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ABSTRACT

The ring-plasma instability arising due to two-energy component ions
of a homogeneous plasma in a uniform magnetic field is étudied through
use of electrostatic and electromagnetic simulations, treating the ring
jons as particles and the target plasma (ions and electrons) as linear-
ized fluids. Simulation results verify very closely the predictions of
the linear Vlasov theory (presented in Part 1) and provide extensive
information on nonlinear features such as beam spreading, slowing doWn,
and saturation, some of which are in agreement with analytié explana-
tions. This nonlinear evolution occurs before Coulomb collisions take
place, and may be considered as initial conditions for Fokker-Planck
calculations. The justification of using a linearized fluid is also

discussed.



I.  INTRODUCTION

The ring-plasma instability is studied through computer
simulations, complementing the results of the linear Vlasov theory
presented in the preceding paper, Part |.

The first simulation for this instability was that of
Birdsall and Maron (1976) using a particle code. Their simulations
had large noise due to the particles in the dense plasma component which
almost obscured the instability itself, thus providing only a qualita-
tive verification of the instability.

On the suggestion of A. B. Langdon, we constructed a
hybrid code combining a particle code for the ring particles and, to
reduce the dense plasma noise, a linearized Eulerian fluid for the plasma
component. The result was as desired, almost noiseless. These hybrid
codes (two versions: electrostatic and electromagnetic) have been
used successfully to study the ring-plasma instabilﬁty in the three
density regimes presented earlier in Part I.

The agreement between the simulations and the results of
the linear Vlasov theory is almost exact in all three regimes both for
electrostatic and for electromagnetic cases.

In addition to the small amplitude behavior, hybrid
simulations provide useful information on some nonl inear phenomena.

‘The nonlinear evolution observed in simulations shows an appreciable
average slowing and broadening of the ring in v, space in a short timé,
on the order of an ion cyclotron period, at about the time the growing

field energy reaches its first peak value (called the saturation in this



paper). The slowing and spreading are not due to collisions. Considerable
structure has been observed in the velocity-space A -perpendicular to the
magnetic field; in some examples, there are radial limits imposed by
the zeroes of Bessel functions, and with the average v at saturation
corresponding closely to the first peak of Bessel functions (so far this
has been checked mainly for the weak ring regime). The rapid slowing
and sbreading of the ring, which occur much before collisions take
place, should be taken into account in fusion reactor neutral beam injec-
tion studies, especially.in the reactivity calculations, which usually
assume a monoenergetic beam and do not consider this ”initiél“ slowing
and spreading.

The électrostatic two ion species simulations model,
using the particle-fluid hybrid code, is presented in Sec. IlI. The
comparison of simulation with the results of the linear théory is
presented in Sec. ill. Nonlinear evolution such as beam spreading,
average slowing down, and saturation are discussed in Sec. IV. Next,
typical results of electromagnetic simulations are shown in Sec. V.
A discussion on thg limits of the linearity assumption for the fluid
plasma is given in Sec. VI. Section VI discusses which Bernstein
harmonics (i.e., those of the ring or of the plasma) are involved
when the lower hybrid wave coupling occurs (in the weak ring case), using
the comparison of fluid-particle simulations with wholly particle theory.

Conclusions are provided in Sec. VIII.



11. MODEL fon ELECTROSTATIC HYBRID SIMULATION

A particle-only code has been used to simulate a ring-
plasma ihstability with limited success; the difficultywas that the
noise from the dense warm plasma component tended to cbscure the instab-
ility itself. The results of a particle code [Bifdsull et al. (1976)]
using one spatial and two velocity dimensions (1d2v ) are shown as a
comparison in Fig. 1.

A way of reducing this noise as well as the computing
cost was suggested by A. B. Langdon (at Lawrence Livermore Laboratory);
this is‘to.treat the warm plasma as a linearized Eulcrian fluid rather
than as particles. The fluid equations are the Lorei:tz equation of
motion with é scalar pressure, no collisions, with eqdation of continuity,
and the adiabatic equation of state (ratio of specifié'heats is 3).

