Copyright © 1978, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

SELF-HEATING OF 1d THERMAL PLASMA;

1

1.2

à.

COMPARISON OF WEIGHTINGS; OPTIMAL PARAMETER CHOICES

by

A. Peiravi and C. K. Birdsall

Memorandum No. UCB/ERL M78/32

12 June 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

ABSTRACT

sional electrostatic thermal glasma are presented using zero

Self-heating times of a one dimensional electrostatic simulation thermal plasma are presented using zero order weightings (NGP), linear weighting (CIC-PIC), and quadratic spline weighting (QS). Maximum heating times are found to be along v $\frac{\Delta t}{\Delta x} \approx \frac{3}{2}$ for NGP and $\approx \frac{1}{2}$ for CIC and QS. Considerable increase in self-heating time is achieved through truncation in k-space.

Research sponsored by the Department of Energy Contract EY-76-S-03-0034-PA128.

I. INTRODUCTION

The self-heating (nonphysical) times for one-dimensional electrostatic thermal plasma are presented using zero order weighting (NGP), linear weighting (CIC-PIC), and quadratic spline weighting (QS) in a momentum conserving^{*} code, ESl of A. B. Langdon [1]. The self-heating time τ_h is defined as the time taken for the thermal energy of the system to double. A 1d electrostatic thermal plasma model consisting of a mobile electron species and immobile neutralizing ion background was used. For this system, this is the time in which the average kinetic energy of an electron increases by $\frac{1}{2}\kappa T$. The increase in energy is numerical in origin and stochastic in nature. It arises from fluctuations in the force due to the presence of finite grids in space and time. Thus, the self-heating times strongly depend on Δt and Δx .

A Maxwellian velocity loader with first and second moment correction was used [2].

R. W. Hockney [3] empirically obtained the self-heating times for a 2d plasma with ions and electrons using $T_e = T_i$, $m_i/m_e = 64$, with further refinement by Hockney et al., [4]. We have added quadratic spline weighting and show self-heating times are longest for $v_t \frac{\Delta t}{\Delta x} \approx \frac{3}{2}$ for NGP and $v_t \frac{\Delta t}{\Delta x} \approx \frac{1}{2}$ for CIC and QS.

*Energy conserving codes also show self-heating for $\Delta t \neq 0$. Only in the limit of $\Delta t \neq 0$ is energy conserved.

- 1 -

II. CHOICE OF $\omega_{p}\Delta t$: DETERMINATION OF SELF-HEATING TIME τ_{h}

Typical growths in time of the thermal energy are shown for NGP in Fig. 1 (cases A1-A6).* For $\omega_p \Delta t \leq 0.6$ the energy increases linearly with time, implying a random process; the remaining work presented will be for $\omega_p \Delta t$ in this range. For larger $\omega_p \Delta t$, the growth in thermal energy is like t^n , but with n > 1, which implies some other kind of growth, as yet unexplained. The same change in growth pattern for $\omega_p \Delta t \geq 0.6$ was observed for CIC-PIC and QS weightings. From histories like those of Fig. 1, with slope of one, $\omega_p \tau_h$ was determined.

Figure 1 shows raw data and does not have points at early time. When we plot all the points from t=0 onward on a linear plot, then we see fluctuations preceding linear growth in time; these are due to the ordered (but not quiet) start. In obtaining τ_h , the zero in time and initial thermal energy were assigned to the beginning of growth linear in time.

*See Appendix C for the parameters for each case.

2.9

- 2 -

Fig. 1. Increase in $\langle v^2(t) \rangle / \langle v^2(0) \rangle$ with time for zero-order weighting (NGP) scheme, for several values of $\omega_p \Delta t$ with $\lambda_D / \Delta x = 1.0$. The $\langle \rangle$ means average over all particles. The heating time ι_h is defined as the time for $\langle v^2(t) \rangle$ to double, that is, when the curve reaches 1.0. III DEPENDENCE ON $n_0 \lambda_D$, $n_0 \Delta x$, $n_0 (\lambda_0 + \Delta x)$

The self-heating times are plotted in Fig. 2 in units of electron plasma frequency, $\omega_{\rm p}\tau_{\rm h}$, vs $N_{\rm D} = n_{\rm o}\lambda_{\rm D}$ and $N_{\rm C} + N_{\rm D} = n_{\rm o}(\Delta x + \lambda_{\rm D})$ (cases A7-A11, B1-B5) where $n_{\rm o}$ is varying. Fig. 3 shows $\omega_{\rm p}\tau_{\rm h}$ vs $N_{\rm C} + N_{\rm D}$ for two different ratios of $\lambda_{\rm D}/\Delta x$ where $n_{\rm o}$ is no longer varying but $\lambda_{\rm D}$ and Δx are varied using NGP (cases A27-A28 for $\lambda_{\rm D}/\Delta x = 2$ and A12-A15 for $\lambda_{\rm D}/\Delta x = 0.5$) Similar behavior is observed for CIC. These figures lead to the conclusion that for a fixed $\lambda_{\rm D}/\Delta x$, $\omega_{\rm p}\tau_{\rm h}$ is proportional to $N_{\rm C} + N_{\rm D}$.

- 4 -

Fig. 2. Self-heating time vs $n_0 \lambda_D$ or $n_0 (\lambda_D + \Delta x)$ for NGP, CIC showing linear dependence.

Fig. 3. Self-heating time vs $N_{C} + N_{D}$ for different $\lambda_{D}/\Delta x$ ratios showing linear dependence of $\omega_{p}\tau_{h}$ on $N_{C} + N_{D}$ for fixed $\lambda_{D}/\Delta x$ for NGP.

- 6 -

IV DEPENDENCE ON $\lambda_D / \Delta x$; OPTIMUM CHOICE OF $v_t \frac{\Delta t}{\Delta x}$

The self-heating times $\omega_p \tau_h$ divided by $N_C + N_D$ are plotted in Figs. 4, 5 and 6 vs $\lambda_D/\Delta x$ for different values of $\omega_p \Delta t$ (cases A16-A63, B6-B60, C1-C42). The dashed line drawn through the different graphs is $v_t \frac{\Delta t}{\Delta x} \approx \frac{3}{2}$ for NGP and $v_t \frac{\Delta t}{\Delta x} \approx \frac{1}{2}$ for CIC and QS. The longest heating times occur near these values of $v_t \frac{\Delta t}{\Delta x}$.

e

V COMPARISON OF SCHEMES; GAIN OF GOING TO A HIGHER

2-

•

ORDER ALGORITHM

As a comparison of the different algorithms studied, ratios of self-heating times of quadratic-spline to nearest-grid-point and cloud-in-cell to nearest grid point are plotted in Figs. 7 , 8, and 9 for $\omega_p \Delta t = 0.1$, 0.2, 0.3 , respectively. These figures indicate that CIC heating times are as much as 70 times longer than NGP and that QS is as much as 650 times longer than NGP.

