =

= C}-*Aj-+§j, where Aj is diagonal and Cj is strictly
upper triangular. Let u; = min lei—ekI/ﬂAﬂ. Then
k#i

2
11~ 1y;0°) < 1850+,

where T. = j(j-1)ye/u; and y is a number such that
i i

Yepr £v forall t<j and r<t.

Remarks. Since each Lanczos vector is normalized BAjH will
always be tiny and by Theorem 3 y will not be large. Therefore

Theorem 5 shows that an isolated Ritz vector (a Ritz vector whose Ritz
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value is isolated) will never be

small. For instance if

uy 2 103(3-1)ve

then
2
I -ﬂyiﬂ |
and
Iy;02
Furthermore
- 1y;0%] =

< a4 +0.1

2 0.1

>.9.

11 - y3y; 1

|- s1QJQJs1
|s.(1-Q.Q.)s.|
ls*(C 4 )s;|

< |siAs. l-+2|s C.s.

and so it remains to show that 2

inequality is rather long so we break it into a series of lemmas.

The first Temma gives a formula for evaluating the “"inner product”

of eigenvectors of Tj and Tt

for t<j at thet

it§7i i°§%i
*
ﬂA.l 2|siCj i

]s C. s1| < g, The proof of this

th

step.

t)

with si is the j-vector

(egj)_eﬁt))s.(l\] )*Sl

Lemma 1. Let (s(j) (J)) be an eigenpair of T and let
(s(t),e(t)) be an eigenpair of T for t < j. Associated

t
Sr = [S } Then forall r<t

r
0

s(t)(3)
r t tr t+1 i*
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Proof of Lemma 1. As in the proof of Theorem 6 of Chapter 1

\ 0
(1) Tisnes) e(t) = |- - Eti
B,S
t7tr
— 0 —

Multiply (1) on the right by ng)* to obtain

@ I D

Lemma 2. If egj) = e&t) for some m <t in Lemma 1 then

gi% i 0 and, for r=1,...,t,

(3)*.y2 _
(siJ Sr) =] (5)?

Proof of Lemma 2. For r =m in Lemma 1,

sl

=0.

In the Lanczos algorithm Tj and T, are unreduced (no B8

vanishes) and so Bt # 0. sﬁﬁ), the bottom element of an eigenvector
of Tt’ cannot be zero either so we must have sﬁi% ic 0.

Thus by Lemma 1, for all r <t

(3) | (643)-6{thsli)s: = o .
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For r # m, Git) 7 Gét) = egj) since T,, an unreduced tridiagonal

matrix has distinct eigenvalues, and so by (3) for r #m
(4) () 2,

Let s% be the t-vector of the first t elements of 5§ Thus

prime shortens vectors of length j and lengthens vectors of length t.

Then for all r<t

‘*|=*|
(5) spsi = sisl

and since St’ the matrix of eigenvectors of Tt is orthogonal,

] 2 - * ] 2
ﬂsiﬂ = ﬂStsiﬂ

t

_ *_1\2

i rzl(srsi)

- 1f(s,*s.')2 by (5) \
oL iSpl > DY

= (s3s0)f . by (4) .

2 _ ¥ (3)2
Since [0si1” = ] s,5°% the result follows. O
k=1 '

. -'*. . = *.+ ‘+ . 5 .
Lemma 3. let 1-QjQ; = Cy+4,+C; as in Theorem 5. Then
- ] B ] )
Cj i (O’S]v-‘ ,Ssz,ooo’Sj-]Vj—]) s

S
where S& = ( Ok ) is a jxk matrix, Vi = eﬂAﬂ(Yk]/Bk],
YkZ/BkZ”"’Ykk/Bkk)* is a k-vector, and Yii is defined

in Théorem 3.




Proof of Lemma 3.

*
part of Qij

*
Q%4
0

by Theorem 3.

By definition Cj

is the upper triangular

and hence the (1'+])St column of Cj is

*
- SSQq14r'l
| 0

[ S; Y1q1+1
L 0

vk
=5iYi% 4

-~ []
Sivi

Lemma 4. The following equality holds:
(3)2  (3)
S1CJS1 2 st+1 %t
where .
0 . if e{t)aeld)
Wld) o fbr some m.
“it (). (t)
e E ytrﬂAﬂ/(e J ) , otherwise
r=1
Proof of Lemma 4. By Lemma 3
* . ' '
, (6) ICJS1 " si(O,S] 1’52v2’ SJ 1Y J- 1)5
i (
- J)
s (s§Sy t)st+] i
_ (3) * (t)"
) 2 St 2(5 Wre
- z s,(;i% 1 2 (s¥s{) Yenary, /8,
where sst)' is the rth column of S%.
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If egj) = eét) for some m then by Lemma 2 s*s(t) is always

(i) . (3)
bounded and St+1,i = 0. Hence wiy’ can be set to zero.

If ng) # e;t) for all m <t then by Lemma 1

(7) S*S(t)' (t) (3) /(G(J) (t)) ,

ISR )yl N
= By ti% 1/(6 ! ’ ) -

Substituting (7) into (6) we find

| t
s§cjs < elAl z sﬁi{ i 1By st 3. (t)))(vtr/str)

ellAl 2 s,(;i]) ; ,.Zﬁtr/(egj)-ef.t’) ) o

> 2
To make use of Lemma 3 we need an expression for sgi% i
involving the eigenvalues of Tj. Such a formula was given in Section 4
of Chapter 1 in terms of the following definition.

Let Xy t(E) be the characteristic polynomial of T. ., where

- o 8 -

r r

Bp %1 B

Tr,t = Br+1 .
. Bt-
B
i t-1 °‘t.__
Lemma 2 in Section 1.4 states
' (J) (3) (3)y s (3)

(8) Strl,i T X0,e(877 MXeap, 50170/ 5085700

Observe that if the (t+’l)St row and column of Tj are deleted the
remaining matrix is a direct sum of two smaller matrices namely T] t

and Tt+2,j' For instance if j =4 and t =2 we have
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oo BB
],4 ""B]“%s"B]’

! b %)

We label the union of the eigenvalues of T],t and Tt+2,j as

(t)

Vi

(t) . .. (t)
vyt 2 fﬁ"j-]*

Equﬁtion (8) can now be rewritten as
B2 N )y, o) (Pt () (8)y 0 (d) g (3)
(9) st+1,i = kg][(ei 'Vk )/(ei 'ek )]kgl[(ei ‘vk )/(ei “ek+])] .

Note that by the Cauchy Interlace Theorem each factor in the R.H.S. of
(9) lies between 0 and 1.
eit) is an eigenvalue of T] t and so there is a subscript, call

it m such that v(t) = est).

m
Lemma 5. The following equality holds:
w51 T (£), (q(3)_q(d)
sicjs_i = et§1 rZ]Ytr‘ﬂA““r /[9.,i -0 )
where 1
i- . . .
"f‘t) = kr_[][(eg.})_\,'((t))/(eg.l)_e'((J))]
k#m
-1 . . .
- kn.[(ng)-vﬁt))/(ng)-eﬁiz)]
=] ,
‘ k#m
and
m , if m<i,
m' =
mil , if m> .
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~ We note that the exclusion k # m can only be relevant for one of

the two products in the expression for nit). However since the value

of m dis unknown neither can be omitted.

Proof of Lemma 5. Substitute (9) into Lemma 4 and recall that
(t) _ 4(t)
Vp =8 | 0

To complete the proof of Theorem 5 from Lemma 5 we observe that
0 g_mit) <1 by the Cauchy Interlace Theorem, ytrEAﬂ/(egj)-e;?))‘g
5_y/pi by hypothesis, and that there are exactly j(j-1)/2 terms in

the double summation. | a

Remarks. The bound established in Theorem 5 is unrealistic for two

(t)

reasons. In most examples L will be much smaller than 1. Also

most of the eigenvalues of Tj

than the minimum separation My - In practice the dependence on j of

will be much farther away from ei

the variation in lengths of the computed Ritz vectors is much less than
quadratic. Indeed in most practical examples the lengths of the Ritz

vectors seems to be almost independent of j.

| 2.9 Clustered Ritz Vectors

We now extend the bound established in Theorem 5 to clusters of

Ritz vectors.

