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ABSTRACT

Two new algorithms based on the "shooting method" for obtaining periodic

solutions of nonlinear systems described by implicit differential-algebraic

equations are presented. The first algorithm is based on an n-dimensional

secant method and requires only one transient analysis per iteration (compared

to n+1 analyses needed in the discretized Newton method) after the initial step.

The second algorithm is globally convergent under rather mild conditions and is

based on the switching parameter approach. This algorithm is particularly

useful for solving systems having multiple periodic solutions. Examples taken

from the area of nonlinear oscillation show that multivalued frequency response

characteristics containing jump phenomena of nonlinear systems can be accurately

derived using this algorithm.
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I. INTRODUCTION

Much research has been done on the development of efficient computer
algorithms for finding the periodic steady state solutions of both autonomous

and non-autonomous nonlinear systems. The algorithms that have been developed
can be classified into two basic categories. The first [1-5] is based on the

shooting method, while the second [6-9] is based on the harmonic balance method.

The first approach is general but could be quite time consuming for large

systems because each iteration requires numerically integrating the system's

differential equations (over one period) a total of (n+1) times, where n is

the number of state variables. The second approach is practical only if the

number of harmonic components in the periodic solution is small. If the

number of nonlinear elements is also small compared to the number of linear

elements, the recent method reported in [8-9] is generally more efficient. One

serious drawback of the harmonic balance approach is that there is no systematic

procedure for identifying which harmonic components are significant, let alone

their approximate amplitudes.

Our objective in this paper is to present two new algorithms for implementing

the shooting method. Since state equations for nonlinear networks are generally

difficult, if not impossible, to formulate in explicit analytical form [10], our

algorithm will be developed for the following more general system of implicit

differential-algebraic equations

f(x,x,y,t) = 0 (1)

where xG ]Rn, y G ]Rm, and f: ]RZn+n*1 - ]Rn.
The equations of any lumped nonlinear network can be easily cast in this form

using the Tableau formulation [10]. Such equations are generally sparse and

hence sparse matrix techniques should be used in any general purpose simulation

program. For relatively small circuits, however, where the improvement using

sparse matrix techniques is not decisive, it would be advantageous to reduce (1)

further by minimizing the number of "non-state variables." An explicit form of

this "reduced" system of implicit equations is derived in Appendix 1 for an

important class of nonlinear networks. Most networks of practical interest can

be described in this reduced implicit form. In particular, all examples in this

paper are formulated in this form.

Both autonomous (unforced) and non-autonomous (forced) systems will be

considered. In the former, the variable "t" is absent in (1) and in the latter,
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f(.) is "T-periodic" in the sense that

f(x,x,y,t) = f(x,x,y,t+T) <2>

for all t. The shooting method for solving (1) via the discretized Newton

iteration1 is virtually identical to that given in [1-3], and involves solving
the implicit system (1) over one period a total of n+1 times per iteration.
This is implemented in [3] by solving "n" sensitivity networks, in addition
to the original network, over one period per iteration. In Section II, we will
develop an explicit formula for implementing the discretized Newton method
directly, that is, without using sensitivity networks. This formula allows
us to implement the shooting method using (1) directly and therefore is
applicable to any such implicit systems regardless of whether they pertain to
a circuit or not. Instead of solving (n+1) networks over [0,T], this formula

requires that we solve (1) over [0,T] (n+1) times per iteration. Even if (1)
pertains to a circuit, this formula will still be useful in the event that the
circuit contains elements, such as nonlinear controlled sources [11], where a

sensitivity circuit model is not available. This explicit formula can also be
used for developing a general purpose computer subroutine for solving any

implicit system of differential-algebraic equations.

The main results of this paper are given in Sections III and IV. An explicit

formula for solving (1) via the secant method is developed in Section III. This
method consists of solving (1) over [0,T] only once per iteration, after an
initialization step where (1) is solved over [0,(n+l)T]. Although any efficient
method for solving (1) can be used, our experience shows that the backward-
differentiation formula (BDF) [10] to be particularly well-suited for this
purpose. Since most of the time used in implementing the shooting method is
spent in solving (1), it is not surprising that the secant method turns out to
be more efficient than the discretized Newton iteration of Section II. This

fact will be established in Section III.

Both the Newton and the secant iterations will generally converge only if
the initial guess x°(0) is close to a solution point. No general algorithm
currently exists for choosing a suitable initial guess. To overcome this

1By discretized Newton iteration, we mean the Newton-Raphson method where the
Jacobian matrix is evaluated by numerical differentiation.
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problem, a globally convergent algorithm based on the switching parameter

approach [12] will be proposed in Section IV. Under rather mild assumptions,
this algorithm always converges regardless of the choice of the initial guess.
Moreover, if the system has more than one periodic solution, as is common in

many nonlinear systems [6], this algorithm will find multiple solution points,

each one giving rise to a distinct periodic solution. Since it is applicable

regardless of whether the solution is stable or unstable, this algorithm provides

the only systematic approach for deriving the "multivalued" frequency and ampli

tude response curves associated with ferroresonance and other jump phenomena

observed in many nonlinear circuits and systems.

Several examples illustrating the applications of the algorithms in

Sections III and IV are presented in Section V. The advantages of these

algorithms are clearly demonstrated by these examples.

II. EXPLICIT FORM OF DISCRETIZED NEWTON ITERATION

Let (x°(t),y°(t)) be asolution of (1) with initial value x°(0). Let
x(0) = x°(0) + n(0), lln(0)il « 1 (3)

be a "perturbed" initial value and let

(4)x(t) = x°(t) + rj(t), y(t) =y°(t) + Y(t)

denote the corresponding solution. Applying Taylor expansion in (1) about the

point he (t),y (t),tj, we obtain
IQ(t)

f(x0(t),x°(t),y°(t),t) +
3f 3f af

"8x" 9x 3y n(t)

Y(t)

+0(ll3(t)ll2,llr,(t)fl2,IlY(t)fl2) =0
(5)

where the partial derivatives are evaluated at (x (t),y (t)). The first term
0 n *~ ~ '

in (5) is zero by definition of x (t) and y (t). If we neglect the higher

order terms, (5) can be recast as follows:

n(t)l[n(t)
LY(t)

af af

3x 3y

3f

3x
nM^(tJ]nrA(t;

lB(t;

The solution to the linear time-varying system

n(t) = A(t)r,(t)

is given by

n(t) =x°(t)n(0)
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where X (t) is a fundamental matrix solution of (7) [13]. It follows from (4)

and (8) that

x(T) =X°(T)n(0) +x°(T) (9)

Now if we assume x(0) is an initial value which gives rise to a T-periodic

solution, i.e., x(0) = x(T), then we can substitute (3) for x(T) in (9) and

obtain

n(0) =-[l-X°(T)]"1[x°(0)-x°(T)] (10)

Substituting (10) into (3), we obtain

x(0) =x°(0) - [l-xV^fxV)-?0^)] (11)

Hence (11) gives us a formula for computing an initial condition which gives

rise to a T-periodic solution x(t) provided the higher order terms in (4) are

zero, i.e., provided f(.) is linear in x, x and y. If f(«) is nonlinear, (11)

is no longer exact but it should give a good approximation to the correct

initial value x(0) if the perturbation n(0) is small. This suggests the following

basic iteration formula

x3+1(0) =xJ(0) - [l-X^T)]"1!^^)-^^)], j>0 (12)

Now if we define

f(x(0)) ^x(0) -x(t;x(0)) (13)
then (12) is precisely the Newton-Raphson formula for solving F(x(0)) = 0

because it can be easily shown that [1]
. axJ(T;x(0))
*(T)= V(Q) (14)

It is well known that if the initial guess x(0) is sufficiently close to an

exact initial value x(0) which gives rise to a T-periodic solution in (1),

then (12) converges quadratically to x(0) as j •*• <» [1,14]. Hence, two problems

must be solved before (12) can be implemented efficiently: 1) choose a suitable

initial guess and 2) find an efficient method to compute for the fundamental

matrix solution in (14). The first problem will be considered in Section IV.