These increases in heating times come at the expense of longer computation times. Actual measurements of cost of simulation per particle per time step on the CDC-7600 MFE computer at LLL show that $T \simeq 5$, 11.6, 24 µsec/particle/time step for NGP, CIC, and QS, respectively. Hence, we need a measure of accounting for this cost. We have chosen to define the gain of using a higher order weighting scheme as

gain = <u>increase in self-heating time</u> increase in computer time

Going through the optimal path, we have gains as presented in Table I. Note that the gains of using higher order weightings, NGP + CIC, and CIC + QS are roughly one order of magnitude, much less than the gains in τ_h .

- 11 -

$w_p^{\Delta t}$ gain	0.1	0.2	0.3
CIC/NGP	$\frac{27.5}{2.3}$ = 11.9	$\frac{48}{2.3}$ = 20.8	$\frac{70}{2.3} = 30.4$
QS/NGP	$\frac{350}{4.8}$ = 72.9	$\frac{650}{4.8}$ = 135.4	$\frac{440}{4.8} = 91.6$
QS/CIC = (QS/NGP)/(CIC/NGP)	6.1	6.5	3.0

Gain in going to a higher order algorithm. The ratios inside the table are increase in self-heating times (i.e., reduction in error in energy) over increase in cost (determined on the CDC 7600 MFE computer at LLL). ţ,ś

Fig. 7. Ratios of self-heating times vs $\frac{\lambda_D}{\Delta x}$ for $\omega_p \Delta t = 0.1$.

Fig. 8. Ratios of self-heating times vs $\frac{\lambda D}{\Delta x}$ for $\omega_p \Delta t = 0.2$.

VI INCREASE IN GAIN DUE TO SMOOTHING

The self-heating time can be increased considerably by smoothing the charge density in k-space. The smoothing factor used was simple Fourier space truncation, where all the modes beyond k_{last} are dropped, as shown in Fig. 10. Fig. 11 shows the self-heating time $\omega_p \tau_h vs k_{max}/k_{last}$ for the different schemes used (keeping everything fixed but varying k_{last} for each scheme) (cases A70-A79, B63-B69, C43-C47). The gain in self-heating time due to k-space truncation is almost proportional to k_{max}/k_{last} for NGP and is close to but not quite proportional to $(k_{max}/k_{last})^2$ for CIC and $(k_{max}/k_{last})^3$ for QS. Thus, k-space truncation further increases the gain of CIC/NGP and QS/NGP and QS/CIC. Table II shows approximate gains with k-space truncation.

- 16 -

gain $\omega_{pe}^{\Delta t}$	0.1	0.2	0.3
CIC/NGP ×(k _{max} /k _{last})	11.9	20.8	30.4
QS/NGP $\times (k_{max}/k_{last})^2$	[•] 72.9 [•]	135.4	91.6
QS/CIC ×(k _{max} /klast)	6.1	6.5	3.0

.

·**.** ·

8.4

Table II. Gain with k-space truncation.

•

- 18 -

k_{max}/k_{last} for NGP, CIC, QS. Self-heating times vs

ι,

- 19 -

VII CONCLUSIONS

The self-heating times are longest for $v_t \frac{\Delta t}{\Delta x} \approx \frac{3}{2}$ for NGP and $v_t \frac{\Delta t}{\Delta x} \approx \frac{1}{2}$ for CIC and QS. Roughly speaking, quadratic spline heating times are one order of magnitude longer than for cloud-in-cell, while cloud- in cell is one order of magnitude longer than nearest grid point, considering both gain in heating time and increase in cost. Smoothing by Fourier space truncation considerably increases the selfheating time and this increase is roughly proportional to

$$\left(\frac{k_{max}}{k_{last}}\right)^{n+1}$$

where n is the order of the weighting scheme, i.e., n=0 for NGP, n=1 for CIC, and n=2 for QS. Use of higher order algorithms is highly recommended, specially when k-space truncation is also used.

REFERENCES

- C. K. Birdsall, A. B. Langdon, <u>Plasma Physics via Computer</u> <u>Simulation</u>, Part I, Chapter 3, University of California, Berkeley (Dec. 1975).
- S. Gitomer, "Comments on Numerical Simulation of the Weibel Instability in One and Two Dimensions", Phys. Fluids <u>14</u>, (Jul. 71) 1591-1592.
- 3. R. W. Hockney, "Measurements of Collisions and Heating Times in a Two-dimensional Thermal Plasma", J. Comp. Phys. 8, (Aug. 71) 19-44.
- R. W. Hockney, S. P. Goel and J. W. Eastwood, "Quiet High Resolution Computer Models of a Plasma", J. Comp. Phys. <u>14</u>, (Feb. 74) 148-158.
- 5. M. Abramowitz and I. A. Stegan, <u>Handbook of Mathematical Functions</u>, Applied Mathetmatics Series 55, (1964) 952-953.
- 6. J. Denavit, "Discrete Particle Effects in Whistler Simulation",J. Comp. Phys. <u>15</u> 4 (Aug. 1974).
- 7. A. B. Langdon, "'Energy Conserving' Plasma Simulation Algorithms",J. Comp. Phys. 12 2 (Jun. 1973).
- 8. See Reference 1, Part II, Chapter 9.

APPENDIX A LOADING A THERMAL PLASMA WITH FIRST AND SECOND MOMENT CORRECTIONS

A one-dimensional Maxwellian velocity distribution,

$$f(v) = (2\pi)^{-\frac{1}{2}} v_t^{-1} \exp\left(\frac{-v^2}{2v_t^2}\right)$$

. . 4

can be loaded using a set of random numbers u_1 , u_2 , u_3 , ..., u_n to generate the velocity of one particle [5], i.e.

$$v_n(j) = v_t \left(\sum_{j=1}^n u_j - \frac{n}{2} \right) / \left(\frac{n}{12} \right)^{b_2}$$

This process can be repeated for all the particles to be loaded; it requires calling n random numbers times the total number of particles. It produces better results as the number of particles in the system is increased NP $\rightarrow \infty$. The fluctuations about the desired distribution reduce as NP^{1/2}, which means that with a few hundred or thousand particles, the fluctuation level is of the order of a few percent, which may not be satisfactory.