This scheme has an additional advantage that with the plasma
variables known only on the spatial grid (i.e., the plasma dynamics
produces no aliases), there is no (alias caused) limit on the smallness
of the parameter AD/Ax (where Ap is the Debye length and Ax is
the spatial grid sizé) as in a particle code. The computing cost is
also greatly reduced by replacing the dense plasma particles by an
Eulerian fluid. There is a penalty in that the fluid part is linear,
so that fluid is limited to small perturbations; the ring, of course,
is composed of pérticleg and may become highly nonlirear.

The hybrid code (ESI-PEFL) is constructeajby combining
a particle code (ESI By A. B. Langdon) for the fully nonlinear ring
with a linearized Eulerian fluid code (EFL) for the warm plasma. The
detailed algorifhm;for this 1d2v code will appear elsewhere [Lee and

Birdsall (1978)].
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Note that there is no growth at



111. VERIFICATION o4 LINEAR THEORY, ELICTROSTATIC

The small amplitude frequencies and the Qrdwth rates for
the ring-plasma electrostatic instability, found using the code, ROOTS
[Gerver (1976)], are compared with the electrostatic simulation results
of both the hybrid code [Lee and Birdsall (1977)1 and the particle code
[Birdsall et al. (1976)] in Fig. 1 as a sample verification. The phy-
sical parametérs for the simulation are the same'as the prototype in
the theory (see the previous paper, Part 1); the numericél parameters

are:

NP = 8192
NG = L/Ax = 256
LAt = 0.32
mpp| 3
AD/Ax = 0.322
L/)\D = 82.4
klAD = 0.16 (at mode 20)

where NP and NG are the numbers of particles and spatiél grids, respec-
tively, L is the simulation length, Ax is the spatial grid size, At is the
time step, and AD is the Debye length of plasma ions.. Compared with the
qualitative verification of the existence of the instability by the

wholly particle code, the hybrid results check remarkably well with

the linear theory. This latter agreement of the hybrid code with theory
extends to most of the simulation runs, for several cases in each

L

regime, from R=5x10 to 1.0; these are not shown in this paper.

Thus, most of the theoretical results in Part | are verified by the



B

hybridvsimu]ations. The theoretical resuits will be used interchange-

ably with the simulation:results in the following sections.



IV.  NONLINEAR EVOLUTION;
CHECK with SOME ANALYTIC PREDICTIONS

As a result of this instability, the initial cold ring distri-
bution spreads out in the veloci ty-space (vl) perpendicular to the
magnetic field and decreases its average perpendicular speed in a time
scale on the order of an ion cyclotron period as can be seen in Fig.:Z.
The spreading and slowing down of the beam are not dué’to Coulomb
collisions because this time scale is much faster than the usual
collision-caused Fokker-Planck times (either drag of'diffusion times)
for typical fusion parameters.

In the following we identify the radial and the angular
boundaries in v;rspace of spread beam particles in terms of the pro-

2

perties of an analytic function for a specific case, namely, R=10 “ ,

/

wppi wci==]0 , vb/vtp2113 . 4The dispersfon curves for these parameters
are shown in Fig. 3, where we observe‘that the coupling_between the
lower hybrid wave and the tenth Bernstein harmonic of béam ions provides
the most unstable mode. This instability mechanism issimilar to that
of the weak ring regime discussed in Part | although fhe,ring density
classifies this case to the intermediate regime; this discrepancy is
due to the choice of a nonprototype parameter for mppi/wti , hamely,
10 hefe instead of 32 as before. -
| - Foilowing the Hamiltonian approach [Tinofeev (1974),
Fukuyama et al. (1977)], the equation of motion for the conjugate
momentum is | |

dk a. A . v

1 ib : : ) b
T Jﬂ(klaib) where a, oo (1)




Fig. 2

(c) t=27.5 (d) t = 33.5
(44 7¢i) (53 7¢i )

The time evolution of a ring distribution in v, -v, space

with k=k.x and §==Boi . Due to the interaction with the
target plasma at the center (not drawn here), the ring particles