Theorem 6 (Paige). Let y ,yp+],...,yp h be a cluster of

Ritz vectors at the jth step of the Lanczos algorithm. Let

"= m1n[e(3) éJ%, éig+] eéih)/uAu, the relative separation

of the cluster. Let Aj be the diagonal of 1-Q;Qj. Then




pth N
lh+1-"F yiy.| < (h+1)(14.0+2)
'i:p 1 J

where ¢ = j(j-1)vye/u and Yep LY for all t<j and

r<t.

Remafks. As in Theorem 5, ﬂAjﬂ and ye are always tiny.
Theorem 6 shows that a cluster of Ritz vectors, which is well separated
from the rest of the Ritz vectors, will always contain at least one
Ritz vector which is not small. Note that the clustered Ritz values
may be arbitrarily close. Theorem 6 depends only on the separation of

the cluster from the rest of the spectrum of Tj.

Proof. Since Y; = sti for all 1,

p+h
Ih+1- Y sIQJQJs1|

(1) th+1- Zyyl
i=p i=p

lZs(HlQ)SI

| 2 S’ (CJ+AJ CJ)s |

+ g+ *C.s.
< (h 1)HAJI1 2|i§pschs1

pth
It remains to show that 2| ) S?stil < (h+1)z. We establish this
i=

inequality with a sequence of lemmas.

Definition. As before let the union of the eigenvalues of T] t

and T be denoted

t+2,]
(t)

1

t) .

(t) . ... 5\,§_] .

SV,

and as before, by the Cauchy Interlace Theorem,



72

Lemma 1. For all

0<t<j-l

o) < oft) ¢ o) < o 1) < o)

For any r < t, est) is an eigenvalue of T] t° Hence there
,t°

exists a subscript m such that vét) = eit).

Lemma 2. The following equality holds:

i o

S5 C S; = ellAll . Y

i= p =1 r- trr
where

p+h J -1

i=p k=1

k#m kfi

Proof of Lemma 2. By Lemma 5 of Section 7,

elAl } ) )

pth
i%q%%= 1pt1r-hw“(d” “h/nm“)d”ﬂ

k#m k#1

The result follows from exchanging the order of the summations. O

Using equation (1) and Lemma 2, Theorem 6 will be proved if we can

Therefore from now on we consider

establish that thrl-i (h+1)/(ullAl).

t and r fixed, we drop the superscripts (j) and (t), and we
define m' as a function of i by
m , if m<i
m' =
mdl , if m> i,
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Lemma 3. If m<p or m>pt+th then

oy, < (h+1)7(ulAl) .

Proof of Lemma 3. By Lemma 2

| P 3 (0w 1 (6,-8,)
w..| < M (6,-v, )/ T (8:-8
tr isp k=1 | k=1 1 k
k#m k#i
th | |
= ‘ﬂ'-/ 9-’9.
i<p iV Um
where ~
3 (0w )/ 1 (6,6,)
M, = =V - .
k#m k#i,m'

By Lemma 1, the ratio of successive factors in the numerator and the
denominator 1ie between 0 and 1 and so 0 < m < 1. By hypothesis
on m we have m' <p or m' > pth and so lei-em.[ > pllAl  and the

result follows. a

The case of p < m < pth requires a longer chain of reasoning.

Let p(E) be a rational function with -

p-1 i
p(E) = kgl((a-vk)/(e-ek))k=p§h+]((a-vk_,)/(a-ek)) ,

and let p; = p(0;). Note that by Lemma 1
i i

0<p; 21 for p<ic<pth.



Lemma 4. If p <m < pth-1 then

pth
|wtr| f,izpl(pm'pi)/(em'ei)l .

i#m

Proof of Lemma 4. By definition of p, the restriction on m,

and Lemma 2,

(2) | &
W = P:0C.
tr i=p i79
where
- p+h-1 pth
(3) o;= 1 (ei-vk)/ i (ei-ek) .
: . k:p k=p
k#m k#i

By the restrictionon m, i =m for some i and we consider % in

more detail. If we expand the formula for o, 7Tn partial fractions it

can be shown‘that

pth
(4) m ° .Z Ti/(em'ei)
1=D
i#m
where
p+h-1 ‘ p+h .
k#m k#i,m

On the other hand from (3), for i # m,
g = Ti/(Bi-Gm) .

Hence using (4), equation (3) can be rewritten as
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pth
1.Zpri(pm-oi)/(em-ei)
1#m

and so
+

h
Imtrl h E ITill(pm_pi)/(em-ei,)l .

i=p
Si#m

Finally by Lemma 1 Iril <1 for each i and the result follows. O

Lemma 5. If p <m< pth then

ol < (h+1)/(uIAL) .

Proof of Lemma 5. By definition of o,

E-v E-v E-v E-v.
(5) o(E) = {omt}ere oy P g 2 30y
e I R &-8;

By Lemma 1, if v_, <& 5-vp¥h then each factor of p(£) lies

p-1
between 0 and 1 and in particular 0 < p(g) < 1. Furthermore p
is differentiable in this interval and so by the mean value theorem,

for i#m
(pm-pi)/(em°ei) = p.(gi)

for some gi between em and ei.

The derivative.of p satisfies,

p' () = p(£)(d/dg) (1n(p(E)))

p(€)[ny-n,]

where



p-1 ,
m = 3L (0]

and

9 A1 T
er b e o0

If we rearrange the formula for ny as
)
1 P -1 -1 -1
my = (v ) -kglt(z-vk) -(E-84q) 1-(E-00) 7,

we f1nd by Lemma 1, for vp_] < g < vp+h’

0<n < (E-vp_])'1 .
S%milarly
0<n, < (vp,,h-a)’]
‘and so, since p(E) > 0,
[0 (£)] < plEdmaxC(E-vy 1) s v €)' o

Both terms in the brackets appear as numerators in the formula p(&)
given in (5). Using the fact that each factor in (5) lies between 0

and 1 we find for 0_< & 5-ep+h

P

0" (8)] < max[(5-0) )" o(04p9-6)']
< 1/ulAl

Hence for all i

ogrog)/ (a0 ] < 1/ulAd

and the result follows from Lemma 4. . a

This completes the proof of Theorem 6. O
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Remarks. In practical examples the bounds given by Theorem 6 are
unrealistic. As with Theorem 5 the behavior of the lengths of Ritz

vectors appears to be almost independent of j.

2.10 Corrective Measures

Lanczos himself was aware of the inevitable loss of linear inde-
pendence among the columns of Qj‘ When he introduced the algorithm in
1950 he suggested that each newly computed Lanczos vector qQ; be
explicitly orthogonalized against all the preceding vectors. This is

called reorthogonalization and despite the great cost of this device

~(about j/3 times the cost of the simple Lanczos algorithm both in
time and storage) the Lanczos algorithm with reorthogonalization was
the standard method of reducing a symmetric matrix to tridiagonal form
(]950-54) until the advent of explicit orthogonal transformations.

In current usage A is a large matrix (n > 1000) and the cost of
using reorthogonalization, even for j = /h, 1is prohibitive. This
poses a serious dilemma. Reorthogonalization is too expensive but
independence will sure1y be lost without it.

