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Abstract

The Lanczos algorithm is a powerful method for finding a few

eigenvalues and eigenvectors of large sparse symmetric matrices. The

quantities actually computed by the Lanczos algorithm diverge com

pletely from their theoretical counterparts. In 1971 C. Paige showed

that this "instability" merely resulted in the computation of multiple

copies of eigenpairs of the matrix. This work presents and analyzes a

new way of implementing the Lanczos algorithm which prevents the

computation of redundant copies of eigenpairs and costs little more

than simple Lanczos itself.
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Introduction

The Lanczos algorithm is one of the most powerful methods for

finding a few eigenvalues (and eigenvectors if desired) from one or

both ends of the spectrum of a large sparse symmetric matrix. It has

been known since its introduction in 1950 that the Lanczos algorithm is

unstable, in that the quantities computed in finite precision arithmetic

will diverge completely from their theoretical counterparts.

In his Ph.D. thesis of 1971, C. Paige showed that this "insta

bility" of the Lanczos algorithm merely resulted in the computation of

repeated copies of the eigenpairs of the matrix. Despite the impor

tance of Paige's results to understanding the behavior of the Lanczos

algorithm in finite precision, many of them have never been published

in the open literature.

The main contribution of this thesis is an analysis of Selective

Orthogonalization, a new and efficient method of implementing the

Lanczos algorithm, based on Paige's analysis, which prevents the

appearance of repeated copies of eigenpairs. To help the reader

understand the effects of Selective Orthogonalization some necessary

background material is given in the first two chapters.

Chapter 1 gives a description of the Lanczos algorithm in the

context of exact arithmetic. Included are a derivation of the Kaniel-

Paige a priori error bounds on the accuracy of the eigenvalue estimates

computed by the algorithm and some new results relating the choice of

the starting vector to the convergence of the algorithm.

Chapter 2 describes the surprising behavior of the Lanczos

algorithm in finite precision arithmetic. Since Paige's results are
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rather inaccessible we hope that the derivations presented here will

further the appreciation of the importance of his work.

Chapter 3 explores a suggestion of Parlett that nearly converged

Ritz vectors be explicitly purged from new Lanczos vectors as a means

of maintaining linear independence at little extra cost.
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1. The Lanczos Algorithm in Exact Arithmetic

This chapter will give an overview of the theory of the Lanczos

algorithm in the context of exact arithmetic. Section 1 will describe

the Rayleigh-Ritz procedure, a general method for choosing approxima

tions to eigenvectors of A from a subspace W ciRn. Some of the

results in this section are not widely appreciated. Section 2 describes

the Lanczos algorithm, a special case of the Rayleigh-Ritz procedure.

Sections 3 and 4 investigate various aspects of the convergence of the

algorithm. Only Section 4 is new material.

Throughout this thesis, A will be an n*n (real) symmetric

matrix with eigenvalues X, < X« < ••• < A and eigenvectors

2^,22,...,z . Thus A=ZAZ* where A=diag(X,,X2,...,X ) and
Z=(zlfz2....,z ) with Z*Z = 1. The symbol 1 will stand for the

appropriate size identity matrix. B-a will stand for the matrix

B-al.

1.1 Approximations from a Subspace —The Rayleigh-Ritz Procedure

One possible approach for computing approximations to eigenpairs

of A is to choose some j dimensional subspace to. C]R and compute

the j best approximations to eigenvectors of A contained in to.
j

and the corresponding best approximate eigenvalues. We refer to an

approximate eigenpair (y,e) as a pair. Of course this approach

requires some precise definition of the word "best." To motivate pos

sible definitions of "best" we quote some of the most important theorems

for evaluating the accuracy of such pairs (y,8).



Then

and

Theorem 1. Let y be any unit vector, let 6 be any scalar,

and let p = 0Ay-yeH. Then there exists X, an eigenvalue of

A such that

|x-e| < p .

Furthermore, for a fixed vector y, p is minimized as a

function of 6 by 8 = y*Ay.

Theorem 1 is best possible in that equality may hold.

Example 1. Let

A = diag(l,-l)

j/ffj/2
2 '2and y = \-ott) •

6 = y Ay = 0 ,

r=Ay-ye =Ay =(^.-^)*
p = QrH = 1 ,

min |X.-0| = 1 .
.1=1,2 1

D

The quantity y Ay (or y*Ay/y*y for a non-unit vector) is now

called the Rayleigh quotient of y (with respect to A). For a given

unit vector y, the vector r= Ay-y8, where 8 = y*Ay, is the

residual vector of y and p = HrO is the residual norm of y.

If j > 1, more than one pair must be chosen and we would want

each pair to approximate a different eigenpair of A. Unfortunately

the obvious generalization of Theorem 1 to more than one vector fails

in this respect, even when the chosen vectors are orthogonal. That



is, it is possible to have two pairs (y, ,6-|) and (y2,62) such that

yly2 = ° and yet on1y ^"^ ei*9envalue of A lies in the union of the

intervals around 8-j and 82 given by Theorem 1.

Example 2. Let

"0 0 1" " 1

A = 0 0 1
• yl = 0

1 1 0 0

and *2

Then 8] = 82 =0 and HAy^S-jO = 8Ay2-y2e2ll = 1. The eigenvalues

of A are 0 and ±J2 and only 0 lies within [-1,1]. •

The best bound for locating the proper number of eigenvalues of A

was given by W. Kahan in [Kahan 1967].

Theorem 2 (Kahan). Let Y be an nxj orthonormal matrix,

let H beany jxj symmetric matrix, let 8,,82,...,8. be

the eigenvalues of H, and let R = AY-YH. Then there

exist distinct integers V,2',...,j' such that for

i — i,&,...,j,

|erx.,| < iirii .

For a fixed matrix Y, HRU is minimized by H = Y*AY.

Note that forlxample 2, Y=(ypy2), Y*AY =H=0, and IIRII
so that Theorem 2 is the best possible in that equality may hold.

A common method of choosing pairs from the subspace to. is the
j

Rayleigh-Ritz procedure, defined as follows.

= ^,



The Rayleigh-Ritz Procedure. Given any subspace to. of dimension
j

j and a symmetric matrix A, do steps 1 through 6.

1. Compute Q., an orthonormal matrix such that span(Q.) = to..
J 3 3

2. Form H = Q?(AQ.).
j j

3. Compute S0S*, the eigensystem of H.

4. Form Y= {y} ,y2,... ,y..) =Q S.

5. Compute R= (r,,... ,r^) =AY- Y0 = (AQ.)S-YG.

6. Compute QRQ and p. = Qr..ll = QAy^y^^, for i= l,2,...,j.

The columns of Y are the Ritz vectors, the eigenvalues of H

are the Ritz values, and a pair (y^.e.) is a Ritz pair. The norms

computed in step 6 can be used in Theorems 1 and 2 to bound the accuracy

of the Ritz values. The Ritz pairs are determined solely by the action

of A on the subspace to. and they are independent of the particular
j

matrix Q. used to compute them,
j

The word optimal is often associated with the Rayleigh-Ritz

procedure although there appears to be some confusion as to the sense

in which the Ritz pairs are indeed optimal. The following result is

hardly new but is included here to clarify this point.

Definitions. Let P. be the orthogonal projector onto the sub-

space to., that is PJR = to. and P. = P* For any orthonormal
j j " j j j

matrix Y= (ylsy2,... ,y.) let R(Y)=AY-Y0, where

0=diag(8.|,e2,...,e.) and 8.. =y*Ay. for all i.



Theorem 3. Let Y. =
vl

(yry2>-- .,yd) and 0. ==<ei >82»•• ••V
be the Ritz pairs derived from to..

3
Then

1. Y>o • V
2. For all i, (y1.91) is an eigenpair of PjAP

3. Y. minimizes
j

. 0R(Y)|| over all orthonormal matrices

whose columns• span to.
j

•

Remarks. As shown by 1, the Ritz vectors are the distinguished

basis for to. which makes the reduced matrix, H = Y.AY., diagonal.

Furthermore Y.Y. is a matrix representation of P. so that if A is
j j j

represented in a basis v/hich has the columns of Y. as its first j

elements then the matrix P^AP. takes on the simple form,

0 0
P.AP, =

3 3 0 0

Proof. Let Q. be an orthonormal matrix whose columns span to.
j j

and let H= Q^AQ.. Then H= S0.S* and Y. = Q.S. Therefore

YjAYj -(Q.S)*AQ.S ,
=S*Q*AQdS ,
= S*HS ,

=V

since S S = 1. This proves 1.

Q.Q. is the matrix representation of P.. Therefore
j j j



and for any y. = Q s.,

Wi • VQdVi •
• qjHst •

" Qjsiei •

• Vi •

This proves 2.

Let 6. = (g-i >g2>... ,g.) be any orthonormal matrix whose col

span to. and let 0'. = (g*Ag,,... ,g?Ag.). Since span(G.) = span(Y.)
j j i I j j j j

= to. there exists a jxj orthogonal matrix L such that G. = Y.L.
J j J

Recall from Theorem 2 that |R(Y,H)B = IIAY-YHII is minimized for fixed

Y by H = Y*AY. Therefore

umns

IR(G.)I = IIAG.-G.01O ,
j j j j

= OAY.L-Y.L0lO , definition of L
J Jo

= fl(AY.-Y.h")LI , H' = L0'.L*
j j j

= DAY.-Y.H'O , L is orthogonal

> BAY.-Y.0.II , 0. = Y*AY.
j j j j j j

= BR(Y.)II .
j

This proves 3. •

It is important to realize that in general Ritz vectors are not

projections onto to. of eigenvectors of A nor are they local minima

of the residual norm. Consider the following example.



Example 3. Let

and let

Then

A =

*2 =

0 a 0

a 0 1

0 1 0

1 0"

0 1

0 0

H = Q2AQ2
0 a

a 0

S =
T

-1

1

0 = diag(a,-a) ,

YM2SB|

R e AY - Y0 =

"1 -1 "

1 1

_0 o m

rt
" 0 0"

0 0

_ 1 1

BR[| = 1 , and

2 "
I^H = flr2

Thus S, Y, and R are independent of the size of a. Do other

vectors in the span of Q2 have smaller residual norms than y, and

y2? The answer is yes, regardless of the size of a. To prove this,

let



y =

cos <j>

sin <J>

0

which is an arbitrary unit vector in span(Q2). Then with some trigo

nometric manipulation it can be shown that

8 = y Ay = a sin 2$

and

p2 = flAy-yen2 =a2cos22<J) +sin2<f>

The Ritz vectors y1 and y2 correspond to <J> =tt/4 and $ = 3tt/4
2 7

which both have p =1/2 as expected. The derivative of p is

d 2 2
-£- = -4a cos 2<J> sin 2<J> + 2 sin <J> cos <|>

2
= sin 2<J> - 2a sin 4(|> .

The value of the derivative at tt/4 is 1 and at 3tt/4 is -1. This

2
shows that p and hence p is never minimized by a Ritz vector for

any value of a.

The unnormalized eigenvectors of A are the columns of

Z =

a 1 a

/T+a7" 0 -/Ph?"

1 -a 1

The projections onto span(CL) are the columns of

a 1 a

/l+a2 0 -/l+az

0 0 0



For no value of a are any of these vectors parallel to either of the

Ritz vectors. That is, neither Ritz vector is ever a normalized pro

jection onto to. of an eigenvector of A. D
j

Given only the subspaces to. and AW. is it possible to obtain
j j

better approximations to eigenvalues and eigenvectors of A than those

given by the Rayleigh-Ritz procedure? The answer is yes and many results

along this line have been obtained. Some of the most important results

are contained in [N.J. Lehmann 1963] and [Davis and Kahan 1970] but we

will not pursue this question any further here.

We finish this section by considering the cost of applying the

Rayleigh-Ritz procedure when j « n, which will always be the case

when A is large. The bulk of the cost of applying Rayleigh-Ritz

normally lies in computing the orthonormal basis Q. and forming the
j

matrix product AQ.. Of course it may happen that to. is specified
j j

as the span of an orthonormal matrix which would eliminate the cost of

the first step. However for arbitrary subspaces there is no way to

avoid the cost of forming AQ.. However for special subspaces the cost
j

of implementing the Rayleigh-Ritz procedure can be substantially

reduced, as is shown in the next section.

1.2 The Lanczos Algorithm

Section 1 described the Rayleigh-Ritz procedure, a method of extract

ing good approximations to eigenpairs of A from a given subspace to..

In this section we show that a certain class of subspaces, called Krylov

subspaces, are ideally suited for the Rayleigh-Ritz procedure in that

the bulk of the cost of using the procedure is eliminated due to the

special structure of these subspaces.



10

For any vector s f 0, K..(s) =(s.As,...^"*^) is a Krylov

matrix and K.(s) = span(K..(s)) is a Krylov subspace. The first step

of the Rayleigh-Ritz procedure is to find an orthonormal basis for

Kj(s), so for any j, let Q^ =(q] ,q2,...,qj.) be the result of
orthonormalizing the columns of K.(s) from left to right. In particular

j

q1 = s/lsB. The second step of the Rayleigh-Ritz procedure is to form
*

QjAQ.. This is made easier by the following.

Theorem 4. T. = Q.AQ. is a symmetric tridiagonal matrix.
vl J J

Proof. By definition, for all i, AK^s) £Ki+1(s). In particular

Aqi ^ Ki+1(s) =span(Qi+1). Hence q*Aq. =0 for all k>i+2.
Since A is symmetric, q*Aqk =q*Aqi and the result follows. D

We label the diagonal elements of T. as a..,a?,...,a. and the

off diagonal elements of T. as $,,$„,...,3.^,.
j it j—1

Theorem 4 implies that the columns of Q. satisfy a three term
j

recurrence. The Lanczos algorithm arises from the observation that the

coefficients of the recurrence, the a's and $'s can be computed as

needed.

There are several mathematically equivalent formulas for computing

the a's and $'s. We present only the most numerically stable version.

A comparison of the different possible methods is made in Section 2.4.



The Lanczos Algorithm. Given q, an arbitrary unit vector,

define qQ =0 and $Q = 0. For j= 1,2,... do 1 through 5.

2.
•

a. = a .u.
3 ^3 3

3. rj = UJ " qjaj
4. *j =°V
5. If B. = 0 stop

else q.+1 =r./Bj

One cycle of 1 through 5 is a Lanczos step. Each a. is chosen to

force q?q,-+i =0 and each 3. is chosen to normalize q.+, to

length 1. That is maintaining local orthonormality is sufficient to

guarantee orthonormality of Q..

We have introduced the Lanczos algorithm by assuming Q. was
j

orthonormal and proving the three term recurrence. A more common

approach is to define the a's and $'s and then prove that Q. is ortho-
j

normal (cf. [Kahan and Parlett 1974]).

If the algorithm is interrupted after j steps, the computed quan

tities satisfy

and

(2) i-Qjlj-o.

where e. = (0,0,... ,0,1) has j elements. Rewriting equation (1)

with appropriate sized rectangles yields

11



(3) Qj Qj &$
X

X

t
6JV1

Equations (1) and (2) are a compact way of displaying the Lanczos

algorithm and most of the analysis presented will start from these

equations.

At the jtn step of the algorithm, if S.0.S? is the spectral
j j j

decomposition of T., where 0. = (eP',00 ,---»e- ) and

S, =(sjJ),s<j) s\V), and Y. =(y1(j)4j),...,yij)) =9^ then
(yU;,8}3'), for i=l,2,...,j are the Ritz pairs obtained from
K.(q,). We note that normalized eigenvectors of T. are only deter-

mined up to a factor of ±1. In later analysis it will be convenient

to assume that s.. the bottom element of s.J' is positive for all i
j' i

Unless otherwise stated, all Ritz pairs will be taken from K.(q,) and
j *

the superscript j will be dropped.

The Lanczos algorithm permits the first two steps of the Rayleigh-

Ritz procedure to be performed simultaneously at a substantial savings

in cost.' Only the vectors q. , and q. are needed for computing

q.+.j. The rest of the vectors can be put into secondary store until

they are needed for forming Ritz vectors. If only the Ritz values are

desired, the Lanczos vectors (the q's) need not be kept at all. This

is a very attractive feature with respect to large problems. Also the

matrix H = Q.AQ. is tridiagonal and this substantially lowers the
j j

cost of computing its eigensystem. Finally we are going to show that

the composite residual norm is computed by the algorithm itself (i.e.

3.-) and that the residual norm of each Ritz vector can be computed

12



without forming the Ritz vectors' This obviates the need for perform-

ing step 5 of the procedure and reduces the cost of step 6. We now

show how this can be accomplished.