~ spread outward and inward, and decrease their mean perpendicular

speed. At about the saturation time (t5k4.41~i where 1¢j =
2n/wc; =2m), most ring particles are seen to ge confined in a
radial  cell with outer boundary v and inner boundary vi (note
that the initial speed was v, = 2.0); later after the saturation
ring particles are seen to form two distinct cells. The two

circles in Figs. (c) and (d) were drawn as best indicating these
boundaries and not from analysis. o
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Thus, the motion of ring particles is closely related to the corres-
ponding Bessel function of order £, Jl(kiaib)' We will use this
approachrtoiexplain the boundaries in v, space of the spread beam

particles in the next section.
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(1) Spreading of Beam Particles

In Figs. 2b,c,d, we observe that beam partic1es appear to
be distorted into ten sinusoids around the ring, which Awe take as a
manifestation of the major interaction being that of the tenth Bernstein
harmonic and the lower hybrid wave, as also seen in Fig. 3. The Bessel
index £ is 10 for this case. This identification was made earlier by

pamodt and Bodner (1969).

FiQUre 2c, which represents the v, - distributions
at about the saturation time, shows distinct radial boundaries, inner
(vi)énd outer‘(v]). Figures 2d and 4 show the distribution at a
time much later than the wave saturation, now with changed radial

outer boundary'(vz) and inner boundary (vé).

By analogy with the nonlinear theory of Aamodt (1970) and Aamodt
and Bodner (1969), for a flute-like mode, we can view the spreading and
the slowing in the following way.

The’]arge difference in initial velocity distributions
of ring and plasma provides the free energy source to drive an
instability. As the instability develops, the initial Eing will spread
out in the v, -space, both outward and inward, and at the same. time its
avefage speed will decrease. Up to the saturation time, most particles
are confined in tﬁe first cell whose outer edge is determined by the
first zero of the.Bessel function of the tenth order Jro(kla ib) .
After saturation some particles will leak out of the firgt cell to fill
up the neighboring second cell, whose outer boundary is the second zero

of Jlo(klaib) , until the distributions in both cells become flattened:



Fig. &4
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(a) : (b)
(a) The snapshot at t=33.5, much later than the saturation
time identical to Fig. 2d.
(b)

The corresponding velocity distribution function. Note
that vp=2 is the initial ring perpendicular speed and
that v] and v] are the outer and inner boundaries of
the first confining cell (corresponding to the saturation
time, t=27.5), while v, and vy are those of the
second cell formed by the further spreading at t=33.5 .
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(see Fig. 4b). The observed outer boundaries agree very well with the
values predicted by the Bessel zeros. For example, for the first cell,
Fig. 2c gives the simulation first outer boundary v =2.27 which

is identical to the first zero of Jlo(klaib) shown in Fig. 5a. For
the second cell vz(simulation)==2.88 , which is just the second

zero of J in Fig. 5.

10
Like Aamodt (1970),we may use the effecthekpotential
energy of ring particles in the perpendicularly propagating wave to
expiain the inner boundaries. When we have a single resonance, the
effective potentiai energy (see Fig. 5b) at the first outer boundary (v])
will be zero; thus, particles have only the first cell to fill up and
its inner boundary will be essentially zero. But, as in the present
case, most ring-plasmavinstabilities have more than one gyroresonances
as seen in dispersion curves (see Fig. 3). This reducés the effective
potential energy at vy from zero to some finite lower value. As a
result some particles leak out of the first cell until they form a
somewhat flatﬁened distribution in the second cell. The inner boundary
(vi) of the first cell corresponds to the same effective potential
energy as that at the outer boundary (v]) as in the usual trapping
argument; Likewise vé corresponds to vy with the same effective
potential energy. As time goes on, the inner boundary moves toward
‘the inside due to the slijght rise in the effective potential energy at
vy ccmpéred to Av‘ . Simulation shows that inner boundaries are

moving inward slowly (due to the slowly varying effective potential

energy near the origin).
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Bessel function of the first kind of order 10; x=14.5
corresponds to v =2.27, etc.