The second problem is solved in [3] by finding the transient response over [0,T]

of (n+1) networks — the original network and its associated n sensitivit>

networks. Rather than computing XJ (T) , we will now derive a formula which gives
[1-XJ(T)] explicitly by solving (1) over [0,T] (n+1) times.
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Let x(0) be an initial guess and let

he± = h[0 0...0 1 0...0]T, i= 1,2,...,n
*—ith component

(15)

denote a set of "n" perturbation vectors where h « 1. Hence (3) assumes the
form

Xx(0) = x(0) + he. (16)

Now if h is sufficiently small, the solution (4) at t = T corresponding to
these initial conditions can be approximated by

Xx(T) =x(T) +hX(T)et, i=l,2,...,n (17)
Subtracting (17) from (16), we obtain

[l-J(T)]he± =[VOJ-V1)] "[x(0)-x(T)] =-[^(D-xd)] +[^(OJ-x^)]
'= -[Xx(T)-x(T)] +he±, i=1,2,...,n (18)

Now if we form an nxn matrix whose ith column is given by [l-X(T)]he., then it
follows from (15) that

[l-X(T)] =

h-[ x1(T)-x1(T)J -[ x1(T)-x1(T)] ...-["x^D-x^T)]
-[Xx2(T)-x2(T)] h-[2x2(T)-x2(T)] . • -[ x2(T)-x2(T)]

-[ xn(T)-xn(T)] -[ xn(T)-xn(T)] .h-[nxn(T)-xn(T)]

(19)

Since x(T) is obtained by solving (1) over [0,T] with initial value x(0), and

since x(T) is obtained by solving (1) over [0,T] with initial value ^(O),
i ='l,2,...,n, it is clear that [l-X(T)] is determined by solving (1) n+1 times
over [0,T]. Substituting (19) in (12), we obtain the following explicit
discretized Newton iteration formula:

All examples in Section V assume h = 0.01.

We have chosen the slightly clumsy notation x(0) to denote the initial condition
corresponding to he^ because xj(0) will be used later to denote the kth component
of x(0) at the jth iteration.
4
The backward-differentiation formula (BDF) [10] is ideally suited for solving
the implicit system of differential algebraic equations in (1).
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H+l<°>" xj(0)
4+1W - x^(0) 1

" h

_„>>_ A«L

h-l^dJ-xJd)] -I2xJ(T)-xJ(T)]
-[M(T)-xJ(T)] h-[2x}(T)-x}(T)]

-[Vw-x^T)] -[VCD-X^T)]

-InxJ(T)-xJ(T)]
-[nxJ(T)-x^(T)]

h-[nxJ(T)-x^(T)l

-1 r-
x{(0)-xJ(T)
x^(0)-x^(T)

3^(0)-xj(T)

, j•- 0,1,2,

(20)

The discretized Newton iteration algorithm can now be summarized as follows:

Step 0. Set j = 0.

Step 1. For given initial state xJ(0), compute xJ(T).
Step 2. Go to step 5 if llx3 (0)-xJ (T) II < e, where e is a sufficiently small

positive number to estimate the error of solution.

ij - „JStep 3. Choose n initial states xJ(0) = xJ(0) + he±, i = l,2,...,n, and compute
corresponding xJ(T), where h is a small constant.

Step 4. Compute xJ (0) from (20). Go to step 1.

Step 5. Stop.

The above algorithm is valid so long as the matrix [1-X (T)] in (20) is

non-singular, and provided that (1) has at least one T-periodic solution. It

,is clear that the algorithm in [3] is a circuit implementation of (20).

III. EXPLICIT FORM OF SECANT METHOD

A. Non-Autonomous System

The one-dimensional secant method for solving F(x(0)) = 0 (F(«) is defined

in (13)) is given by [14-15]:

(0) = xJ(0)
(^(OW-FU^O))

" L x^1(0)-xJ(0)

-1

'(xj(0)) (21)

where j = 1,2,.... The geometrical interpretation of (21) is shown in Fig. 1

where the expression enclosed within the bracket in (21) is the slope of the

secant line passing through the two points (x (0),F(x (0))) and (x (0),F(x (0))).

Notice that in the limit where x (0) tends toward x (0), (21) reduces to the

Newton-Raphson method. Observe that except for the initial step where two

function evaluations are needed, (F(x (0)) and F(x (0))), each succeeding

iteration requires only one function evaluation, as compared to two in the

discretized Newton method.

To derive the n-dimensional version of the secant method, let us assume

"n" consecutive initial states x°(0), ^(O) =x(T) ,x2(0) =^(T) =x(2T) ,...,
xm(0) = xm_1(T) = x(mT), m = 1,2,...,n+1, where x(t) is the solution of (1)
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corresponding to the initial condition x(0) = x°(0) . Now for each initial

state xJ(0), j >^n, choose two successive states x (0) and xk+1(0), where
k ~ if

j -n£k£j -1. Let n (0) denote the difference between x (0) and x1 (0) ,

and let n (0) denote the difference between x (0) and x^(0); i.e.,

xk(0) = xj(0) + nk(0) (22)
k+1 -i k+1? (0) = xJ(0) + nK+±(0) (23)

If we neglect the higher order terms in (5) as in Section II, the solutions

x (t) and x (t) at t = T corresponding to the initial values x (0) and

x (0) are given respectively by:

xk(T) = xj (T) + Xj (T) nk(0) (24)

xk+1(T) = xj(T) + Xj(T)nk+1(0) (25)

Here, XJ(t) is the fundamental matrix solution of (7) where A(t) is evaluated

at x = xJ(t). If we substract the difference between (22) and (24) from that

between (23) and (25), we would obtain

[xk(0)-xk(T)] -[xk+1(0)-xk+1(T)]
=[xj(0)+nk(0)-xj(T)-Xj(T)Tik(0)] -[xj(0)+nk+1(0)-xj(T)-Xj(T)r)k+1(0)]
=[l-Xj(T)j [nk(0)-nk+1(0)J =[l-Xj (T)] [xk(0)-xk+1(0)] (26)
Since xm(0) = xm~ (T), it follows from (13) that

F(xk(0)) -F(?k+1(0)) =[xk(0)-xk(T)] -[Xk+1(0)-5k+1(T)] (27)
Now if we form an nxn matrix whose columns are given by (26), where k ranges

from j-n to j-1, would obtain

r* = [1-X^(T)]H^ (28)
where

Hj A[(xJ-n(0)Vn+1(0)) y-n+\0)-^-a+2w) ...(^-\0)-xh0)j\ (29)
?* &[^(^-"(0)) -F(xJ-n+1(0))] [f(^-n+1(0)) -F(x^n+2(0))] •••[f^-^O)) -?(j (0))]] (30)
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It follows from (28) that if the matrix [J is nonsingular, then

[i-x^t)]""1 =^(rV1 (3D

Again if the function f(») in (1) is linear, then we can substitute (31) into

(11) and compute the initial value x(0) which gives rise to a T-periodic

solution exactly. If f(•) is not linear, we can substitute (31) into (12) to

obtain the following iteration algorithm:

j+1(0) =xj(0) -̂ (rV1?^ (0)J,j=n,n+l,n+2,... (32)

(x3 (0)) =xJ' (0) -xj (T) (33)

x

where

F

Equation (32) is precisely the n-dimensional secant method derived in Eq. (26),

p. 197 of [14]. The convergence property of the secant method can be found in

[14-15] and need not be repeated here. Observe that to initialize the secant

method, we need "n+1" initial points x (0), x (0), x (0),... ,x (0) in order to

evaluate Hn and f1 from (29) and (30). Since xm(0) 4 x(mT) ,m = 0,l,2,...,n, these
initial states can be obtained by solving (1) over the time interval [0,(n+l)T].

Now to compute Fix (0)) = x (0) - x (T), we need to evaluate x (T) which is

obtained by solving (1) over [0,T] with x (0) as the initial condition. In

general, to compute f(xj(0)1 , we must evaluate xJ (T) by solving (1) over [0,T]

with xJ (0) as the initial condition, j = n, n+1, n+2, ... . Hence, after the

initialization step which involves solving (1) over [0,(n+l)T], each iteration in

the secant method requires that we solve (1) over [0,T] only once, as compared

to n+1 times in the discretized Newton iteration.

