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ABSTRACT

The ring-plasma instability arising due to two-energy component ions

of a homogeneous plasma in a uniform magnetic field is studied through

use of electrostatic and electromagnetic simulations, treating the ring

ions as particles and the target plasma (ions and electrons) as linear

ized fluids. Simulation results verify very closely the predictions of

the linear Vlasov theory (presented in Part 1) and provide extensive

information on nonlinear features such as beam spreading, slowing down,

and saturation, some of which are in agreement with analytic explana

tions. This nonlinear evolution occurs before Coulomb collisions take

place, and may be considered as initial conditions for Fokker-Planck

calculations. The justification of using a linearized fluid is also

discussed.
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I. INTRODUCTION

The ring-plasma instability is studied through computer

simulations, complementing the results of the linear Vlasov theory

presented in the preceding paper, Part I.

The first simulation for this instability was that of

Birdsall and Maron (1976) using a particle code. Their simulations

had large noise due to the particles in the dense plasma component which

almost obscured the instability itself, thus providing only a qualita

tive verification of the instability.

On the suggestion of A. B. Langdon, we constructed a

hybrid code combining a particle code for the ring particles and, to

reduce the dense plasma noise, a linearized Eulerian fluid for the plasma

component. The result was as desired, almost noiseless. These hybrid

codes (two versions: electrostatic and electromagnetic) have been

used successfully to study the ring-plasma instability in the three

density regimes presented earlier in Part I.

The agreement between the simulations and the results of

the linear Vlasov theory is almost exact in all three regimes both for

electrostatic and for electromagnetic cases.

In addition to the small amplitude behavior, hybrid

simulations provide useful information on some nonlinear phenomena.

The nonlinear evolution observed in simulations shows an appreciable

average slowing and broadening of the ring in v space in a short time,

on the order of an ion cyclotron period, at about the time the growing

field energy reaches its first.peak value (called the saturation in this



-2-

paper). The slowing and spreading are not due to collisions. Considerable

structure has been observed in the velocity-space v perpendicular to the

magnetic field; in some examples, there are radial limits imposed by

the zeroes of Bessel functions, and with the average v at saturation

corresponding closely to the first peak of Bessel functions (so far this

has been checked mainly for the weak ring regime). The rapid slowing

and spreading of the ring, which occur much before collisions take

place, should be taken into account in fusion reactor neutral beam injec

tion studies, especially in the reactivity calculations, which usually

assume a monoenergetic beam and do not consider this "initial" slowing

and spreading.

The electrostatic two ion species simulations model,

using the particle-fluid hybrid code, is presented in Sec. II. The

comparison of simulation with the results of the linear theory is

presented in Sec. III. Nonlinear evolution such as beam spreading,

average slowing down, and saturation are discussed in Sec. IV. Next,

typical results of electromagnetic simulations are shown in Sec. V.

A discussion on the limits of the linearity assumption for the fluid

plasma is given in Sec. VI. Section VII discusses which Bernstein

harmonics (i.e., those of the ring or of the plasma) are involved

when the lower hybrid wave coupling occurs (in the weak ring case), using

the comparison of fluid-particle simulations with wholly particle theory.

Conclusions are provided in Sec. VIM.
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II. MODEL &0M ELECTROSTATIC HYBRID SIMULATION

A particle-only code has been used to simulate a ring-

plasma instabi1ity with limited success; the difficulty was that the

noise from the dense warm plasma component tended to obscure the instab

ility itself. The results of a particle code |Birdsi»ll dt at. (1976)]

using one spatial and two velocity dimensions (ld2v) are shown as a

comparison in Fig. 1.

A way of reducing this noise as well as the computing

cost was suggested by A. B. Langdon (at Lawrence Livermore Laboratory);

this is to treat the warm plasma as a linearized Eulerian fluid rather

than as particles. The fluid equations are the Loreitz equation of

motion with a scalar pressure, no collisions, with equation of continuity,

and the adiabatic equation of state (ratio of specific heats is 3).