Theorem 5. Let (Y. •V be the set of Ritz pairs derived at

the jth step of the Lanczos algorithm. Then

and

i

IIRJ =
j

pt =

HAY.
j

»Ayi

-w •

-y^B -

for i = 1,£ ,•..,J , where eji =Voi and s.. > 0 is the

bottom i[j ) element of s. » the ith eigenvector of T..
3

Proof. Multiply equation (1) on the right by S. to yield

AQjV Wj =6jWjsj •

Since T.S. = S.0. and Y. = Q.S., this reduces to
•j j j j j j j

(4) AVYoVejVie3V

Taking the norm of both sides yields

„R.„ . jAY..y.0.B = BB.q.+1e*SJ

S. is orthogonal and for any matrix B, IIBPO = BBII if P is

orthogonal so

»y - aejVieJa
• ej»Vi"Bej

13



since Duv*ll = DuUOv*!! for any vectors u and v. Equating the itn
column of each side of (4) yields

Ay.-y.ei =e.q.+1e;s. ,

=6jSjiqj+l '

and by taking the norm of each side we obtain

pi =*jsJiBVl"
= 3-. . •

These numbers 3^-» which can be computed without forming the

Ritz vectors, explain how it can happen that some of the Ritz values

may be very accurate approximations to eigenvalues of A without the

appearance of any small off diagonal elements of T (3's). A Ritz

value ejJ; with anegligible $.. has converged. This definition is
justified by the following result.

(j)Theorem 6. Let 8. be any eigenvalue of T.. Then for

all k > j there exists an index i. such that 8. ' (an
K \

eigenvalue of T.) satisfies

lej^li^.

(j)Proof. Let s. be the eigenvector of e) . Let si be a
s. 1

k-vector with si = (Q). To prove the Theorem we compute

DTksi "siei U and tnen 1nvoke Theorem 1. In pictures,

14



s'
si si

(j) .

Hence DTksi -siejJ'l) =3^. =3jr By Theorem 1there must be some
eigenvalue of Tk, call it ejk^ such that |e^-e(k)| <3... D

These results show that the converged Ritz values can be identified

by inspection of the bottom row of the matrix S.. They do not address
w

the fundamental questions of whether convergence will occur quickly

and to which eigenvalues of A Ritz values are most likely to converge.

The examination of these questions is put off until Section 3. In the

mean time we derive some useful algebraic properties of the Lanczos

algorithm.

The algorithm must terminate (3. =0) at some step j < n, since
j

n+1 orthonormal n-vectors cannot exist. The exact number of steps

taken before termination depends on the starting vector q, as follows.

(j)
TjVsiei

3.S..
3 Ji
0

3.s..
3 Ji
0

s.
i si

15
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Then

Theorem 7. Let to C]Rn be the smallest A-invariant subspace

containing q1 and let m= dim to. Then the Lanczos algorithm

started with q1 will terminate at the mth step (3 =0) with

Proof. Suppose the algorithm terminates at the jtn step (3- =0)
j

AQ.-Q.T. = 0,

so Kj(q-,) =spanCQj) is A-invariant. Since q-^K.^), ft/CK.^)
and m £ j.

On the other hand, since to is A-invariant and q, € to>

Aiq] eto for all i.

Hence K.(q^) =span(q1 ,Aq1,... ^"'q^ cw and j<m. D

The Lanczos algorithm is invariant under certain algebraic opera

tions. Since these results are needed in later analysis, they are

listed together here for easy reference. To express these identities

we use the notation LJ(A,q,) = (Q,,T.) to mean that j steps of
i j j

the Lanczos algorithm run on A starting with q, yield Q. and T..
1 \i i

16



Theorem 8. If Lj(A,qJ =(Q.,T.) then
i j j

1. L^YA.q^ «(Qj.yTj) for all yGTR.
2. L^A-Y.q,) =(Qj.Tj-y) for all yen.
3. Lj(P*AP,P*q.) =(P*Q.,T.) for all orthogonal P.

J J j

4. L^A^.q^ =(QjJj), where A|w is A restricted
to to and to is the smallest A-invariant subspace

containing q,.

Statement 4, which follows directly from Theorem 7, has an impor

tant theoretical consequence. Any eigenvector orthogonal to q.. will

be orthogonal to all of to and will not be discovered by the algorithm.

In particular if A has multiple eigenvalues, only one representative

(at most) of the multiplicity will lie in to and the multiplicity will

not be discerned. Therefore in analyzing the algorithm one may always

assume that A has no multiple eigenvalues at all. This feature of

the Lanczos algorithm must be viewed as a serious drawback in the con

text of using the algorithm to find a few eigenvalues of a given

matrix A.

1.3 The Kaniel-Paige Theory

In 1966 S. Kaniel [Kaniel 1966] computed some bounds on the

accuracy of Ritz pairs obtained from Krylov subspaces. Since this

paper is difficult to read and contains some significant errors,

C. Paige reworked the results in his Ph.D. thesis [Paige 1971].

Unfortunately this material is not readily available so we present the

theory here, correcting aminor error in Paige and adding a mild improvement.

17
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The foundation of the theory lies in the characterization

K,-(q-|) = {<f>(A)q.j|<J> is a polynomial of degree <j} .

The point is that using Tchebychev polynomials it is possible to choose

a polynomial $ which greatly amplifies the q,-component of one eigen

vector while crushing down the components in all the other eigenvectors.

The remaining results account for the fact that the vector so con

structed is not exactly a Ritz vector. All the results presented bound

the accuracy of the algebraically smallest Ritz values. Similar results

for the largest Ritz values can be obtained by applying the given results

to -A. There is a numerical example at the end of the section to

illustrate the theorems.

As mentioned at the end of Section 2, we assume that A has no

eigenvectors perpendicular to q,. In particular A has no multiple

eigenvalues. Let A, < A2 < ••• < A be the eigenvalues of A and

let z,,z2,...,z be the corresponding (normalized) eigenvectors. Let

(yn-»8.), for i= l,2,...,j, be the Ritz pairs obtained from K.(q-j).

Then each Ritz vector can be expanded (uniquely) as

(1) yi =j/ki'k •
For each Ritz vector define

(2) e* =Qy.-Y^.z.O2 ,
_ r 2
" *• Yki 'Mi K1



Note that e.. is the norm of the component of y. orthogonal to z.

rather than lly^z^l. It is confusion of these two possible defini

tions of e. which leads to the errors in Kaniel's paper. The next
2

theorem gives a bound on the e..

Theorem 9. For i = l,2,...,j

e?1[9i-xi +J16k(VrV^xi+rxi) •

Proof. By equation (1) and Theorem 3 (in section 1),

ei =y^ ,
n 2

= I YkiXlk=l K1 '

and since I y..
k=l K1

fiy^r = l,

n

1 k=l K1 ^

Combining these results and rearranging yields

i-1

>(Xi+1-A.) I y*. •
11 1 k=i+l K1

n 2 2 i~l 2
From (2), I yc =e'- I Yj\

k=i+l K1 1 k=l k1

i-1

«U£VVj/ki<xi+rAk»/(*i+rV

so

Finally by (2), y^- <\ for kf i and the result follows. •

19



The vector in Kj(q-j), which we will obtain with an artfully
chosen polynomial <J>, will not be a Ritz vector. Therefore this

vector's Rayleigh quotient will not be exactly a Ritz value. We now

compute a bound on the error introduced by this discrepancy.

Theorem 10. Let ve KAq^) with v*v =1 and z*v =0

for k < i. Then

*< <6t <v*Av +j\2(Xn-6k) <v*A»+̂.2(Vxk) .

The first and last inequalities follow directly from the Cauchy

interlace theorem. To obtain the middle inequality we first prove the

following lemma.

Lemma. Let A be negative semidefinite and let v be as

in Theorem 10. Then

i-1 ?
8. <y*Av- I ere. .
1 k=l K K

Proof of Lemma. Resolve v as

i-1

v = v, + I v.y.
1 k=l K K

where v*yk =0 for k<i. By (2) and the Schwartz inequality,

±ek •
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By Theorem 3 the Ritz vectors are A-orthogonal so

v*Av =v'Av, ♦ J^ek
1'-1 2.<v1Av1/v1v1+k|ie'ek

since v*Av1 <0. Using the Courant-Fischer characterization of eigen
values of a symmetric matrix it can be shown that

8i min (x*Ax/x*x) .
1 xeW

x yk=0 for k<i

Since v1 is a candidate for x, the Lemma follows. Since the Lanczos

algorithm is translation-invariant (see Theorem 8), the Theorem follows

from the Lemma applied to A-A . D

We now use the polynomial characterization of K.(q,) to obtain
j •

a good vector v for use in Theorem 10. Let q, = > a.z. be the
i-l 1 1

spectral decomposition of q-j. Then <J>(A)q-, = I a.<J>(A.)z. for any

polynomial <f>. What is needed is a polynomial <j> such that

*(Ak) =0 for k< i,

(^(A^ is "large", and

<|>(Ak) is "small" for k>i.

Ideally <f> should vanish at all the eigenvalues of A except A.,

but this takes a polynomial of degree n-1 which means j = n and

all the "approximations" are exact. For real applications j will be

much smaller than n and a different approach is needed.
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Partition the set {1,2,...,n} into three sets I, T, and K. I

will consist of the number i alone, T will be the index set for

those eigenvalues of A at which <J> will be made to vanish, and K

will index the rest of the eigenvalues at which <f> will be made small

using a Tchebychev polynomial. By the hypothesis of Theorem 10 T must

include 1,2,...,i-1. It may be advantageous for T to be larger.

The larger the set T the lower the degree of the Tchebychev polyno

mial for K, but the interval containing the eigenvalues indexed by K

is also smaller. It is this trade off which determines the optimal

size of T. Both Kaniel and Paige observed that it may be advantageous

for T to include i+l,i+2,...,s, for some s but neither mentions

that it may also help to include n,n-l,...,t in T for some number

t. Let \T\ be the number of elements in T.

Theorem 11. Let I, T, and K be a partition of

{1,2,...,n> such that {1,2,...,1-1} ct and I = {i}.

Let m = j-1- |T|. Then

kHakn (Ak-A)]2(Ak.A.) .
A. <8. <A. +^< £1 + I e2(x _xj

l>iTm(1+2e> n <VX1» « "
1ST

where Tm is the m Tchebychev polynomial (of the first
n

kind), q-| = Io\zk is the spectral decomposition of q,,
Is"" I

and p= (^"^-ji/Un-O where ic and k are the largest

and smallest elements of K respectively.
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Proof. Let <J>(x) =fm(x) n (x-A.), where fm(x) is the mth

Tchebychev polynomial scaled and translated to the interval [Ak,Ar].

By the definition of m, deg 4 = j-1. If we let w = $(A)q, then

M2>[a.f (A.) n (A.-A.)]2
iGT

- [a,T (l+2p) n (A.-A.)]2i m j.GT l J

and for k e k

< I n (xk-A.)| .
jeT K J

Now let v = w/BwII, apply Theorem 10, and use these bounds to obtain

the result. •

To illustrate the bounds obtainable from these theorems we consider

the following example.

Example. Let the eigenvalues of A satisfy

A1 = 0

A2 = .01

A3 = .04

.1 <^<-9 for k=4,5,...,n-l

\ - 1-° •

Let q-jZ.. = .01 for i = 1,2,3. Assume the Lanczos algorithm is

interrupted at j = 53 and the three smallest Ritz values are computed.

To bound the accuracy of each of these Ritz values we choose,
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for i = 1,2,3,

K = {4,5,...,n-l} ,

I = {i} , and

T = {1,2,3,n} XI .

For all i we can bound the numerator appearing in Theorem 11 by

I [crk H (Ak-A.)]2(A.-A.) < I a2 <1.eK k 0.€T k j k i keK k-k€,

Also T (cosh x) = cosh(mx) > emx/2. Using these bounds, Theorem 11
m

assures that

81 - A] <[a1T4g(l+2p)#n Uj-V,)]"2 ,
<[.01T.Q(l+2(.125))(0-.01)(0-.04)(0-1.0)]'2 ,49'

-18
< 10

Then by Theorem 9,

e2 <10"18/.01 ,

- io-16 .

By Theorem 11,

r2 . -.n-16q\\ .cc^j * .ui * .uo * .»».

< .103xlO~1C

82-A2 <[.01xT4g(1.225)x.01 x.03x.99]"^ +10"16 ,
-15

By Theorem 9 again,

e2 <(.103xl0"15 +.04xl0'16)/.03 ,
< .345xio"14 .
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Finally,

.-2 ,-1483 -A3 < [.01T49(1.15) x.04 x.03 x.96]'^+.99 x.345 x10~14 ,

< .3xl0"12

and

2 ./. ,^-12

< .51 xio"

,-16 v-1563 < (.3xl0"lfc +.lxl0",o+.31xl0",o)/.06 ,
v-11

Summarizing:

-18e] -A] < 10
-1582- A2 < .103x10

-12e3" A3 1 .3x10

e2<10-16

e2 <.345xlo"14
e2 < .51X10"11

These bounds are slightly stronger than those obtained by Kaniel

and Paige on essentially the same example due to the assumed gap between

Xn , and A .
n-l n •

The results in this section are not often useful in practical

problems since the gaps in the spectrum are not usually known. However

these results are important from a theoretical standpoint. Consider

Theorem 11 which, in the simplest case of i = 1 and T = 0, states

0 < 8, - A1 < k=2 K K '

[a1Tj_1(l+2p)]

tan2i|;[An-A1]
1 tj-i<1+2p>

1
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where ip is the (acute) angle between z, and q, and

P= (X2-Av)/(An-A2).

The role of p shows clearly that the larger the relative separa

tion of A1 and A2, the faster the convergence to A,. On the other

hand if ty * tt/2, that is if q1 is almost orthogonal to z,, conver

gence to A1 wil be slow even if A-j is well separated. Is it

possible to choose q1 so that no Ritz value converges quickly? This

question is examined in the next section.

1.4 Slow Convergence

Let A and t > 0 be given. Define a Ritz pair (y.,8.) to be

converged if OAy^y^^l =^. <t. Is there astarting vector q,

such that no Ritz pair converges before j = n? For matrices with well

separated eigenvalues the answer is yes. Even for matrices with clus

tered eigenvalues there are starting vectors which delay convergence

for a long time. In this section we will derive formulas for these

perverse starting vectors.

Of course q^ and A determine everything in the Lanczos

algorithm. The main result of this section is the derivation of a

simple relationship between q1 and the Ritz values at the penultimate

step (the step before termination).
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Theorem 12. Let A] <a2<-- • < A be the eigenvalijes of A

and let Z = 1'^2'* ...zn) be the corresponding ilormal ized

eigenvectors . Let y •j sPn• *•' . ,u •. be any numbers such that

A1 < p1 <X2 < ••• <Vl <Xn •

If the Lanczos algori thm is run on (A,q,) for n--1 steps,

then u.j,u2, •*•'Vl are the eigenvalues of T , iff

q, = Zp, where

•?,-
2 n

ir[ n
nj=i

n-1 ,
[A.-A.) n (A.-u.)] !i 3 j=1 i 3

2
and the constant ir

n
can a"Iways be determined.

Note that the formula for p., can be rewritten as

pil ^n^n^i^n-l^i^"1

where xA%) is the characteristic polynomial of T.. In particular

Xn(£) is also the characteristic polynomial of A since T is

similar to A.

Results similar to Theorem 12 have been used by D. Boley and

G.H. Golub [Boley and Golub 1977] and C. de Boor and G.H. Golub [de Boor

and Golub ] in the context of inverse eigenvalue problems for

banded matrices.

To prove the theorem we first prove two lemmas.
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Definition. Let adj(R) be the transpose of the matrix of

co-factors of R. This is usually called the adjugate or classical

adjoint of R. By the Cauchy-Binet Theorem we have

R adj(R) = adj(R)R = det(R)I .

Lemma 1 (Thompson and McEnteggert). Let A = ZAZ* be the

spectral decomposition of A, where A=diag(A1,A2,...,A )
and Z=(zrz2,...,zn). Then for i=1,2 n

adj(A.-A) • n (A,-A.)z.z.
j=l 1 J 1 1

=*A(Xi)zizi •

where x^(€) is the derivative of the characteristic poly

nomial of A.

Note that if A., is a multiple eigenvalue of A then xAUO = 0,

so that the ambiguity in the choice of eigenvectors is unimportant.

Proof of Lemma 1. Let u f A. for all i so that (y-A)

exists and

adj(y-A) = [det(y-A)](y-A)"1

- xkMUv-A)-lr
(1) = ZAZ

where A=diag(6] ,«2,... ,6n) with

-1
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6k = xA(y)/(p-Ak)
n

* n (y-A.) .
j=l J
j^k

Since computing cofactors does not involve division, adj(R) is a

continuous function of R. Therefore by continuity, equation (1) must

hold even for y= A^ Setting y= A. yields

with

and the result follows.

adj(A.-A) = ZAZ*

6k = n (A.-A,)
K j=l 1 J

0 for k f i

Xj^) for k= i

D

Thompson and McEnteggert were working with general Hermitian

matrices. The application of their result to tridiagonal matrices was

made by Paige [Paige 1971].v

Notation. Let

r,t

a B
r pr

Br ar+l Br+1
pr+l

o

o

pt-i

6t-i °t -j

29
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polynomial of Tf>t, let Xt(0 =x1>t(0, and let ^^(O 5l
for all r.