One drawback of the secant method is that it could become unstable when

one or more components of x**~m(0) are close to the exact solution x(0) for all

m = 0,l,2,...,n. For example, suppose xJ m(0) * x, (0) ,m = 0,l,2,...,n, then
xJ"m(0)] =x^~m(0)-x^~m(T) will become

large for all m = 0,l,2,...,n. Now suppose the number of significant figures

of the computer being used is p, and suppose

Fk(x3'm(0))l |xJ-m(0)-x£-m(T)
Kfl <_>L\ Zl=lk k L< Kftl-1) (34)

l*fmC0)| |xj[-m(0)|
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then the number of significant figures of F, (x^ (0)) will be given by
1 -1s <_ p-q. Consequently, the computer evaluation of (rJ) in (31) will result

in large errors when s is small. Moreover, the accumulation of truncation

error in the numerical integration of (1) will further reduce the number of

significant figures when x? (0) is small. The preceding observation suggest

that if

|[4-(0)^-<T)| -[xJ-^W-xj^T)]|<e (35)
for all m = 0,l,2,...,n and for sufficiently small e, then TJ will be ill-

conditioned and the secant method will become unstable. To overcome this ill-

conditioned situation, we propose that the secant method be modified so that (32)

is applied only at those components satisfying the following well-conditioned

property:

|Fk(xj"m(0)) -F^x3"*1"^)) |>e, k=1,2,...,n (36)

for all m = 0,l,2,...,n. For the remaining ill-conditioned components, we

simply apply the fixed-point algorithm [10]. To implement this modified

algorithm systematically, let us partition the components of x (0) into two

subvectors xJ(0) and xJ(0) in accordance with the following rule: the ith

component of x3(0) is assigned to the first subvector xjj(0) if y±hmax >_ 5>
where 6 is a sufficiently small number, , and where y~l and YmQV are obtained

from the ith row of r*

On

max

,1/2

i' lSH.)}

the other hand, if YwY < &> then the ith component of x*1 (0) is assigned
to the second subvector x^(0). The modified secant algorithm can now be
summarized as follow:

The choice of 6 depends on the computer being used. Our experience shows that
the secant method is always stable if we choose 6 = 10"^ for a 16 bit computer
and 6 = 10~6 for a 32 bit computer.
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Step 0. Choose an initial guess x°(0). Solve (1) for x(t) with initial

condition x(0) = x (0) from t = 0 to t = (n+l)T. Set

xk(0) = xk_1(T) = x(kT), k = l,2,...,n, n+1 (39)

Step 1. Evaluate TJ from (30) and compute y3 and y3 from (37) and (38),

i = 1,2,...,n. Separate xJ(0) into two subvectors xJ(0) and Xq(G
~a ~p

using the preceding rule. Form the following:

(XJ-n(0)-xJ-n+1(0)) (xfn+1(0)-xfn+2(0)).•.(4-n+1"-1(0)-xJa-n^(0))J (40)

ll '[(Fj^co>)-sa(^-^(o>))y^-rt*co>)-EB{5*--«<o,))....(jB(»l-^lco>-ia x^+°<0)))] «V
where n is the number of variables contained in x , and

Fa(sk(0)) =xk(0) -?k(T) (42)

i+1
Step 2. Compute the components of xJ (0) as follow:

x3+1(0) =x3(0) -H^r^x^O)) (Secant algorithm) ' (43)

^^(O) = xj(T) (Fixed-point algorithm) (44)
~p "p

j = n, n+1, n+2, ...

Step 3. Compute x3"*" (T) with x3"1" (0) as initial condition. Go to Step 4
if Wx3 (0)-xJ (T) II < e for some sufficiently small preassigned
positive constant e. Otherwise, set j = j+1 and go to Step 1.

Step 4. Stop.

B. Autonomous System

For autonomous systems having a T-periodic solution (1) assumes the

form

f(x,x,y) = 0 (45)

where the period T must be determined along with the solution x(t) . This

additional unknown variable can be accomodated in [2,10] by choosing some

component of x(t), say x (t), and a constant C such that

inf xp(t) _< C <_ sup x^(t) (46)

Since the system is autonomous, we can choose the time origin such that

x (0) = C. If x (t) is T-periodic, we must also have x (T) = C, as illustrated
P p P
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in Fig. 2. Hence in place of the initial value x (0), which is now known,
P

we insert T as the new variable to be determined. If we define

z(t) 4 |x1(t) x2(t), ... x (t) T(t) x+1(t) ... xn(t)]T (47)

where T(t) is evaluated at x (t) = C, and is constant over 0 < t < T, then

our objective is to solve

f(z(0)) =z(0) -z(T) =0 (48)

To solve (48) via the secant method, let us assume the system of n vectors

F(zJ(0)) -F(zJ+1(0)) &[(Zl(0)-zV)) -(?j+1(0)-z^+1(TJ+1))], (49)
j = m, m+1, ..., m+n for any m ^ 0 are linearly independent, and

Hj A[(z3-n(0)-z3-n+1(0)) (z3-n+1(0)-z3-n+2(0)) •..(53-1(0)-z3(0))] (50)
rj *[[?(5j-n(0)) -F(z3-n+1(0))][f(53-n+1(0)) -F(53-n+2(0))}••[^(o))-^3(0))]]

(51)

then T3 is non-singular, and the secant algorithm in this case assumes the
form

z3+1(0) =z3(0) - H3(r3)"1F(z3(0)) , j = n, n+1,... (52)

where

f(z3(0)) =z3(0) - z3(T ) (53)

Just as in the non-autonomous case, we need "n+1" initial points z°(0), z (0) ,
...,zn(0) in order to evaluate (50) and (51). We define zm(0) ^ zm~ (T -),

ml •

m = 1,2,...,n+1 where z " (T .) is obtained by solving (45) via BDF with

z(0) = zm~ (0), and x (0) = C as the initial value. Thus the initial states

for determining Hn,rn can be obtained by solving (45) over the time interval
[0,Trt+T,+...+T ]. To determine the period T , let us choose a kth order (BDF)

0 1 n m —

formula to solve (45) so that x (t) can.be extracted. This implies that the
P

solution curve x (t) is approximated by a kth degree polynomial
P

x (t) = a.+a.t+a.t2 + ... + a,tk (54)
P U 1 Z K.

where the coefficients aQ,a.,a2,...,a. are determined by forcing x (t) to
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pass through k+1 points x ,x ,...,x at t = t , t _,...,t . [10],
r ° r P P P n n-1 n-k
is equivalent to solving the following system of linear equations:

n n

2
It XT

n-1 n-1

1 t i c 1n-k n-k

n

"n-1

"n-k

•„1
r ~i

n
x

P
n-1

x

P

n-k
x

LP -

Hence, the period T can be obtained by solving (54) for x = C via the

Newton-Raphson method; namely,

A 0 1^

f(t) = C - a - ant - a0t - - a. t = 0
o 1 2 k

tJ+l =tJ _ f(t3)
f'(t3)

, j = 0, 1, 2,

This

(55)

(56)

Since we can compute for all quantities needed in (52) and (53), the secant

algorithm can also be implemented for autonomous systems. The only difference

from the algorithm for the non-autonomous case is in step 0. Here, we set

the pth component of x(0) to C; namely, x (0) = C and solve (45) via BDF

from t=0to t=T +T1 +...+ T and obtain z° (0) ,z1(0) ,... ,zn(0), as
well as z (TQ), z(T^, ..., zn(T ). After this initialization step, the other
steps are exactly the same as before. Again, to avoid ill-conditioned situations,

the modified secant algorithm should be adopted for the autonomous case.

C. Convergence Behavior of the Secant Method

Our objective in this section is to analyze the convergence behavior of

the secant method when applied to the equation

f(x(0)) =x(0) -x(t;x(0)) =0 (57)
without loss of generality, we can assume x(0) = 0 is a solution of (57).

Applying Taylorfs expansion to each component of F(») about x(0) = 0, we obtain

'i(?5(o)) =t Lvo) +h t F^kWVO) +•••! =
k=lL m=l J

i = 1,2,...,n, where

•13-
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ik " 3
i(g(0>)
V°>

i(x(0))
» i,km 3x^0)3xm(0)

x(0)=0

(59)

x(0)=0

Now assuming the Jacobian matrix 3F/3x(0) has n linearly independent eigenvectors,

we can introduce a linear transformation

u(0) = Px(0) (60)

which diagonalizes the Jacobian matrix so that (58) is transformed into the

equivalent system

n n

(61)

' k=l m=l

l = x,z,..*,n.

where all higher order terms in u(0) have been neglected. We will analyze

the convergence behavior of the secant method with respect to this equivalent

system of n equations. The following property is proved in the Appendix 2:

Secant Method Convergence Lemma

If we apply the secant method to solve (61), then there exists a constant

B such that

llu3+1(0)il = Bju3~n(O)0.flu3(O)ll (Secant method) (62)

The corresponding property for Newton's method is given by [14]:

llu3+1(0)U =B^Bu3(0)U2 (Newton method) (63)

where B is a constant. To compare the rate of convergence between the secant
N

and Newton's method, let us take the natural log of both sides of (62) and (63):

logllu3+1(0)ll =log Bc + logflu3"n(0)ll +logliu3(0)U (Secant method) (64)

logllu3+1(0)H =log BN +2logllu3(0)il (Newton method) (65)

If we define

v = log[BcBum(0)Il] = log Bc + logllum(0)U (Secant method) (66)
S,m S - o ~

v = log[B Bum(0)H] = log BM + logllum(0)U (Newton method) (67)
N,m N - «

throughout this section, the subscript "S" pertains to the secant method, while
the subscript "N" pertains to Newton's method.
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then (64) and (65) can be recast into the following two linear difference

equations:

v„ . , = v„ . + v„ . (Secant method) (68)
S,j+1 S,j-n S,j

v . „ = 2v„ . (Newton method) (69)
N,j+1 N,j

The characteristic equations associated with (68) and (69) are therefore given

by:

z£+1 - z^ -1=0 (Secant method) (70)

z„ = 2 (Newton's method) (71)
N

For each n, the characteristic root z_ of (70) can be easily computed. The

solutions of the difference equations (68) and (69) are therefore given by

(vS,j =ZS,nVS,0 'VN,j =^,nVN,0):

loglBJIir^O)!!] = z{ log[Bcllu0(0)ll] (Secant method) (72)

log[BNllu3(0)il] =23log[BNHu°(0)il] (Newton method) (73)