The effective potential energy (postulated) of ring parti-
cles in the presence of a perpendicularly propagating
wave;  Vj refers to the outer-boundary of the ith cell,
v; to its inner boundary, and (v) sat 15 the average
beam speed at the saturation correspondlng to the maxi-
mum of JIO(X)
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Figures 2c,d, show vé N 1.05 < vi A, 1.20. Although this latter argu-
ment concefning the inner boundaries is only a qualitative one compared
to the quantitative one for the outer boundaries, these simulation re-
sults could be regarded as a confirmation of the analytic theory of

Aamodt and Bodner (1969).

(2) SLOWING DOWN OF BEAM PARTICLES

Figure 6 shows how.ring particles are slowed down on the
average due to fhe instability. As the wave grows to large amplitude,
the avérage beam speed drops rapidly to reach the first minimum ((v)Sat
in Fig. 6) and then rises and oscillates as in the more familiar trap-
ped particle saturation in a beam-plasma instability; the last phenomenon,
oscillation, i$ not shown in Fig. 6, but is clearly observed in the in-
termediate or strong beam cases. The failure to regéin the original speed,
vb'=»2.0 in Fig. 6 is takento be similar to phase mixfng in the beam-plasma
mode. o

From the Bessel function graph (Fig. 5a) we expect that the
wave grows until the argument, klvb/wci’ of the Bessel function makes
the Bessel function take the peak value, i.e., for ourvcase (v)‘sat = 1.78
is expected from Fig. 5a, and indeed_this is close to the simulation re-
sult, (V)gat = vf;?f_from Fig. 6. This means that (vs)at/vb = 0.89, namely
11% average slowing down from the.initial speed.

This aigcussion also iﬁplies that the closer the input para-
meter, klvb/wci,'is-to that of the Bessel function peak fhe less will be
the net drop in the average speed of beam at the saturation time, thus

possibly providing a way of controlling the amount of the collisionless

slowing down.
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Changing‘to a 10 times denser plasma, mppi/wci5¥32 (but
still Rf=10~2), we observe vi/v,=1.2-1.3 (compared to 1.14 for the

— . ) - . ’ :",
mppi/wqi 10 case discussed before)  and (v)sat./vb v 0.96 (compared to

0.89 before); that is, the spreading isvmuch largér, while the slqwing

is much less.
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(3) Saturation Levels: Simulation CLassification and
Theoretical Estimations

Wave growth eventually stops. We define the saturation
time and level when the field energy reaches its first peak. It is
postulated that saturation occurs by the trapping of ring partfcles
in the perpendicularly propagating wave potential, analogous to the
more familiar beam-plasma model.

The evidence that saturation occurs by trapping is as
follows. First, the electric field energy in simulation fncreases
exponentially as predicted by the linear theory; then after a stage
of a reduced growth rate, it reaches its first maximum value, and
drops to its first minimum, and then oscillates with a frequency close
to the trapping frequency of the dominant mode. These oscillations are
observed in the simulations for all three ring density regimes. Si-
milar oscillation is observed in the ring mean speed wifh phase oppo-
site to that of the field energy (part of it was shown in Fig. 6).
Secondly, the phase space plots (vx vs x) and the perpendicular ve-
locity space plots (vx vs v, like Fig. 2) show vortex-like struc-
tures in the particles, indicative of trapping, as the instability

becomes large in amplitude.

Saturation by another mechanism, e.g., quasilinear dif-
fusion, was considéred by Kulygin et af.(1971), Seileret af. (1976,
1977), and Yamada ef al. (1977). |In our simulations, ﬁowever, quasilinear
saturation would be difficult to observe because (i) the mode density

in the vicinity of the fastest growing wave was small, and (ii) the ring
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in our simulations had no initial thermal spread, allowing only a small
spread in allowable phase velocities.

Simulations provide extensive information about the
saturation phenomenon, summarized in Fig. 7, where we Qbserve that
the classification via the saturation levels of simulations (n, the
ratio of the first maximum of electric field energy to the initial beam
kinetic energy) is closely related to that via the maximum growth rates
(see Fig. 2 of the previous paper, Part 1). The two sets of simulation
results in the weak regime (i.e., R:55><10-3) show the effect of the
mode structure in simulations, namely, whether the theofetically most
unstable mode is allowed in a simulation or not; this effect is es-

pecially important where there is discrete mode structure as in the weak ring

cases, The effect also occurs in an unmagnetized beam-plasma instab-

ility simulation, where the saturation level is greatly affected

whether the theoretically most unstable mode is allowed in the simulation,
with a ffnite number of modes excited [Lee and Birdsall (1978)].