(2)

Lemma 2(Paige). Let Tn =S0S* be the spectral decomposi

tion of Tn with 0 =diag(e1,82,...,8n) and

S= (s-|,s2,... ,sn). Then for r£t and all i

xn(6T)sristi 'Xl.r-AlVW'H-lXt+l.r/V .

Proof of Lemma 2. By Lemma 1,

adj(erTn)=X;(6i)s.s*.

The (r,t) element of the R.H.S. of (2) is x'(8_.)s .s... Because of
II I i I l# I

the tridiagonal form of Tn, the (r,t) element of the L.H.S. of (2)

is X1>r.1(8i)Br6r+1---Bt.1xt+1>ri(ei). For example

W

V°l -B-

-3i 8.-a«
Hl i 2

o

\'h\ ei"a3
-Bo

-B,

-6.
o

Va4 -h
"64 ei"°5 •h

-S5 6i-a6

The circled elements contribute to the (2,3) cofactor.. The minus

signs associated with the B's cancel with the alternating signs assigned

to the cofactors. •

This lemma gives many relationships among the elements of S. We

will need two of them for proving Theorem 12, namely for i - l,2,...,n,
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(3) silsnixn(8i) = Ble2*"3n-1 ~\ ' aconstant>

and

(4) »5i^ei)-vi<ei>-
Proof of Theorem 12. By the invariance properties given in

Theorem 8, if LJ(A,q,) =(Q.,T.) then Lj(Z*AZ,Z*qi) =(Z*Q.,T.).
' vl vl ' J J

Since Z*AZ =A and Z*q] =p., Lj(A,pJ =(P.J.), where P. =Z*Q..
' v) vl vl J

The Lanczos algorithm will terminate at the n step with

APn = PnTn •n n n

it

Thus Pn = S , the transpose of the matrix of eigenvectors of T .

Equation (3) can now be interpreted as relating the first Lanczos

vector p.j to the last Lanczos vector p . Equation (4) relates p

to the eigenvalues of T , and the eigenvalues of T . The eigen-
n-1 * n

values of Tn are just A,A2,...,An, since T, A, and A are all

similar. Combining equations (3) and (4) and changing to the P nota

tion yields

(5) p5iWvi<V-*S-
for any starting vector p,.

If p1 is given, then (5) gives the values of xn_iU-)» for
2

i= l,2,...,n in terms of the constant ir . Xn i(£) is a polynomial
2

of degree n-1. By choosing an arbitrary value for ir (say 1) the

roots of x« i(S) can be found by interpolation. The value of tt
n-1 n

can then be found from the fact that x i(£) is a monic polynomial.



If Ui»P2,... ,yn--| are specified then by choosing an arbitrary
2 A?value for 7rn (say 1), tentative values p^ can be calculated for

all i. Since Jp^ =Pp1fl2 =1, irj; =(Ip?-,)"1 and the tentative
values can be correctly normalized.

The choice in signs of the elements of p, merely reflect the

choice of signs for the eigenvectors of T . All choices yield the

same Tn and hence the same y's. •

For the original matrix A, the specified starting vector q,

depends on both the eigenvalues and eigenvectors of A. The expression

q1 = Zp1 clarifies their roles; Z is independent of A and p, is

independent of Z.

Example. Let A = diag(l,3,5,7,9) and let y. = 2i for

i = 1,2,3,4.

x'(l)xy(D =(l-3)(l-5)(l-7)(l-9)(l-2)(l-4)(l-6)(l-8) =40320
X'(3)xy(3) =(3-l)(3-5)(3-7)(3-9)(3-2)(3-4)(3-6)(3-8) = 1440

X'(5)xy(5) =(5-l)(5-3)(5-7)(5-9)(5-2)(5-4)(5-6)(5-8) = 576

X'(7)xy(7) =(7-l)(7-3)(7-5)(7-9)(7-2)(7-4)(7-6)(7-8) = 1440

x'OJXyO) =(9-l)(9-3)(9-5)(9-7)(9-2)(9-4)(9-6)(9-8) =40320

Pll =p51 =V*^^ = •004987r5
P21 = p41 ="^s/^440 = .02635tt5

p31 =^5/^76 = .04167tt5

By normalization, ir5 = 17.749 and

P1 =(.0880, .4677, .7396, .4677, .0880)* .
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The Lanczos algorithm run on (A,p,) yielded a T- with eigenvalues

2, 4, 6, and 8 correct to the precision of the machine used. •

Theorem 12 shows that an appropriate choice of the starting vector

can place the eigenvalues of T , anywhere between the A's. Let

y.j,y2,...,yn1 be fixed and let q, be chosen. What can be said

about convergence in this case? The following result gives a lower

bound on all the B.-^ for j < n.

Theorem 13. Let, the Lanczos algorithm on (A •q-j) yield

uru2, • • •»Vl as the eigenvalues of V •r
Then for all

j < n and all i <3

eoi ±V2'

where 6 = min Ipj-^I •

Proof. Let (y.,8.) be a Ritz pair with residual norm B--. By

Theorem 5 there must be a A such that

By Theorem 6 (with k= n-l) there must be a y such that

The smallest value .of B.-..- which can satisfy both inequalities is

"ji • V2- D
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Corollary. Let 6A = min I
A 1«

vergence tolerance) satisfi

VXj
es t

. If T

< 6A/4,

(the

then

given con-

there exists

a starting vector q. such that the Lanczos al gorithm run

on (A.q^ will have

B-. > T

for all j < r and ii < j.

Proof. Let y.. = (A.+A.+,)/2 for i = 1,2,...,n-1. By Theorem 12

there is a q, such that the y*s are the eigenvalues of T ,. Then

6 = 6./2 and the result follows from Theorem 13. D
y m

This result does not imply that no Ritz value will be accurate

enough. It only guarantees that the corresponding B^.- will not
vl *

reveal such accuracy. In the previous example of A = diag(l,3,5,7,9)

and y. = 2i, for i = 1,2,3,4, Q\ , the middle eigenvalue of T~

1s 5, correct to working accuracy. B32 = 1-25 which shows that this

fortuitous accuracy is due to the symmetry of the example, rather than

the accuracy of the Ritz vector.

If 6«/4 < x then the corollary does not apply, but it is still

possible to find perverse starting vectors which delay convergence for

a long time.
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Theorem 14. Let to be an A-invariant subspace of maximal

dimension such that 6*/4 > t, where A is A restricted

to to. Let m = dim to. Then there exists a starting vector

for A which delays convergence until j = m.

Proof. Apply the corollary to S to obtain a starting vector q

for A which delays convergence until j = m. By Theorem 8 the

algorithm run on (A,q,) and (A,q,) produces the same T. for all j
• vl

Hence this q, will delay convergence for A until j = m. D
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2. The Lanczos Algorithm in Finite Precision

Chapter 1 paints a very rosy picture of the Lanczos algorithm.

If these theoretical results were closely approximated in practice, the

Lanczos algorithm would be the preferred method of tridiagonalizing any

symmetric matrix. However as was known to Lanczos when he introduced

the algorithm the computed quantities can deviate greatly from their

theoretical counterparts.

At this point we make an important change in notation. From now

on Q. and T. will represent the quantities actually computed with
J 3

finite precision arithmetic. However the spectral decomposition

Tj = Sj0jSj» Wlth Qj diagonal and S. orthogonal, will be assumed

to hold exactly. High quality subroutines exist for accurately comput

ing 0. and S. and the small roundoff errors committed therein are

always dominated by the errors inherent in T.. Recall that the columns
vl

of S are normalized so that the bottom row of S is all positive.

The eigenvalues of T. will still be called Ritz values and the

columns of Y. = Q.S. will still be called Ritz vectors even when Q.
J J vl J

is not even close to orthonormal. In principal it is possible to

compute the true Ritz vectors from span(Q.) but this would be very
vl

expensive and nullify the advantages of the Lanczos algorithm. We will

never consider the true Ritz pairs so no confusion should arise.

2.1 Description and Example

th
In exact arithmetic the quantities computed at the j step of the

Lanczos algorithm satisfy the equations



(1) Qj Qj
TJ

° rJ

and

(2) 1-Q*Q. =0

Equation (1) can be written compactly as

(3) AVVj = rje3

where et = (0,0,...,0,1) has j elements. In finite precision
j

arithmetic neither (2) nor (3) will be satisfied exactly. Instead

they must be replaced by

(4)

and

(5)

AWj = rjVFj

^Pj^j

where F. and G. account for the rounding errors. Bounds on IIFJ
vl vl vl

and UG.ll depend on the specific implementation of the algorithm but
vl

the surprising fact is that while any reasonable implementation will

keep llF.il tiny (1IF.1I = ellAIl, where e is the relative machine
j j

precision), no implementation of the simple Lanczos algorithm (the

three term recurrence) yields a small a priori bound on tlG.O. This
vl

"loss of orthogonality" among the Lanczos vectors (columns of Q.) is
vl

the infamous instability of the algorithm.

W. Kahan has shown that the bound given in Theorem 2 of Chapter 1

for an orthonormal matrix Q. fails gracefully as Q. loses
J vl
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orthogonality. The number o,(Q.) = (A,[QtQ.])'/ , the smallest
I J • vl vl

singular value of Q., appears as a measure of the loss of ortho-
vl

gonality in Q..
vl

Theorem 1 (Kahan). Let Q be any n x j matrix, let H be

a j x j symmetric matrix with eigenvalues 8-| »62,.•.. ,6
j*

and

let R - AQ.i - A.H. Then there exists 1 , c ,... ,j' distinct

integers such that for all i

IVM <mm/o}(Q.) ,

where al(Q.) is the smallest singular value of V

The proof is in [Kahan 1967].

Unfortunately computational experience indicates that the graph

of a,(Q.) looks qualitatively like:

That is, a,(Q.) rapidly approaches 0 once it has moved away from 1
• j

We give an example of this phenomenon.
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Example 1.

n = 10

,-7e = .6xio" (relative machine precision)

A = diag(0,.01,.02,...,.08,1.0)

q = u/llull, where u = (1,1,...,!)*

Step j °i«V
1 1.00000

2 1.00000

3 1.00000

4 1.00000

5 .99997

6 .99852

7 .92250

8 .08190

9 .00104

10 .000001

Parlett and Kahan also give graphs of o-|(Q.) in [Kahan and Parlett

1976].

In theory B10 = 0 since 11 orthonormal 10-vectors cannot exist.

In Example 1 orthogonality has been lost completely by step 10 and

there is no compelling reason why B-iq should be tiny. Indeed for

Example 1 B10 = .01033 which is not small at all compared to HAH = 1.
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The Ritz values at step j = 10 are

i ej10>
1 .000002

2 .010116

3 .020998

4 .033318

5 .045409

6 .058857

7 .069857

8 .079996

9 1.000000

10 1.000000

and these values shed some light on what has happened. A spurious

multiplicity has appeared at 1.0 where A has only a simple eigen

value. The two Ritz vectors, yg and y,Q, are both good approxima

tions to the one eigenvector z,Q. Therefore y« and y,Q are essen

tially parallel and a,(Q,Q) must be tiny. D

This example will be examined more closely in the light of later

results.

2.2 A Misleading Example

Theorem 5 of Chapter 1 shows that the residual norm of a Ritz

vector y. can be computed without computing y.. Namely

BAy.-y.e.II = B--Ji Ji l ji

where B..« = B^s... Therefore it is possible to bound the accuracy of
vl ' vl vl '

8. without computing y. and if only eigenvalues are desired the
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Lnaczos vectors need not be saved at all.

In finite precision arithmetic we obtain the following analog of

Theorem 5.

Iheorem_2. Let AQ. -Q.T. -B^e. +F.. Let y. =Q.s.

with T.si = si8i and lls^ = 1. Then

IIAy.-y^.J! <B^ +OF^D <&.. +QF^ .

Proof. The second inequality follows from fls.O = 1. To obtain

the first inequality multiply the matrix equation on the right by s.

to find

AVi - Vjsi ejViejsi +Fjsi •

which simplifies to

Ay,- -y.8. = B.s..q.,, +F.s.Ji Ji l Mi jihj+1 j i

Since nqj+1 II =1 and Bji = B-s.., the result follows from taking

the norm of each side. D

Theorem 2 shows that &.. is a good estimate of the residual norm

of y. provided that B,^ > DM. For the simple Lanczos algorithm

RF..I1 is always tiny, like roundoff in A (see Appendix 1), so

Bj.j > flFJ will hold in almost all cases and ft.^ can be used as a

good estimate of the residual norm of y..

Unfortunately this need not lead to a good estimate of the accuracy

of 8.j. Since Q. is not orthonormal, y. = Q.s. need not have
j i j i
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length 1. The best obtainable bound for the accuracy of 8. in the

absence of further information is

(i) rain |e.-Xk| < 0Ay.-y.9.ll/ay.ll .

A lower bound for Oy.D is given by the following lemma in which the

smallest singular value of Q. again appears.
j

Lemma 1. Let y^ = Q.s.. with lis.8= 1. Then

where ov(Q.) =(A^Q^Q.])1/2, the smallest singular value
Of Q

Proof. Ily^2 =y*yi
- **r\*t= sTQ.Q.s.

i 3 3 i

l^QJQj] (QjQj is symmetric)

Since Q.Q. is nonnegative definite, the square root of both sides can
j j

be taken. •

Thus it would appear that it is necessary to either calculate

By^l or estimate a,(QtQ.) to obtain an error bound for 6.. This

suspicion is further strengthened by the following perverse example.

Example 2. Take as an instance of AQ2 = QoT2 +r2e2 +p2

[1][1 -1] = [1 -1]riooi iooo "j
[iooo iooi J
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where both F2 and r2 equal zero. Observe that T2 is similar to

0£ = diag(l,2001)

and since B2 = llr2ll = 0, both B21 and B22 are zero. Furthermore,

since F2 = 0 as well the residual norms of both y, and y« are

zero by Theorem 2. If A were hidden from us we might be led to

believe that 2001 was an eigenvalue of A. This paradox is resolved

by computing the Ritz vectors. We have

=<*/2)[_J j]S2 =

and

Y2 = Q2S2 =-[v? 0] .

Thus y2 =0 and llAy2-y282ll =0 even though 82 = 2001 is not an

eigenvalue of A. The vanishing of y2 is possible because the

columns of Q2 are linearly dependent and so a-j(Q2) = 0. D

Example 2 itself is not an example of the Lanczos algorithm since

a-j, the (1,1) element of T2, is 1001 whereas a, for the Lanczos

algorithm would be q-,Aq, = 1. In order to analyze the Lanczos algorithm

it is necessary to find a characterization of it which distinguishes the

true examples (like Example 1) from the spurious ones (like Example 2).

To do this we must investigate the specific manner in which orthogonality

is lost in the course of the algorithm.



2.3 Loss of Orthogonality

In his Ph.D. thesis, C. Paige derived a powerful characterization

of the manner in which orthogonality is lost in the course of the simple

Lanczos algorithm. This result is central to understanding the behavior

of the algorithm in the context of finite precision arithmetic. Since

it has never been published in the open literature its full derivation

will be given here.

It is the vector Q^^+i* which would be zero in exact arithmetic,
f"h

which displays how well orthogonality is preserved at the j step.

However the elements of this vector are difficult to analyze and little

insight can be gained from them. A change of basis is needed to clarify

the situation. It is the vector S?Q?q.+, =Ytq.+. which can be easily

described.

Theorem 3 (Pa-ige). At any step j of the simpl e Lanczos

algorithm and for any Ritz

|y*vi

vector yi = Q.s^

=e»A»Y../6ji

where B-.- = 3.S..
3 Ji

, e is the relative machine precision,

and y.. * 1.
vl '

Remarks. By Theorem 2, B.-.- is essentially the residual norm of
vl '

y. so Theorem 3 states that the smaller the residual norm of y. the

greater the loss of orthogonality of q.+, in the direction of y..

This can be stated as

loss of orthogonality <* convergence
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The proof of Theorem 3 is rather long so we break it into several

lemmas starting from the basic equation

(1)

(2)

AQ. = Q.T. +r.e* + F. .
yJ \J 3 3 3 3

Lemma 1. If (1) holds then

»* *

VjeJ " (1-QjQ3)Tj-Tj(1-9o) +F?J-Q?J +eJrJQ;

Proof of Lemma 1. Multiplication of (1) on the left by Q*. yields
vl

Q*AQ. = Q?Q.T. +Q?r.e* +Q?F. .