It follows from (72) and (73) that

expfz3 log(Bjlu0(0)ll)| z3 -1 z3
llu3(0)U = 1 S»n PV S U- - BeS>n Du°(0)ll S'n

BS
(74)

, exp[23log(BNllu°(0)ll)l oj t n ?J
lluJ(0)ll l- V2 -~ = K Hu (0)11" (75)

N

Since B and B do not depend on j, the relationship between HuJ (0)11 and

lluJ(0)ll is the same as that between ilu (0)11 and llu°(0)H. It follows from

(74) and (75) that

z —1 z

Hu3+1(0)H = B_S'n (lu3(0)U S,n (Secant method) (76)

||u3+1(0)ll =BN!lu3(0)H2 (Newton method) (77)

Now since most of the time spent in solving (61) either by the secant or Newton

method is used in solving (1) over one period, a more meaningful comparison

between their respective convergence rates should take into account the number

of times (1) has to be solved per iteration. If we disregard the initialization
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step, then the secant method requires only one solution as compared to n+1

solutions in the Newton method. Hence, it is reasonable to define the respective

convergence rates as follow:

fcS zS,n

A 2l/(n+l)
N

(Secant method)

(Newton method)

(78)

(79)

The value of tc and t for different values of n can be easily computed and is

listed in the first two columns of Table 1. Notice that the convergence rate of

Table 1. Comparison of convergence rates and computational efficiencies
between the secant method and the Newton method.

1"
t

s s
I

s h R

1 3.618 1.414 7.218 8.634 1.196

2 1.466 1.259 9.822 12.951 1.318

3 1.380 1.189 12.290 17.268 1.405

4 1.325 1.149 14.632 21.585 1.475

5 1.285 1.122 15.932 25.902 1.626

10 1.184 1.065 27.716 47.487 1.713

20 1.114 1.034 47.716 90.657 1.900

50 3.058 1.014 103.071 220.167 2.136

100 1.034 1.007 189.497 436.017 2.301

the secant method is always greater than that of the Newton method.

Since the computation time for obtaining the periodic solution in either

method is proportional to the total member "I" of transient analyses (i.e.

solution of (1) over [0,T]) needed to reduce the error from the initial

guess Ilu° CO) II to OuJ(0)U = e, where e is some prescribed number, a more meaningful
comparison should be based on "I". Observe that since x(0) = 0 is the exact

solution (by assumption), e+ 0 as j + ». Now let j = Jg(e) and j = JN(e) be
the number of iterations required by the secant method and the Newton method,

respectively, for Du(0) II to decrease to some prescribed error e > 0. We can

estimate this number by setting Bg - BN =1 (for simplicity) in (72) and (73)
and solve for j = Jg(e) and j = JN(e) respectively:
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Iog[log£/logllu0(0)»] (Secant mefchod) (8Q)
108 zS,n

log [log c/iognu0(o) 11] (Newton method) (81)
Ve) = log 2

Since it takes "n" transient analysis over [0,T] to initiate the secant method,

and since it takes one transient analysis per subsequent iteration, the total

number I„ of transient analysis required by the secant method is given by

Ic = n + Jc(e) (Secant method) (82)

where Jc(e) is defined by (80). Since each iteration in Newton's method requires

n+1 transient analysis, the total number IM of transient analysis required by

Newton's method is given by
N

I = (n+l)JXT(e) (Newton method) (83)
N N

where J„(e) is defined by (81). Clearly, I and IN provide the most realistic

comparison between the computational efficiencies of the two methods in so far

as finding the periodic solutions of (1) is concerned. To obtain a numerical

comparison, let us choose flu (0) II = 0.5 and £ = 10~" . The corresponding number
"* —6

of transient analysis Ig and IN required to reduce the error from 0.5 to 10 is

computed and listed in columns 3 and 4 of Table 1. The ratio R = 1%,/Ig is shown
in the last column of this table. Observe that the secant method is always more

efficient than Newton's method. Observe also that R-increases monotonically

with n, and hence the secant method becomes more efficient as the number n of

state variables increases. This confirms our intuition that the secant method

is superior to Newton's method especially for large-scale systems.

IV. A GLOBALLY CONVERGENT ALGORITHM FOR OBTAINING MULTIPLE PERIODIC SOLUTIONS

Both the Newton and the secant method require finding a suitable initial

guess x (0) in order to guarantee convergence. This is usually chosen in practice

by intuition, experience (some prior knowledge of where the ballpark is), or

trial and error. For unfamiliar systems, such initial guesses are difficult to

find. For nonlinear systems having multiple periodic solutions, even a trial

-17-



and error method could not be used to find multiple initial solution points. Our

objective in this section is to present a globally convergent algorithm which,

under rather mild assumptions, is guaranteed to converge no matter what the

initial guess is. Moreover, if the system has multiple periodic solutions, this

algorithm will find most, if not all, of them.

The first step in this globally convergent algorithm is to augment the

function F(x(0)j in (57) with a parameter p, thereby transforming (57) into a
new system

i(x(0),p) =0 (84)

where F:H -*• Hn, and where ffx(0),p*) =f(x(0)) at some value p=p*. There
are many ways to construct F(»)« In many practical problems, the parameter p is

already built in, as in the van der Pol equation [6], where p = u. In the

absence of a natural parameter, we can introduce an artificial parameter p via

the following "transformed equation":

f(x(0),P) ^f(x(0)) +(p-1) f(x°(0)) =0 (85)

where f(x(0)) is as defined in (57), and where x (0) is an arbitrary initial
guess. Now observe that at p =0, (85) reduces to

f(x(0),o) =* f(?(0)) -f(x°(0)) =0 (86)
Since x(0) = x°(0) is a solution of (86), it is clear that x°(0) will be a good
initial guess for solving (85) by either Newton or secant method for small

values of p. The basic idea behind the algorithm to be presented next is to

find an efficient way to continue this solution as p increases continuously.

Since (84) reverts to (57) when p = p* = 1, the exact solution we seek occurs

at p = 1. Since this algorithm is a direct application of the switching parameter

approach, the reader is referred to [12] for the details of the derivation. Here,

we will simply describe the switching-parameter algorithm as applied to the problem

of this paper.

The algorithm consists of two basic steps. First, we predict x3 (0) and
p3 via the forward Euler algorithm. Then we reduce the local truncation error

using the secant method. The geometrical interpretation of this algorithm for

the n = 1 case is shown in Fig. 3. Here, the algorithm traces a continuous

-18-



"solution curve" r in the x(0) - vs. - p plane, starting from x(0) = x (0) and

p = 0. The solution occurs at the intersection of this curve with the vertical

line p = p*, where p* = 1 if (85) is chosen. The forward Euler method generates

the points at the tip of the arrowheads while the secant method corrects the

error by moving each of these points either vertically, or horizontally, back

into r. A vertical (resp., horizontal) movement occurs when the vertical

increment (due to the step size h) as computed by the forward Euler algorithm

is less than (resp., more than) h and corresponds to the choice of p (resp., x(0))

as the independent variable defining the solution curve r. Observe that this

variable could switch back and forth between p and x(0) many times, depending

on the nature of r, hence the name switching parameter algorithm. The two

steps of this algorithm are:

Step 1.

Predictor algorithm by Forward Euler method

J^O)^3) *?+1(0) - x3(0)
~j+l ~jLpj - pj -1

=-f(x3(0),p3)

sgnfx^(O) - *tH H>> - x£<0)] =h

where

(?(0),p) 4

3^(^(0) ,p) F^xCO.p) 3^(0)^)
3xn(0)3xx(0) 3x2(0)

3F2(x(0),p) 3F2(x(0),p) 3F2(x(0),p)
3x (0)

n '
3xx(0) 3x2(0)

3Fn(x(0),p) 3Fn(x(0),p) 3Fn(x(0),p)
I 9x1(0) 3x2(0) 3xn(0)

(87)

3f(x(Q),p);3f(x(0),p)
3x(0) 3p

(88)

The kth component x, (0) in (87) corresponds to the component of x(0) having

the maximum variation; namely,

lAx3*1! |̂*£«)) -x3"1^)] =max||Ax3|, |Ax3|, ,|Ax3(0)|, |Ap3|} (89)
where Ax3 =x|(0) -x3"1(0), i=1, 2, 3, ...