This scheme has an additional advantage that with the plasma

variables known only on the spatial grid (i.e., the plasma dynamics

produces no aliases), there is no (alias caused) limit on the smallness

of the parameter XQ/Ax (where A is the Debye length and Ax is

the spatial grid size) as in a particle code. The computing cost is

also greatly reduced by replacing the dense plasma particles by an

Eulerian fluid. There is a penalty in that the fluid part is linear,

so that fluid is limited to small perturbations; the ring, of course,

is composed of particles and may become highly nonlinear.

The hybrid code (ES1+EFL) is constructed by combining

a particle code (ESI by A. B. Langdon) for the fully nonlinear ring

with a linearized Eulerian fluid code (EFL) for the warm plasma. The

detailed algorithm for this 1d2v code will appear elsewhere [Lee and

Birdsall (1978)].
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III. 1/ERIFICATI0N oi LINEAR THEORY, ELICTROSTATIC

The small amplitude frequencies and the growth rates for

the ring-plasma electrostatic instability, found using the code, ROOTS

[Gerver (1976)], are compared with the electrostatic simulation results

of both the hybrid code [Lee and Birdsall (1977)] and the particle code

[Birdsall dt at. (1976)] in Fig. 1 as a sample verification. The phy

sical parameters for the simulation are the same as the prototype in

the theory (see the previous paper, Part 1); the numerical parameters

are:

NP = 8192

NG = L/Ax =256

a) .At «• 0.32
PP«

AD/Ax =0.322

LAD = 82.4

kL= 0.16 (at mode 20)

where NP and NG are the numbers of particles and spalial grids, respec

tively, L is the simulation length, Ax is the spatial grid size, At is the

time step, and A-. is the Debye length of plasma ions. Compared with the

qualitative verification of the existence of the instability by the

wholly particle code, the hybrid results check remarkably we11 with

the linear theory. This latter agreement of the hybrid code with theory

extends to most of the simulation runs, for several cases in each

regime, from R=5><10~ to 1.0; these are not shown in this paper.

Thus, most of the theoretical results in Part I are verified by the
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hybrid simulations. The theoretical results will be used interchange

ably with the simulation:results in the following sections.
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IV. NONLINEAR EVOLUTION;

CHECK uiUk SOME ANALYTIC PREDICTIONS

As a result of this instability, the initial cold ring distri

bution spreads out in the velocity-space (v ) perpendicular to the

magnetic field and decreases its average perpendicular speed in a time

scale on the order of an ion cyclotron period as can be seen in Fig. 2.

The spreading and slowing down of the beam are not due to Coulomb

collisions because this time scale is much faster than the usual

collision-caused Fokker-Planck times (either drag or diffusion times)

for typical fusion parameters.

In the following we identify the radial and the angular

boundaries in v -space of spread beam particles in terms of the pro-

-2
perties of an analytic function for a specific case, namely, R=10 ,

a) ./u) .= 10 , v,/v £l3 . The dispersion curves for these parameters
ppi ci ' b tp

are shown in Fig. 3, where we observe that the coup 1ing between the

lower hybrid wave and the tenth Bernstein harmonic of beam ions provides

the most unstable mode. This instability mechanism is similar to that

of the weak ring regime discussed in Part I although the, ring density

classifies this case to the intermediate regime; this discrepancy is

due to the choice of a nonprototype parameter for 0; ./«• . , namely,
r ppi ci

10 here instead of 32 as before.

Following the Hamiltonian approach [Tiniofeev (197*0,

Fukuyama e£ at. (1977)], the equation of motion for the conjugate

momentum is

dkiaib V—-rr— « J„(k a.. ) where a.. (1)
dt t 1 ib7 ib oj ..•

•ci
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Fig. 2 The time evolution of a ring distribution in vx -vy space
with k=kxx and B=B z . Due to the interaction with the
target plasma at the center (not drawn here), the ring particles
spread outward and inward, and decrease their mean perpendicular
speed. At about the saturation time (t^.^T-. where T^i =
27r/o)c| =2ir), most ring particles are seen to be confined in a
radial cell with outer boundary V] and inner boundary v^ (note
that the initial speed was vb = 2.0); later after the saturation
ring particles are seen to form two distinct cells. The two
circles in Figs, (c) and (d) were drawn as best indicating these
boundaries and not from analysis.