Since Q^AQ. is symmetric we may subtract (2) from the transpose of (2)
vl J

and rearrange to obtain

(3) Q*r.e* = (l-QtQ.)T. -T.(1-Q?Q.) +F*Q. -Q?F. +e.rtQ. . D
v ' J J J 3 3 3 3 3 3' 3H3 XJ J 3 3 3

Notation. Let V(R) be the upper triangular part of the matrix

R (including the diagonal). For any conformal R and S,

V(R+S) = V(R) + V(S) but V(RS) f V(R)V(S) in general. Let

1-QiQ.: =C^ +A.+ C. with A. diagonal and C. strictly upper
vl vl vl v) vl vl vl

triangular.

Lemma 2. If (1) holds then

qjVj"cjV•Vj +VEo »

where E.
V

- V(F*Q.-Q*Fj) and V v(ioTJ-Vj>
+*<C?j"Tj9+7(ejrjQj)-
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Proof of Lemma 2. Taking the upper triangular part of each side

of (3) we find

46

(4) 7(Q.rjej) ='((l-Q*Qj)Tj-Tj(l-Q*Q.))+7(FtQ.-Q*F.)+V(e.r*Q.) .

Substituting 1-Q*Q. = C* +A.+ C. and using the definition of e. we
J J J J J 3

find

(5) 7(Q.rje.) ='(CjTrTjC.) +V(Vj-T.Aj) +V(C*T.-T.C*) +Ej+V(e.r^.) .

**„ -*The matrix Q.r.e. is zero except for the last column which is Q*r..
J J J J J

Therefore V(Q*r.ep = Q^r.e* Furthermore C. is strictly upper
J vl J vl J J J

triangular and T. is tridiagonal. Hence V(C.T.-T.C) = C.T. -T.C.
3 333 333 33

and the result follows. •

Lemma 3. If y. = Q.si with T.s1 =s^ then

|y*qj+1l=el»AI.Y../Bji

with Yj1 =Is^Bj+E^s-l/ellAII and B^. =B..S...,

Proof of Lemma 3. Multiplying the assertion of Lemma 2 on the

left by s* and on the right by s. we obtain

(6) •Mr«iicJWi,Vi¥j,v
which simplifies to

(7> Vjsji =^cjsi)ei-ei(siVi)+si{VEj)si-
Since r. = qj+1Bj, (7) becomes



(8) B.s.-ytq.^, = stfB.+E.Js.
J jriHJ+l lv 3 3 i

and the result follows.

(9)

Lemma 4. B. (of Lemma 3) is a bidiagonal matrix with
vl

'n * Vi

bii =<*iri-qi-iri-i

bi-i,i =iWqVViVi*

Proof of Lemma 4. From Lemma 2

for i = 2,3,...,j .

Vv(VrW+7(cfrYP+v(VjV •

D

A. is diagonal so that A.T.-T.A. is tridiagonal with zero diagonal.
vl J J vl J

Hence V(A.T.-T.A.) is super diagonal,
vl J vl vl

C. is strictly lower triangular so that C^T.-TXt is lower
J vl vl vl vl

triangular and V(CtT.-T.Ct) is diagonal. Finally er?Q. is zero
J J J J Jo

except for the bottom row which is r^Q.. Thus V(e.r^Q.) is zero
J J vl vl vl

except for the (j,j) element which is r^q. = q^r..
vl vl vl vl

Therefore B. is bidiagonal and the formulas for its elements can
vl

be derived from the fact that r. = B.qi+1 for all i £ j. D

Logically it only remains to prove that QB.fl - ellAll and

OE.B = ellAll. We will not do this for two reasons. The bounds for IB.I
J vl

and IIE.O depend on the specific implementation of the algorithm which
vl

we have not yet discussed. Furthermore these bounds depend on several

characteristics of the matrix A which obscures the basic simplicity

of the result. Therefore the statement and proof of the final lemma
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are relegated to Appendix 1 which completes the proof of Theorem 3. •

Corollary. For al1 i < j

eji £ 6»A»V"yi

Proof. By Theorem 3 we have

*jiiy*Vii-'e,A,*ji

and so by the Schwartz inequality

eji^ixij+iii'iAiYji

Since llqi+1H - 1 the result follows. D

The Corollary indicates the importance of the y... No B-- can

be much smaller than eOAIly... Thus the smaller the values of the y..,
vl vl •

the smaller the B.... can be, and the better the accuracy which can be
j *

obtained in the Ritz values.

2.4 Implementation

The Corollary at the end of Section 3 provides a natural way to

discriminate between various implementations of the simple Lanczos

algorithm. The smaller the bounds on OE.O and OBJ the better the
j j

implementation.

All four versions of the algorithm which we consider keep QF.O
vl

and hence IIE.II tiny. Therefore we analyze these choices to determine
vl

which yields the smallest bounds for the elements of B..
vl
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Lanczos Algorithms. Start with Oq-J = 1 and u, = Aq,. For

j = 1,2,... repeat

(la) ex.. =qtAq.. or (lb) a.. =qjuj-

(2) rj =Uj-qjaj
(3) Bj =0^0
(4) if Bj =0 STOP else qj+1 =r^

(5a) rij =Qj+1Aqj ©I (5b) n^ =Bj
(6) u.+1 =Aq.+1 - q.nj

These same implementations were analyzed by C. Paige [Paige 1972],

The conclusion is the same but the approach used here is different from

that of Paige.

Recall Lemma 4 of Section 3 which gives formulas for the elements

of B., namely
vl

bll= qlrl
b.. = qjr, - Q* ,r. ,

11 qi ! Vl 1'1 for 2<i<j .
bi-l,i =VlKV^-lVl5

We now give an informal analysis of the choices between (la)-(lb) and

(5a)-(5b) in the light of these formulas.

Remark 1. (lb) is slightly better than (la).

If (la) is used, a. is chosen to force q?(Aq.-q.a.) = 0 and

thus

--qjqj-l6M
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*-^-iVj-i

Thus the size of |q*[r.| depends on q*ir. , and may grow (slowly)
v! vl vl ' vl "* '

as j increases.

If (lb) is used a. is chosen to force qtr. - 0 and there is no
v) J vl

dependence on earlier steps.

Thus the diagonal elements of B. are kept smaller by (lb) than
vl

(la) while both (la) and (lb) keep the off diagonal elements tiny. D

The more interesting choice is between (5a) and (5b). Historically

(5a) was recommended (cf. [Wilkinson 1965], p. 395) despite the extra

computation involved. This was unfortunate since

Remark 2. (5b) is better than (5a).

Recall that (5a) explicitly computes n. =q^Aq. as the coeffi-
vl vl J

cient of q. in the formula for u-+,, namely

Vi= AVi" qjnJ •

while (5b) merely sets n- = B^ = flrJ. If (5a) is used the resulting
J vl vl

tridiagonal matrix has n's on the subdiagonal and B's on the super

diagonal. Thus it is not symmetric and we denote it Tt.
• j

Since T^ is asymmetric the analysis of Section 3 does not apply

directly to

(7) AQ.-Q.r = r.et+F, .
XJ J 3 3 3 3
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If any of the n's are negative then T'. will have complex eigenvalues
vl

which is clearly wrong. If all the n's are positive we need the follow

ing standard result to finish the justification of Remark 2.

Lemma. If all the n's in T^ are positive then there
vl

exists a diagonal matrix S. = diag(£,,£2,...,E.) such
vl ' ^ J

that £• = 1 and H* T'5 is symmetric.
vl

Proof of Lemma 3. Let £. = 1 and for i = j-1 ,j-2,...,l, let
vl

«i"WW1/2- Then EjlTra =Tj w1th

and £. =

al Cl 1
^1 a2 h.

T. =
3 ?2. •

' CM a0 J

/B1ni, foir i < j-1. D

We note that the greater the asymmetry of T^, the greater the

ratio between successive £*s.

Now let H. be the diagonal matrix that symmetrizes J\. Then
j j

the quantities computed using (5a) satisfy

(8) =-lT.= *„
A(Q.H.) = (Q.S.)(~. T'.E.J + r.eTE. + F.H.
V\J 3* V\) JM 3 3 j' 3 3 3 3 3

= (Q.S.)T. +r.et +F.E.
^Jj' J 3 3 3 3

since E. = 1. Now the lemmas of Section 3 can be applied to equation
vl

(8) but the result is not encouraging. The lengths of the columns of

(Q.E..) are not 1 but are £, ,£p>- ••>£,- instead.
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Therefore the off diagonal elements of B. are of the form
vl

(9) b..^. =Vl^-S?.!) •

Hence the greater the asymmetry in T'., the greater the variation in
j

the C's, the larger the elements of B., and the larger the y.. will
vl vl

be.

On the other hand (5b) always maintains symmetry of T and always

normalizes the q. to have length 1. Hence the off diagonal elements

of B. are always tiny when (5b) is used and (5b) is better than
j

(5a). D

In the rest of the thesis we will consider only the most stable

version of the Lanczos algorithm which uses (lb) and (5b).

2.5 Distinguishing the Lanczos Algorithm

To analyze the Lanczos algorithm in the context of finite precision

arithmetic it is necessary to have a tractable definition of what

constitutes an instance of the algorithm.

Definition. The matrix equation

(1) AVQjVejViej +Fj

is an instance of the Lanczos algorithm if OF.fl - eHAH and y.^ = 1

for k<3 and all i<k, where y^ =Bk1 |y*qk+1 |/eOAII.

We note that this definition is justified, for the most stable

implementation of the Lanczos algorithm, by Theorem 3 and the analysis

given in Appendix 1.
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Recall the following perverse Example.

Example 3.

[1] [1 -1] - [1 l]p001 1000"!
J 000 1001J

Since &2 " °» both B21 and &22 are zero and nence Yz\ and >22
are zero. On the other hand $1 =1000, s^ = 1, y1 =q^, and

DAll =1. Hence y*q£ =-1, 6^ =1000 and Yn - S^ |y*q2|/eIlAQ =
= 1000/e. Thus Example 3 is not an instance of the Lanczos algorithm. •

To show the power of this definition we prove a theorem which

gives a bound for |y?yk|, tne inner product for two different Ritz
vectors at step j.

Theorem 4 (P<aige). Let yi and yk be two Ritz vectors at

the jth step of the Lanczos algorithm Then

|erek||.y*yk\ <[YjitBj,/eji)+^*l (3../B. k>-uik]eBAH
>

where v.. = I'Wj-W5.|/eIIAIl = 1.

Proof. Recall that yi =Q.s.. and T.s.. =s^e^. Multiply the

basic equation (1) on the left by y* and on the right by sk to

obtain

(2)
*«*.yjAQjVWjSk =yiejqj.+1eTsk +s.QjFjSk ,

which simplifies to

53



(3) *«*.

^k-Vk9k =ejsjkyiVi+siQjFask

On the other hand if (1) is multiplied on the left by y£ and on the
right by s. the result is

(4) ~ y?Ay, -yfy.G. = B.s..y?q.^, +s?QtF.s. .

Subtract (4) from (3) to discover

(5) (ei-ek)(yjy|{) =Sjsjky*qj+1 -6.s..y*qj+1 +s*Q*FjS|c- s*QtF.s. .

Taking the absolute value of each side of (5) and observing that

skQ?jsi • ^Vk we obta1n

(6) |erek||yXl i 6jk|y*qj+1|+6^^*^! +|st(Q*F.-F*Q.)sk| .

By Theorem 3, |y*q.j+1l =Y^ellAll/B^., for all i. By definition of
an instance of the Lanczos algorithm OF. II - ell All so v-k - 1 and

the result follows. D

Theorem 4 shows how the loss of orthogonality in the matrix Q.

is manifested in the matrix Y. = Q,-S-. If two Ritz vectors have equal
j j j

B-. then they will be orthogonal unless their Ritz values are almost
si '

equal. If two Ritz vectors have very different values of B^ (that

is, one is well converged and the other is not) then they will never

be orthogonal.

2.6 Behavior of the Lanczos Algorithm

With Theorem 3 and Theorem 4 in hand it is possible to give a

detailed description of what occurs during a Lanczos run. To illus

trate the various stages of the process we will intersperse the verbal
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description with selected output from Example 1, which was first dis

cussed in Section 1.

Example 1.

n

6

A

= 10

,-7
.6x10

diag(0,.01,.02,...,.08,1.0)

u/llull , u = (1,1,...,!)*

Note the large gap between .08 and 1.0. Thus by the results in

Section 3 of Chapter 1 we would expect the Ritz value with the smallest

B-. at any step j to approximate 1.0.
j *

The algorithm was arbitrarily terminated at j = 11. The elements

of T
11

are

j alpha beta

1 .1360 .2890

2 .8964 .0810

3 .0465 .0227

. 4 .0401 .0215

5 .0401 .0203

6 .0401 .0190

7 .0614 .1423

8 .9653 .1114

9 .0532 .0143

10 .0404 .0103

11 .0405 .0032

As noted before B10» which would be zero in exact arithmetic, is not

tiny at all. This behavior is quite common. Rarely, if ever, are tiny

off diagonal elements encountered in large problems even for j > n.

This phenomenon will be explained later.
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In the early steps of the algorithm (j < 3 for the example) no

B^- is small and orthogonality among the columns of both Q. and Y.

is well maintained.

j=3 (e=.6xlo"7)

i Ritz value
6ii

*

^4 Yii =Bii ^q4l/(6llAiI)
1

2

3

.01366

.06527

1.00000

.158X10"1

.163X10"1

.183 xlO'2

7358xl0"7>
.116xl0*6
^.140xl0"5>

.0094

.0313

.0425

'-f&l
.48 xlO"6 .29 xlO"7 .88X10"7"

.29xl0"7 .24 xlO"6 .48xl0"8

.88xl0"7 .48 xlO"8 .24xl0"6

After a while (j = 6) some Ritz value begins to converge. The

smaller the corresponding $.. the greater the loss of orthogonality.

Since Q. is no longer orthonormal, neither is Y. (= Q.S.). This

loss of orthogonality does not affect the converging Ritz vector y.

Instead each of the other Ritz vectors is contaminated by a spurious

component in the direction of y. The qreater the convergence the

greater the contamination. Note that the B-. of the unconverged
j •

Ritz vectors are larger at j = 7 than j = 6 because of the greater

contamination.
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.12x10

.74x10

.23x10

.16x10

.49x10

-6

-7

-6

-6

-7

3 = 6

i Ritz value
*

YJi
1

2

3

4

5

6

.744 xlO"3

.0170

.0371

.0625

.0719

1.00000

.405 xlO"2

.959 xlO"2

.118X10"1

.976 xlO"2

.421 xlO"2

.164 xlO"7

.308 xlO"6

.157 xlO"6

.672 xlO"7

.173xl0"6

.800 xlO"7

.149x

.027

.025

.013

.028

.006

.041

.74x10

.95x10

.12x10

.62x10

-7

-6

-6

-7

-7
.11 xlO

n-^ei

.23x10

.12x10

0.

.12x10

.91 xlO

-6

-6

-6

-7

-6
.16x10

.62x10

.12x10

.72x10

-7

-6

-6

-6
.29x10

-7

-7

-7

-6

.49x10

.11x10

.91x10

.29x10

.24x10
-6

-2

-2

.60x10

.15x10

.18x10

.16x10
-2

-3

J
.68x10

C60xlQ"3 .15xlQ"2 .18xlQ"2 ,16xlQ"2 .68x1Q"3) .12xl0"6
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j = 7

i Ritz value
».« **% Yii

1 .417 xio"3 f.iUxio-'H .121 xlO"7 .002

2 .0148 .329 xlO"1 .335 xio"7 .018

3 .0348 .529 xlO"1 .410 xlO"7 .036

4 .0564 .704 xlO"1 .894 xlO"7 .104

5 .0733 .902 xlO"1 .224 xlO"7 .034

6 .0811 .561 xlO"1 .521 xlO"7 .049

7 1.0000000 L.516xlO"8J .982 .085

I1-Y7Y7I

.12xlO"6 .17xl0"6 .25xl0"6 .17xl0"6 .31xl0"6 .llxio"6

.17xl0"6 .12xlO"5 .24xl0"6 .31xl0"6 .68xl0"8 .48xl0"7

.25xlO"6 .24xl0"6 .48xl0"6 .67xl0'6 .23xl0"6 .46xl0"7

.17xlO"6 .31xl0"6 .67xl0"7 .24xl0"6 ,34xl0"6 .76xl0"7

.31xlO"6 .68xl0"8 .23xl0"6 .34xl0"6 .18xl0"6 .70xl0"7

.llxlQ"6 .48xlQ"7 .46xlQ"7 ,76xlQ"7 .7QxlQ"7 ,18xlQ"6 ^
CllxlQ"1 .33X1Q"1 .54X1Q"1 .73X1Q"1 .96X1Q"1 .6QxlQ"1).24x1Q"6

.11x10"

.33x10"

.54x10"

.73x10"

.96x10"

.60x10"

Suddenly at some step (j =8) the contamination of the unconverged

Ritz vectors decreases and is transformed into a second copy of y.