* ^ j 3-1Ap = pJ - pJ

-19-
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It follows from (89) that the maximum variation at the jth step is equal or

less than h. The second equation in (87) guarantees that the solution curve T is
traced in the same direction of x, (0) at the (j-l)th step.

Step 2. The predicted value from (87) is corrected by the following algorithm:

Corrector algorithm by secant method

J^CO.P1) xi+1(0) - x1(0)
i+1 i

LP - p J
= -f^O.p1)

x£+1(0) =x£(0)

where i = j+1

(90)

Observe that the first submatrix 3f(x(0) ,pj/3x(0) in (88) can be obtained by
the secant method via (31) :

sWx^O)^)
3x3(0)
** \

where F(xm(0),p,n)) =xm(0) -xm(T)

»d r> 4[[£(^-"(0)^-")- F(5l^1(0).pJ-«*1)][F(xl-Bfl(0),pJ-*fl) -f^^^O),
Pj"n+2)] [^"W^1) -?(*W '

SJ &[(xi-n(0) -x^Vo)) (xi-n+1(0) -xi-n+2(0)) ...(J-\o) -̂(0))]
The second submatrix can be obtained as follow:

3f(x(0) ,p) f(x(0) ,p+Ap) -f(x(0),p)
3p Ap

(91)

(92)

; for augmented system (84). (94)

= Fhc (0)j ;for augmented system (85). (95)

where Ap in (94) is chosen to be a small number. It is proved in [12] that the

solution curve r obtained by the above algorithm has the following two properties:

Property 1.

If the rank of the nx(n+l) matrix 3f(x(0) ,p)/3x(0) :3e(x(0) ,p)/3p| is equal
to n along the solution curve of (84), then, the predictor algorithm (87) always
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gives a unique solution ix3 (0),pJ ).

Property 2.

Let x'(0) and x"(0) be any two initial points which are independent in the

sense that *Yx^(0)) f kF/x£(0)), where kis an arbitrary constant. Let r^(0)j
and r(x"(0)) denote the respective solution curves plotted in the x(0)-space with
pas aparameter. Then any intersection x(0) between nx^(0)j and IMx^(O)) must
necessarily be an initial point which gives rise to a steady-state periodic

solution of (1).

Observe that Property 1 guarantees that our algorithm can indeed generate a

solution curve r through any initial point x (0) continuously. The value x(0)

corresponding to p = p* then gives the desired periodic solution. Since x (0)

can be arbitrarily chosen, our algorithm is indeed globally convergent under

the mild assumption that p = p*. Property 2 guarantees that if (1) has

multiple periodic solutions, then by choosing two or more initial points,

all intersections of the associated solution curves must correspond to periodic

solutions. We can now summarize the above algorithm as follow:

Globally Convergent Algorithm

Step 0. Choose any_ initial value x° (0) and p°. Choose the kth component x£
to be p .

Step 1. Compute r3 and H3 as defined in (92) and (93) by solving (1) over
[0,T] n+1 times. Evaluate 3f(x(0) ,p//3p by (94) or (95). Hence
J(x3(0),p3) is determined.

Step 2. Implement the Predictor algorithm by solving (87) for x (0) and

p using the Gaussian elimination method.

Step 3. Find lAx3"1"1! using (89).

If IAx3*1] = |Ax3|, go to step 4.

If |Ax3+1| ^|Ax3 |, switch from the parameter x3(0) to the parameter

x3 (0) and go to step 4.

Step 4. Implement the corrector algorithm (90) for i = j+1 until

llF(xi+1(0),pi+1)« <e
where e is a sufficiently small positive constant.

Since initially there is yet no "variation" in x (0) , we can choose any
variable as the kth component.

Q _£

The examples in the next section are all solved with e = 10
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Step 5.9 If p3 < p*, go to step 2 with j = j+1, x3(0) = xi+1(0) and P3 = p1+1.
If q3 ^ p*, go to step 6.

i
Step 6. Interpolate to identify the point x(0) where pJ = p*. Then the

solution of (1) through x(0) is T-periodic. Stop.

To obtain multiple periodic solutions, we simply repeat the above algorithm,

and continue to trace the solution curve. The intersections between the different

solution curves must all occur at exactly p = p* each of which gives rise to a

distinct T-periodic solution. In the event where there is reason to believe

that other T-periodic solutions remain unidentified, repeat the algorithm

with other initial guesses; Except in rare cases, our experience shows that

all periodic solutions will be found with no more than 4 initial guesses.

V. ILLUSTRATIVE EXAMPLES

Example 1. High-Q Bandpass Filter

Consider the high Q active bandpass filter circuit shown in Fig. 4(a)

where the transistors are modelled by the "dc" Ebers-Moll model shown in

Fig. 4(b). The diffusion and transition capacitances of the transistors are

negligible for this filter which was designed to have a bandwidth extending

from to = 980 rad./sec. to io? = 1020 rad./sec. The following reduced system of

implicit differential-algebraic equations for this network is obtained by the

algorithm described in Appendix 1:

Givircivi - °

°lV*8 = °

L8i8+Vin+Vll+Vrv2 - °

WW^O "°

VV9 =°

-ilO+V* = °

L10i10-Vl+V3+V12+V4 =°

-C4V(G4+G2)(v3+V12)-G4Eb+(1-a)(Idll+Idl2) "°
G3v3+C3v3+aIdl2-Idll = 0

If the augmented system (85) is chosen, then p* = 1.
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G5(v6+v13+v5-Eb)+C6v6+aIdll-ldl2 - 0

-C6V(G8+G6)(v5+v13)-G8Eb+(l-a)(Id21-Id22) » 0

G7v5+C5;5+aId22-Id21 =0

C7S+G9(v14+V7-Eb)+aId2rId22 =°
-C7;7+G10v14 =0

Equation (96) consists of 14 equations with

x=[v1v2v3v4v5v6v7i8i9i1()]T (97)

as the state variables; hence, n = 10. We use the 4th order backward

differentiation formula (BDF) with a step size h = T/40 to solve (96) . The

initial guess x(0) is chosen to be the following dc_ solution with v. =0

which can be obtained by BDF with a large step size (e.g., h = 100):

vx(0) = v2(0) ="0, v3(0) = C .544,
V4(0) = -0.875, v5(0) = 0. 544, v6(0) = 8 .80,

v?(0) = 9.67, i8(0) = ig(0) = i10(0) = o, vu(0) = 0, v 12(0> = 0 .330,

v13(0) = 0.330 •V14(0) " -8. 79

(98)

the output voltage v which gives rise to a periodic solution is computed

using the modified secant method in Section III for 3 different values of 6

and the result is listed in Table 2.

Table 2. Steady-state analysis of bandpass filter via the modified secant method

with 6 as a parameter, (v. (t) = E sin a>t, ui = 990 rad./sec, E =0.01 volts).

I

6 = 0.01 6 = 0.0001 6 = 0

V 4.
out

Error V
out

Error v Error
out

1

5

9

13

15

17

18

19

2.6442

2.8220

2.6996

2.5445

2.6251

2.6898

2.9778

2.7369xl0"2

4.6603xl0_1

1.6381xl0_1

1.9875xl0~2

3.7291X10"1
4.2957xl0"2

3.1342X10"*1

2.6442

2.6503

2.6603

2.6588

2.6584

2.6587

2.6585

2.6585

3.7369xl0~2

7.8222X10"1
4.3609xl0"3
5.8248xlO"A
2.4586xl0"5
2.9987xlO-4
6.9124xl0~5
7.1399xlO"5

2.6442

2.6503

2.6603

2.6588

2.6584

2.6586

2.6582

2.6586

3.7369xl0"2
7.8222X10"1
4.3609xl0"3
5.8248xl0"4
2.4586x10"5

6.9357xl0~5
1.2515xl0"3
3.9048xl0~4
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The error in Table 2 is defined by

E«or L{£[v.W-v.Cr)]2+g [VO)-!^)]2}1'2
I, m=ll J m=8

(99)

Note that when 6 = 0.01, the error oscillates and the algorithm is unstable.