The nth moment of a Maxwellian distribution in ld is

$$\langle v^{n} \rangle = \int_{-\infty}^{\infty} v^{n} e^{-v^{2}/2v_{t}^{2}} dv / \int_{-\infty}^{\infty} e^{-v^{2}/2v_{t}^{2}} dv$$

$$= (\sqrt{2} v_{t})^{n} \int_{0}^{\infty} x^{(n-1)/2} e^{-x} dx / \int_{0}^{\infty} x^{-\frac{1}{2}} e^{-x} dx$$

$$= (\sqrt{2} v_{t})^{n} r \left(\frac{n+1}{2}\right) / r(\frac{1}{2}) .$$
(1)

- 22 -

The expected values of the first five moments of a distribution with $v_t = 1$ and

$$\langle v^+ \rangle = - \langle v^- \rangle \equiv \int_0^\infty v e^{-v^2/2v_t^2} dv \int_0^\infty e^{-v^2/2v_t^2} dv$$
 (2)

are listed in Table I. Also listed are the ensemble averages over 10 separate loadings with a different set of random numbers used each time. We have used n = 12 and NP, the number of particles, equal to 1024. The higher moments are quite different from what is desired; the lower moments are within the expected fluctuation level of the random number generator, i.e., $\frac{\sqrt{N}}{N} = \frac{1}{\sqrt{2024}} = 0.03125$.

An improvement in all the odd moments can be achieved by loading a symmetric distribution, i.e.,

$$v_{n}(j) = \begin{cases} v_{t} \left[\sum_{i=1}^{n} u_{i} - \frac{n}{2} \right] \left(\frac{n}{12} \right)^{-l_{2}} & j = 1, 2, \dots, \frac{NP}{2} \\ -v_{n}(j - \frac{NP}{2}) & j = \frac{NP}{2} + 1, \frac{NP}{2} + 2, \dots, NP \end{cases}$$
This method requires only half as many random numbers, $n \times \frac{NP}{2}$.
Ensemble averages over 20 loadings of this distribution are listed in Table AI. Some improvement occurs. However, although the second moment averaged over 20 runs is only off by 2 per cent, the standard deviation of this moment about v_{t}^{2} is $0.05 v_{t}^{2}$.

- 23 -

	< ₩ >	< v ² >	_ع ،	<v4></v4>	< v ⁵ >	(_v)+	(v) ⁻
expected value	0.	1.0	0	3.0	0	0.3989	0.3989
nonsymmetric random loader	0.04	0.96	0.18	2.73 [`]	1.02	0.4210	0.3604
symmetric random loader	0	0.98	0	2.82	0	0.3879	0.3879

Table AI

• 3

Several moments with n = 12, NP = 1024, $v_t = 1$.

1st row is the expected value from theory with no cutoff. 2nd row is the ensemble average over 10 separate loadings 3rd row is the ensemble average over 20 separate loadings.

- 24 -

A second improvement would be achieved if we could reduce this deviation to zero. This can be done by using a correction method suggested by Gitomer [2]. In this correction scheme, the particles are divided into ℓ groups of m particles. If a symmetric distribution has already been loaded, it is then best to correct each half of the distribution separately. Next one computes the mean and square means of the velocities of particles in each group \overline{v} , $\overline{v^2}$, by

 $\overline{v} = \frac{1}{m} \sum_{i=1}^{m} v_i , \quad \overline{v^2} = \frac{1}{m} \sum_{i=1}^{m} v_i^2$ then computes a correction factor ALPHA = $\left(v_t^2 / (\overline{v^2} - \overline{v})^2\right)^{\frac{1}{2}}$ and next the corrected velocities

$$v_i = ALPHA(v_i - \overline{v})$$
.

It is important to be careful in the division of the particles into groups. For small values of m, we obtain an orderly and noiseless distribution but a poor Maxwellian. With NP = 1024 and m = 2, one gets two beams at $\pm v_t$. These distributions are sketched in Fig. Al; with m = 4, we get a distribution similar to a step function with cutoffs at $\pm 2.3 v_t$. As m increases, the cutoff level goes up to $\pm 3 v_t$ for m = 32 or higher. The measured values for the moments are given in Table AII and plotted in Fig. A2, showing rapid approach to Maxwellian values.

In the study of self-heating times, this improved version of the thermal loader was used with l = 1, where the resulting distribution was very nearly Maxwellian.

- 25 -

۰, ٦

The solid line is drawn from silmulation with NP = 1024, with 31 bins in v . The dashed line (a) m = 2, producing m = 512 , very nearly a Fig. Al Distribution functions with first and second moment correction as a function of m, the number of particles corrected in a group. ℓ is the total number of groups corrected. is the Maxwellian for the same energy. The resulting distributions are two streams at $\pm v_t$, (b) m = 4, almost a square distribution, (c) Maxwellian.

- 26 -

10	(_V)	<v<sup>2></v<sup>	۲ ³	<v4></v4>	<v<sup>5></v<sup>	<pre><v>* = -(v)[*]</v></pre>
2	0	1.0	0	1	0	.500
4	0	1.0	0	1.838	0	.432
8	0	1.0	0	2.539	0	.411
16	0	1.0	0	2.686	0	.403
32	0	1.0	0	2.738	0	.399
64	0	1.0	0	2.790	0	• .400
128	0	1.0	0	2.868	Ŏ	. 399
256	0	1.0	0	2.920	0	.400
512	· 0	1.0	0	2.924	0	. 399
Maxwellian	0	1.0	0	3	0	. 3989
	1.					

2 :

Table AII Moments using symmetric loading and Gitomer's corrector.

Fig. A2 Moments of distribution with first and second moment correction. m is the number of particles whose second moment was corrected in a group.

APPENDIX B QUADRATIC SPLINE WEIGHTING: APPLICATION TO ES1

Quadratic spline weighting algorithm [6], [7] has been placed in the plasma simulation code ESl and as a check we present the dispersion for a cold plasma.