C. Paige has suggested that no corrective action be taken. The
loss of linear independence among the Lanczos vectors merely results
in the appearance of multiple copies of the converged Ritz vectors.
The rest of the Ritz pairs continue to improve as the algorithm
proceeds. This approach was used by J. Lewis [Lewis 1977] on a diffi-
cult interior eigenvalue problem. There are two possible drawbacks to
this approach. It is necessary for the user to distinguish which Ritz

pairs are copies and which are distinct. This is not usually too
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difficult for the user but it is not clear how to automate such a deci-
sion procedure. Another drawback is that the algorithm may'compute
many copies of some Ritz pairs before the desired Ritz pairs are found.
See [Lewis 1977] for a striking example of this phenomenon.
Another possible approach is to use the Lanczos algorithm itera-

tively. The basic idea is to stop at some step, compute the best
approximation to a desired eigenvector, and use it or some modification
| of it as a new'starting vector. If reorthogonalization is used the
~step at which the algorithm is iterated is determined by storage and
cost considerations. If reorthogonalization is not used it is neces-
sary to monitor the loss of orthogonality and iterate whenever signi-
ficant loss of orthogonality is detected.

It is important to realize that iterative use of the Lanczos
algorithm is theoretically unfortunate. Information is always lost
when- the algorithm is restarted. In exact arithmetic, Ritz pairs
obtained by iteration are always inferior to the Ritz pairs which would
be obtained if the algorithm were carried on for the same number of
total steps. This occurs because the Krylov subspace computed in the
last iteration is strictly contained in the Krylov subspace which would
be obtained by going on. For a striking example of this phenomenon,
consider the problem of finding the smallest eigenvalue of a 6x6
matrix. Of course the Lanczos algorithm will find all six eigenvalues
in six steps, but if we are forced to iterate after five steps, it will

- take several iterations to obtain good accuracy. Iteration is forced
on us only because of the problems associated with loss of orthogonality.
A practical difficulty in using iterative Lanczos arises in choos-

ing the restarting vector. If more than one eigenpair is desired how



can they all be represented in one vector? This problem, along with
the theoretical difficulties in finding multiple eigenvalues, led
 several researchers to investigate block generalizations of the Lanczos

algorithm, now called simply block Lanczos. The block Lanczos algorithm

replaces each q vector by an nxp orthonormal matrix. The resulting
T s block tridiagonal with block size p. One of the unsolved
problems in using block Lanczos is the a priori determination of the
optimal block size. Costs increase sharply if the optimum is missed.
Both J. Cullum and W.E. Donath [Cullum and Donath 1974] and
R. Underwood [Underwood 1975] have implemented block Lanczos programs.
Underwood uses full reorthogonalization while Cullum and Donath do not.
In any case the block version does solve many of the problems asso-
ciated with iterating the simple Lanczos algorithm. In particular,
since the starting block contains more than one vector, more informa-
tion may be saved when the algorithm restarts. Furthermore multiple
eigenvalues (up to the size of the block) can be found simultaneously.
On the other hand, if an efficient method existed for preventing
" the loss of independence among the columns of Qj the need for itera-
tion would be eliminated. In Chapter 3 we analyze Selective

Orthogonalization a new and efficient method for maintaining indepen-

dence. As a byproduct, Selective Orthogonalization also allows multi-

ple eigenvalues to be found without using blocks and without iterating.
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3. The Lanczos Algorithm with Selective Orthogonalizatioh

Selective Orthogonalization, hereafter referred to as SO, is a
variant of the Lanczos algorithm which interpolates between the simple
Lanczos algorithm and Lanczos with full reorthogonalization in an
attempt to obtain the best of both worlds.

The simple Lanczos algorithm is very cheap but suffers from the
inevitable loss of linear independence among the Lanczos vectors
(columns of Qj). This loss of independence is manifested in the Ritz
vectors by the appearance of repeated copies of converged eigenvectors,
as detailed in Chapter 2. Full reorthogonalization, in which each
newly computed Lanczos vector, qj+], is explicitly orthogonalized
against all preceding Lanczos vectors, cures the instabi]ity+ of the
simple Lanczos algorithm but is ruinously expensive in .both time and
storage.

SO attempts to obtain the stability of full reorthogonalization
(no redundant copies of eigenvectors computed) at a cost which is close

to that of the simple Lanczos algorithm.

3.1 Motivation for Selective Orthogonalization

To motivate SO we consider two thought experiments on possible
variants of full reorthogonalization. If e-orthogonality of the
Lanczos vectors (|q?qk| s e, for i # k) is desired then no substan-
tial improvement over full reorthogonalization can be achieved.
Instead we relax our standards and concentrate on maintaining robust

linear independence among the Lanczos vectors. That is we insure that

+AnAorthogona1ization must be repeated if cancellation occurs.



lafa, | < 7, for 1i#k, for some given number T, which may be much

larger than e.

Scheme 1. One way to insure that {q?qkl_i 1, for i # k is as
follows. As each new Lanczos vector qj+] is computed, merely compute
* o . . .
qiqj+], for i < j, and orthogonalize qj+1 against q; whenever
Iq;qj4f] > 7. (We note that since the Lanczos vectors are not ortho-

. . . Y *

gonal, orthogonalization of 941 against g, may increase |qkqj+]|
- for some other k. Discussion of this second order effect is delayed

until Section 9.)

Scheme 1 was implemented on the following test problem.

Test 1. e=.16x10"16
n=20
Ai =1/i, for i=1,2,...,20

qp = u/lul , u=(1,0,...,0)*

The following results were obtained for various values of t. No

orthogonalizations were performed at step j = n = 20.
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Scheme 1 on Test 1

T orthoNguo"r'lbae]Y; zoafti ons | 11- Q300! ma;1 alx)‘ ie_rer; 20) |
full reorth. 10718 190 .62x10710 .90x10" 18
1077 148 .66x10710 .29x 10716
10716 98 .32x1071° .97 x 10716
10713 90 31x10714 .55x 10716
1014 79 .24 x10713 14x10718
10713 72 .28x 10712 .69x 10716
10712 66 27x10 1 .56x 10716
10! 70 .31x10°10 .76x 10716
10710 55 21x1072 .97x 10716
1072 55 .25x10°8 J1x1071°
1078 51 21x1077 .83x 10716
10”7 47 .22x10°6 4x10714
1076 39 5% 1072 .36x 10712
1072 46 A6x107% .20x 10710
1074 37 14x1073 .25x 1079
1073 36 16x 1072 .54x 1076
1072 39 .24 %107} 19x107t
T 35 .20 J2x1072
simple L. 1. 0 1.0 .50

The number of orthogonalizations decreases as <t

increases yet

the Ritz values at step 20 are correct to working accuracy until

1=107</& At 1=

compared to 190 orthogonalizations required by full reorthogonalization.

Scheme 1 with

gonalization but it does have two drawbacks.

sary to compute q?q

T:

J+

1078

1078

for each i < j to determine whether q

only 51 orthogonalizations were required

is an improvement over full reortho-

At each step it is neces-

ifl

should be orthogonalized against q;- This requires that the q; be

82



83

kept in fast store so they are available at each step. Furthermore the

cost of computing qqq is equal to the cost of the vector subtrac-

JH
tion so little is saved by omitting the orthogonalization.

Scheme 2. We now consider what appears, at first sight, to be an
even sillier method of maintaining robust independence. At each step j,
compute each Ritz vector y; = sti (where S; is the ith eigenvector
and orthogonalize q

of Tj), then compute y?q against Y;

j+ i+

whenever |y¥qj+]| > 1.

Scheme 2 was implemented on Test 1 with the following results.