-9-

^ci

rlFig. 3 Electrostatic dispersion curves for R=10 , wppi/a)ci " 10 '
vb/vtp^M3 with no electron dynamics.
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Thus, the motion of ring particles is closely related to the corres

ponding Bessel function of order t , J»(k a.,). We will use this

approach to explain the boundaries in v space of the spread beam

particles in the next section.
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(1) SpiejidLLng o& Beam PahXslcZdA

In Figs. 2b,c,d, we observe that beam particles appear to

be distorted into ten sinusoids around the ring, which we take as a

manifestation of the major interaction being that of the tenth Bernstein

harmonic and the lower hybrid wave, as also seen in Fig. 3- The Bessel

index t is 10 for this case. This identification was made earlier by

Aamodt and Bodner (1969).

Figure 2c, which represents the v_^ - distributions

at about the saturation time, shows distinct radial boundaries, inner

(vj) and outer (v.). Figures 2d and k show the distribution at a

time much later than the wave saturation, now with changed radial

outer boundary (v«) and inner boundary (v').

By analogy with the nonlinear theory of Aamodt (1970) and Aamodt

and Bodner (1969), for a flute-like mode, we can view the spreading and

the slowing in the following way.

The large difference in initial velocity distributions

of ring and plasma provides the free energy source to drive an

instability. As the instabi 1ity develops, the initi.il ring will spread

out in the v -space, both outward and inward, and at the same time its

average speed will decrease. Up to the saturation time, most particles

are confined in the first cell whose outer edge is determined by the

first zero of the Bessel function of the tenth order Jio^kia ib^ *

After saturation some particles will leak out of the first cell to fill

up the neighboring second cell, whose outer boundary is the second zero

of Jin(k a-b) , until the distributions in both cells become flattened
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Fig. A (a) The snapshot at t= 33-5 , much later than the saturation
time identical to Fig. 2d.

(b) The corresponding velocity distribution function. Note
that Vb=2 is the initial ring perpendicular speed and
that V] and V] are the outer and inner boundaries of
the first confining cell (corresponding to the saturation
time, t=27.5), while v2 and v£ are those of the
second cell formed by the further spreading at t = 33.5 •
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(see Fig. kb). The observed outer boundaries agree very well with the

values predicted by the Bessel zeros. For example, for the first cell,

Fig. 2c gives the simulation first outer boundary v =2.27 which

is identical to the first zero of Ji0(kj.a.. ) shown in Fig. 5a. For

the second cell v? (simulation) =2.88 ,which is just the second

zero of J,n in Fig. 5.

Like Aamodt (1970),we may use the effective potential

energy of ring particles in the perpendicularly propagating wave to

explain the inner boundaries. When we have a single resonance, the

effective potential energy (see Fig. 5b) at the first outer boundary (v^)

will be zero; thus, particles have only the first cell to fill up and

its inner boundary will be essentially zero. But, as in the present

case, most ring-plasma instabilities have more than one gyroresonances

as seen in dispersion curves (see Fig. 3)- This reduces the effective

potential energy at v, from zero to some finite lower value. As a

result some particles leak out of the first cell until they form a

somewhat flattened distribution in the second cell. The inner boundary

(vj) of the first cell corresponds to the same effective potential

energy as that at the outer boundary (v.) as in the usual trapping

argument. Likewise v' corresponds to v. with the same effective

potential energy. As time goes on, the inner boundary moves toward

the inside due to the slight rise in the effective potential energy at

v„ compared to v . Simulation shows that inner boundaries are
2 r ]

moving inward slowly (due to the slowly varying effective potential

energy near the origin).
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potentia
energy

x= kx v /(x)ci

Fig. 5 (a) Bessel function of the first kind of order 10; x=l4.5
corresponds to v =2.27, etc.

(b) The effective potential energy (postulated) of ring parti
cles in the presence of a perpendicularly propagating
wave; vj refers to the outer-boundary of the itn cell,
Vj to its inner boundary, and (v>sa- is the average
beam speed at the saturation corresponding to the maxi
mum of J10(x)
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Figures 2c,d, show v^ ^ 1.05 < vj[ % 1.20. Although this latter argu

ment concerning the inner boundaries is only a qualitative one compared

to the quantitative one for the outer boundaries, these simulation re

sults could be regarded as a confirmation of the analytic theory of

Aamodt and Bodner (1969).