When it first appears the second copy is much less accurate than the

first. Note the improvement in the unconverged Ritz vectors with the

lessening of the contamination.
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j = 8

i Ritz value »ii
*

Y,ii
1

2

3

4

5

6

.188 10"3

.0128

.0299

.0493

.0669

.0797

.987

1.000000

.223x10"^

.662 xlO"2

.954 xlO"2

.967 xlO"2

.692 xlO"2

.224 xlO"2

.576 xlO'6

.455 xlO"6

.291 xlO"6

.151 xlO"6

.245 xlO"6

.263 xlO"6

.536 xlO"6

.116

.021

.050

.046

.024

.028

.011

7

8

r.no

L.159X10"8,
.985

.003

The bottom row of 1-YgYg is

26xl0"3 .77xl0"3 .llxlO"2 .12xl0"2 .86xl0"3 .31xl0"3 .99 .24xl0"6

which shows that y7 and yg are almost identical.

On succeeding steps the poorer copy gets better while the more

accurate Ritz vector gets worse. That is, the appearance of the second

coyp perturbs the first copy away from z, the eigenvector of A,

until both are equally accurate (B-r.-'s approximately equal). This
j '

usually occurs at about B^ = ^ellAB.

Then both Ritz vectors will improve and spurious components of z

in the other Ritz vectors will grow again until a third copy makes its

appearance. Thus the algorithm grinds out more and more copies of z.

The other Ritz pairs will continue to improve despite the appearance

of repeated copies of z_.

Most computational examples will be more complicated than the one

given here. This example was chosen so that only one Ritz vector
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converged quickly. In general, at any one step, there will be Ritz

vectors at all different levels of accuracy. However the same basic

cycle can be discerned for each individual eigenvector.

The cycle time for a particular eigenvector, that is, the number

of steps between the appearance of one copy and the next, seems to be

fairly constant. Of course the cycle times are different for different

eigenvectors and depend on the locations of the corresponding eigen

values in the spectrum of A. Predicting the average cycle times from

the spectrum of A alone appears to be quite difficult.

The concept of cycles and cycle times does explain why tiny off

diagonal elements are rarely ever encountered in the Lanczos algorithm

even for j > n. A tiny B can occur only if a very large fraction of

the cycles condense on the same step. Since this is statistically

unlikely, small B's are rarely seen.

2.7 The Lengths of Ritz Vectors

In exact arithmetic, Q. is orthonormal and so Y. = Q.S. is
w J J J

also orthonormal and all the Ritz vectors have length 1. However once

Q. has lost orthogonality the Ritz vectors need not have length 1.

In Lemma 1 of Section 2 we established a lower bound for the lengths

of Ritz vectors. Namely

0) lly^l l^CQ.,.)

where a,(Q.) =(A,[(£().]J1/2 is the smallest singular value of Q..
1 j * j j j

In Example 2 we found that this maximal shrinkage of Ritz vectors

can occur:
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(2) [1][1 -1] « [1 -1] "1001 1000"

1000 1001

Q2 = [1 -1L >|(Q2) =°> and ^ =°* As shown in Section 5>
Example 2 is not an instance of the Lanczos algorithm (y-i-i = 1000/e).

Can this same maximal shrinkage occur in a Lanczos example? The answer

is yes. Consider

Example 3.

[1][1 -1] = D -1] "1 e"

e 1

+ [e][0 1] + [e 0]

Here r« = [e] and F« = [e 0]. It can be verified that IIFJ = e,

Yll = ^* Y21 = ^* anc* Y22 = ^' Therefore since BAD = 1,

Example 3 is an instance of the Lanczos algorithm. T2 = S?®2^2 Wlt^

02 = diag(l-e,l+e)

Li:]
S2 =(^/2)T 1 T

and so Y2 =Q2S2 = [v£ 0] . D

There is a great difference between Example 2 and Example 3. In

Example 2 the zero Ritz vector y2 is associated with the spurious

Ritz value 2001 and is completely misleading. In Example 3 y2 is

associated with 1+e which is^ an eigenvalue of A correct to working

accuracy. Furthermore there is another Ritz value close to the same

eigenvalue of A whose Ritz vector has length at last 1, namely

8, =1-e and y1 = [i/2].
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Both of these facts are characteristic of the Lanczos algorithm.

In the next two sections we will establish bounds which show that

2 7ily^ll = 1 holds for an isolated Ritz vector and that Jlly.H = m for

the Ritz vectors associated with a cluster of m Ritz values.

We first give an intuitive explanation of why it is impossible to

establish a robust lower bound for the length of a single Ritz vector

whose Ritz value is not well separated from the rest of the Ritz values.

Consider the simplest case of two copies of a single eigenpair of

A where there will exist two orthogonal eigenvectors of T., call
j

them s-j and s2, such that y1 = Q.s-j and y2 = Q.s2 have length

1 and are equal to working accuracy. The corresponding Ritz values are

also equal to working accuracy and eigenvectors of very close eigen

values are not well determined. All that can be computed in practice

are two orthonormal vectors s' and si which span the same space as

s, and s2.

Thus there exists a 2x2 orthogonal matrix P such that S = S'P,

where S' =(s],sp and S=(s.,,s2). If yj =Qsj and y£ =Q.s£
then « 9

lly]ir+lly£ir =trace(S^C^S1)
= trace(P*S'*QtQ.S'P)

j j

= trace(S*QtQ.S)

=ily1!l2 +ny2il2
* 2 ,

but since Q. has lost linear independence we need not have DyAH = 1

If s£ = (s^Sg)/*^ then
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since y.
V

*2 =^2
- (QjSrQjSg)/^
=(yry2)/itf
= o

This is exactly what happens in Example 3,

2.8 Bounding the Length of an Isolated Ritz Vector

Let (y.,9.) be the 1 Ritz vector at the j step of the Lanczos

n h2
algorithm. We wish to bound the departure of ByJ from the expected

value of 1. The obtainable bound depends on y. = min |8.-0. |/l!AB,
1 Mi 1 K

the relative separation of 8. from the rest of the eigenvalues of T..
* j

2
The following result shows that if u. is not too small then UyJ

cannot be too small either.

•f*h

Theorem 5 (Paige). Let (y.,0.) be the i Ritz pair at

th *
the j step of the Lanczos algorithm. Let 1-Q.Q. =

j j

= C%A.+ C, where A. is diagonal and C. is strictly
j j j j j

upper triangular. Let u_- = min |8.-0. |/HAB. Then
1 kjM 1 K

H-iiy^i I< BAjii +c1

where c« = j(j-l)Ye/y- and y is a number such that

Yt < y for all t < j and r < t.

Remarks. Since each Lanczos vector is normalized BA.fl will
j

always be tiny and by Theorem 3 y will not be large. Therefore

Theorem 5 shows that an isolated Ritz vector (a Ritz vector whose Ritz
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value is isolated) will never be small. For instance if

then

and

Furthermore

V1 > 10j(j-l)ye

ll-Oy.ll2! <llAjll +0.1
= 0.1

By^ > .9 .

|i-tty/l - P-yfol
-n-sjQjQ^I
- |s*(l-QtQ.)s.|

=|s*(C*+VC.)s.|
lIs^A.s.l^ls^C.s.l
<DAjB+2|s*C.s.|

and so it remains to show that 2|s*C.s.| < £.. The proof of this

inequality is rather long so we break it into a series of lemmas.

The first lemma gives a formula for evaluating the "inner product"

of eigenvectors of T. and Tt for t<j at the tth step.

Lemma 1. Let (sjJ',ejJ') be an eigenpair of T. and let
(sj, ',9* ') be an eigenpair of Tt for t<j. Associated
with is the j-vector s, Then for all r < t

i8i 9r 'si sr 6tstr st+l,i
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(1)

Proof of Lemma 1. As in the proof of Theorem 6 of Chapter 1

T.s1 -s'8(t) =
j r r r 6s(t)

3tstr

Multiply (1) on the right by sjJ' to obtain

(2)
(j)s(j)%,.s(j)%,e(t) =$ (t)H) m
j i r i r r t tr t+1,i

D

Lemma 2. If 8:J' = el ' for some m < t in Lemma 1 then
l m —

st+l i=° and' for r = 1»•••»*»

(S(j)Y)2= °vsi V t ,,
(j)'

, if r f m ,

I sit' , if r = m .
k=l K1

Proof of Lemma 2. For r = m in Lemma 1,

ft <(tU3)
pt tm 5t+l,i • (0ij)-eit))sij)*s: .i mi m

= 0 .

In the Lanczos algorithm T. and T. are unreduced (no B

vanishes) and so Bt t 0. si , the bottom element of an eigenvector
of T., cannot be zero either so we must have s\$l .= 0.

Thus by Lemma 1, for al1 r < t

(3) (e^-ei^sp^s' =o.
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For rf m, 6* '?« e**' =ejJ' since Tt> an unreduced tridiagonal
matrix has distinct eigenvalues, and so by (3) for r f m

(4) 5(j)*s. . o

Let si be the t-vector of the first t elements of s.. Thus

prime shortens vectors of length j and lengthens vectors of length t.

Then for all r < t

(5) *e • - «.*s"s! = sTs' ,
r i i r '

and since S., the matrix of eigenvectors of T. is orthogonal

Is^D2 =8S*s!fl2

- Msjsi)2
r=l r 1

=X^/ by (5)

by (4) .

.•2 _ (j)2Since Bsir - J sHK the result follows.
1 k=l K1

D

Lemma 3. Let 1-(tfTQ. = q +A.+C. as in Theorem 5. Then

Cj =(0,S'v1>S^2,...,Sl.1v..1) ,

Skwhere S£ =( Q* ) is a j xk matrix, vk =eDAfl(Ykl/8kl,
*

Yk2^k2»*#* *Ykk^kk^ 1S a k~vector> and Ykl- is defined
in Theorem 3.
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Proof of Lemma 3. By definition C. is the upper triangular
j

part of QtQ. and hence the (i+l)st column of C. is

by Theorem 3,

l n*

%1 1
0

[S1W1+1I

0
k J

fSY*a 1
Viqi+1

-siYh+l
= sivi

•

Lemma 4. The following equality holds:

s*c.s. =jiVj>2..»w
where .

0

Bit} ' t•(• l YtriAi/(eJJ)-eJt)) ,\ r=1 tr i r

if ei^-eW
m i

for some m

otherwise

Proof of Lemma 4. By Lemma 3

(6)

where s

s*C.s. =s*(0,S'v1,S^2 Sj.lvj.l)s1

^ (i) r i * (tV%•J^til.l rySiSr >vrt

"%StH,i X{*rt))emytr/hr
th(t)1 «

is the r column of Si.
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if ep) =e^ for
i m

* (t)
some m then by Lemma 2 s.s*. ' is always

bounded and s[+l .=0. Hence u\y can be set to zero.
If ei°) f Q^ for all m<t then by Lemma 1

l m —

(7) * (t)' _ g s(t)_(j) /(A5) At).
sisr " etstr st+l,i/(ei "6r > '

- ft <:(j) /(fid) A^h' 3trst+l,iA9i "8r } '

Substituting (7) into (6) we find

*c.Si <.iai^,"^ j/B^y^^-e^))^/^)
o

(j)2To make use of Lemma 3 we need an expression for sl+1 .

involving the eigenvalues of T.. Such a formula was given in Section 4

of Chapter 1 in terms of the following definition.

Let Xv. A%) be the characteristic polynomial of T t, where
r, t r, l

r,t

~0l
r 6r

6r °V+1 Br+1
Br+1

•

•

•

•

•

*

*

•

Bt-l'
Bt-1
at

Lemma 2 in Section 1.4 states

2
(8) «(j) =- (a(5) (j) (j)siil,i=x1)t(e^')xt+2jj(8^0/x,,j(eH').

St
Observe that if the (t+1) row and column of T. are deleted the

j

remaining matrix is a direct sum of two smaller matrices namely T, .

and T^.o .. For instance if j = 4 and t = 2 we have

68



1.4

fa1 B1l
1

1

l6l a2)
-6r

B'l
•d?~Zy
B1©_

We label the union of the eigenvalues of T, t and T^+g • as

Equation (8) can now be rewritten as

,n2 i-1 «\ J"1(9) ,{}£ =VKejJ^VteWLet^jrt^eW^J/tejJUgj)]

Note that by the Cauchy Interlace Theorem each factor in the R.H.S. of

(9) lies between 0 and 1.

&' ' is an eigenvalue of T, . and so there is a subscript, call

it m such that A^ =By'.
m r

Lemma 5. The following equality holds:

where

and

3-J 5 ft)ifAi) A3)^i-^^tr'^^te^^')

Tt <*> -Vcte^-vt^j/te^-e"))]
Mm

•dn1E(e<J)-v<t>)/(e1P>-e^>)]
k^m

m' =

m , if m < i ,

m+1 , if m _> i .
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We note that the exclusion k f m can only be relevant for one of

of m is unknown neither can be omitted

the two products in the expression for tt '. However since the value

Proof of Lemma 5. Substitute (9) into Lemma 4 and recall that

vit} =e(t). D
m r LJ

To complete the proof of Theorem 5 from Lemma 5 we observe that

01\ <1 by the Cauchy Interlace Theorem, yt IAI/(e(^-8^) <
lY/y^ by hypothesis, and that there are exactly j(j-l)/2 terms in

the double summation. •

Remarks. The bound established in Theorem 5 is unrealistic for two

ft}
reasons. In most examples it* ' will be much smaller than 1. Also

most of the eigenvalues of T. will be much farther away from 8.
j l

than the minimum separation u.. In practice the dependence on j of

the variation in lengths of the computed Ritz vectors is much less than

quadratic. Indeed in most practical examples the lengths of the Ritz

vectors seems to be almost independent of j.

2.9 Clustered Ritz Vectors

We now extend the bound established in Theorem 5 to clusters of

Ritz vectors.

Theorem 6(Paige). Let yp»yp+1....,yp+n be acluster of

Ritz vectors at the j step of the Lanczos algorithm. Let

u=min(6p -e^],e^+1-8^)/l|AB, the relative separation
of the cluster. Let A. be the diagonal of 1-Q*Q.. Then

j J J
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p+h
h+1- Iy?yJ < (h+l)(BAJ+c)

i=D 1 1 " °

where c = j(j-l)ye/u and y+r < y for all t < j and

r < t.

tr

Remarks. As in Theorem 5, HA.B and ye are always tiny.
vl

Theorem 6 shows that a cluster of Ritz vectors, which is well separated

from the rest of the Ritz vectors, will always contain at least one

Ritz vector which is not small. Note that the clustered Ritz values

may be arbitrarily close. Theorem 6 depends only on the separation of

the cluster from the rest of the spectrum of T..

Proof. Since y. = Q.s. for all i,

P+h „ P+h" .
(1) |h +l- IrfyJ- lh +1- I sTQiQisi'

i=p i=p J J
p+h

•i'fps*(c^+cj)sii
p+h

< (h+l)BAJ + 2| I stc.s.| .
~ J i=p 1 J 1

P+h .
It remains to show that 2| I s.C.s.| < (h+l)c. We establish this

i=p nJ n
inequality with a sequence of lemmas.

Definition. As before let the union of the eigenvalues of T1 t

and Tt+2 ,• be denoted

v|t)_<v(t)<...<v(t).

and as before, by the Cauchy Interlace Theorem,
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Lemma 1. For all 0 < t < j-1

»iljl<^(t,<«!J)<- i^jfe^ .

For any r< t, Qy' is an eigenvalue of T1 t- Hence there

exists a subscript m such that v'*' = 8^'.

Lemma 2. The following equality holds:

where

03
tr

P+h * j-1 t

T(,i1(e«)-v<*))/ J(e«>-e«)))
i=p k=l n K k=l 1 k

Mm k*1

Proof of Lemma 2. By Lemma 5 of Section 7,

P+h .. P+h j-1 t c j-1 /.x ,.* j • #-\ /-\ -»
I scs =eBAB I I I y n (e JWt})/ n (eJJ'-e"')

i=p n J 1 i=p t=l r=lI trk=l 1 K k=1 n k J
k^m k^i

The result follows from exchanging the order of the summations. •

Using equation (1) and Lemma 2, Theorem 6 will be proved if we can

establish that |wtr| < (h+l)/(y||A[|). Therefore from now on we consider

t and r fixed, we drop the superscripts (j) and (t), and we

define m1 as a function of i by

m' =
m , if m < i

m+1 , if m > i .
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Lemma 3. If m < p or m >_ p+h then

Krl - (h+l)/MAll) .