For momentum conserving codes. using quadratic splines, the shape factor S(k) and the κ (from $\nabla \phi$) and K² (from $\nabla^2 \phi$) operators are [8]

$$S(k) = dif^{3}\left(\frac{k\Delta x}{2}\right) = \left[\frac{\sin(k\Delta x/2)}{k\Delta x/2}\right]^{3}$$
(1)

2

$$\kappa(k) = k \operatorname{dif}(k\Delta x) = k \frac{\sin(k\Delta x)}{k\Delta x}$$
(2)

$$K^{2}(k) = k^{2} \operatorname{dif}^{2}\left(\frac{k\Delta x}{2}\right) = k^{2} \left[\frac{\sin(k\Delta x/2)}{k\Delta x/2}\right]^{2} . \tag{3}$$

The dispersion equation for a cold plasma is, using $k_p \equiv k - pk_g$, $k_g \equiv \frac{2\pi}{\Delta x}$,

$$\frac{\omega^2}{\omega_p^2} = \frac{1}{\kappa^2(k)} \sum_{p} k_p \kappa(k_p) S^2(k_p) .$$
 (4)

Using Eqs. (1,2,3) in (4) we obtain

$$\frac{\omega^2}{\omega_p^2} = \frac{1}{k^2 \operatorname{dif}(k\Delta x/2)} \sum_p k_p^2 \operatorname{dif}(k_p\Delta x) \operatorname{dif}^6(k_p\Delta x/2) \quad (5)$$

$$= \frac{2^{4} \sin^{4}(k\Delta x/2) \sin(k\Delta x)}{\Delta x^{5}} \sum_{p} \frac{1}{k_{p}^{5}}$$
(6)

$$= \left(\frac{2}{\Delta x}\right)^5 \sin^5(k\Delta x/2) \cos(k\Delta x/2) \sum_p \frac{1}{k_p^5} \qquad (7)$$

Using the identity

$$\sum_{p} \frac{1}{(k - pk_g)^2} \equiv \left[\left(\frac{2}{\Delta x} \right) \sin(k\Delta x/2) \right]^{-2}$$
(8)

and differentiating three times successively, we get at each step

$$\sum_{p} \frac{1}{(k - pk_{g})^{3}} = \cos(k\Delta x/2) \left[\left(\frac{2}{\Delta x} \right) \sin(k\Delta x/2) \right]^{-3}$$
(9)

$$\sum_{p} \frac{1}{(k - pk_{g})^{4}} = \frac{1}{3} \left(\frac{\Delta x}{2} \right)^{2} \left[\left(\frac{2}{\Delta x} \right) \sin(k\Delta x/2) \right]^{-2}$$

$$+ \cos^{2}(k\Delta x/2) \left[\left(\frac{2}{\Delta x} \right) \sin(k\Delta x/2) \right]^{-4}$$
(10)

$$\sum_{p} \frac{1}{(k - pk_{g})^{5}} = \cos(k\Delta x/2) \left[\left(\frac{2}{\Delta x} \right) \sin(k\Delta x/2) \right]^{-5}$$

$$\cdot \left[\frac{2}{3} \sin^{2}(k\Delta x/2) + \cos^{2}(k\Delta x/2) \right]^{-5}$$
(11)

$$\sum_{p} \frac{1}{k_{p}^{5}} = \cos(k\Delta x/2) \left[\left(\frac{2}{\Delta x} \right) \sin(k\Delta x/2) \right]^{-5} \left[\frac{2 + \cos^{2}(k\Delta x/2)}{3} \right]. \quad (12)$$

Thus, the dispersion equation reduces to

$$\frac{\omega^2}{\omega_p^2} = \cos^2(k\Delta x/2) \left(\frac{2 + \cos^2(k\Delta x/2)}{3}\right).$$
(13)

The quadratic spline weighting algorithm has been tested out in our electrostatic one-dimensional code ES1; the cold plasma results along with the theory are plotted in Fig. Bl. The parameters of the run are as given in Table BI below.

L = 6.28	NP = 128
$\Delta t = 0.2$	ω _p = 1.0
NG = 64	×1 = 0.001

Table BI Parameters used for measurement of cold plasma dispersion using quadratic spline weighting.

The results show very good agreement with theory. This algorithm was used in our study of self-heating times with second order weighting.

31 -

					Table C	1 NE	AREST G	UD POIN	т				k /		ω_τ_/
Case No.	L	NG	NP	ΔΧ	۵t	φ ^ω	v _t	ωpΔt	λ _D /Δx	NC	ND	N _C +N _D	k _{last}	^ω p ^τ h	NC+ND
A1	64	64	1024	1.0	4.0	0.1	e 1.	0.10	1.0	16	14	32.	1.c	1296.00	4.150
A 2	64	<i>ie</i> 4	int	1.0	1.4	0.2	0.1	0.14	1.0	14	16	3~-	1.6	1207.SI	391.73
A 3	64	44	pig	1.0	4.0	0.1	c. 1	0.40	1	16	14	3~-	1.6	, 25.20	19.53
A4	64	64	1014	1.0	6.0	0.1	0.1.	0.60	1.0	16	14	3~	1.0	382.00	11.93
AS	64	64	1224	1-0	10.0	6.1	o . 1	1	1.0	14	14	32-	1.0	15000	4.43
AG	44	64	1014	1.0	14.0	0.1	0.1	1.40	1.0	16	16	32-	1.0	7000	2.12
AT	64	64	64	1.0	0.2	0.4	o. 4	0.08	1.0	1	1	2	1.0	74	31
A 8	64	64	128	1.0	2.2	o·4	r 4	0.08	1.0	2	2	4	1.0	jis	2045
A٩	64	64	256	1.0	0.2	0.4	ુ. ન	0.08	1.0 .	4	4	8	4.5	160	7.0
Alo	64	64	512	1.0	0.2	0.4	0.4	0.08	1. u	8	S C	16	1.6	3 ل د	1215
All	64	64	1024	1.0	0.2	0.4	0.4	0.08	1.0	16	16	32.	1.0	600	12 75
A13.	64	64	1024	1.0	0.2	1.0	0.5	0.2	6.5	16	8	24	1.0	150	6.25
NIS	\$28	32	512	4,	1	a.1	0.44	0.2	0.5	16	8	24	1.0	15%	6.615
AIST	64	32	1024	2.0	2	0.1	0.1	0.2	0.5	32	16	48.	1.0	523	6.719
A15	64	64	256	1.6	a L	1.0	0.5	0.2	0.5	4	2	6	1.0	\$7.5	6.15
AIT	-64	64	7024		_3.1		شترد مشد.								
A16 AH. FI	32-	36	256	1.0	6. j	1.0	c. 35	- d+j	0.35	8	2.58	10.28	1.0	37	3.4)
.417	64	64	1027	1.0	C.I	1.0	0.5	0.1	0.5	16	8	24	1.0	199	2.29
A 16	32	32	256	1.0	0.1	1.0	0.75	0.1	0.75	8	6	14	1.0	355	23.93
A 19	32	32	256	1.0	<i>P</i> .1	1.0	4	0.1	4	8	32	40	1. 0	17100	721.5
220	32	32	256	1.0	01	1.0	10	0.1	10	δ'	80	88	1.0	81845	122.62
421	32	シン	256	1.0	e. !	1.0	2.C	0.1	20	8	163	168	1.0	1910	121.7
A2.2	64	8	1024	A .c	2.	0·1	C · 1	(·2_	0.125	128	14.	194.	1.0	20	•1>6
A23	44	16	1024	4.0	2_	0.1	C · 1	0.2	0.25	64	16	80	1.0	97.5	1-218
A 2.4	32	32	2.56	1.0	0.2	1.0	0.35	<i>(</i> ·· 2	0.35	8	λ. <i>8</i>	10.8	1.0	35	5.24
A35-	6:24-			f-el	-A. 64					· ·	·····	- ···	•		
A25	32	32	256	1.0	C. 2	1.0	0.75	0.2	0.75	Ĉ	6,	74.	1.0	330	4. 1.4 S
N26	64	64	1024	1.0	2	0.1	0.1	c. 2	1.0	16	16	52-	1.0	1010	14.56
A21	32	132	512	1.0	, /	10.2.	10.4	1 . 2.	1331.2	16	132	10	1.0	1 2972.	121
A 2.8	64	8 1/	11024	10.5	12.	0.1	10.1	0. 2.	12	8	116	12.4	1.0	12-81	1 •••