(2) SLOWING DOWN OF BEAM PARTICLES

Figure 6 shows how ring particles are slowed down on the

average due to the instability. As the wave grows to large amplitude,

the average beam speed drops rapidly to reach the first minimum (<v>
sa t

in Fig. 6) and then rises and oscillates as in the more familiar trap

ped particle saturation in a beam-plasma instability; the last phenomenon,

oscillation, is not shown in Fig. 6, but is clearly observed in the in

termediate or strong beam cases. The failure to regain the original speed,

v. = 2.0 in Fig. 6 is taken to be similar to phase mixing in the beam-plasma

mode.

From the Bessel function graph (Fig. 5a) we expect that the

wave grows until the argument, k^v.A) ., of the Bessel function makes

the Bessel function take the peak value, i.e., for our case <v> = 1J8
SdL

is expected from Fig. 5a, and indeed this is close to the simulation re

sult, <v) . = x/3-2 from Fig. 6. This means that <v> ./v. = 0.89, namely
sat v sat b ' '

11% average slowing down from the initial speed.

This discussion also implies that the closer the input para

meter, kj^v. /u> ., is to that of the Bessel function peak the less will be

the net drop in the average speed of beam at the saturation time, thus

possibly providing a way of controlling the amount of the col 1isionless

slowing down.
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Changing to a 10 times denser plasma, m ./u) .^ 32 (but

still R=10*"2), we observe v^/vj^ =1.2 -1.3 (compared to 1.14 for the
a) ./a) .= 10 case discussed before) and <v> . /v. 'fc0.96 (compared to
ppi ci sat. d

0.89 before); that is, the spreading is much larger, while the slowing

is much less.
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is) Saturation LeveZb: Sis/nutation Cta66i^icjatlon and
Tkzoh.QJxc.at Estimations

Wave growth eventually stops. We define the saturation

time and level when the field energy reaches its first peak. It is

postulated that saturation occurs by the trapping of ring particles

in the perpendicularly propagating wave potential, analogous to the

more familiar beam-plasma model.

The evidence that saturation occurs by trapping is as

follows. First, the electric field energy in simulation increases

exponentially as predicted by the linear theory; then after a stage

of a reduced growth rate, it reaches its first maximum value, and

drops to its first minimum, and then oscillates with a frequency close

to the trapping frequency of the dominant mode. These oscillations are

observed in the simulations for all three ring density regimes. Si

milar oscillation is observed in the ring mean speed with phase oppo

site to that of the field energy (part of it was shown in Fig. 6).

Secondly, the phase space plots (v vs x) and the perpendicular ve-

locity space plots (v vs v like Fig. 2) show vortex-like struc-
x y

tures in the particles, indicative of trapping, as the instability

becomes large in amplitude.

Saturation by another mechanism, e.g., quasi linear dif

fusion, was considered by Kulygin at at. (1971), Seilere£ at. (1976,

1977), and Yamada dt at. (1977). In our simulations, however, quasilinear

saturation would be difficult to observe because (i) the mode density

in the vicinity of the fastest growing wave was small,'and -(ii) the ring
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in our simulations had no initial thermal spread, allowing only a small

spread in allowable phase velocities.

Simulations provide extensive information about the

saturation phenomenon, summarized in Fig. 7, where we observe that

the classification via the saturation levels of simulations (n, the

ratio of the first maximum of electric field energy to the initial beam

kinetic energy) is closely related to that via the maximum growth rates

(see Fig. 2 of the previous paper, Part I). The two sets of simulation

results in the weak regime (i.e., R<5*10 J) show the effect of the

mode structure in simulations, namely, whether the theoretically most

unstable mode is allowed in a simulation or not; this effect is es

pecially important where there is discrete mode structure as in the weak ring

cases. The effect also occurs in an unmagnetized beam-plasma instab

ility simulation, where the saturation level is greatly affected

whether the theoretically most unstable mode is allowed in the simulation,

with a finite number of modes excited [Lee and Birdsall (1978)].

In the following we present a way of estimating the

saturation levels (n) analytically with their comparison with simulation

results.