Proof of Lemma 3. By Lemma 2

where

P+h j-1 j
KJ < I n (e.-v.)/ n (e-e.)
tr i=p k=l 1 K k=l 1 K

Mm Mi
p+h

.L„ l ' i m '
l-p

*1

j-1 J
n (e.-v.)/ n (e.-e.)
k=i 1 K k=i n K
Mm k^i ,m'

By Lemma 1, the ratio of successive factors in the numerator and the

denominator lie between 0 and 1 and so 0 < tt: <_ 1. By hypothesis

on m we have m' < p or m' > p+h and so l94"em«l >. yOAH and the

result follows. D

The case of p < m < p+h requires a longer chain of reasoning

Let p(£) be a rational function with

p(S) =Pn ((£-vk)/(s-e.)) n (U-v. ,)/U-ek)) ,
k=l k k k=p+h+l K ' K

and let p. = p(8.). Note that by Lemma 1

0 <. P- 1 1 f°r P ± i £ P+h •
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Lemma 4. If p < m < p+h-1 then

p+h

i^m

Proof of Lemma 4. By definition of p, the restriction on m,

and Lemma 2,

(2)

where

(3)

p+h

tr .L Hi i
i=p

p+h-1 p+h
o, - n (e.-v.)/ n (e.-e.) .
1 k=p n K k=p 1 K

Mm Mi

By the restriction on m, i = m for some i and we consider a in
m

more detail. If we expand the formula for a in partial fractions it
m

p+h

m .f; l m l

lVm

can be shown that

(4)

where
p+h-1 p+h

t. = n (e.-v.)/ n (e.-e.)
1 k=p n K k=p 1 K

Mm Mi ,m

On the other hand from (3), for i f m,

°i • V<efe.> •

Hence using (4), equation (3) can be rewritten as
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and so

p+h
a). = T t.(p -p.)/(e -e.)
tr a « i m wi v m i'

i=p

i7m

p+h

lvliJplTill<V0i>/<Vei>

Finally by Lemma 1 |t^| <1 for each i and the result follows. D

Lemma 5. If p < m < p+h then

KJ 1 (h+D/(uHAi!)
'tr

(5)

Proof of Lemma 5. By definition of p,

p(5) - {^•••{-r^-Hr Qp+h }...{-,j£L}
•5-e "c~ep-i 5"Vh+i ^3

By Lemma 1, if v, <£<v+h then each factor of p(£) lies

between 0 and 1 and in particular 0 < p(£) £l. Furthermore p

is differentiable in this interval and so by the mean value theorem,

for i / m

(p -p.)/(e -e.) = p'(C-)\Km h.,// \«m «1; H vs.,/

for some £. between 6m and e..
l mi

The derivative of p satisfies,

where

p'tt) = P(0(d/«)(ln(p(0))

=ptOCnj-Tig]
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and

ni =*l [(^rMs-a.)-1]I k=1 K K

n2 = I C(vk^-O^-te^)-1] .
c k=p+h+l K ' K

If we rearrange the formula for n-i as

n ?

we find by Lemma 1, for v - < S <v +. ,

0<n-, <(C-Vp.-,)'1 .

Similarly
V

-10<n2 i(vp+h-c)

and so, since p(£) > 0,

»

-1 /.. r\A|p'(5)| <Pt-OimxK^Vp^r^v^-?)"'] .

Both terms in the brackets appear as numerators in the formula p(£)

given in (5). Using the fact that each factor in (5) lies between 0

and 1 we find for fl < £ < e ..
p — — p+h

Ip'UJI <•"ax[(?-ep.1r1,(ep+h+1-d"1]
< 1/ullAII .

Hence for all i

Kp^p^/fe^e.)! < 1/yRAB

and the result follows from Lemma 4. •

This completes the proof of Theorem 6. •
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Remarks. In practical examples the bounds given by Theorem 6 are

unrealistic. As with Theorem 5 the behavior of the lengths of Ritz

vectors appears to be almost independent of j.

2.10 Corrective Measures

Lanczos himself was aware of the inevitable loss of linear inde

pendence among the columns of Q.. When he introduced the algorithm in

1950 he suggested that each newly computed Lanczos vector q.. be

explicitly orthogonalized against all the preceding vectors. This is

called reorthogonalization and despite the great cost of this device

(about j/3 times the cost of the simple Lanczos algorithm both in

time and storage) the Lanczos algorithm with reorthogonalization was

the standard method of reducing a symmetric matrix to tridiagonal form

(1950-54) until the advent of explicit orthogonal transformations.

In current usage A is a large matrix (n >_ 1000) and the cost of

using reorthogonal ization, even for j = Jr\, is prohibitive. This

poses a serious dilemma. Reorthogonalization is too expensive but

independence will surely be lost without it.

C. Paige has suggested that no corrective action be taken. The

loss of linear independence among the Lanczos vectors merely results

in the appearance of multiple copies of the converged Ritz vectors.

The rest of the Ritz pairs continue to improve as the algorithm

proceeds. This approach was used by J. Lewis [Lewis 1977] on a diffi

cult interior eigenvalue problem. There are two possible drawbacks to

this approach. It is necessary for the user to distinguish which Ritz

pairs are copies and which are distinct. This is not usually too
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difficult for the user but it is not clear how to automate such a deci

sion procedure. Another drawback is that the algorithm may compute

ma"y copies of some Ritz pairs before the desired Ritz pairs are found.

See [Lewis 1977] for a striking example of this phenomenon.

Another possible approach is to use the Lanczos algorithm itera-

tively. The basic idea is to stop at some step, compute the best

approximation to a desired eigenvector, and use it or some modification

of it as a new starting vector. If reorthogonalization is used the

step at which the algorithm is iterated is determined by storage and

cost considerations. If reorthogonalization is not used it is neces

sary to monitor the loss of orthogonality and iterate whenever signi

ficant loss of orthogonality is detected.

It is important to realize that iterative use of the Lanczos

algorithm is theoretically unfortunate. Information is always lost

when the algorithm is restarted. In exact arithmetic, Ritz pairs

obtained by iteration are always inferior to the Ritz pairs which would

be obtained if the algorithm were carried on for the same number of

total steps. This occurs because the Krylov subspace computed in the

last iteration is strictly contained in the Krylov subspace which would

be obtained by going on. For a striking example of this phenomenon,

consider the problem of finding the smallest eigenvalue of a 6x6

matrix. Of course the Lanczos algorithm will find all six eigenvalues

in six steps, but if we are forced to iterate after five steps, it will

take several iterations to obtain good accuracy. Iteration is forced

on us only because of the problems associated with loss of orthogonality.

A practical difficulty in using iterative Lanczos arises in choos

ing the restarting vector. If more than one eigenpair is desired how
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can they all be represented in one vector? This problem, along with

the theoretical difficulties in finding multiple eigenvalues, led

several researchers to investigate block generalizations of the Lanczos

algorithm, now called simply block Lanczos. The block Lanczos algorithm

replaces each q vector by an n*p orthonormal matrix. The resulting

T is block tridiagonal with block size p. One of the unsolved

problems in using block Lanczos is the a priori determination of the

optimal block size. Costs increase sharply if the optimum is missed.

Both J. Cull urn and W.E. Donath [Cullurn and Donath 1974] and

R. Underwood [Underwood 1975] have implemented block Lanczos programs.

Underwood uses full reorthogonalization while Cull urn and Donath do not.

In any case the block version does solve many of the problems asso

ciated with iterating the simple Lanczos algorithm. In particular,

since the starting block contains more than one vector, more informa

tion may be saved when the algorithm restarts. Furthermore multiple

eigenvalues (up to the size of the block) can be found simultaneously.

On the other hand, if an efficient method existed for preventing

the loss of independence among the columns of Q. the need for itera-

tion would be eliminated. In Chapter 3 we analyze Selective

Orthogonalization a new and efficient method for maintaining indepen

dence. As a byproduct, Selective Orthogonalization also allows multi

ple eigenvalues to be found without using blocks and without iterating.

79



3. The Lanczos Algorithm with Selective Orthogonalization

Selective Orthogonalization, hereafter referred to as SO, is a

variant of the Lanczos algorithm which interpolates between the simple

Lanczos algorithm and Lanczos with full reorthogonalization in an

attempt to obtain the best of both worlds.

The simple Lanczos algorithm is very cheap but suffers from the

inevitable loss of linear independence among the Lanczos vectors

(columns of Q.). This loss of independence is manifested in the Ritz

vectors by the appearance of repeated copies of converged eigenvectors,

as detailed in Chapter 2. Full reorthogonal ization, in which each

newly computed Lanczos vector, q.+,, is explicitly orthogonalized
• +

against all preceding Lanczos vectors, cures the instability of the

simple Lanczos algorithm but is ruinously expensive in both time and

storage.

SO attempts to obtain the stability of full reorthogonalization

(no redundant copies of eigenvectors computed) at a cost which is close

to that of the simple Lanczos algorithm.

3.1 Motivation for Selective Orthogonalization

To motivate SO we consider two thought experiments on possible

variants of full reorthogonalization. If e-orthogonality of the

Lanczos vectors (|q*qkl -e, for i f k) is desired then no substan

tial improvement over full reorthogonalization can be achieved.

Instead we relax our standards and concentrate on maintaining robust

linear independence among the Lanczos vectors. That is we insure that

An orthogonalization must be repeated if cancellation occurs.
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|q.jqkl £ t, for i f k, for some given number x, which may be much

larger than e.

Scheme 1. One way to insure that |q?qkl <t, for i f k is as

follows. As each new Lanczos vector q.+, is computed, merely compute

qiqj+V *or 1-J' and orthogonal ize q.+1 against q. whenever

h-jQj+l'l > T- (We note that since the Lanczos vectors are not ortho

gonal, orthogonalization of q.+, against q. may increase |q£q-+il

for some other k. Discussion of this second order effect is delayed

until Section 9.)

Scheme 1 was implemented on the following test problem.

Test 1. e = .16xl0"16

n = 20

A1 = 1/i , for i= 1,2,...,20

q1 =u/lluB , u-(1,1,...,1)*

The following results were obtained for various values of t. No

orthogonalizations were performed at step j = n = 20.
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Scheme 1 on Test 1

T
Number of

orthogonalizations !I1-Q*0Q20II max error .
max |A.-e(20)|

full reorth. ID'18 190 .62xlO",b .90xl0"16
io-17 148 .66xl0-16 ,29xio"16
io-16 98 .32X10'15 .97xio"*16
IO"15 90 .31 xlO"14 .55xl0"16
IO"14 79 .24xl0"13 ,14xlo"15
IO"13 72 ,28xl0"12 .69xio"16
IO"12 66 .27X10"11 .56xio"16
TO"11 70 .31 xlO"10 .76 xlO"16
IO"10 55 .21 xlO"9 .97 xlO"16
IO*9 55 .25xl0*8 .11 xio"15
IO"8 51 .21 xlO"7 .83xlO"16
IO'7 47 .22xl0"6 .14 xlO"14
IO'6 39 .15xl0"5 .36xl0"12
IO"5 46 .16xl0"4 .20xl0"10
IO"4 37 .14xl0"3 .25xlO"9
IO"3 36 .16xl0"2 .54xlO"6
IO"2 39 .24X10"1 .19xl0"4
IO"1 35 .20 .12xl0"2

simple L. 1. 0 1.0 .50

The number of orthogonalizations decreases as t increases yet

the Ritz values at step 20 are correct to working accuracy until

,-7 ,-8t = 10 < i/k~. At t = 10~ only 51 orthogonal izations were required

compared to 190 orthogonalizations required by full reorthogonalization.

-8
Scheme 1 with t = 10 is an improvement over full reortho

gonal ization but it does have two drawbacks. At each step it is neces

sary to compute qtq.+, for each i£ j to determine whether q.+,

should be orthogonalized against q.. This requires that the q. be
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kept in fast store so they are available at each step. Furthermore the

cost of computing qtq,-+i is equal to the cost of the vector subtrac

tion so little is saved by omitting the orthogonalization.

Scheme 2. We now consider what appears, at first sight, to be an

even sillier method of maintaining robust independence. At each step j,

compute each Ritz vector y. = Q.s. (where s. is the i eigenvector

of T.), then compute ytq-s+i and orthogonalize q.+, against y.

whenever |y]?q.+, |>t.

Scheme 2 was implemented on Test 1 with the following results.
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full .
reorth.

simple
Lanczos

Scheme 2 on Test 1

T
Number of

orthogonalizations il-Q*0Q20il max errnrrtX
max |X.-ep)|

io-18 190 .71xl0"16 .83 xio"16
IO"17 159 .80X10"16 .llxio"15
IO"16 89 .37xlO"15 .83xio"16
IO"15 48 .28 xlO"14 .42xio"16
IO"14 37 .25xl0"13 .48xlO"16
io-13 31 .20xl0"12 .11 xlO"15
io-12 22 .18X10"11 .56xl0"16
IO"11 22 .13 xlO"10 .62 xlO"16
io-10 19 .11 xlO"9 .69 xlO"16
IO"9 17 .11 xlO"8 .83xl0"16
IO*8 14 .18xl0"7 .45xl0"16
io"7 12 .11 xlO"6 .61 xlO"15
IO"6 10 .12 xlO*5 .12xl0"12
IO"5 12 .13xl0"4 .18xl0"10
IO"4 8 .65xlO"4 .19xl0"9
io-3 11 .13xl0"2 .57xlO"6
io-2 6 .11 xlO"1 .70xlO"5
IO'1 9 .30 .23 xlO"2
1. 0 1.00 .50

Again we find that the Ritz values at step 20 are correct to work

ing accuracy until x < Se. However the number of orthogonalizations

required by Scheme 2 for values of x near /e is much smaller than

for Scheme 1. Furthermore the drawbacks associated with Scheme 1 can

be avoided in implementing Scheme 2 as we show in the next section.
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3.2 Implementation of Selective Orthogonalization

Section 1 shows that x-orthogonality can be maintained by Scheme 2

with many fewer orthogonalizations than Scheme 1, for values of x

near i/e. This effect is symptomatic of the Lanczos algorithm and does

not depend on the particular test problem chosen.

An intuitive explanation of the success of Scheme 2 can be obtained

from Theorem 3 of Chapter 2 which states that for all i < j and all j,

where y.. = 1. Equation (1) shows that orthogonality is only lost in
j'

the direction of Ritz vectors with small 8... Since p.. is a good

estimate of the residual norm of y^ , serious loss of orthogonality

occurs only in the direction of converged Ritz vectors.

Only a few of the Ritz vectors will have converged at any -step j

and so only a few orthogonalizations are needed. Furthermore since

Y^ *1» it is possible to estimate |y^J' q-_,_-. | using equation (1) by

(2) l*iJ)*V|l *eflAfl/*ji •
Thus it is possible to determine which Ritz vectors should be

used for orthogonalization of q.+1 before computing them, namely any

Ritz vector which satisfies

(3) Bj1 <ellAB/x .

Any Ritz vector which satisfies equation (3) will be called a good Ritz

vector, while the remaining Ritz vectors will be called bad Ritz vectors.



^ji = ^JSJi Can ke comPutecl ^rom "the spectral decomposition of

T.. In practical problems j « n and $.. can be computed much more
j j l

quickly than first computing yjJ"' =Q.s^ and then computina
(i)*

yi qj+T In 9eneral aAB is not known but IIT.II is known from the

spectral decomposition of T. and' IIX.II = BAH will hold even for
j j

j « n. Thus in practice QT.II replaces BAH in (2). Nevertheless
j

the computation of even a few Ritz vectors is time consuming. It

takes jn multiplications to compute a single Ritz vector. In theory

the good Ritz vectors are different at each step and must be recom

puted, which destroys the efficiency of SO.

Fortunately, for practical values of x (x near JS) the good

Ritz vectors change very little from step to step and a good Ritz

vector computed at one step may be safely used for orthogonalization at

later steps. However to avoid complicating the analysis, we will

consider only the model in which the good Ritz vectors are recomputed

at each step.

Equation (1) is the basis for using equation (2) to determine the

good Ritz vectors. Unfortunately once orthogonalization begins in SO

the computed quantities no longer satisfy the fundamental equation of

the simple Lanczos algorithm. Therefore the conclusions of Chapter 2

may no longer be valid. In particular y,-,- defined by equation (1)

may be much larger than 1. The rest of this chapter will examine the

relationship between the choice of x and y growth in SO. In

Section 4 we give a numerical example which shows that large y's can

occur for values of x near 1.
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3.3 Governing Equations for SO

We first observe that it is unnecessary to normalize r. (to
vl

become q.+1) before computing the good Ritz vectors, which are deter

mined by 3. = Br.B and the bottom row of S., the eigenvector matrix
j j J

of T.. r. itself is orthogonalized against the good Ritz vectors and

this new r. is normalized (by dividing by anew 0.) to become q^+1.

In order to distinguish the new quantities from the old we use the

following notation.

Let r.» 0., q-+-|» and y,-,-* "for i£ j, be the quantities
J J vl vl

computed by the jth step of SO. Let rj, 3^, qj+1, and y^9 for
i < j, be the quantities which.would be computed if the orthogonaliza

tions of the j step (only) were omitted.