- 32 -

(Table Cl co	ont	.)
--------------	-----	----

•

٤`

•

Ca	se No.	L	NG	NP	Δx	۵t	φ	v _t	^ω p ^{Δt}	א _∂ ע¢	N _C	N _D	NC+ND	k _{max} / k _{last}	^ω p ^τ h	^ω p ^τ h/ N _C +N _i)
A60	AGÓ	32	32-	2.56	1	0.6	1.0	2.0	0.6	2	8.0	16.0	2.4.0	1.0	420	17.5
/1-	Ach	32	32	256	1	6.6	1.0	34.0	c. l	4	8.0	320	40.0	1.0	660	16.5
	A62	32	32	256	1	0.6	1.0	6.0	0.6.	6	č.•	48.	560	1.0	900	11.5
	At3	32-	32	256	1	0.6	1.0	8.0	0.6	8	ć.• .	6 4.0	12.0	1.0	1096	14.5
	ALY	32	32,	256	1	0.5	1.5	1.0	0.75	1.66	8	5.5	15.5	. 1.0	/05	7.21
	165	64	64	1024	1	ષ્ટ	0.[0.1	0.8	1	16.	16.0	52.0	1.0	250	7-81
	ALS	<u></u>	-64	tort		10	_0./_	-0-1-	-1-0-		-6	16-	32		1.50	4.4.4
	ALG	64	64	1612 4	1	12	0.1	0.1	112.	1	16.0	16.1	52-0	1.0	ē) Ind	2.69
	AGT	6-4	64	1024	1	0-01	1.	0.5	(. 0]	0.5	16.0	8.	24.0	1.0	דען	1.4.7
	A68	64	64	1024	1	0.5	0.1	0.1	c.05	1	16.0	16.0	32.0	1.0	1712	0.22
	A69	64	64	256	/	0.05	1	0.5	0.05	0.5	4.0	2_	6.5	1.0 	56	202
	AZQ	64	64	1024	1	0.05	1	0.5	0.05	0.5	16.0	6.0	0. 94	1.0	مرو بلسرة مسير سرو	6.16
	And	64	64	256.	1	0.2	1	0.5	C·2	0.5	4.0	2	(~0 ()	J. C.	25	CIG 23
i	ATP.	64	2.56	512	0.25	1	C.2	0.1	0.2	2	20	·	د.ب ر	(·.U	2×90 112	128 46
	A73-	6.1	256	512	C.25	- 1	0.2	0.1	C. 2	2	2.10	ц.	(a) (a)	11.	112 11411	und
	A14	64	256	5/2.	<i>e</i> .25	1	0.2.	0.1	с. <u>у</u>	2	2.10	י ד ע	6.0	16	1014	11 1 1 11 J 2 LL
	A75	64	256	5/2	0.25	1	0.2	0.1	0.2	2	<u>ک</u> ا	4.1 	6.0	3L 		
/	475	-64-	-256-	-512	0.2-5		_02-	0.1	-0.2		2.0	4	· 6	я	109,	38.57
	A76	320	256	5/2	1.25	1	0.2	0.1	0.7	6.4		0.0	2.0	2	28.2	\$4.68
	ATE	192	256	512	0.75	1	0.2	0.1	0.2.	0.66	2.0	کر ۱۰	رد، ز م	e e	150	50
	A78	256	256	512	/	1	0.2	0.1	0.2	2:0	2.0	7.0	5.0 . d .	0	764	191
k79	B78	128	256	, 512	0.5	1	0.2	0.1	0.2	1.0	2.0	~ /(0	r v 7	1 ' '

- 33 -

•

(Table Cl cont. ...)