From energy conservation, the initial (noted by a super

script o) kinetic energy of the beam KE. supplies the kinetic energy

change of the plasma and the electrostatic energy at saturation (noted

by a prime) as

KE? = KE' + 6KE' + ESE' (2)
b b p

This statement readily is rearranged to read as
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KE' 6KE'
1 = -A + E. + n (3)

b b

We make the following approximations. First, the ratio of the kinetic

energy of plasma sloshing in the wave trough to the field energy is

[Krall and Trivelpiece (1973)]

. 6KE1 6e

1 P^u
n „r0 8a)

KEb

w

Here, the dielectric constant of the fluid plasma is approximately

that of an unmagnetized one since the wave frequency is much larger

than the cyclotron frequency, i.e.,

2 / .2 2
co . / k v

F ~i - -E£L 11+3 -L-^S-
£P% <o2 V 2.2

Thus, for the same parameters as in simulations in the weak or interme

diate ring regime, the above formula predicts

I E * ,.05 (5)
n <

D

-4
This value was checked with simulation results within 3% for 5 x 10 £

-2 ...
R<3xl0 . Our second approximation is

KE1 (v2) . <v>2 ,.b _ saturation ^ saturation /^\
o 2 2

KEb vb vb
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where <v) is obtained approximately from the argument x =
Sot*

k<v) „
-L sa t.

which makes the corresonding Bessel function J»(x)
0) .
CI

peaked (cf. Fig. 5). The index t corresponds to the integer closest

to a) ,/iu . . Combining Eqs. (2-6), we obtain order of magnitude
ICQ I C I

estimations for r\ mostly in the weak ring regime, summarized in

Table 1. The comparison with simulation results is only qualitative;

considering, however, all the approximations leading to this estimation,

we find it rather satisfactory.

R =
b p

i

o

X

IA

ro

1
O

CO

O

X

CO

1

O

X

CO

1

O

X

CM
1

O

X

CM

Type A
Simulat ion 4.72 6.92 9.72 6.82 7-02 3.22

Est imation 3.82 4.62 5.22 7.02 2.92 5.42

Type B
Simulation 6.02 5.92 4.82 4.62 4.52 3.22

Estimation 3.82 1.92 1.92 4.52 4.52 7.02

Table 1.

Comparison of saturation levels (n) of electro

static simulations and theoretical estimations.

Types (A) and (B) correspond to that with and with

out the theoretically most unstable mode included as

in Fig. 7-
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V. ELECTROMAGNETIC SIMULATIONS

To simulate an electromagnetic ring-plasma instability,

we need to use a new hybrid code; its construction is similar to

that of an electrostatic hybrid version described in Sec. II. For

an electromagnetic version, wecombinedan electromagnetic particle

code, EMI [Langdon (1970), Cohen dt at. (1975)] with an electromagnetic

Eulerian fluid linearized code, EFL [Lee and Birdsall (1978)].

The verification of the electromagnetic linear Vlasov

theory described in Part I with this electromagnetic hybrid code (EMI

+ EFL) was quite successful. Some typical results in the linear regime

are presented in Figs. 8-10, which show as remarkable agreement as in

the previous electrostatic hybrid simulations. Only three modes are

available in the wave vector ranges of Figs. 8-9 due to the restrictive

parameters of electromagnetic simulations; among these three, the

first modes were not observed to grow in the present simulations, but

this check could be done with more care in simulations.

The nonlinear evolution of electromagnetic simulations

shows a similar pattern to that of electrostatic simulations; namely,

the ring particles spread and slow down as nonlinear effects saturate

the instability (again by trapping). The quantitative check with

analytic explanations as in electrostatic simulations (Sec. IV) has

not been attempted yet.
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Fig. 8 Electromagnetic hybrid simulation results (marked x) for
R=0.1 , toppi/u>ci*32 , vb/vtp^13 , vb/vA^0.9 (vA is
the Alfven speed), mj/me = 400 ; mode 2 and 3 are almost
exactly checked with the theoretical predictions (curves)
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Electromagnetic hybrid simulation (marked x for the^only two
growing modes in this wave vector range) with R-10 ^
=10, vb/vtp*13 ,vb/vA =0.07 (only slightly electromagnetic).
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VI. LIMITS on THE LINEARITY ASSUMPTION orf THE VLUID PLASMA

The linearity assumption is good only when perturbed fluid

plasma velocities (v.) remain small compared to the wave phase velocity

(co/k).