Remarks. If there are no good Ritz vectors at step j of SO then

no orthogonalizations are performed and r. = rl, $. = 31,

q..i a q'i/ii and y-- = Y1--. for i < j. Furthermore SO never modi-
J+« 0+i J1 3» ""

fies T. or Q. and so the Ritz pairs computed at step j are unchanged

by the orthogonalizations. Finally fl. = Br.B < Br'J = 3j since

orthogonal ization always shortens the vector r'..

As mentioned at the end of Section 2, once orthogonalization

begins the computed quantities no longer satisfy

(i) AQj-¥o =rael+Fj

with BF.U = eBAB, which is the fundamental equation of the simple
vl

Lanczos algorithm.

Consider the step j at which a single Ritz vector, y.., first

becomes good. To orthogonalize ri against y., SO computes
v)
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S*i =yiirj/yiyi and rj =rj"yi^jr We note that tne division by
y^. in the definition of £.. is necessary because y. will not

vl ' 1

have length exactly 1. Before the orthogonal ization of r'. against
vl

y.. the computed quantities satisfy

(2) ' AVVj =rJej +Fj-
Since r.. = ri-y.-C.., equation (2) becomes

AVVj =(WjiK+Fj'
=rJeJ+DJ

where D. =df*. =(0,0,...,0,d..) and d.. =y.^..
For subsequent j, D.. =(d] ,d2,...,dj) and dk is the accumula

tion of the orthogonalizations performed at step k. That is, if G.
k

is the index set of the good Ritz vectors at step k, then for k < j,

dk = I *\\i •

where xki -y^k)*^/y{k)*yjk).
Thus D+F must replace F in applying the results of Chapter 2.

In particular, Theorem 3 of Chapter 2 states that for the simple

Lanczos algorithm,

BjiKVii-«IAhfji
with Yj.j = 1. for all i and j. The introduction of the matrix D

into the analysis may cause y^- to be much larger than 1. In the

next section we show by example that large y's can occur for values of

x near 1.
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3.4 An Extreme Example

In this section we give an example which shows that if orthogonali

zation is delayed long enough (x near 1) it is possible for the y's

to grow enormously. Consider Example 1 of Chapter 2, namely,

e = .6 xio"7

n = 10

A = diag(0,.01,.02,...,.08,1.0)

q] =u/BuB , u=(1,1,...,1)*

At j= 7, y7 is a very good approximation to Z,Q, the eigen

vector of 1.0. We repeat the results obtained by simple Lanczos at

j = 7 but including two extra columns to show the effects or ortho

gonal!*zing ri against y7 and then normalizing.

j = 7

i Ritz value 3'..
* i

yi<8 y?q8l T11
1 .417 xio'3 .114X10"1 .121 xlO'7 .002 .0585 f 2100
2 .0147 .329 xio"1 .335 xlO"7 .018 .171 17667

3 .0348 .529 xio"1 .410 xlO"7 .036 .280 46667

4 .0564 .704 xlO"1 .894 xlO"7 .105 .381 84500

5 .0733 .902 xio"1 .224 xlO"7 .034 .492 141333

6 .0811 .561 xlO"1 .521 xlO"7 .049 .312 55167

7 1.0000 .516 xlO"8 .982 .085 .668 xlO"6 J.08 xlO"8

How is it possible for orthogonal ization of q« against y7 to

make |y*q8l seven orders of magnitude greater than |y*qA|, for

i f 7? The main cause of the lack of orthogonality between q„ and

y.,-. i t 7, is that since Q7 is already far from orthonormal, y7
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is far from orthogonal to y] ,y2,...,y6- In fact the bottom row of
|1-Y*Y7T is

.011 .038 .054 .073 .096 .060 .24xl0"6

Thus both qg and y. have spurious components in the direction

of y7. These components are correlated so that ytq' is tiny.

Removal of the component of y7 from q' destroys this correlation as

shown by the following picture.

We now pause to put this example into perspective. The purpose of

SO is to insure that

(D |y?i,+1l <t

for all the Ritz vectors at step j. To avoid computing all the Ritz

vectors SO uses the equation

(2) |y:fy+1l=elA0Yt./8'.

to determine which Ritz should be labelled good. SO then computes

these Ritz vectors and explicitly orthogonal izes r*. against them.
vl
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The resulting r. is normalized to become q.+, which satisfies

(3) l^j+ll =e0A|Yji/»ji • for all 1<j.

Comparing equation (2) and (3) we see that SO will fail to main

tain equation (1), if Yi1 » yi* and Example 1 shows that this
vl I J I

behavior is possible for values of x near 1. Therefore the optimal

choice of x is determined by two competing factors. If x is chosen

too small then many Ritz vectors will be declared good and many

unnecessary orthogonalizations will be performed. If x is chosen too

large then the orthogonalizations will be delayed too long and large

Y's will appear causing serious loss of orthogonality, as shown by

equation (3).

3.5 The Effects of Orthogonalization

We now establish a bound on the difference between y\.9 the

quantity before the orthogonalization of the j step, and y.., the

corresponding quantity after r*. is orthogonalized against the good
vl

Ritz vectors.

Theorem 1. Let G. be the index set of the good Ritz

vectors at step j. Then for all k < j

Yjk±Yjk+pjk»

where ^"^JJW^I/elAI. and ?.,. =ytrl/yty.
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Proof. Recall that y~ is defined by the equation

V^j+i1 =68A8>-jk-
Since 6jk =ejSjk and 6j.qJ+1 =r., we find

Similarly, y' satisfies

(2) 6DA»Y-k . |y*r'|s.k .

By definition of r. (see Section 3) r. = r'.-d. with d. = Y y.£..
3 3 3 3 3 i^g- nJ1

and 5^ =y*r\/y*yv Substituting this formula for r. into equation
(1) we obtain

(3) «««irjk.|y^-iJ8>CyJy1)5J1|.Jlt.'
J

l|y^|sok +iiG.1(yi>i)5ji'sjk-
vl

The result now follows from equation (2). D

Remarks. Theorem 1 is not a realistic bound for a good Ritz

vector. If ie G. then r. has been explicitly orthogonalized
... J j

against y]j) which makes |y|j)*r.| =eBr.B =eB_.. Thus from
' j j j

equation (1)
Yji - ee.Sj./ellAO

= Bji/IAI

1 T

by definition of a good Ritz vector. On the other hand Theorem 1 is a

realistic bound on Y,-k for a bad Ritz vector y. . Insight into y



growth in SO can be gained from analyzing the quantity p.. .

The formula for p.. in Theorem 1 does indicate why the y's

should remain near 1 for values of x rather larger than e. In

exact arithmetic, for a bad Ritz vector yk, both yty. and

€*j =y*r'./y*y.j are zero. In practice it is unnecessary that each

factor be tiny. It is only required that their product be less than

eBAD to insure that y^ is not much larger than y%...

3.6 The First Orthogonalization

We now use Theorem 1 to analyze a simple case, namely the step j

at which the first good Ritz vector y. is found. This is precisely

the situation in the numerical example of Section 4.

Since j is the first step at which a good Ritz vector is found

no orthogonalizations have occurred at earlier steps. Therefore the

quantities r^, Q., T., and Y. have been computed by the simple
vl vl vl J

Lanczos algorithm and the results of Chapter 2 are valid.

In particular by Theorem 3 (Paige) of Chapter 2,

(1) lyftl -eOA^./s.. ,

with y\. - 1. Furthermore by Theorem 4 (Paige) of Chapter 2, since
vl '

sji <Sjk (yi is good and yk is not '̂

(2) (y>kl - eilAH^i(sjk/sdi)/|ei-ekI .

Substituting (1) and (2) into the formula for p.^ in Theorem 1

we obtain

A ~2 „,|2/ . 2 \/|iAti/ln _a I Ww*i
<3) pjk*sjWe/sji)l,A,/|erek|,/yiyi »
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since G. contains the single number i. Equation (3) displays the
j

various contributions to the size of p.. . s.. the bottom element of

s^, which corresponds to a bad Ritz vector y. , may not be small at
2 2

all but s.. < 1 holds a priori. Furthermore y-,- - 1 so that y\.
JK Jl Jl

cannot be large either. Finally for any reasonable choice of x robust

linear independence will be maintained and y*y. will be close to 1.

The factor BAH/10.-6. | is large only when e. and 8. are

close together, that is when 9. and Q. are two copies of the same

eigenvalue of A. However two copies of an eigenvalue can occur only

if one good copy already existed at an earlier step which contradicts

the assumption that y. is the first good Ritz vector found.

2
It is the factor, e/s.., which can cause Y-growth if s.. is

tiny. A good Ritz vector satisfies

Bji <eBAfl/x ,

or equivalently

s^. <eIIAD/x3j ,

since £.. = P^s... If 8. is not much smaller than BAII and x
vl • vl vl * vl

is near 1, then s.. will be near e and p.. will be large.
Ji JK

In Example 1 of Section 4 where i= j =7, s77 * e so that
2

e/s.., the third factor in equation (8) is quite large. This causes
vl '

Y7k, for k f 7, to be large as illustrated by the numerical results.

Equation (3) does give an indication of the optimal choice of x.

To prevent Y-growth it is necessary that

(4) y£4 <1.
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Using equation (1), equation (4) can be rearranged as

(y*rj/HAD)2 <e
or equivalently

(5) |ytq'+1| < v^HAB/3'. ,

since r'. = Bj^j+t Equation (5) indicates that x should satisfy

(6) x< v'ilAB/e;. .
vl

Inevitably 3'. < BAB so equation (6) will certainly be satisfied
j

if x = j/e. Since 3'- need not be much smaller than BAD, a choice
j

of x larger than Je may lead to y-growth and so the optimal choice

of x is Je. If x is chosen much smaller than 7i then many

unnecessary orthogonalizations are performed while if x is chosen

much larger than Je then large y's will occur.

However equation (5) suggests that the definition of a good Ritz

vector should depend on the ratio BAB/31. We investigate this variant
vl

of SO in the next section.

3.7 A Variant of SO

Equation (5) of Section 6 indicates that stability of SO will be

assured if

lyfy+i I1^Al/Bj .

Since |y*q'.+11 =eDAUY'.1-/3'.1-, this suggests that a Ritz vector should

be declared good whenever

(1) eOABY^/3^ >v^UAII/3^ .



Assuming that Y-growth has not occurred at earlier steps, so that

Y-• £ 1» equation (1) can be rearranged to obtain
j'

(2) Sj. < li .

We call the variant of SO based on equation (2) S02 to distin

guish it from the original SO, in which a Ritz vector y. is declared

good whenever

(3) 3,, < i^ellAII .
j •

A Ritz vector which is declared good by SO will be called an

SO-vector and similarly for S02. Since 3'- < BAB, any S02-vector is
vl

also SO-vector and so S02 will always require fewer orthogonalizations

than SO. However on most examples the cost of SO and S02 are quite

close. Furthermore on occasions when the costs of the two schemes are

disparate, S02 may suffer from Y-growth as illustrated by the follow

ing example.

Test 2. e = .16xlo"16

n = 20

Xi =(.2)1"1, for i=1,2,...,n
q. = u/BuH, u = (1,1,...,1) .

Test 2 is a difficult problem in that most of the eigenvalues are

-13
clustered near zero Uig- ^oo = ^20 = *53x^° )•

S02 was run on Test 2 and the following results were obtained.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

beta(j)

.13

.17

.33x10
-1

-2

-2

-4

-3

-4

-5

-6

.80x 10

.32x 10

.86x 10

.13x10

.23x10

.28x10

.15x10

.11x10
-4

-5

-5

-5

-4

.68x10

.86x10

.55x10

.23x10

.41 xlO
-4

-4

-4

-5

.24x10

.18x10

.62x10
-4

.25x10

# good

0

0

0

0

0

0

1

2

3

4

5

5

5

5

5

6

6

6

6

0

max y
II

.65

.70

.85

.85

.85

.85

.85

.39 xlO4

.12x10*

.97x10^

.45xl0(

.27x10

.48x10'

.63x10"

.90x10"

.98x10"

.58x10

.30x10

.22x10

.17x10

10

12

12

12

12

"•W
.25x10

.42x10

.10x10

.19x10

.22x10

.68x10

.80x10

=TF

-16

-15

-14

-12

-10

-6

-5

-5

-4

.11x10

.llx.10

.31 xlO
-1

.82x10

1.00

1.00

1.00

1.03

1.37

1.87

1.97

2.01

2.82

.3
The maximum absolute error at step j = 20 was .26x10 which

shows that serious loss of accuracy had occurred. This loss of accuracy

was caused by the large y's in S02 which first appeared at step j = 8

with a y.. = .39x10 . The large y's in turn led to a complete break-
vl

down of orthogonality among the columns of Q. as shown by
vl

m-Q|0Q20!l =2.82.
We also ran SO on Test 2 for comparison against S02. SO required

148 orthogonalizations compared to 59 for S02, but for SO the maximum

error at j=20 was .14xio'15, while M-Q^O11 =•10x10"8 and the
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maximum y-- = '85« Tnus SO suffered no Y-growth and resolved all the
vl '

eigenvalues to working accuracy.

What causes the Y-growth in S02? We note that large y's appeared

only when the ratio 3./BAB was quite small. It is small off diagonal
vl

elements (3's) which cause Y-growth in S02 as we show in the next

section.

3.8 y-Growth in S02

The Y-growth in S02 is caused by the fact that in the face of a

tiny 3. , there is no a prior upper bound on the ratio

min s.^J/min sv|'. That is, it is possible for atiny s.. to
i<j-l J-|>1 k<j J1 J
appear out of the blue, with no advance warning from any of the ski

for k < j.

Consider the following example.

Example 1. Let 10 =(1+?2)"1/2 and let

T« = w

U C

By the choice of co, the eigenvalues of T2 are 0 and 1 and the

matrix of eigenvectors is

S« = to

.1 C.

Note that for all values of C, to < 1 and so 3-, £ C and

s22 =vOC. If C« 1 then 3-j is tiny (compared to BT2B =1) and
s22 <c is tiny as well. On the other hand s^ =1 and so

min s,./min s«. = 1/coc can be arbitrarily large. •
i<l n i<2 ^
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The sudden appearance of a tiny s.. causes Y-growth in S02. In

Section 5 (equation (3)) we showed that one of the factors in the

2 2
growth of Y-s,- is Yl-,-e/s.. which will be quite large if s.. is

Jl vl'vl* vl'

tiny for the first good Ritz vector.

Another way to understand the Y-growth in S02 is from the point

of view of loss of orthogonality. By definition of y.->
vl

lyiqj+ll =veji •

If 3. is tiny then all of the 3^.- will be tiny and serious loss of

orthogonality will occur unless r'. is orthogonalized against all the
j

y. before being normalized to become q.-+1» SO, which examines the

3il-» will perform these needed orthogonal izations. On the other hand

most of the s.. will not be tiny and S02 will fail to perform some
vl

needed orthogonalizations. Thus a rather poor q.+, is accepted and

the damage is done. At step j+1 S02 tries to correct the errors in

rl+1 inherited from the poor qi+1> which is a hopeless task.

3.9 Loss of Orthogonality of Good Ritz Vectors

At step j, SO computes the good Ritz vectors and orthogonalizes

r\ against them. The good Ritz vectors are some of the columns of

Y. = Q.S. .
3 yJJ

S., the eigenvector matrix of T. is assumed to be orthogonal but Q.
J vl J

is not orthonormal. Therefore Y. is not orthogonal either and the
vl

good Ritz vectors (if there is more than 1) will not be orthogonal.
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In order to successfully orthogonal ize r'. against the good Ritz
vl

vectors it is necessary to orthogonormalize the good Ritz vectors first.

There are many ways to orthogonormalize a set of vectors. The simplest

method is to apply the Gram-Schmidt procedure to some ordering of the

good Ritz vectors. In this context it is best to order the good Ritz

vectors by increasing B-* as shown by the following analysis.
vl '

In Section 6 of Chapter 2 it was shown that the loss of ortho

gonality in the matrix Q. was manifested in the matrix Y.. by the

contamination of the unconverged Ritz vectors by components in the

direction of the converging Ritz vector. In simple Lanczos this

contamination grows until a second copy of the converged Ritz vector

appears. In SO the onset of orthogonalization stifles the growth of

the contamination and thus prevents the appearance of repeated copies

of eigenvectors of A.

However the orthogonalizations do not purge the contamination that

was present before the Ritz vector became good. It is this residual

contamination which prevents the second good Ritz vector found from

being orthogonal to the first. This contamination can be removed by

simply orthonormalizing the good Ritz vectors in the order of increas

ing 3jr
The required orthonormalization of the good Ritz vectors gives

another indication that Se is the proper value for x. The Ritz

values at step j are the Rayleigh quotients of the Ritz vectors. Do

these Rayleigh quotients change when the Ritz vectors are orthonor-

malized? If x < v£ the Ritz values remain the same to working accuracy.