Scheme 2 on Test 1

T : orthoNgu::nbaﬁri :ai:i ons - QSOQZOH ma)in alxlie_rer;%) |
10 190 71x10070 [ g3x10°16
10717 159 .80x10716 | q1x10715
10716 89 37x1071% | .83x 10716
1071° 48 28x1074 | La2x 10718
10714 37 .25x10713 | Lagx 10716
10713 3] 20x10712 | q1x10718
10712 22 a8x1071 | s6x 10716
1071 22 13x10710 [ 62x 10716
10710 19 q1x107? .69x 10710
1079 17 11x1078 .83x 10716
1078 14 a8x1077 | .a5x10716
1077 12 11x10°6 61x10718
1076 10 12x107° 12x10712
1073 12 A3x1078 .18x10°10
1074 8 .65x107% 19x 1072
1073 n 13x 1072 .57x 1076
1072 6 J1x107] 70x 1073
. 107! 9 .30 .23x 107
Simple 0 1.00 .50

Again we find that the Ritz values at step 20 are correct to work-
ihg accuracy until 1 < /Je. However the number of orthogonalizations
required by Scheme 2 for values of T near Y& is much smaller than
for Scheme 1. Furthermore the drawbacks associated with Scheme 1 can

be avoided in implementing Scheme 2 as we show in the next section.



3.2 Implementation of Selective Orthogonalization

Section 1 shows that t-orthogonality can be maintained by Scheme 2
with many fewer orthogonalizations than Scheme 1, for values of =
near ve. This effect is symptomatic of the Lanczos algorithm and does
not depend on the particular test problem chosen.

An intuitive explanation of the success of Scheme 2 can be obtained

from Theorem 3 of Chapter 2 which states that for all i < j and all j,

NI
(1) l‘yi qj-l-]l = e“A“YJ'I/BJ'i ’

where Y5 2 1, Equation (1) shows that orthogonality is only lost in

the direction of Ritz vectors with small Bji' Since Bji is a good
estimate of the residual norm of ygj), serious loss of orthogonality
occurs only in the direction of converged Ritz vectors.

Only a few of the Ritz vectors will have converged at any step j

and so only a few orthogonalizations are needed. Furthermore since

Yis

ji 1, it is possible to estimate Iygj)*qj+]| using equation (1) by

(3)* .

Thus it is possible to determine which Ritz vectors should be
used for orthogonalization of qj+1 before computing them, namely any

Ritz vector which satisfies
(3) 854 < €lAl/T .

Any Ritz vector which satisfies equation (3) will be called a good Ritz

vector, while the remaining Ritz vectors will be called bad Ritz vectors.
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Bii = B3S3i

'Tj. In practical problems j << n and B'i can be computed much more

can be computed from the spectral decomposition of

quickly than first computing ygj) = stgj) and then computing
ng)*qj+1' In general [Al is not known but IT;1 is known from the
spéctra1 decomposition of Tj and HTjH = Al will hold even for

J << n. Thus in practice ﬂTjH replaces [IAll in (2). Nevertheless
the computation of even a few Ritz vectors is time consuming. It
takes jn multiplications to compute a single Ritz vector. In theory
the good Ritz vectors are different at each step and must be recom-
puted, which destroys the efficiency of SO.

Fortunately, for practical values of t (t near /€) the good
Ritz vectors change very 1ittle from step to step and a good Ritz
vector computed at one step may be safely used for orthogonalization at
later steps. However to avoid complicating the analysis, we will
consider only the model in which the good Ritz vectors are recomputed
at each step.

Equation (1) is the basis for using equation (2) to determine the
good Ritz vectors. Unfortunately once orthogonalization begins in SO
the computed quantities no longer satisfy the fundamental equation of
the simple Lanczos algorithm. Therefore the conclusions of Chapter 2
may no longer be valid. In particular in defined by equation (1)
may be much larger than 1. The rest of this chapter will examine the
relationship between the choice of T and y growth in SO. 1In |

Section 4 we give a numerical example which shows that large y's can

occur for values of T near 1.



3.3 Governing Equations for SO

We first observe that it is unnecessary to normalize rj (to

become qj+]) before computing the good Ritz vectors, which are deter-
mined by Bj ='ﬂrjﬂ and the bottom row of Sj, the eigenvector matrix

of Tj. r. itself is orthogonalized against the good Ritz vectors and

J
this new "5 is normalized (by dividing by a new Bj) to become Q41

In order to distinguish the new quantities from the old we use the

following notation.

Let rj, Bj’ qj+1, and vy for i < j, be the quantities

ji?

th ] [} (] [}
step of SO. Let rj, Bj’ qj+], and in’

i < j, be the quantities whichxwould be computed if the orthogonaliza-

h

computed by the j for

‘tions of the jt step (only) were omitted.

Remarks. If there are no good Ritz vectors at step j of SO then

no orthogonalizations are performed and rj = r&, Bj = 83,

qj+1 = q3+], and in = Y&i’ for i < j. Furthermore SO never modi-

fies Tj or Qj and so the Ritz pairs computed at step j are unchanged

by the orthogonalizations. Finally Bj = ﬂrjﬂ 5_ﬂr3ﬂ = 83 since
orthogonalization always shortens the vector rj.
As mentioned at the end of Section 2, once orthogonalization

begins the computed quantities no longer satisfy

= r.e¥+F,
(1) AQj-QJ.TJ. v"]e‘]"rFJ

with ﬂFjH = ¢llAl, which is the fundamental equation of the simple
Lanczos algorithm.

Consider the step j at which a single Ritz vector, Yis first

becomes good. To orthogonalize r& against Yi» SO computes
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5j1 = /y Y5 and ry = r: -y1gJ1 We note that the division by
y?yi in the definition of Eji is necessary because Y; will not
have length exactly 1. Before the orthogonalization of rj against

A the computed quantities satisfy

2) AQ. - Q.T, = r'e*+
(2) 05- 03T = rjej+F;
Si . = - i
ince ry J y1£J1 equation (2) becomes
AQJ-QjTj = (Y‘ y1£J1)e J ]
= r.e¥+D +% .

N I I

- * _ -
where Dj = djej (0,0,...,0,dj) and d y1’c:J1

For subsequent j, Dj = (d],dz,...,dj) and dk is the accumula-
tion of the orthogonalizations performed at step k. That is, if Gk
is the index set of the good Ritz vectors at step k, then for k < j,

- (k)
d =, Ly Yi T8y o
= JK)* 0, (k)* (k)
where 'gki =Y rk/yi yi e
Thus D+F must replace F in applying the results of Chapter 2.
In particular, Theorem 3 of Chapter 2 states that for the simple

Lanczos algorithm,
* —
Bjilyiqj+1| = elAly;;

with i 1, for all i and j. The introduction of the matrix D

into the analysis may cause vy.. to be much larger than} 1. In the

Ji
next section we show by example that large y's can occur for values of

T near 1.
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3.4 An Extreme Example

In this section we give an example which shows that if orthogonali-
zation is delayed long enough (t near 1) it is possible for the y's

to grow enormously. Consider Example 1 of Chapter 2, namely,

e = .6x10-7

n=10 '

A = diag(0,.01,.02,...,.08,1.0)
q, = u/lul , u=(1,1,...,1)"

At j =17, Yy is a very good approximation to Z]O’ the eigen-
vector of 1.0. We repeat the results obtained by simple Lanczos at
j=7 but including two extra columns to show the effects or ortho-

gonalizing r; against 7 and then normalizing.

j=7

i | Ritz value BYs Iy?QéI Yi’i I}";q8| Yii

1| .4a17x1073 | .114x1077 | .121x1077 | .002 | . 0585 (2100 )
2| .0147 .329x107" | .335x1077 | .018 | .171 17667
3| .0348 .529x107" | .410x1077 | .036 | .280 46667
4| .0564 .708x107" | .894 x1077 | .105 | .381 84500
5| .0733 .902x1071 | .224x 1077 | .034 | .492 141333
6| .081 .561x107" | .521x1077 | .0a9 | .312 55167
7 | 1.0000 .516x 1078 | .982 .085 | .668x 1078 !|1.08x 1078

How is it possible for orthogonalization of qé against Y7 to
make ly?qal seven orders of magnitude greater than Iy:qél, for
i #7? The main cause of the lack of orthogonality between qé and

Yo i#7, 1is that since 07 is already far from orthonormal, Yy
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is far from orthogonal to Yys¥gse--s¥ge In fact the bottom row of

|1-Y;Y7|' is

.011 .038 .054 .073 .096 .060 .24x10°°

Thus both qé and Y5 have spurious components in the direction
of 78 These components are correlated so that y?qé is tiny.
Removal of the component of Yq from qé destroys this correlation as

shown by the following picture.