However, with 6 = 0.0001 or 6 = 0, the algorithm converges in about 13
iterations. Our experience shows that the choice of 6 depends strongly on the
choice of the computer. For a 16 bit computer, our algorithm is found to

-4 -5
be always stable with 6 = 10 or 10

E = 0.001 volts),
m

I v
out

Error

, 1 0.42631 1.2148xl0"2
2 0.47041 7.5861xl0"3
3 0.47056 2.4694xl0"3
4 0.47058 2.4620xl0"3
5 0.47054 1.9284xl0"3

12 0.47054 1.9108xl0"3
13 0.47070 4.1449xl0"7
14 0.47071 2.8706xl0-7
15 0.47071 5.8717xl0"7

For a 32 bit computer, even more

*-8accurate solution is obtained with 6 = 10", as shown in Table 3. The same

circuit is analyzed using the discretized Newton method from Section II and
the solution is seen to converge in 5 iterations, as shown in Table 4. This

rapid convergence is misleading

Table 3. Steady-state analysis of band- Table 4. Steady-state analysis
pass filter using modified secant method of bandpass filter using dis
using a 32 bit computer, (oj = 990 rad./sec., cretized Newton method

(u> = 990 rad./sec, E =0.01 volts)
m

I v .
out

Error

1

2

3

4

5

2.8433

3.1518

2.7120

2.6588

2.6587

6.9272X10"1
1.3215X10"1
9.7060xl0"2
2.9671xl0"4
2.5867xl0"4

however, because each iteration in the modified secant method requires solving

(96) over [0,T] only once, whereas that of Newton's methods, requires n+1 = 11

separate solutions. Hence a more meaningful comparison should be based on

the number of times that the circuit has to be analyzed by BDF over [0,T] per

iteration. Such a comparison has been made using 4 methods: 1) "brute force

transient analysis, 2) discretized Newton method, 3) secant method and,

4) modified secant method. The result is summarized in Fig. 5. Observe that

the transient analysis method converges extremely slowly. This is expected

since this filter has a very high Q (very lightly damped) and hence it takes a
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long time before the transient will die out. In contrast to this, the dis

cretized Newton iteration converges after 44 transient analyses, the secant

method converges after 29 analyses, while the modified secant method requires

only 23 analyses. Observe that the graph for the modified secant method

coincides with that of the transient analysis method (which is equivalent to the

fixed-point algorithm [10]) for n ^ 11 because the modified secant method must

be initiated by "n+1" transient analyses. Observe also that the graph correspond

ing to the secant method in [15] is quite erratic in view of the ill-conditioned

problem alluded to earlier. The computation time of the discretized Newton method is

found to be about 1.8 times that of the modified secant method when co = 990 rad./sec,

and 1.3 when w = 1020 rad./sec. This agrees quite well with the predicted ratio

R = 1.713 in Table 1 for n = 10. At u) = 1040 rad./sec, the modified secant method

is found to converge in 21 iterations while the discretized Newton method becomes

unstable and does not converge at all.

Using the initial values found in the preceding analysis, the periodic

steady state output waveforms v (t) correspondong to two different input

amplitudes E = 0.001 and 0.01 volts are shown in Fig. 6(a) for the input frequency
m

u) = 990 rad./sec The corresponding waveforms corresponding to E = 0w002 and 0.01

volts are shown in Fig. 6(b) for the input frequency w = 1040 rad./sec. Notice that

this waveform is much more distorted compared to that in Fig. 6(a). Since the

initial guess in this case is quite far from the exact solution, it is not

surprising that the discretized Newton method diverges.

Example 2. Modified Colpitt Sine and Cosine Oscillator

Consider next the autonomous circuit shown in Fig. 7(a), where the left

hand side consists of a modified Colpitt!s oscillator. This circuit is designed

to generate a sine wave (v,(t) and v (t)) and a cosine wave (v (t)) simultaneously.
d c a

The frequency is controlled by the inductor L_. Using the same circuit model

in Fig. 4(b) for the transistors, we obtain the following reduced system of

implicit differential-algebraic equations:

G1(v1-v6)+G2(v1-v6+Eb)+(a-l)(Idll+Idl2) - 0

G3(v1+Eb)+Idu-aIdl2+C2v2+C1v1+i5 = 0

WVV1 = °
-i5+G4(v7-v8+v3-v10)+Id21-aId22 = 0
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-Vv7-JVid*VL5VVBb = °
G7(v3-v8-v10)+G6(v3-v8-v10-Eb)+(a-l)(Id21+Id22) = 0

G5(-V10+V3-V+C3VId22-aId21 =°

-G9V10+G8(-V10-Eb)+(a-1)(Id31+Id32)-C3'J3 "°

G10(-V10+V9)+Id3r°Id32 =°

The state variables are x = [v-v.v i.i ]T and hence, n = 5. We solve (100)

using the 4th order BDF as in example 1, and use the modified secant method to

find the periodic solution. Again, the dc solution is chosen as the initial

guess x (0). This solution is easily found using the BDF with a large step

size h to guarantee that the algorithm will be stable, i.e., will lie in the

shaded region of the stability diagram [10] shown in Fig. 8(a). The convergence

behavior of the modified secant method is shown in Fig. 8(b) for 3 different

values of R.. Since n = 5, the first 6 periods of transient analysis in
i+1 1 i+1

Fig. 8(b) correspond to the fixed-point algorithm xJ (0) = xJ (TJ ). Since

this circuit is autonomous, we have fix v-(0) = 9.12 in all iterations and

replace v- with the unknown period T; i.e., z= [Tv^i^]"1'. We use (55)
and (56) to calculate T and use BDF to calculate v2» v3, i^ and i$ in
implementing the modified secant method. The results in Fig. 8(b) are all

obtained with 6= 10 . The output voltage waveforms v (t), vfe(t) and V£(t)
corresponding to R = 450ft are shown in Fig. 7(b), where T = 0.58693x10 .

The same waveforms for R = 430J2 are shown in Fig. 7(c), where T = 0.58540x10

Observe that the waveforms v,(t) and v (t) are highly distorted because
b c

transistor T„ is saturated when R = 430°..

Example 3. Nonlinear Frequency Response for Puffings's Equation

Consider the "forced" nonlinear series RLC resonant circuit shown in

Fig. 9(a). The circuit equation

x + kx + a x + a_x = B sin wt
1 ^

-3

(101)

is known as Puffing's equation [6] and can be recast into the following state

variable form:

(102)

x2 = -kx« - a,x- - a9xl + B sin a)t-
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We apply the discretized Newton method and the secant method to solve (102)

with B = 5.0, k =0, a.. = a2 = 1.0, and to = 1.5. The results are summarized
in Table 7. In this case both methods converge rapidly even though there is

Table 7. Comparison of discretized Newton method and secant method.

I

Discretized Newton Method Secant 1Method

xx(0)
—

x2(0) x1(0) x2(0)

1 0.32013E-01 0.21371E+01 -0.37333E-01 0.23598E+01

2 -0.18178E-02 0.24009E+01 -0.61868E-02 0.23839E+01

3 -0.13519E-03 0.23986E+01 -0.27407E-03 0.23983E+01

4 -0.13181E-03 0.23986E+01 -0.13123E-03 0.23986E+01

5
•

-O.13161E-03 0.23986E+01 -0.13177E-03 0.23986E+01

no damping. To obtain the same accuracy, we find that 9 iterations are required

by the discretized Newton method compared to only 6 required by the secant method.

Consequently, the secant method is more efficient even for small n.

It is well known that Duffing's equation exhibits many interesting

nonlinear phenomena [6,16]. For example, it has multiple periodic solutions

at around B = 0.4. It can also exhibit jump resonance and subharmonic

oscillations. In this case, we introduce an artificial parameter p and choose

the augmented system (85). Now assume B = 0.4, k = 0.1, a, = a~ = 1.0, w = 1.5 and

choose h = 0.05 as the step size for the forward Euler algorithm (87).

Applying the globally convergent algorithm to this system, we obtain 4 solution

curves (x (t),x«(t),p(t)) corresponding to the following 4 initial guesses:

P1: (0,0) P : (-2,2) P : (-2,-2) P : (0,-2). These curves are projected into
the x (0) -vs.- x (0) plane as shown in Fig. 9(b). Observe that these solution

curves intersect at three points Q-, Q«, and Q , each one giving rise to a

T-periodic solution. Observe that only solution curve 2 (corresponding to

initial guess P„ is sufficient to locate the three points Q,, Q2, and Q«.

The three associated T-periodic solutions corresponding to Q. and Q3 are stable,

while that corresponding to Q~ is unstable.

Let us derive next the nonlinear frequency response curves as a function

of the amplitude B of the input. In this case, it is natural to choose p = B

and work with the augmented system (84). Let us choose k = 0.4, a. = 0,

a_ = 1.0 and w = 1 and derive the solution curve starting from (x-(0),x2(0) ,B)
= (0,0,0) using the globally convergent algorithm. Since p coincides with B in
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this case, each point on the solution curve determines a T-periodic solution,

where T = 2ir. If we find the Fourier components of each of these periodic

solutions, we would obtain the family of frequency response curves, one for

each harmonic component. Here, the dotted lines indicate the corresponding

solutions are unstable, while the solid linesdenote stable solutions. We find

the dc and 2nd harmonic components can occur only over the range 2.9219 <^ B

<_ 11.922. We also find that jump phenomena occur over the two intervals

0.44829 <_ B <_ 0.52323 and 12.382 <_ B <_ 14.455. These bounds are exact and

could not have been obtained by any other existing methods known to the

authors.