					1	(Table C	l cont.)					k		ωτ./
	L	NG	NP	Δx	Δt	щ,	^v t	ωp∆t	λ _D ∕∆x	NC	ND	N _C +N _D	/k _{last}	^ω p ^τ h	N _C +N _D
A29	64	256	1024	•25	2	0.1	0.1	0.2	4	ч	16	20	1.0	3450	172.5
A30	32-	37.	256	1.0	C+L	1.0	1	Ô. 3-	7	8	56	64	1.0	17575	2.75
A3/	32.	57-	2 56	1.0	c, 2.	1.0	10	0.2	10	8	80	88	1.0	14250	162
A32	32	32	256	1.0	<i>c</i> •3	1.0	0.35	0.3	e.35	8	ة الأ	11.8]. u	3 ()	2.78
A33	32	32	250	1.6	0.3	1.0	0.5	0,3	0.5	8	21	12_	1.0	75	6.25
A3-1	32	32.	256	1.0	0.3	1.0	0.15	0.3	0.75	8	6-	14	1.0	182	13
135	32	32	256	1.0	0.3	1.0	1.0	0.3	1.0	в	8	16	1.0	330	20.015
A36	32	32	25%	1.0	0.3	1.0	1.5	6.3	1.5	8	12	20	1.0	765	38.25
A37	32	32-	256	1.0	0.3	1.0	2.0	0.3	2	3	10	24	1.0	1535	63.95
A38	52	32.	256	1.0	0.4	1.0	0.35	out	0.35	8	2.8	10.8	1.0	27	2.15
A39	32	32	256	1.0	0.4	1.0	0.5	0.4	0.5	8	z;f	12	1.0	78	6.5
240	37-	32	256	j. U	0.4	1.0	6:75	0.4	0.75	8	6	14	1.0	197	14.07
AUL	32-	52.	256	1.0	0.4	1.0	1.0	0.4	1.0	8	Ő	16	1.0	340	21.75
1.42	12	32	256	1.0	0.4	1.0	1.5	0.4	1.5	8	12	20	1.685	685	34.25
A43	32	32	256	1.0	0.4	1.3	:2;su)	0.4	<u>.</u>	8	16	24	1.0	970	40.41
A44	32.	32-	256	1.0	0.1	1.0	~/	0.4	4	8	32	40	1.0	1920	48
A45	32	32	256	1.0	0.4	1.0	6	<i>o.y</i>	6	8	42	56	1.0	2910	51.96
A46	32	32	256	1.0	04	1.0	8	0,4	Ë	ଟି	44	72	1.0	2815	38:15
A411	32	32	256	1.0	014	1.0	10	0.4	10	${\cal E}_{j}$	ଟିଣ	රිරි	1.9	2145	- 24.9
A48	32	32.	25%	J. 0	0.5	1.0	0.35	0.5	0.35	ð	2.8	10.8	10	20	2.78
A49	32	32	256	1.0	0.5	/. ა	0.5	0.5	0.5	æ	4	12	1.0	56	4.67
ASC	32	32	2.56	1.0	0.5	1.0	0.75	- c.5	0.75	ð	6	14	1.0	180	12.86
A51	32	32-	256	1.0	0.5	1.0	1.0	6.5	1.0	8	ठ	16	1.0	125	26.56
152-	32	32-	256	1.0	0.5	1.0	1.5	0.5	1.5	8	/2	20	1.0	455	22:15
153	32	32-	2.56	1.0	0.5	1.0	2.0	0.5	2	E	16	24	1.0	570	23.75
A54	52-	32	256	1.0	0.5	1.0	4	c.5	4	ъ	32	40	1.0	840	2.1
(A55	32	32	256	1.0	6.5	1.0	10	0.5	10	в	80	ЪE	1.0	iti	6 18.5
456	32	32	256	1.0	1.6	1.0	0.35	0.6	a.35	- F	2.8	10.8	, 1.0	2.4	2.72.
i4 5.7	. 32	36	256	1.0	0.6	1.0	0.5	0.6	a5	ଚ	4	12-	1.0	44	3.6.6-
152	32	52	15i.	1.0	0.6	1.0	(.7.5	0.6	0.75	. 8	6	14.	1.0	14:	10
159	32	31	256	1.0	0.6	1.0	11.0	(0.6	1 1.0	18	18	16	1.0	7.3-0	113:15

Table C2 CLOUD-IN-CELL

....

Casa Na	1	NC	MD	۸~	۸+	44		~ At	λ /Δx	N.	N_	N+N	'max' k.	ωτ.	⁻p`h′ N.+Nn
Lase No.	<u> </u>					q T	t	"p"	, D, mr	. °C	D	CD	"last	p'h	
B1-	64	64	: 64].0	0.1	04	0.4	0.08	1.0	1	1	2	j. 1	2.50	11 00
82	6-1	64	128	1.0	o.L	0.4	0.4	0.08	1.0	2	2	4	1.0	5.7	250
63	64	64	256	1.0	0.2	0.4	<i>c.</i> 4	0.08	1.0	2.]	4	Ğ,	1.0	1000	875
64	64	64	512	1.0	0.2	0.4	0.4	0.02	1.0	81	8	16	1.4	1150"	\$115.25
65	64	64	1024	1.0	0.7-	0.4	0.4	0.08.	4.0	16	16	32-	1.0	26550	828.12
86	32	32	256	1.0	0.1	1.0	7.55	c.1	0.35	8	2.8	10.8	1.0	708	65.56
87	64	64	10:24	1.0	0.1	1.0	0.54	(· I	0.5	16	e .	24	1.0	4320	180
62	3.2-	32-	2.56	1.0	0.1	1.0	0.75	c> 1	0.75	8	6	14	1.0	7540	5-12.14
B9	32	32	256	1. 0	0.1	1.0	1.5,#	c.1	1.5	୍ଷ	12	20	1.0	40000	2 800
610	32	32	256	1.0	0.1	1.0	5 AN	e. 1	3	8	24	32	1.0	24.9/10	7778
811	32	32	254	1.0	0.1	1.0	100	0.1	10	8	80	80	1.0	£ 1500	4515
FIV	32	32	256	1.0	0.1	1.0	2.0	0.1	20	8	160	168	1.0	36 0 00	+ 60
B13	32	32	ASS A	620	6.2	1.D	0-35 9-35	0.2	0	62 8	28 '	KEN .	1.0	N EBB .	Cat -
BIY	64	64	,2.56	1.0	0.2	1.0	0.5	0.2	0.5	4	2	6	1.0	890	148.33
B15	32	32	2.56	1.0	0.2	1.0	0.5	0.2	0.5	8	4	12	1.0	1720	143.33
814	64	64	1024	1.0	0.2	j. 0	0.5	0.2	0.5	16	8	24	1.0	4235	176.45
BIT	128	32	512	4.0	1.0	0.2	0.4	0.2	0.5	16	8	24	(. 0	4680	195
B 18	96	32	512	3.0]- 0	0.2	0.4	0.2	0.66	16	10.66	26.60	1. 0	8587	322.09
B19	32	32	256	1.0	0.2	1.0	0.75	0.2	0.75	8	6	14 ·	1.0	8475	605.35
R 20	64	32	512	2.0	1.0	0.2	0.4	0.2	1.0	16	16	32	1.0	42425	/325
821	32	32	2.56). 0	0.2	1.0	1.5	0.2	1.5	648	12	20	1.0	676.00	3380
822	32	32	256	1.0	0.2	1.0	2.0	0.2	2.0	岁8	16	24	1.0	9/100	4016.6
B23	32	32	256	1-0	0.2	1.0	3.0	02	3+0	128	24	32 -	1.0	52000	1325
R24	32	32	256	1.>	0.2	1.0	4.0	0.2	4.0	8	32	40	1.0	19501	6412.75
B25	32	32	256	1.0	0.2	1.0	8.0	0.2	80	14.8	6Y	72	1.2	24950	2457
826	22	32	256	1-0	0.3	1.0	0.35	0.3	0.35	8	2.8	10.8	1.0	- 1000	r. 24
62.7	હન	64	10 24	1.0	0.3	1.0	0,5	0.3	0.5	16	в	24	1.0	41.50	53.25
, B18	22	32	256	1.0	0.3	1.0	0.5	0.3	1.5	8	4	12_	1.0	2000	110.17
B29	32	32	256	1.0	0.3	1.0	0.75	0.3	0.75	8	6	14	1.0	7860	56.285
820	32	32_	256	1.0	0.3	1.0	1.0	6.3	1.0	8	8	16	10	22086	JUR.C
- 831	32	32	256	1.0	0.3	1.0	2.0	10.3	12.0	- 8	`16	24	1.0	22075	1206.4
Ratur	32	32	256	1.0	0.3	1.0	4.0	0.3	4.0	8	32	40	1.0	9.815	245.38
VIV	/	11	~ *			• •		-					• • •	1012	