We now pause to put this example into perspective. The purpose of

SO is to insure that
. .
(1) ‘ Iyin+]| h

for all the Ritz vectors at step j. To avoid computing all the Ritz

vectors SO uses the equation
‘ * - ' [
(2)- . Iyiqj+1| = e"A"in/Bji

td determine which Ritz should be labelled good. SO then computes

these Ritz vectors and explicitly orthogonalizes r3 against them.



91
The resulting rj is normalized to become qj+] which satisfies
* - . .
(3) Iyiqj+]| = e“A“in/Bji , forall i<j.
Comparing equation (2) and (3) we see that SO will fail to main-

ji
behavior is possible for values of T near 1. Therefore the optimal

tain equation (1), if +vy.. > Y&i and Example 1 shows that this

choice of T 1is determined by two competing factors. If T 1is chosen
too small then many Ritz vectors will be declared good and many
unnecessary orthogonalizations will be performed. If <t is chosen too
large then the orthogonalizations will be delayed too long and large

- v's will appear causing serious loss of orthogonality, as shown by

equation (3).

3.5 The Effects of Orthogonalization

We now establish a bound on the difference between ij’ the

quantity before the orthogonalization of the jth

step, and ij’ the
corresponding quantity after r& is orthogonalized against the good

Ritz vectors.

Theorem 1. Let Gj be the index set of the good Ritz

vectors at step j. Then for all k <3J
ij _<_ ij+pjk >

= * = uyXnt 7y*
where Pik = Sik iege.l(ykyi)gjilleﬂAﬂ, and gji 1.rj/.yiy]. .
J




Proof. Recall that ij is defined by the equation

* - -~

BiklYa5471 = elRlvsy

Since Bj = B. sJk and BJqJ+] r., we find
(1) elAly;, = kar Is51

Similarly, Y&k satisfies

]
(2) elAlys, = kar IS5k
definiti f r. i . =prt-d, with
By definition o rJ (see Section 3) ry=rj dJ with dJ 1€§G y1531
‘and gji = y?r&/y:yi. Substituting this formula for rJ into equa%1on

(1) we obtain

= * ! - * . s - |
(3) elAly;, = |ygrs 1626.(5/")")&3"53" ,
J
*
< lygrjlsge + ieg | (yY; )€J1|SJk
J

The result now follows from equation (2). O

Remarks. Theorem 1 is not a realistic bound for a good Ritz

vector. If 1 € G. tﬂen rj has been explicitly orthogonalized

against yga) which makes [ygj)*rjl 2 enrj! = ij. Thus from
equation (1) I |
31 eBJsJ1/elAﬂ

Bji/ﬂAﬂ

<
u

<T

by definition of a good Ritz vector. On the other hand Theorem 1 is a

realistic bound on ij for a bad Ritz vector Y Insight into ¥
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growth in SO can be gained from analyzing the quantity PiKk-
'The formula for Pk in Theorem 1 does indicate why the y's

should remain near 1 for values of f rather larger than €. In

exact arithmetic, for a bad Ritz vector y,, both y?yk and

gji = y?r&/y?yi are zero. 'In practice it is unnecessary that each

factor be tiny. It is only required that their product be less than

ellAl  to insure that Yk is not much larger than Y&k'

3.6 The First 0rthogona1ization

We now use Theorem 1 to analyze a simple case, namely the step j
at which the first good Ritz vector Y5 is found. This is precisely
the situation in the numerical example of Section 4.

Since j 1is the first step at which a good Ritz vector is found
no orthogonalizations have occurred at earlier steps. Therefore the

quantities ri, Qj, T,, and Yj have been computed by the simple

. 3’
Lanczos algorithm and the results of Chapter 2 are valid.

In particular by Theorem 3 (Paige) of Chapter 2,
* 1] - [
(1) lyirjl = elAlyi/ss;

with yli % 1. Furthermore by Theorem 4 (Paige) of Chapter 2, since

Sji < sjk (yi is good and Y s not),

(2) ¥3y, ] * €Ay 5 (s54/554)/105-8, | -

Substituting (1) and (2) into the formula for Pk in Theorem 1

we obtain

(3) pjk& JkYJ'I(e/S )("A“/le ekl)/.yy s
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since Gj -contains the single number 1. Equation (3) displays the
various contributions to the size of P35k Sjk the bottom element of
k> which corresponds to a bad Ritz vector Yy Mmay not be small at
all but S?k <1 holds a priori. Furthermore YSi £ 1 so that yj?
cannot be large either. Finally for any reasonable choice of T robust
Tinear independence will be maintained and y?yi will be close to 1.
The factor [Al/|6;-8,| 1is Targe only when 8, and 6, are
close together, that is when ei and 6, are two copies of the same
eigenvalue of A. However two copies of an eigenvalue can occur only
if one good copy already existed at an earlier step which contradicts
the assumption that Y5 is the first good Ritz vector found.
It is the factor, e/sgi, which can cause y-growth if s.. is

ji
tiny. A good Ritz vector satisfies

Bji < ellAl/T ,

or equivalently

Sy 5.enAﬂ/rBj s

ince B.. = B.S... o A
since BJ1 83531_ If BJ is not much smaller than [Al and =

js near 1, then s.. will be near € and Pik will be large.

ji
In Example 1 of Section 4 where i =j =17, S7 2 ¢ so that
e/s?i, the third factor in equation (8) is quite large. This causes

Y;x» for k #7, to be large as illustrated by the numerical results.
Equation (3) does give an indication of the optimal choice of T.

To prevent y-growth it is necessary that

.2

2
(4) Yj1e/5ji <1.



Using equation (1), equation (4) can be rearranged as

* 2
(.Yir‘j/UAl]) b

or equivalently

(5) - yjaja | < JeIAlzes

since r3 = Béqj+]. Equation (5) indicates that Tt should satisfy

(6) | T< Jé‘wwei .

Inevitably 83 < Al so equation (6) will certainly be satisfied
if t=+/e. Since B& need not be much smaller than [Al, a choice
of t' larger than /e may lead to y-growth and so the optimal choice
of t is Je. If 1 1is chosen much smaller than /e then many
unnecessary orthogonaiizations are performed while if 1 1is chosen
much larger than /e then large y's will occur.

However equation (5) suggests that the definition of a good Ritz
vector should depend on the ratio BAH/BS. We investigate this variant

of SO in the next section.

3.2 A Variant of SO

Equation (5) of Section 6 indicates that stability of SO will be

assured if . .
|¥jaj4p1 < YeURl/8;

Since |y?q3+]| = elAly};/83;, this suggests that a Ritz vector should

be declared good whenever

(1) elAly;; /834 > Eumusi .
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Assuming that y-growth has not occurred at earlier steps, so that

in < 1, equation (1) can be rearranged to obtain

We call the variant of SO based on equation (2) S02 to distin-
guish it from the original SO, in which a Ritz vector Y5 is declared

good whenever
(3) | By < JelAl .

- A Ritz vector which is declared good by SO will be called an
SO-vector and similarly for S02. Since B& < N1Al, any SO02-vector is
also SOévector and so S02 will always require fewer orthogonalizations
than SO. However on most examples the cost of SO and SO2 are quite
close. Furthermore on occasions when the costs of the two schemes are
disparate, S02 may suffer from y-growth as illustrated by the follow-

ing example.