In the following we present a way of estimating the
saturation levels (n) analytically with their comparison with simulation
results.

Ffom energy conservation, the initial (noted by a super-
script o) kinetic energy of the beam KE? supplies the kinetic energy
change of the plasma and the electrostatic energy at saturation (noted

by a prime) as

o _ ! 1 1
KE_ = KE! + 6KEp + ESE (2)

This statement readily is rearranged to read as
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KEtl) SKE!
1=—0>+ <f +n (3)
KEb KEb

We make the following approximations. First, the ratio of the kinetic

energy of plasma sloshing in the wave trough to the field energy is

[Krall and Trivelpiece (1973)1

1 SKE! fiE.
F KEO A w ow w- ‘ (4)
b

Here, the dielectric constant of the fluid plasma is approximately

that of an unmagnetized one since the wave frequency is much larger

than the cyclotron frequency, i.e.,

2 2 2
woi k.l.vt
€5 A —E%— 1+3 ———53
w \ 2w

Thus, for the same parameters as in simulations in the weak or interme-

diate ring regime, the above formula predicts

1 2 .05 . (5)
n KEg

This value was checked with simulation results within 3% for

5 x 10-4
Rs3x 10-2 . Our second approximation is
2 2

] 4

KEb _ (v )saturation n (v saturation
= ~ (6)

o 2 2

KEbv \

b Vb

S
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where (v)sat is obtained approximately from the argument x =
k {v? . ‘
1 sat. . . .
= which makes the corresonding Bessel function Jﬂ(x)
ci

peaked (cf. Fig. 5). The index £ corresponds to tHe integer closest
to w__i/w_; - Combining Egs. (2-6), we obtain order of magnitude
estimations for n mostly in the weak ring regime, summarized in

Table . The comparison with simulation results is only qualitative;
considering, however, all the approximatiéns leadingAto‘this estimation,

we find it rather satisfactory.

T ) ™ ™ f32) o
lo lO lo Io lo Io
R=n/ng > 07 x|l x 1 | x
wn o o mn - o~
Simulation 4,73 (6.9%2 | 9.7% | 6.8% | 7.0% | 3.2%
Type A
Estimation 3.8% | 4.6% | 5.2% { 7.0% | 2.9% | 5.4%
| Simulation 6.0 |[5.9% | 4.8% | 4.6% | 4.5% | 3.2%
Type B
Estimation 3.8 [1.9% | 1.9% | 4b.5% | 4.5% | 7.0%
Table 1.

Comparison of saturation levels (n) of electro-
static simulations and theoretical estimations.

Types (A) and (B) correspond to that with and with-
out the theoretically most unstable mode included as

in Fig. 7.
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V.  ELECTROMAGNETIC SIMULATIONS

To simulate an electromagnetic ring-plasma instability,
we need to use a new hybrid code; its construction is similar to
that of an electrostatic hybrid version described in Sec. Il. For
an electromagnetic version, we comb}nedan electromagnetic particle
code, EM1 [Langdon (1970), Cohen et af. (1975)] with an electromagnetic
Eulerian fluid linearized code, EFL [Lee and Birdsall (1978)].

The verification of the electromagnetic linear Vlasov
theory descrfbed in Part | with this electromagnetic hybrid code (EMI
+ EFL) was quite successful. Some typical results in the linear regime
are presented in Figs. 8-10, which show as remarkable agreement as in
the previous electrostatic hybrid simulations. Only three modes are
available in the wave vector ranges of Figs. 8-9 due to the restrictive
parameéers of electromagnetic simulations; among these three, the
first modes were not observed to grow in the present simulations, but
this check could be done with more care in simulations.