We find that this criterion is satisfied for weak or inter

mediate beam regimes but not for the strong beam regime at saturation. In

Fig. 11, the maximum perturbed plasma velocity is seen to be not negligibly

small, especially near and after the saturation, at large ring strength.

In order to allow larger nonlinearity in the fluid plasma, changing

to a new model (e.g., using a Lagrangian fluid) is recommended.

However, for this strong beam regime, saturation levels (n)

show that the power dependence of n on the ring strength (R) is

n D0.12 lf. _. _v
n ^ R (from Fig. 7)

wh ile

y
max

0)
'v R0-17 (from Fig. 2 of Part l)

The 0.12 value observed is close to the value of 0.17; this is

contrasted to the B =0 beam-plasma case, where the R-dependences of

n and y are the same [Drummond et al. (1970)]. Thus, the Simula-
max

tion saturation levels (although dubious due to the breakdown of the

linearization) might still contain some measure of credibility even

for strong beam cases.
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Approximate
Maximum

Level

3 4 5 6 (R= I, 10"')
6 8 10 12 (R= IO"2)

15 20 25 30 (R=I0~3)
Wei*

Fig. 11 The time evolution of the maximum perturbed plasma fluid velo
cities (v|) for R=l , 10"1 , IO"-2 and 10~3 ,obtained from
electrostatic hybrid simulations with <*>pp;/">c; ^ 32 ,vb/vtp *fc
13 » VA/Vb = "° * Note tnat tne l'nearitv assumption does not
hold near the saturation time espectially for strong beams
where the wave phase velocity (w/k) is about 1.6 close to
the perturbed velocities.
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VII. CONTRAST BETWEEN WHOLLY PARTICLE-THEORY and ELUID-PARTICLE THEORY

In hybrid simulations the ring component is treated as par

ticles and the plasma component as a fluid, thus providing only ring

Bernstein harmonics with no plasma Bernstein harmonics. Simulation

results using fluid and particles for the two components agree very

closely with the theoretical predictions using Vlasov models both for

the ring and for the plasma. This agreement is expected in accordance

with the argument by Cary and Kaufman (1977) because the discrepancy

between the Vlasov theory and the fluid theory vanishes at zero electron

thermal spread, which indeed is our case. This gives us further evidence

(in addition to that in Sec IV(5) of Part I) to the conclusion that when

the lower hybrid coupling occurs (as at R«l) it couples with ring

Bernstein harmonics rather than with plasma Bernstein harmonics for

a cold ring case. With larger ring thermal spread than used here, how

ever, this coupling may change from the previous fluid type to the

resonant kinetic coupling, in which the frequency mismatch is an impor

tant factor and plasma Bernstein harmonics may play a role as in the

case studied experimentally by Seiler dt at. (1976), Seiler (1977),

and Yamada dt at. (1977).



-30-

VIII. CONCLUSIONS

In the preceding paper, Part I and in this Part II,

we studied a flute-like velocity-space instability, arising from the

large difference in the ion velocity distributions (perpendicular to

a uniform magnetic field) of a homogeneous two-energy component plasma.

In Part I, the linear Vlasov theory (electrostatic and electromagnetic)

was used, and in Part II, computer simulations were used.

Simulations using particle-fluid hybrid codes show remark

able agreement with the linear Vlasov theory both in electrostatic and

in electromagnetic cases for a wide range of ring density relative

to plasma density.

Hybrid simulations also reveal interesting nonlinear (large

amplitude) evolution. At the end of linear growth (saturation) there

is appreciable spreading {^]0% each outward and inward in the v^

space), and slowing down (^10£) of the initially monoenergetic beam

particles, and saturation occurs by trapping. These effects all occur

on a faster time scale ( ^ a few ion cyclotron periods) than the colli

sion-caused relaxation phenomena which may now be followed requiring

Fokker Planck-like solutions. Some of these simulation nonlinear

features agree well with analytic explanations.

Electromagnetic effects tend to reduce the instability

growth rate astheAlfven speed is made closer to or smaller than the

beam perpendicular speed, namely in a very high beta plasma.
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The use of a linearized fluid for the plasma component was

justified except when the beam is very strong and the instability is

near the saturation stage.
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