 Test 2. e=.16x1071°
n=20
Ay = (.2)1'], for i =1,2,...,n
*
q; = u/llull, u=(1,1,...,1) .

Test 2 is a difficult problem in that most of the eigenvalues are

- _ -13
clustered near zero (Alg- Aog = A9 = .53x10 7).

§02 was run on Test 2 and the following results were obtained.
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' beta(j) | # good | max \fT ﬂ]-Q;QjH

NIRE 0 | .65 .25x10710

2 | .17 o | .70 .42x10718

3| .33x107" o | .85 .10x107 10

4 .80x107%| o |.85 .19x10714

5| .32x10%| o | .8 22x 10712

6| .86x107% | o .85 .68 x 10710

7 | 3x103 | .85 .80x 1076

8 | .23x1074 | 2 | .39x10* | .11x107°

9| .28x10° | 3 | .12x10° | .11%107°

10| as5x108 | a4 | .e7x10* | .31x107

n|.mxwt| s .45x 108 | .82x107!
C 12| .e8x10° | s | .27x10'%1.00

13| .86x10°°| 5 | .48x10° |1.00

14| .55x107° | s .63x10° {1.00

15 | .23x10% | 5 | .90x10° |1.03

16| .a1x10% | 6 | .8x10° |1.37

17 | .2ax10%| 6 | .s8x10'%|1.87

18] .8x104 | 6 | .30x10'2[1.97

19| .62x107% | 6 | .22x10'%|2.01

20| .25x107% | o .17x10'2[2.82

3

The maximum absolute error at step j = 20 was .26x 10"~ which

shows that serious loss of accuracy had occurred. This loss of accuracy

was caused by the large y's in 502 which'first appeared at step j = 8

with a in = .39><]04. The large y's in turn led to a complete break-

down of orthogonality among the columns of Qj as shown by
* =
Il'l-ononll = 2-82.
We also ran SO on Test 2 for comparison against SO02. SO required

148 orthogonalizations compared to 59 for S02, but for SO the maximum

error at j = 20 was .14x1071°, while 11-Q340p01 = .10x10°8 and the
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maximum Y54 = .85, Thus SO suffered no y-growth and resolved all the
eigenvalues to working accuracy.

What causes the y-growth in S02? We note that large y's appeared
only when the ratio Bj/ﬂAﬂ was quite small. It is sm§11 off diagonal
elements (B's) which cause y-growth in S02 as we show in the next

- section.

3.8 y-Growth in S02

The y-growth in S02 is caused by the fact that in the face of a
tiny Bj-l there is no a prior upper bound on the ratio
min s(J']?/min s(q). That is, it is possible for a tiny s.. to
153"] J-1s1 kf.w] J1 J1
appear out of the blue, with no advance warning from any of the Ski
for k < j.

Consider the following example.

-1/2

Example 1. Llet w = (1+c2) and let

By the choice of w, the eigenvalues of T2 are 0 and 1 and the

~ matrix of eigenvectors is

Note that for all values of Z, w<1 andso By <Z and
Sop = WE- If £ << 1 then B is tiny (compared to HTZH = 1) and
Spp < C js tiny as well. On the other hand S11 ° 1 and so

-~ min s]i/min Soi = 1/wz can be arbitrarily large. ' ' ]
i<l i<2 :



The sudden appearance of a tiny sji causes y-growth in S02. In

Section 5 (equation (3)) we showed that one of the factors in the

J1 J AR
tiny for the first good Ritz vector.

growth of .. is ylfe/sgi which will be quite large if s.. is

Another way to understand the y-growth in S02 is from the point

of view of loss of orthogonality. By definition of Yji°

* -
|Yiqj+] I = Y'.i/B

ji'hii o

If ‘Bj is tiny then all of the Bji will be tiny and serious loss of

orthogonality will occur unless r& is orthogonalized against all the

Y5 before being normalized to become q S0, which examines the

Bj-i’

most of the Sji will not be tiny and S02 will fail to perform some

needed orthogonalizations. Thus a rather poor qj

i
will perform these needed orthogonalizations. On the other hand

+1 is accepted and

the damage is done. At step j+1 S02 tries to correct the errors in

ri

341 inherited from the poor qj+1’ which is a hopeless task.

3.9 Loss of Orthogonality of Good Ritz Vectors

At step j, SO computes the good Ritz vectors and orthogonalizes

ré against them. The good Ritz vectors are some of the colunins of

Yj = Qij .

J
is not orthonormal. Therefore Yj is not orthogonal either and the

good Ritz vectors (if there is more than 1) will not be orthogonal.

S., the eigenvector matrix of Tj is assumed to be orthogonal but Qj
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In order to successfully orthogonalize r3 against the good Ritz
vectors it is necessary to orthogonormalize the good Ritz vectors first.
There are many ways to orthogonormalize a set of vectors. The simplest
methoa is to apply the Gram-Schmidt procedure to some ordering of the
good Ritz vectors. In this context it is best to order the good Ritz
ve;tOrs by increasing Bji as shown by the following analysis.

In Section 6 of Chapter 2 it was shown that the loss of ortho--
gonality in the matrix Qj was manifested in the matrix Yj by the
contamination of the unconverged Ritz vectors by components in the
direction of the converging Ritz vector. In simple Lanczos this
contamination grows until a second copy of the converged Ritz vector
appears. In SO the onset of orthogonalization stifles the growth of
the contamination and thus prevents the appearance of repeated copies
of eigenvectors of A.

However the orthogonalizations do not purge the contamination that
was present before the Ritz vector became good. It is this residual
contamination which prevents the second good Ritz vector found from
béing orthogonal to the first. This contamination can be removed by
simply orthonormalizing the good Ritz vectors in the order of increas-
ing‘ Bji' |

" The required orthonormalization of the good Ritz vectors gives
another indicatioh that /e is the proper value for t. The Ritz
values at step j are the Rayleigh quotients of the Ritz vectors. Do
" these Rayleigh quotients change when the Ritz vectors are orthonor-
malized? If = 5_JE the Ritz values remain the same to working accuracy.
We first prove a simple result about approximate eigenpairs in general

and then apply it in the context of SO.



Theorem 2. Let 2 and 2 be two unit vectors and let

i
Then

(1) 1-v*v =1l

(2) Iez-v*AvI _<_2nﬂAy]-y]e]ﬂ+n2Ie]| .

8, = .V?A.Y.is for i = ],2. Let n = y;yz and v = yz-y‘ln.

Proof. To prove (1),

vv

(yz-y]n)*(yz-.v]n) >

2
Yo¥p - 23¥n ¥y’ s

1-2nf+n? , (n= ¥Y,)

2

1-n
To prove (2),

VAV = (y,-yn)*Aly,myyn)

y;Ayz - YAy, - y3AY{n + ¥7AY n

* 2
GZ'ZWZA.Y]"'I’I e-l ’

* 2
32‘ ZTIYZ(A.Y]'.Y]G]) -n 9] .
Therefore

*

A

O

We now apply Theorem 2 in the context of SO.. In SO t-ortho-

gona]ity is maintained and n < t will hold. Furthermore (y],el) is

a good Ritz pair so
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Finally 1e]| < BA#. Combining these inequalities we find

Corollary. 1-v*v 5_12 , and

lo,-v*Av] < 2eDAl+<71AL .

Thus if T </, v*Av/v*v  will be perturbed from 8, only by a
term of order elAl. Since 62 already has an error of this order of

magnitude there is no need to recompute the Ritz value.

| 3.10 Further Analysis of SO

One of the technical difficulties in analyzing SO is the identifi-
cation problem for Ritz vectors at different steps of the algorithm.
In thedry the Ritz vectors at step j are different from those at step
j-1 and it may be impossible to identify a particular Ritz vector at
step j as the successor of a given Ritz vector at step j-1. Indeed
since there is one more Ritz vector at step j a complete one-to-one .
ideﬁtification is impossible.