Since it is well-known that Duffing's equation can have a 1/3 subharmonic

solution, let us derive the frequency response characteristics of this mode of

oscillation as a function of B. To be specific, let us choose k = 0.1,

a = 0, a_ = 1.0, and u> = 1. Repeating the preceding procedure but with

3T = 6ir, we obtain the results shown in Figs. 10(a) for 0.10 «. B <_ 0.25, and

in Fig. 10(b) for 1.3 <_ B <_ 1.7. Again, observe that these characteristic

curves are all exactly (apart from truncation errors) determined by our

algorithm. The conventional methods for generating these curves make use of the

harmonic balance method by neglecting higher harmonic terms which are invariably

present. Consequently, all such characteristic curves are only approximately

determined. Finally, Fig. 10(c) shows a pair of 1/3 order subharmonic response

waveforms x-(t) and x«(t) corresponding to an input amplitude B = 0.1581. An

examination of Fig. 10(a) shows that these waveforms contain only two component

frequencies; namely, the input frequency u and the 1/3 order subharmonic frequency

w/3.

Example 1. van der Pol Oscillator

Consider next the autonomous nonlinear circuit shown in Fig. 11(a) where

the tunnel diode in~v_ curve shown in Fig. 11(b) is described by

f(vD) =-Px(v-E) +p3(v-E)3, prP3 >0 (103)
The circuit equation is given by

H diTf (v+E) +Gv + C§7-+iT=0> L-£=v (104)
at L at

Substituting (103) into (104) and simplifying, we obtain

C4-J +(G-p1+3p3v2) |+Jv=0 (105)
dt
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Now introduce the dimensionless time variable x = t and recast (105) into

the form

d2v
—7+ \/£ (P,-G)
dt

yi (v<
If we define

3p

P

"1 4. 3P3 2
V5 •

^ + v = 0 (106)
dx

then (106) becomes the well-known van der Pol equation [6]:

4-4- y(l-x2) ^+ x=0 (108)
,2 dx
dx

In state variable form, (108) becomes

xx = x2

x2 =y(l-x*)x2 -xx (109)
Since the period of oscillation T is unknown in this example, we must apply the

algorithm for the autonomous case from Section III. This is done by fixing

x (0) = 0 and by replacing x by T. Now if we apply either the discretized

Newton method, or the secant method, to find the periodic solution with u = 0.01,

we find either method will converge to 0- :(x (0),x2(0),t] =(0,1.9977,6.2832)
when x2(0) >1.3 and T(0) =6.28, or Q2 :(xQ(0) ,x2(0) ,t) =(0,0,2ir) when x°(0) <0.7
and T(0) = 6.28.The periodic solution corresponding to 0- can be shown to be stable,

while that corresponding to Q_ can be shown to be unstable. Hence unless we
0

choose the initial value x (0) < 0.7, we will not expect a second periodic

solution since it can never be observed in practice. However, if we apply the

solution curves corresponding to two convenient initial guesses, these two

solutions can be systematically identified. For example, if we choose

Pl :(X2^,T) =(°-7»6«28)» p2 :(x2(0),t) =(2.2,6.28), we would obtain the
two solution curves shown in Fig. 11(c), where only a portion of the second curve

is shown because it leaves the right boundary at point A and returns at point B.

The points corresponding to periodic solutions are then located at the inter

section of the solution curves with the verticial line p = 1; namely, at 0-

and Q2.

As a further illustration of the application of the globally convergent

algorithm, let us derive the relationship between the period of oscillation T,

as well as the frequency response curves for the van der Pol oscillator as a
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function of the parameter y. This natural parameter suggests that we work with

the augmented system (84). The results are shown in Figs. 12(a) and (b) ,

respectively. Observe that T * 2ir for small y but tends monotonically to a very

large value as y increases. Again, observe that the curves shown in Figs 12(a)

and (b) are exact. To the best knowledge of the authors, such curves have been

published only for small values of y in order to guarantee that the higher

harmonic components are negligible. Even then, they are not exact because of

the approximations involved in the harmonic balance method. It is interesting

to observe that the fundamental component of the van der Pol oscillator remains

almost constant for all values of y, even though the higher harmonic components

increase monotonically with y. For example, the solution waveforms corresponding

to y = 3.0 will have a period T = 8.86 (from Fig. 12(a)) and will contain the

1st, 3rd, 5th, 7th and 9th harmonics whose amplitudes can be read off from

Fig. 12(b). The resulting periodic waveforms for x (t) and x2(t) are shown in

Fig. 11(d).

VI. CONCLUDING REMARKS

Both the theoretical analysis and the examples show that the modified

secant method is more efficient compared to the discretized Newton method, the

efficiency increases as the size of the system increases. This is not surprising

since the bulk of time needed to implement the shooting method is spent in doing

transient analysis. Since the modified secant method requires only one analysis

per iteration after the first step, as compared to n+1 analysis per iteration in

the discretized Newton method, it is clear that the larger the system, the less

efficient the latter will be.

The globally convergent algorithm is developed primarily for systems where

a suitable initial guess is not easy to find. It is particularly attractive for

finding multiple periodic solutions, especially those frequently encountered in

the area of nonlinear oscillation. In this case, no other algorithms (other than

the brute force transient analysis method) of comparable accuracy presently exist.

In fact, for strongly nonlinear systems with many harmonic components, our

algorithm appears to be the only practical computation method available.
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APPENDIX 1. Explicit Formula for Reduced System of Implicit Equations

Let N be a nonlinear network containing voltage or current-controlled

2-terminal resistors, voltage-controlled 2-terminal capacitors, current-

controlled 2-terminal inductors, as well as independent and controlled sources.

Mutual couplings are allowed so long as they are restricted to elements

belonging to the same class. Let each independent source be considered as part

of a "composite" branch as in [10]. Adopting the notations in Section 17-2

of [10], we obtain the following tableau equation for N:

1 -A 0

K
~v

0 K

0 0 A

V
~n

g(yc,iL,v,i)
A J

(A-l)

where the second equation contains the constitutive relations of all elements

of N. Equation (A-l) consists of a system of 2b+n-l implicit equations of

the form (1) , where "b" denotes the number of composite branches and "n"

denotes the number of nodes. Our goal in this section is to derive an equivalent

system of implicit equations containing fewer number of equations and variables

for an important subclass of networks. In particular, we assume that N contains

no loops of capacitors and independent voltage sources, no cut sets of inductors

and independent current sources and that all controlled sources are current

sources depending on either resistor or capacitor voltages. Consequently, there

always exists a normal tree <J containing all capacitors and no inductors [10].

If we let j9 and y_ denote the current and voltage vectors of all inductors in N,

and let i- and v denote the current and voltage vectors of the remaining

elements, then (A-l) can be recast as follows:

I Q • "*b 0 i«i
—»

0 0 0 i ' 0
1 ~ h

o o 1 0 ' -AT
I ~1 v~i

0 0 0 i 1-A1'
1 -2 ?2

-1 A2 ! 9 0 1 0
i ~

V

|(yc»y)|
L(i2)i2

5i"""
!2____
AJ

t
0

0

0

v

(A-2)

where the reduced incidence matrix is similarly partitioned into A = [A. A ],

and where L(i_) denotes the incremental inductance matrix. Substituting

h =Vi +§(YC»Y> =^b(^V?i} +I(^c,y) (A"3)

A-l



into the last equation in (A-2), we obtain the following reduced system of

equations:

A9i9 + (A.Y, AT)v = -A-YE- - A_g(y ,v) + AJ

v9 = A;v + E = L(i9)i,
~z ~z~n -z ~ *-z ~z

(A-4)

(A-5)

Let YCT denote the branch voltage vector associated with the normal tree

\J, and let vw) denote the corresponding cotree voltages. Since all capacitors
are assigned in xjt v is a subvector of yc#» . Similarly, since all inductors
are assigned in the cotree, v« is a subvector of v^p . Let the reduced

incidence matrix A be partitioned accordingly into'A^ and k^n , so that KVL

assumes the form

v A V
A

=

T

v +
-n

(A-6)

Since the columns of AAqt»correspond to tree branches, Aopis non-singular [10],

Hence we can solve for the node-to-datum voltage vector v from (A-6) to obtain
~n

.T ,-1,

T-- T ,-1,

'n=[Agr[v<;-5cj}

Yc£ =^[^cjl t^rr " $cr 1+?
Substituting (A-7) and (A-8) into (A-4) and (A-5), and denoting the inductor

current vector i_ by i , we obtain
~ Z "Jj

where

S(Y„»Ycr) A- s(v„»v)
v = [v

*d*s£

(A-7)

(A-8)

(A-9)

(A10)

(A-ll)

and yoQ is given by (A-8).