- 35 🗕

						(T)	able C2	cont)			•		k _{max} /	•	ω _n τ _h /
	Case No.	L	NG	NP	Δx	۵t	α	t	ω _p Δt	λ _D ∕∧x	NC	ND	N _C +N _D	k _{last}	^ω p ^τ h	N _C +N _D
	833	32	32	256	1.0	0.3	1.0	6.0	0.3	6	8	48	56	1.0	8502	151.82
	634	32	32	256	1.0	0.3	1.0	8.0	0.3	8	8	64	72	t·s	7758	109.75
	B35	32	32	256	1.0	0.3	1.0	10.0	8.3	10	8	80	88	1.0	6750	76.7
• •	836	32,	32	256]. 0	0.4	1.0	0.35	0.4	0.35	8	2.8	10.8	1.0	1023	94.72
	B37	16	32	128	0.5	0.4	1.0	0.2.5	0.4	0.5	4	2	6	1.0	1135	189.16
	B38	32	32	256	1.0	0.4	1.0	0.5	0.4	0.5	8	4	12	1.0	2295	191.25
	839	64	64	1024	1.0	0.4	1.0	0.5	0.4	0.5	16	8	24	1.0	4160	173.33
	840	64	64	256	1.0	o. 4	1.0	0.5	0.4	0.5	4	2	6	1.0	1150	191.66
	B41	32	32	250	1.0	0.4	1.0	0.75	0.4	0.75	8	6	14	1.0	5860	418.57
	342	14	32	128	0.5	0.4	1.0	0.5	0.4	1.0	4	4	E	1.0	7/2.0	870
	B43	32	32	256	1.0	0.4	1.0	1.5	0.4	1.5	8	12	20	1.0	13080	654
	BYY	32	32	256	1.0	0.4	1.0	2.0	0.9	2	8	14	24	1.0	10200	425
	645	32	32	250).0	0.4	1.0	4.0	0.4	4	8	32	40	1.0	2985	74.63
	346	16	32	128	0.5	0.4	1.0	6.0	0.4	6	đ	24	28	1.0	1800	64.24
	- B47	16	32	128	0.5	०.५	1.0	8.0	ø.4	8	4	32	36	1.0	1705	47.36
	B48	32	32	256	1.0	0.5	1.0	0.35	0.5	0.35	8	2.8	10.8	1.0	965	89.35
	849	32	32	256	1.0	0.5	1.0	0.5	0.5	0.5	8	4	12	1.0	2230	185.83
	B50	32	32	256	1.0	0.5	1.0	0.75	0.5	0.75	8	حک	14	1.0	5400	385.71
	BS1	32	32	2,56	1.0	0.5	1.0	1.0	0.5	1	8	Ş	16	1.0	9830	414.38
	852	32	32	256	. 1.0	0.5	1.0	ጋ.0	0.5	2	8	16	24	1.0	3530	147.08
	B53	32	32	256	1.0	0.5	1.0	4.0	0.5	4	8	32	40	1.0	1622	40.55
	B54	32	32	25¢	1.0	0.5	1.0	8.0	0.5	ଟ	8	64	72.	1.0	1515	21-04
•	655	32	32	256	1.0	0.5	1.0	10.0	0.5	10	g	80	88	1.0	1784	20.27
	856	32	32	2.56	1.0	0.6	1.0	0.35	0.4	0.35	8	२ ∙४	10.8	1.0	805	74.54
	857	64	64	256	1.0	0.6	1.0	0.5	0.6	0.5	4	2	6	1.0	1385	230.83
	658	64	64	1024	110	0.6	1.0	0.5	0.6	0.5	16	8	2 Y	1.0	4650	193.75
	859	32	32	256	1.0	0.6	1.0	0.75	. 0. 6	0.75	8	6	14	1.0	4450	317.86
	BGO	32	32	£\$6	1.0	0.6	1.3	1.0	6.6	1.0	Ĉ	ð	16	1.0	6360	397.5
	BAI	64	64	102.4	1.0	•01	1.0	0.1	0.01	0.1	16	1.6	17-6	1.0	4584	260.45
	BGV	64	64	1024	1.0	1.0	0.8	0.8	0.8	1.0	16	14	32	1.0	2056	64.25
	B 62	64	64	1024	1.0	1.0	1.2	1.2	1.2	[.0	14) (e	32	1.0	222	6.93
	B64	129	2 12 8	256	1.0	1.0	0.2	0.1	0.2	0.5	2	1	3	1.33	596	198.66
• 7	BGS	128	12-8	256	1.0	1.0	0.2	0.]	0.2	۵5	2	Ą	3	2.0	1400	466.66
	Bub	12.8	128	256	1.0	1.0	0.2	0.1	0.2	0.5	2	1	3.	4.0	9524	3174.66
	B67	128	128	256	1.0	1.0	0.2	0.1	0.2	- 0.5	2-	ι	3	32.0	136000	9533.33
*	R68	64	64	256	1.0	0.2	1.0	0.5	0.2	0.5	Ч	2	6	2.0	2.640	440
	869	64	64	256	1.0	0.1	1.0	0.5	0.1	0.5	ч	2.	4	2.0	2.532	1 422-
	ר א ע	. .	- <i>1</i>		•	•										