We first prove a simple result about approximate eigenpairs in general

and then apply it in the context of SO.



Theorem 2. Let y, and y2 be two unit vectors and let

8i =y*Ay^ for 1=1>2. Let n=y*y2 and v=y2-y-,n.
Then

(1) i-v*v =n2

(2) |62-v*Av| <2nBAy1-y1e1B+nZ|81|

Proof. To prove (1),

To prove (2),

Therefore

*
V V

v*Av

=(y2-y1n)*(y2-y1n) ,
=yjy2-?y*y2n +y*y1n2 ,
=l-2n2+n2

=l-n2.

(n =y*y2)

=(y2-y1n)*A(y2-y1n) ,
=y2Ay2 -ny*Ay2 -y^Ay^ +y^n2
=e2 - 2ny*Ay1 +n e1 ,

=e2-2ny2(Ay1-y1e1)-n2e1 .

B62-v*AvB <2nny2BBAy1-y181B+n |6.
=2nllAy1-y1e1D+Ti2|e1l . D

We now apply Theorem 2 in the context of SO. In SO x-ortho-

gonality is maintained and t\<t will hold. Furthermore (y-|,9,) is

a good Ritz pair so
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HAy-j-y-jO^ < ellAH/x .

Finally |8, | < QAO. Combining these inequalities we find

* 2
Corollary. 1 - v v < x , and

|8j>-v*Av| <2eBAB+x2nAB .

102

Thus if x£ Jk~% v*Av/v*v will be perturbed from 62 only by a

term of order eOAB. Since 82 already has an error of this order of

magnitude there is no need to recompute the Ritz value.

3.10 Further Analysis of SO

One of the technical difficulties in analyzing SO is the identifi

cation problem for Ritz vectors at different steps of the algorithm.

In theory the Ritz vectors at step j are different from those at step

j-1 and it may be impossible to identify a particular Ritz vector at

step j as the successor of a given Ritz vector at step j-1. Indeed

since there is one more Ritz vector at step j a complete one-to-one

identification is impossible.

In practice however it is always possible to identify the successor

of a good Ritz vector (x = i/£~). A good Ritz vector at step j-1 is a

good approximation to an eigenvector of A. The Ritz vectors at step j

are chosen from a larger subspace and an even better approximation to

the eigenvector will be found.

As anotational convenience we use the symbol yj^' to stand for
the Ritz vector at step j which is closest to the eigenvector of A

associated with the eigenvalue A. Thus if y^J" ' is agood Ritz



vector then yj^J' is the successor of yi and the two vectors
will be almost parallel. We define 3-x» s.,, y-,, etc. to be the

quantities corresponding to yi •

In this section we discuss the effects of the hereditary nature of

good Ritz vectors on the behavior of SO. Selected output from SO (with

x = Jk~) applied to the following example will be used for illustration.

-16
Example. e = .16x10

n = 20

X1 = 1/i , i= l,2,...,n

q, = u/UuB, u = (1,1,...,I)1

x= »/e = .4xl0"8

We first give a summary of the output.
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# good

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 1

11 1

12 1

13 2

14 2

15 3

16 3

17 4

18 5

19 5

20 0

H-QTQJ
-——'I. j

-16

-15

-15

-15

-14

-13

.28x10

.37x10

.10x10

.15x10

.44x10

.30x10

.36x10

.48x10
-12

-11

-9

-9

-9

-9

.84x10

.23x10

.23x10

.23x10

.23x10

.23x10
-9

-9

-9

-9

-9

.23x10

.23x10

.23x10

.83x10

.83x10
-9

-9
.83x10
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Note that B1-Q*Q.U increases smoothly until orthogonalization starts,
j j

Thereafter Bl-Q*Q.fl is almost constant which is what is expected
j j

since the purpose of SO is to inhibit the further decay of orthogonality.

No orthogonalizations were performed at step j = n = 20. In general

there is no need to orthogonal ize q.+-j in the last step of the

algorithm since q.+, does not contribute to the Ritz pairs at step j.

By the Kaniel-Paige theory (Section 1.3) the first eigenvalue to

converge should be 1.0 since it is both extreme and well separated. We

now give a complete history of 9-j Q, the Ritz value closest to 1.0

for each step j.



j 1 91.0 *i.l.O Yi.l.O 1*1.1.0
1 .87 .142 .87

2 .20 .31 .94 „_

3 .15X10"1 .93xlO"1 .49 •».»

4 .32xlO"3 .15xlO"1 .37 a> —

5 .53xlO"5 .2 xlO"2 .36 J «...

6 .31 xlO*7 .16 xlO"3 .36 «...

7 .18xl0"9 .12 xlO"4 .36

8 .55xl0"12 .69 xlO"6 .36 ^ mm

9 .73xl0"15 .25 xlO"7 .36

10 .28xl0"16 .74xlO"9 .36 .21 xlO"9
11 .83x IO"16 .26xl0"10 .32 xio"3 .61 xlO"11
12 .14xl0*16 .lOxlO"11 .60X10"11 .33xl0"17
13 .28x IO"16 .22 xlO"13 .16xl0"12 .22 xlO"17
14 .42x IO"16 .32xlO"15 .34xl0"14 .23 xlO"17
15 .56xl0"16 .43xlO"17 .23xlO"16 .lOxlO"17
16 .42x IO"16 .53 xlO"19 .88xl0"18 .34xl0"17
17 .56xlO"16 .11 xlO"18 .35 xlO"17 .44xl0"17
18 .56xlO"16 .18xl0"19 .34xl0"18 .33xlO"17
19 .0 .19xl0"19 .18xl0"18 .46xl0"18
20 j .28xlO"16 .65xl0"28 .48 xlO"20 —

The vector y, Q goes through three distinct phases as SO pro

gresses. At first (j < 10) y, Q is not good (technically), y\ ^Q

is near 1.0, and E. , Q, the orthogonal ization coefficient, is not
' " (i)* *defined. At j=10 y] Q becomes good and £jj#0 sy^Q rj^yl.0^1.0

(i)* -9
= y;JA r'. is computed to be .21 xio , which is smaller than

xBAB =.4 xlO"8 as it should be. At j=11, E. 1Q=.61 xio"11
which is rather less than xBAil. For all j> 11, |£. -j Q| < eQAO

which is the magnitude of the rounding errors themselves.
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This behavior is completely typical of good Ritz vectors. For

a given X, S.^ is larger than eBAU only in the first two steps at

which y^ is good. This is due to the hereditary nature of good Ritz

vectors. We use the following technical result to illuminate this

phenomenon.

Theorem 3. For any Ritz vector y. at step j,

i'j •

where V. <• (d,,d,,,...,d., ,0) and f. = F.e. is the last
J . • ^ J~ ' J J J

column of F..
vl

Proof. (See Section 3 for notation.) Before the orthogonaliza

tions at step j of SO, the computed quantities satisfy

O) AVQjVrtf+FJ+DJ'

where D'. = (d, ,d2,... ,d. 1,0). Multiply equation (1) on the right by

e. to find,

(2) AqrqjVqj-iBM = ri+fa •

since Die, = 0. Multiply (2) on the left by y. and rearrange to

obtain

(3) Vj =^Vy^fryiqJ-iB;H-yifo '
=q?yi-yiVj-ytqj-lBj-l-yifj '

since A is symmetric. To obtain a formula for Ay., multiply (1) on

the right by s. to find
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(4) AVrVjsi"rtfsi +Fjsi +Disi '
Since y. = Q.-s.., T.s. = s.8., and ets. = s.., (4) can be rearranged

to obtain

(5) Ay. =yi6i+ris.i +Fj.s. +D-.si .

Substituting (5) into (3) and rearranging yields the result. D

We consider the various contributions to y.K given by
* vl

Theorem 3. (I) The matrix F. is just the accumulation of the local
vl

roundoff errors and [IF-!! = ellAll will hold. In particular
vl

Bq*F.s.B = eBAB , and
j j '

Bytf .B = eBAll .
* vl

(II) r'. is explicitly orthogonalized against q. by the choice
si J

of a.. Due to rounding errors q.rl is not zero but
j j j

hjijl *eBAB

will hold instead.

(III) For k < j,

d = I y(khk t€6k * kt

* (k)Each E... will be less than xDAB in magnitude while |q.y: | <. t

as well since k < j. Therefore

BcjjD's.B =t2BAB ,
• eflAn ,



for x = /£. Bringing these observations together,

(6) ytri <-ytya^) -yfy.^ +0(e|AI) ,

--^j^i^^j-l^-l •

If y[ and y*J" ' were good then equation (6) shows that y\3' r\

will be tiny because both q. and q. , were orthogonalized against

vectors which are almost parallel to yP .

In the numerical example X = .5 was good at step j = 13 and the

(il*following values for y^iJ r\ were computed.

j A3)
y.5

* ,

13 .46 x 10"
10

14 -.21 x 10"
• 11

15 ,39x 10"
•18

16 -.37x 10"
•18

17 .10x 10"
•17

18 -.37x 10"
•18

19 .24x 10"
•18

The other good Ritz vectors behaved similarly. This phenomenon is

an important contributant to the success of SO. Each good Ritz vector

makes a significant contribution to D only the first two times it

appears. Thereafter the corresponding eigenvector is essentially

deflated from the system.

3.11 Conclusions

Selective Orthogonalization with x =' Je is an effective means of

implementing the Lanczos algorithm. If the good Ritz vectors are only

computed occasionally (as described in more detail in [Parlett and
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Scott]) SO is very efficient as well. SO permits the Lanczos algorithm

to be run as originally intended. Since loss of orthogonality is

controlled without the expense of full reorthogonalization, there is no

need to iterate the algorithm.

As an added bonus SO is capable of finding clustered or multiple

eigenvalues without the added complications of using block Lanczos.

This is in marked contrast to the simple Lanczos algorithm in exact

arithmetic which can compute only one representative of a multiple eigen

value and also to simple Lanczos in finite precision which computes

multiple copies of all eigenvalues regardless of whether they are truly

multiple or not.

This phenomenon is due to rounding errors which introduce to q.+,

small components in all directions. After one eigendirection of a

multiple eigenvalue has been found, components in the orthogonal direc

tion persist after orthogonalization. These components will grow as

the algorithm continues until a second eigenvector, orthogonal to the

first, is found. For illustration SO was run on the following example

with different values of co.

e= .16xl0"16

n = 20

Xi = 1/i for i f 2,4

X« = X, - to

x4 = X3-co

20 steps were taken and the largest absolute error in the Ritz values

was measured.



to max error

io"1 .83xl0"16
io"3 -15

.12x10 ,D

io'5 -15.11 xlO ,0

io"7 .69 xlO"16
IO"9 -15

.15x10 ,D
-16

-15

-15

10

10

-n

10

10

-13

-17

.83x10

.11x10

.11x10

.38x10
-16

-15
.11x10

This shows that SO can resolve clustered eigenvalues to full working

accuracy (neflAB =.32xl0"15).
Can large y's occur for x = Til Heuristically the answer is no.

No examples of Y-growth with x= /k~ are known. Furthermore it is

easy to monitor the size of the y's as the algorithm proceeds. For

each good Ritz vector yja\ SO computes y\^*r\ in the orthogonali-
zation process. It is only necessary to compute

*ji • i*iJ)%jisji/,,AI
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to observe whether Y-growth has occurred.

In conclusion SO is an efficient method of implementing the Lanczos

algorithm which points the way towards asubroutine package which could

be used off the shelf for large sparse symmetric eigenvalue problems.



Appendix A

To finish the proof of Theorem 3 of Chapter 2, we first quote the

main theorem of [Paige 1976] which asserts that for the Lanczos

algorithm, the matrices B. and F. are tiny, like roundoff in
j j

Theorem (Paige). Let A have at most m non-zeros per row.

Let B|A|B = vBAII, where |A| is the matrix with elements

|a..|. Let e be the relative machine precision, let

eQ = (n+4)e, and let e-, = (7+mv)e. Assume 4j(3eQ+e,) « 1
2

and ignore e terms. Then

|b11| <2eQBAB ,

|b..| <4eQIAl , for 1 — £,3,••• ,J ,

IVl,il l4eonA!! » for 1 ~ £,<j,...,J,

Bf^ie^AD , for 1 ~ I,£,.*.,J 9

•f"h
where f. is the i column of FJ-

(i)

The proof of Theorem 3 is completed by the following result,

Lemma. For the Lanczos algorithm

IThI <(2Je1+8eQ)/e

Proof. Recall from Lemma 3(of Section 2.3) that

*ji- i^Bjsi+stEjsii/enA"
ids^s-l +ls^s-D/ellAll

Ill



< (llBJ + BE.||)/ellAII
vl vl

and it remains to bound each term separately.

Bounding [IB.II
vl

Let B'. be the diagonal of B. and let B!j be the superdiagonal

of B.. Since B. is bidiagonal, B. = B^ +B*! and
J vl vl J J

(2) HB.a = bb; +b»:b

< bb;b +bb"b .

Any matrix C which has only one nonzero element in each row and

column satisfies

(3) BCtl = max |C..| .
i,j 1J

Since both B*. and BS have this property, by using Paige's Theorem,
j j

(4) QB*II = max |b..
j 1-

< 4eQBAB

and

(5) BB'MI =max jb.^^.

<4e0tlAB .

Thus by (2)

(6) BB..B < 8eQBAB
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Bounding BEJ

Recall that E. is the upper triangular part of F^Q.-Q*F..
vl vl vl vl vl

Therefore

(7) BE.II < 2IIQ.IIBF.B .
J J vl

For any matrix G. = (g19g99*.. >g,-)» BGJ < ^J max Bg.B and soj »• t j j — ^ i

(8) BF.B < iff max Bf.ll ,
3 i 1

l/fe-jflAB ,

by Paige's Theorem and

(9) BQ.fl < /f max Bq.B
i »

< J3 .

Hence from (7),

(10) IIE^B <2je1BAB

and the Lemma follows from (1), (6), and (10). D

The bound given in the Lemma for y.. is likely to be a large

overbound for several reasons. For large problems, the greatest over

estimate is concealed in eQ which is a bound on the maximum error

committed in normalizing an n-vector. Only for specially chosen vectors

will the factor of n be realistic. Also OQJ - v1c+T, where k is
vl

the maximum number of copies of any one eigenvalue to have appeared,

is much more realistic than even *ff.

In fact, in Example 1 of Section 6 in Chapter 2 the average value

of Y-.j is about .03. In all examples we have investigated the
vl



dependence of y-- on both n and j is much less than linear. This
j

explains the computational success of the algorithm even when both n

and j are large, see [Lewis 1977] for example.
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Appendix B

In this appendix we establish a bound on lll-Q.QJ in terms of the

parameter x.

Theorem. Let t > 0 be such that

(i) h-qfal <x for all i 1 J-

(2) i*ik)\+ii < x for al1 k < j and i < k.

Then for all k < j

Bl-Q*QkB <kx

Remarks. SO is designed to insure that hypothesis (2) holds for

any given x. In practice we set x = Ve and hypothesis (1) will be

satisfied easily. Before proving the Theorem we first prove two lemmas

Lemma 1 first appeared in [Kahan and Parlett 1974].

Lemma 1 (Kahan and Parlett). Let |l-q^qn-| < k, , let
vl vl *

•"J-lV^M- 1et »K-lVl"iKM* and1et

Then

;i-q*q.ii<k. .

Proof.

n-qfy
-q?j-i ^?i
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Ill-Q^Q^H iQ^qjl
BQ^q.ll ll-qfol |

Kj-1 Cj-1

I Cj-1 Kl

j"
* l^+K. ^/(K. 1-K1)^_1)/2 D

To apply Lemma 1 it is necessary to have avalue for s^ in

terms of x.

,(k)Lemma 2. Let \y\*} qk+1| <x, for all i< k, and let

C- = vT< x. Then

»QkViD ± h

Proof. Since S. is an orthogonal matrix,
vl

"QkW2" »skQkVi«2 •
- 1Ykqk+i»2 •
=i1uSk)\+i)

k 2

- ,v
= kx'

Proof of Theorem. Induction on k. If k = 1 then

fll-Q^O =Ill-q^B
< x

D
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by hypothesis 0) so the Theorem is true. Assume that the Theorem is

true for all t <k <j. By Lemma 1, tll-Q£+1Qk+1B <K|c+1 where

0) Vl =tKi+Kk +/(Kk-Ki)2+4ck]/2 •

By hypothesis (1), ^ <x, by induction, Kk < kx, and by Lemma 2

Ck < y/k x.

Combining these inequalities in (1) we obtain

Kk+1 1 [T +kx +/(kx-x)*+4kxz]/2

= [(k+l)x + /(k-l)zxz+4kx*]/2

= [(k+l)x+(k+l)x]/2

= (k+l)x . D
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