In practice however it is always possible to identify the successor
of a good Ritz vector (T = ve). A good Ritz vector at step j-1 is a
good approximation to an eigenvector of A. The Ritz vectors at step j
are chosen from a larger subspace and an even better approximation to
the eigenvector will be found. |

As a notational convenience we use the symbol yij) to stand for
the Ritz vector at step j which is closest to the eigenvector of A

(3-1)

‘associated with the eigenvalue . Thus if Yy is a good Ritz



vector then y§3) is the successor of yiJ']) and the two vectors

will be almost parallel. We define Bjx’ S, etc. to be the

. JA’ Yj)\’
quantities corresponding to yga). ,

In this section we discuss the effects of the héreditary nature of
good Ritz vectors on the behavior of SO. Selected output from SO (with

T = Je) applied to the following example will be used for illustration.

Example. = .16x1071
n=20
Ay =i, i=12,...0n
qy = u/lul, u-= (1,1,...,1)*
t=/e=.4x10"8

We first give a summary of the output.
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j | # good Hl-Q;QjH
1 0 | .28x107'0
2 0 .37x 10716
3| o J10x107 18
a| o |.15x10°1°
5| 0 .44x 10710
6| o |.30x107%
71 o .36x 10713
8| o0 |.a8x10712
9| o .84x 107!
0] 1 .23x1077
n 1 .23x107°
12 1 .23x 107
13 2 .23x 1072
14 2 .23x107°
15| 3 .23x107°
16| 3 .23x 1072
7l & | .23x107°
8] 5 .83x 1072
19 5 .83x 1077
20| o |.s3x107°

Note that H]-Qngﬂ increases smoothly until orthogonalization starts.
Thereafter HI-QEQjH is almost conétant which is what is expected
~since the purpose of SO is to inhibit the further decay of orthogonality.
No orthogonalizations were performed at step j = n = 20. In general

there is no need to orthogonalize q in the last step of the

§+1

algorithm since q does not contribute to the Ritz pairs at step j.

Jtl
By the Kaniel-Paige theory (Section 1.3) the first eigenvalue to

converge should be 1.0 since it is both extreme and well separated. We

now give a complete history of 9] 0° the Ritz value closest to 1.0

for each step j.



i | -] B4.1.0 RN 1£5.1.0l
1] .87 .142 .87 -
2 | .20 3] .94 --
3| .15x107" | .93x1077 | .49 -
4| .32x1073 | 5x1077 | .37 -
5 | .53x107° | .2x107% | .36 -
6| .31x107 | .16x10"3 | .36 -
7 .8x10? | .12x107% | .36 -
8 | .55%x10712 | .69x1076. | .36 --
9 | .73x1071° | .25x1077 | .36 --
10 | .28x107' | .7ax107% | .36 21x1072
11| .83x 10718 | [26%x10710 | .32x10°3 | g1x107T!
12 | .14x10776 | 10x10°1 | Leox1071T | L33x107V7
13 | .28x107'% | .22x10°13 | L16x10712 | .22x10°17
14 | .42x107% | [32x10°15 | .3ax1071% | .23x10°17
15 | .56%x 10710 | .43x10°17 | .23x1018 | .10x10°17
16 | .42x1071% | .53x10719 | .88x 10718 | .38 x 1017
17 | .56x10776 | .11x10718 | .35x10°V7 | .44x10"17
18 | .56x10710 | 18x10719 | .38x10°18 | .33x10""7
19 | .0 19x10712 | 18x10718 | La6x 10718
20 | .28x10716 | .65x10728 | .48 x10°20 -

The vector Y{.0 90es through three distinct phases as SO pro-

gresses. At first (j < 10) 1.0 is not good (technically), 75’1.0

is near 1.0, and gj 1.0° the orthogonalization coefficient, is not
9t <\ ' .

defined. At j =10 ¥1.0 becomes good and gj,].0 = y%f% 1"\]./,y].0y].0

& y§jg*r3 is computed to be .21><10’9, which is smaller than

TIAl = .4x10°8 as it should be. At j =11, £ = .61x107 1

js1.0 ~

which is rather less than tlAl. For all j > 11, IEj,].°| < ellAl

which is the magnitude of the rounding errors themselves.
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This behavior is completely typical of good R1tz vectors. For
a given 2, ij is larger than e€llAl only in the first two steps at
which Yy is good. This is due to the hereditary nature of good Ritz

vectors. We use the following technical result to illuminate this

phenomenon.

Theorem 3. For any Ritz vector s at step j,

l- +l
A r} qJ(szJ1 Fys4#D3s; ) - y,qJ(aJ -8.)-y; i95-185-1 - Y3 f .

where 03 = (d], greeesd - 1,o) and f Fj 3 is the last

co]umn of Fj.

Proof. (See Section 3 for notation.) Before the ofthogonaliza-

tions'at step j of SO, the computed quantities satisfy

. -Q.T. = +F.+D' ,
(1) AQJ QJT rJeJ FJ DJ

where 03 = (d]’dZ""’dj-f’o)' Multiply equation (1) on the right by

. to find,
eJ o fin
= Qi0:-Q: 1Bs 4 = PLEF.
@) Aas - 9305~ 951851 = 5 Ty
since 03ej = 0. Multiply (2) on the left by y: and rearrange to
obtain
*,=*

(3) yirs = Yihay y,anJ Y5 qJ 185-1 " Y5 f »

= q; SAY; y1q - ¥395.185.0 - Yif5 o

since A is symmetric. To obtain a formula for Ayi multiply (1) on

the right by S; to find
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AQ.s. - Q.T.s. = r'e¥s. +F.s, +D's, .
(4) QJs1 QJTJS1 rjer1 FJs1 DJs1
. _ - * . _
Since Y; = sti’ Tjsi = 5161, and ejsi = Sji’ (4) can be rearranged
to obtain
= ! [
(5) Ay, yieii-rjsjii-Fjsi*-Djsi .

Substituting (5) into (3) and rearranging yields the result. O

We consider the various contributions to y;ré given by

Theorem 3. (I) The matrix Fj is just the accumulation of the local

roundoff errors and ﬂFjﬂ % e¢fAl will hold. In particular

* &=
ﬂqujsiﬂ z efAl , and

*
uyifj“ elAl .

(11) ré is explicitly orthogonalized against qj by the choice

of “j' Due to rounding errors q;ré is not zero but

* 2
|quj| efAl

will hold instead.
(III) For k < j,

k)
d, = y( Evy o
" do 405

Each Bt will be less than <tlAl in magnitude while |q;y§k)| <t

as well since k < j. Therefore

TzﬂAﬂ s

der }

elAl ,
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for T = Je. Bringing these observations together,

A . * _ -
(6) : ‘y'irJ < ,V.qu(O.J 0, ) = Y; qJ ~| j- ]+0(6“A“) s
s y,qJ(ozJ -6:) - y3 qJ 1851 -
If YgJ-z) and y§3—]) were good then equation (6) shows that y(J)

will be tiny because both qj and qj_] were orthogonalized against
vectors which are almost parallel to yij).
In the numerical example X = .5 was good at step j = 13 and the

following values for y(g)*rs were computed.

- *

j (g) i
131 .46x10710
14 | -.21x1071]
15 | .309x10718
16 | -.37x10"18
17| .1ox107V
18 | -.37x10718
191 .2ax10718

The other good Ritz vectors behaved similarly. This phenomenon is
an important.contributant to the success of SO. Each good Ritz vector
makes a significant contribution to D only the first two times it
appears. Thereafter the corresponding eigenvector is essentially

deflated from the system.

3.11 Conclusions
Selective Orthogonalization with t = /& 1is an effective means of °
implementing the Lanczos algorithm. If the good Ritz vectors are only

computed occasionally (as described in more detail in [Parlett and



Scott]) SO is very efficient as well. SO permits the Lanczos algorithm
to be run as originally intended. Since loss of orthogonality is
controlled without the expense of full reorthogonalization, there is no
need to iterate the algorithm.