•

Table C3 QUADRATIC SPLINE

													k _{mux} /		^ω p ^τ h
Case No.	L	NG	NP	Δx	∆t	β	v _t	ω _p Δt	х <mark>1</mark> ∕үх	NC	и _р	NC+ND	k _{last}	^ω ր ^τ հ	NC+ND
(1	32	32	256	1.0	0.1	1.0	0.35	0.1	6.35 '	8	2.58	1.2.88	1.1	4500	613
()	32	22	256	1.00	0.1	1.0	6.63	0.1	6.50	§ . 0	4,00	12.00	1.0	20100	1676
C3	32	32	ったら	1.0	0.1	1.0	0.95	e 1.	9.75	3	6 . 14	j.1.00	1.0	115500	8250
C4	32 :	2-	256	1.0	0.1	1.4	7-00	c. 1	1.00	8.0	8.10	16.20	1.0	112.000	7425
15	2.2-	22	251	1.0	0.1	1.0	9.00	e 1	2.00	6.0	46.00	24.24).0	175***	32298
66	20	22	256	1.0	0.1.	1 0	4.00	c. 1_	4.10	8.0	32.00	40,00	1 0	3,000,000	T 1 5 "
<u>c1</u>	32	32	25%		0.1	1.0	6.00	c 1	6-11	§	48.00	Sina	15	764 900.	- 1785
C E	32	32	256	1.0	0.2.	1.0	C.35	0.2	0.35	8.0	2.88	10 88	1.0	1320	617.71
Cg	32	52	256	1.0	0.2	1.0	0.50	0.2	0.50	8.0	4.00	12.00	1.1	52 280	2690
C 10	32	32	256	1.0	0.2	1.0	0.75	0.2	0.75	8.0	6.00	14,00	1,0	21010	±71
C.11	32	32	256	1.0	0.2	1-0	1.50	0.2	1.50	8.0	12 . 0,	20.00	·].0	= 2050	5 10 C C
(1)	22.	32	201.	1. a	ρ. L	1.0	2.03	0.2	2.00 .	8.00	\$6.00	24.00	1.0	2150,000	1 6156
C + L	.). T 27.	32	256) 1.a	0.2	/.0	4.01	o. 🗸	4:00	8.00	32.00	40,00	.].0	215000	7500
CIF	32	3~	250	1.0	0.2	1.0	6.00	0:2	6.00	8 00	48.00	56.00	1.+	40.000	1601.14
C15	22	32	156	1.0	の、ひ	1. 0	1	02	7.00	8-00-	56.00	64.00	1.0	15000	1 8 0
6 L I.	.7. 12		156.	1.0	0.2	1.0	8.00	0.2	Rec	8.00	64.00	72.00	1,0	1 1 0 0 0	213 51
613	37-	27-	256	1.0	0.2	110	10.00	0.2-	10.00	8	80.00	8.00	. [+•	37	- 3-0
618	22.	· ₹~	256	1.0	0.3	1.0	0.35	c 3	0.35	8.00	2.88	10:88	1.0	1700	640
(19	22	3~	256	1.0	0.3	1.0	0.50	0-3	0:50	2.44	4.00	12-101	1.0	30,000	2.500
(24	22	2~	256	1.0	0.3	1.0	0.75	0.3	0-75	F. 0 0	6-06	14.00	1.0	75'000	5357
C21	22	32	256	1.0	83	1.0	1. + 8	0.3	1.00	8.40	£.00	16.00	1.0	15 000 1	5615
622	32	32	256	1.0	0.3	1.0	2.00	<i>n</i> ·3	2.00	8-00	16.01	24.00	1.0	151 100	1111
C.23	· 3~	32	256	1.0	0.3	1.0	4.00	<i>D</i> ·}	4.00	7. 10	32.00	: c/0.41	1.0	17 3 0-	4320
024	32	32	256	1.0	<i>D</i> .3	1.0	6.00	o·3	6.00	\$. 60	4500	56:00	1.0	11500	· · · · · · · · · · · · · · · · · · ·
C75	32	3~	256	1.0	03	1-0	8.9.5	0.3	8.55	2.00	64.0	n 72ª	. 0	9155	(22)/15 (22)/15
624	32	32	256	1.0	Ø.3	1.0	10-10	0-3	10100	§. ∞	¥0.00	180	1.0	- 18- 0 	107-01 A: 4 200
C27	32	32	256	1.0	0.4	1.0	0.75	10.4	2.85	8.00	6.00	19.00	6.1	99000	567 -
628	32-	32	256	1.0	0.4	1.0	1.00	10.4	1.00	8.0	. <i>6</i> . v	16.00	1.0	240,00	
czÿ	3~	32	256	1.0	p.y	1.0	1.50	0.4	1150	8.1	. /2.0	20.0	- 1.3	0 1930 	
635	32	3~	256	1 1-0	10.4	1 1-0	1 5.0	0.7	1 3.6	1.0	2.4.00	\$2.0),i # 1	5.588 ×	1
031	32	3~	756	1.0	0.4) 1.4	, 4.0	0.4	1 4.0	8.0	32 .00	, 40.0		14440	1
C37	- 22-	3~	256	1.0	12.4	: 1.0	(L. J	0.4	6.0	8.0	48.00	16.00	1.0	3310	59.1
c 3 3	3~	- 22-	256	1.0	0.4	1.0	j.0	ory	6.0	8.0	64.0	72.5	1.0	41001	74 57 £ 9. 4
C 3 Y	1 32	32-	set.	1. 0	0.4	1-0	10.00	0.1	1000	2.0	ð (\$8.0	1-0	64 00 14	72.72
05	·	. 22	256	1.0	0.4	1.0	435	6.6	c.35	8.0	2:32	10.25	1.0	9000	\$33.33
(36	32	32	256	.9	2.6	1.0	0.50	6	0.50	3.0	4.0	12.0	1.0	2 4 400	1466
c 371	72	3~	250	1.0	0.6	1.0	0.75	0.0	0.75	- ફ.ગ	6.0	19.0	1.0	93100	30(8.59
(39	32	3~	- 256	1-0	0.6	1.0] • 0	0.6	1.0	9.0	y. 8	16.0	1.0	17150	9 1071 -5 8.
c 31	32	3~	- 256	1.0	17.6	1.0	1.5	۵.(1.5	5-0	12.40	20.0	1.0	4200	2(0
640	32-	3~	- 254	1.0	0.6	J. 4	0 2-1-13	0.6	J. 0	80	16.00	5 2.4.0	1.0	1766	15.33
41	3.~	32	250	1.0	n·6	}.0	4.0	0·1	4.0	2.0 -	32.0	90.0	1.0	940	45.5 14.2 F
cyz	32	- 32	236	1:0	m.6	1.0	ź.o	s٠6	£ 0	30	61.0	721	· .	157 0	7702 1710-
(43	250	6 256	250	. 1.0	0.2	1.3	n (°.4) ⁷⁷	<i>2</i> .,	1 0.5	1.	0 014	1.5	1.0	' כינ : .	- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CH	1 256	156	250	i	8. L	1.0	0 N.S	, · ·	2. 0.5	1.	o (1.5		() 	· 366 ·	6 - 100 v 19 - 19 19 19 19
C4	5 24,6	. 156	250	(- 1. 4	·· 2	1.	6.5	. 2	c.5	/ - ·	· · · ·	- 1.0	- ,	1 Ace	
C46	250	: 250	- 250	. 1.0	n. L	1.0	215	n, 1	L 7.5	/··	,	1.1.2	»		
(4)	245	6 246	. 2.56	. 1	0.1	1.0	11 - 5	2.1	(/. 0		, ., ,	•1•0	1.7 4	

.و.

51

- 37 -