The nonlinear evolution of electromagnetic simulations
shows a similar pattern to that of electrostatic simulations; namely,
the ring particles spread and slow down as nonlinear effects saturate
the instability (again by trapping). The quantitative chgck with
analytic explanations as in electrostatic simulations (Sec; IV) has

not been attempted yet.
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VI. LIMITS on THE LINEARITY ASSUMPTION of THE FLUID PLASMA

The linearity assumption is good only when perturbed fluid
plasma velocities (v]) remain small compared to the wave phase velocity
(w/Kk) .
| We find that this criterion is satisfied for weak or inter-
. mediate beam regimes but not for the strong beam regime at saturation. In
Fig. 11, the maximum perturbed plasma velocity is seen to be not negligibly
small, especially near and after the saturation, at large ring strength.
In order to al]éw larger nonlinearity in the fluid plasma, changing
to a new model (e.g., using a Lagrangian fluid) is recbmmended.
However, for this strong beam regime, saturétion levels (n)

show that the power dependence of n on the ring strength (R) is

n o RO-12 (from Fig. 7)

while

Y
max R0.]7
w

(from Fig. 2 of Part 1)

The 0.12 value observed is close to the value of 0.17; this is
contrasted to the §o==0 beam-plasma case, where the R-dependences of

n and Yoax 2F€ the same [Drummond et al. (1970)]. Thus, the Simula-
tion saturation levels (although dubious due to the breakdown of the

linearization) might still contain some measure of credibility even

for strong beam cases.
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the perturbed velocities.
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VIT.  CONTRAST BETWEEN WHOLLY PARTICLE-THEORY and FLUID-PARTICLE THEORY

In hybrid simulations the ring component is treated as par-
ticles and the plasma component as a fluid, thus providing only ring
Bernstein harmonfcs with no plasma Bernstein harmonics. Simulation
results using fluid and particles for the two components agree very
closely with the theoretical predictions using Vlasov models both for
the ring and for the plasma. This agreement is expected in accordance
with the argument by Cary and Kaufman (1977) because the discrepancy
between the Vlasov theory and the fluid theory QanisheS'at zero electron
thermal spread, which indeed is our case. This gives us further evidence
(in addition to that in Sec IV(5) of Part |) to the conclusion that when
the lower hybrid coupling occurs (as at R<«1) it couples with ring
Bernstein harmonics rather than with plasma Bernstein harmpnics for
a cold ring case. With larger ring thermal spread than used here, how-
ever, this coupling may change from the previous fluid type to the
resonant kinetic coupling, in which the frequency misﬁatch is an impor-
tant factor and plasma Bernstein harmonics may play a role as in the
case studied experimentally by Seiler et al. (1976), Seiler (1977),

and Yamada et af. (1977).
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VITI.  CONCLUSIONS

In the preceding paper, Part | and in this Part I,
we studied a flute-like velocity-space instability, arising from the
large difference in the ion velocity distributions (perpendicular to
a uniform magnetic field) of a homogeneous two~energy‘componént plasma.
In Part I,'the.linear Vlasov theory (electrostatic and electromagnetic)
was used, and in Part ||, computer simulations were used.

Simulations using particle-fluid hybrfd codes show remark-
able agreement with the linear Vlasov theory both in electrostatic and
in electromagnetic cases for a wide range of ring density relative
to piasma density.

Hybrid simulations also reveal interesting nonlinear (large
amplitude) evolution. At the end of linear growth (saturation) there
is appreciable spreading (~10% each outward and inward in the v
space), and slowing down (~10%) of the initially monoenergetic beam
particles, and saturation occurs by trapping. These effeéts all occur
on a faster time scale ( ~ a few ion cyclotron periodg) than the colli-
sion-caused relaxation phenomena which may now be followed requiring
Fokker Planck-like solutions. Some of these simulation nonlinear
features agree well with analytic explanations.

Electromagnetic effects tend to reduce the instability
growth rate as the;Alfven speed is.made closer to or sﬁaller than the

beam perpendicular speed, namely in a very high beta plasma.
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The ‘use bf a linearized fluid for the plasma compohent was
justified excepf when the beam is very strong and the instability~is

near the saturation stage.
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