As an added bonus SO is capable of finding clustered or multiple
eigenvalues without the added complications of using block Lanczos.

This is in marked contrast to the simple Lanczos algorithm in exact

arithmetic which can compute only one representative of a multiple eigen-

value and also to simple Lanczos in finite precision which computes
multiple copies of all eigenvalues regardless of whether they are truly
multip]g or not.

This phenomenon is due to rounding errors which introduce to qj+1
small components in all directions. After one eigendirection of a
multiple eigenvalue has been found, components in the orthogonal direc-
tion persist after orthogonalization. These components will grow as
the algorithm continues until a second eigenvector, orthogonal to the
first, is found. For illustration SO was run on the following example

with different values of w.

e=.16x10"18
n=20

A= Ui for i#2,4
A2= A]"w

k4= 7\3-m

20 steps were taken and the largest absolute error in the Ritz values

was measured.
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w max error
1071 | .83x10716
103 | 2xi0?
1075 | 1x1071
107 | .69x10710
1079 | asx1071°
10717 | .83x 10716
1013 | ix07!®
10715 | ix10?®
10717 | .38 x 10716

o | .1x1w0!®

This shows that SO can resolve clustered eigenvalues to full working
accuracy (nefllAl = .32><10']5). |

Can large y's occur for T = /e? Heuristically the answer is mno.
No examples of y-growth with T = Ye are known. Furthermore it is |
easy’to,monitor the size of the y's as the algorithm proceeds. For
each good Ritz vector ygj), SO computes ygj)fré in the orthogonali-
zation process. It is only necessary to compute
(3)%,

Yii = I‘y‘i 3]5‘]

ji i/eﬂAu
to observe whether y-growth has occurred.

" In conclusion SO is an efficient method of implementing the Lanczos
algorithm which points the way towards a subroutine package which could

be dsed off the shelf for large sparse symmetrit eigenvalue problems.
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Appendix A

To finish the proof of Theorem 3 of Chapter 2, we first quote the

main theorem of [Paige 1976] which asserts that for the Lanczos

algorithm, the matrices Bj and F:j are tiny, like roundoff in [{Al.

(1)

Theorem (Paige). Let A have at most m non-zeros per row.
Let N|A|l = vIAl, where |A] 1is the matrix with elements

la-ij|°
€g = (n+4)e, and let € = (7+#mv)e. Assume 4j(3eo+e]) << 1

Let € be the relative machine precision, let

and ignore e2 terms. Then

lbyp| < 2eAl

-

|%i|54qﬂMI,'mr i=2,3,...,3,
I‘bi_1 1.| 5_4e0nAu , for i=2,3,...,3,
ﬂfiﬂ g_e]ﬂAH ,» for i=1,2,...,3,

th

where fi is the i~ column of F..

The proof of Theorem 3 is completed by the following result.

Lemma. For the Lanczos algorithm

Iin‘ 53(2je]+860)/e .

Proof. Recall from Lemma 3 (of Section 2.3) that

Lk *
Yii = |siBjsi+siEjsi|/eﬂAﬂ

<(Is3Bs5;1 + Is7E 55 1)/elAl

m
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< (quu + [lEJ.lI)/ellAll

and it remains to bound each term separately.

Bounding ﬂle
Let Bé be the diagonal of Bj and let B; be the superdiagonal

f B . e as = g 4+B"
o BJ Since Bj is bidiagonal, BJ BJ BJ and

2 1 = 18 +BYI
(2) 18,1 = 1B} +Bj

IA

L0+ 10B%0 .
HBJH .ﬂ j

Any matrix C which has only one nonzero element in each row and

column satisfies

(3) : iCl = max lcijl

1,3

Since bbth 85 and Bg have this broperty, by using Paige's Theorem,

(4) HB&H = m?x lbii'
< 4eglAl
and
(5) 1Bl = wax Ibs_q 5
< deglAl .
Thus by (2)

(6) 18,1 < 8enlAl .



Bounding HEjL
Recall that E; 1s the upper triangular part of F;Qj-QgFj.

Therefore
(7) UESD < 210500F 1
For any matrix Gj = (g],gz,...,gj), ﬂGjﬂ_g Vi m?x Bgiﬂ and so

(8) BF.0 < /5 max 0F,0
J i 1
<3 e 1Al

by Paige's Theorem and

(9) 1,1 < V3 max lql
i

<.
Hence from (7),
(10) 1ES1 < 2je, AL
and the Lemma follows frﬁm (1), (6), and (10). | O

The bound given in the Lemma for Yii
overbound for several reasons. For large problems, the greatest over

is 1ikely to be a large

estimate is concealed in € which is a bound on the maximum error
commi tted in‘normalizing an n-vector. Only for specially chosen vectors
will the factor of n be realistic. Also 00,0 ¢ /k+T, where k is
the maximum number of copies of any one eigenvalue to have appeared,
is much more realistic than even /3.

In fact, in Example 1 of Section 6 in Chapter 2 the average value

of Y54 is about .03. In all examples we have investigated the

13
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- dependence of in on both n and j 1is much less than linear. This

explains the computational success of the algorithm even when both n

and - j are large, see [Lewis 1977] for example.
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Appendix B

In this appendix we establish a bound on ﬂ]—Qngﬂ in terms of the

parameter T.

Theorem. Let T > 0 be such that
(1) I]-q?qil <t for all i < j.
* - 3
(2) |y$k) qk+1| <t forall k<j and i<k.

Then for all k < j

m-Q;‘an <kt .

SO is designed to insure that hypothesis (2) holds for

any given t. In practice we set 1 = Y& and hypothesis (1) will be

Before proving the Theorem we first prove two lemmas.

Remarks.

satisfied easily.
Lemma 1 first appeared in [Kahan and Parlett 1974].

Lemma 1 (Kahan and Parlett). Let I]-q;qjl < Kkps let
* %*
an_]qjﬂ %50 Tet H]-Qj_]Qj_]H S K5 and let

= <
Ky = (K]-+Kj_]4-/(Kj_]-K]f2+4cj_])/2 .

Then

¥*
1-Q30;0 < x5 -

Proof. N N
105485 -0549;

* -
L T
Jti-1 i3
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-Q% ,Q. 1Q% -q.
g ﬂ (A QJ_]QJ_lﬂ IQJ_]qJﬂ
- * q. 1-939;
HQJ_]qJH | quJn
-1 M
- z 2
= (K]*-K _]4-/Tnj_1-nl) +4cj_]]/2 . O
To apply Lemma 1 it is necessary to have a value for Cj-] in
terms of .
(k)* . ,
Lemma 2. Let |y; ' qq| <7, forall i<k, andlet
gy = /K T. Then
*
“quk+1“ <oy
Proof. Since Sj is an orthogonal matrix,
* 2 _ po*a* 2
1%kl = 19kt
ey 2
- “quk+1“ ’
- (k) 2
i=1
k
< 17
i=1
= ktz 0
Proof of Theorem. Induction on k. If k=1 then

ul-QTq,u = u1-q{q]u ,

<

T
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by hypothesis (1) so the Theorem is true. Assume that the Theorem is

true for all t <k < j. By Lemma 1, n]"Q:HQkHH < Kt where

(1) Kit] = [k] +Kk+/(»<k-u<])f+4z;§]/2 .

By hypothesis (1), Ky < T, by induction, K < kt, and by Lemina 2
g < VKT

Combining these inequalities in (1) we obtain

Kty < [t+kt+ /(kt-1)°+8kT%]/2

[(k+1)t + /(k-1)%x%+4kt?]/2

[(k+1)T+ (k+1)T]/2

o= (k+1)T . : 8]




=2

J

J.
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