Equations (A-9)-(A-10) constitute a reduced system of implicit equations in
T

terms of the state variables x a [vpiT] and the non-state variables contained

within V£v» .

Equation (A-9) can be interpreted as the nodal equation of N with all

inductor currents iL. considered as independent sources, and with all

node-to-datum voltages expressed in terms of the normal tree voltage vector

Vq. . Similarly, (A-10) can be interpreted as the fundamental loop equations

(relative to the normal tree ^J) formed by the inductor links. These
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interpretations allow us to write down the reduced system of implicit equations

of simple nonlinear networks — such as those considered in Section V — by

inspection. If N contains loops of capacitors and independent voltage sources,

or cut sets of inductors and independent current sources, the above procedure

can be easily generalized by first expressing the cotree capacitor voltages

in terms of tree capacitor voltages, and tree inductor currents in terms of

cotree inductor currents [10].

APPENDIX 2. Proof of the Secant Method Convergence Lemma

Applying the secant algorithm to (61), we obtain

uj+1(0) =uj(0) -(^(rV^u^O))
If we let

Jj A (r^XH^)"1

then we can write

(Jj)(Hj) = T3

It follows from (A-14), (29) and (30) that

f(uj-m(0)) -f(ujMlrl(0)) =(Jj)(uj-m(0) -u^V))
or,

F(uj-m(0)) -(Jj)uj"m(0) =F^-"-1^)) -(JJ)ujHBrl(0)> m=0,1,2, n-1
Hence

Cj 4f(uj(0)) -(Jj)uj(0) =f(uj"1(0))- (Jj)uj_1(0)
= =f(uj-n+1(0)) -(Jj)uj"n+1(0)

Combining all vectors of (A-15), we obtain

m —

Jll J12 * * Jln

J21 J22 ' ' J2n
"

ol s2 ' ' an 1

u}-°«» u^CO)
«32"°(0> u^CO)

«l"°<o) «i"o+1(0)

A-3

«?<0>

u^(0)

«i(o>

c3 c3

c3 c3^ C2

(Jc3
a a

(A-12)

(A-13)

(A-14)

(A-15)

•4
•4

•<,

(A-16)



where J is defined by (A-13). Equation (A-16) can be written compactly as
follows:

F3 = (Jj)(Uj) + (Cj)(I)

f 4JF(u^n(0)) |(uj-n+1(0)) F(uJ(0))]
UJA [^(O) uj"n+1(0) uj(0)J

where

I A [1 1 1 1]

The i.th row of (A-17) can be written as follows:

*i- ^ ^h Li
Transposing both sides of (A-18), we obtain

[(Uj)T! IT]
" i T"Q3)±

A
<?i>T

When expanded, (A-19) can be recast into the following system of linear

equations:

uj'n(0) u^"n(0) .... u^"n(0) j1|
J"n+1(0) J"^(0) .... uj-n+1(0) !1

J- z n .

u^(0)
J

uj2(0)
i •

i

J.-.-.. uJ(0) i1
. J

Thus C. can be solved using Cramer's formula:

A-4

j
il

j
12

F±(uj(0))

(A-17)

(A-18)

(A-19)

(A-20)



^•"(o) u2-"(0) • • • »r<°> F.
l
(uJ-n(0))

4-n+1w uj2"n+1(0) . . . uj"n+1(0)
n

- / j-n+1,F.\uJ (

• •
....

•

rj _
u^(0) •4 • • • Un(0) F.(uj(0))

c. = -
X

^""(0) ufn(0) • • • »r<°> 1

u{-n+1(0) u2"n+1(0) . . . uj-n+1(0)
n

1

*

•

•

....
•

u|(0) u2(0) • • • u> 1

(A-21)

Now assume that the successive iterations give much closer approximations

to the exact solution u(0) = 0. Thus

lluj(0)il « iiuj""1(0)II « ...« lluj"n(0)« (A-22)

The approximate value of the denominator of (A-21) can be estimated by expanding

the determinant via the last row; i.e.

[denominator of (A-21)] =O(sJ~n(O>0 "f'uj"n+1(0) II .... Buj-1(O)0)
(A-23)

where 0{»> denotes that the [denominator of (A-21)] is of the order of the

J-n,products of II uJ (0)11 ,. .

Substituting (A-12) into (A-21), the numerator of (A-21) can be estimated

as follows:

luj_1(0)H.

n n

[numerator of (A-21)] =0{E £ B± kJu£ n(0)|-|u^ n(0) |)
k=l m=l '

xO(iluj-n+1(0)H •Huj-n+2(0)ll ..Huj(0)il}

(A-24)

Hence there exists a constant B. such that
l

[numerator of (A-21)]

=B^Ou^Wll^-OClu3^"1^)! lluj-n+2(0)
It follows from (A-23) and (A-25), that

. Uuj(0)lj) (A-25)
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j _ [numerator of (A-21)]
i [denominator of (A-21)]

=B±0<
luj"n(0)H2 luj"n+1(0)

uJ"n(0)ll • Huj-n+1(0)11

=B±Q '(»uJ""nH •«ujll)

J-lHuJ"X(0)ll . llua(0)(l

luj_1(0)

(A-26)

On the other hand, the secant algorithm (A-12) can be rewritten with the

help of (A-13) and (A-15) into the following form:

J+l, - .,J(0) = uJ(0) - (JJ)J)"1p(uJ(0))
-(ij)"1 [(Jj>\?j<°) -?tj(0))j
= -(Jj)_1Cj (A-27)

Now since J in (A-13) is nearly equal to the Jacobian matrix in the

vicinity of u(0) = 0, J3 = 1. It follows from (A-26) and (A-27) that

lluj+1(0)D z BcjII

=llBjII .o("uJ"n(O)0- •l!uJ CO) h\ ,
i Twhere BJ 4 [B B . . B ] . Hence (A-28) implies

lluj+1(0)ll =Bslluj"n(0)ll • Ouj(0)ll
which is (62).

A-6

for all j (A-28)

(A-29)
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LIST OF FIGURE CAPTIONS

Fig. 1. Geometrical interpretation of the one-dimensional secant method.

Fig. 2. The unknown period T for an autonomous circuit is obtained by first

choosing a time origin such that |x (0) | < C and by equating

x (T) = x (0).

2Fig. 3. Geometrical interpretation of thw switching parameter algorithm in ]R .

Fig. 4. (a) A high-Q bandpass filter. The circuit parameters are:

R^lft, R2=27kfl, R3=100Q, R4=100kft, R5=lkft, R&=27kft, R =100ft, Rg=100kft,
R9=lkJ2, R10=10Kft, C1 = O.lyF, C2=20yF, C3=100yF, C4=0.1yF, C =100yF
C6=2yF, C?=2yF, Lg=10H, L9=0.05H, L1()=10H, Eb=+15(V), v±n=E sin coT.

(b) The dc Ebers-Moll transistor circuit model I,., = 10 Te -11,
40v dl1

Idi2 =10"8[e EC-1], and a=0.99.
Fig. 5. Number of transient analyses of the bandpass filter over [0,T] using

4 different methods: 1) brute force transient analysis, 2) discretized

Newton method, 3) secant method, and 4) modified secant method.

Fig. 6. Periodic output voltage solution v (t) .
out

(a) a) = 990 rad./sec. (b) a> = 1040 rad./sec.

Fig. 7. (a) A modified Colpitt sine-cosine oscillator. The circuit parameters are

R1=17K^, R2=10Kfi, R3=390J3, R4=910ft, R5=10Kft, 4300 £ R <_ 460ft,
R?=150ft, Rg=47Kft, R9=22Kfi, R1Q=470ft, C^O.lyF, C2=0.1yF, C3=0.5yF,
L,=0.3H, L =0.5H, and E =-12 volts. The transistors are modeled
, -7 40vEB _7 40vrR
by Ebers-Moll model with 1^=10 [e -1], I.2=10 [e -1],
i=l,2,3, a=0.98.

(b) Output voltage waveforms with R = 450ft.

(c) Output voltage waveforms with R = 430ft.

Fig. 8. (a) The region of absolute stability for 4th order BDF:

(b) Convergence behavior of modified secant method for 3 different

parameter values of R,.

Fig. 9. (a) A nonlinear RLC resonant circuit described by Duffing's equation.

(b) Solution curves corresponding to 4 different initial points P.,

P2> P and P.. The three intersections Q-, 0_, and 0- give the 3

T-periodic solutions.

(c) Nonlinear frequency response characteristic curves as a function of

the input amplitude B.



Fig. 10. Nonlinear frequency response characteristic curves for 1/3 order

subharmonics as a function of B.

(a) 0.10 < B<_ 0.25

(b) 1.3 <_ B < 1.7

(c) A 1/3 order subharmonic response x-(t) and x„(t) corresponding to

B = 0.1581.

Fig. 11. (a) van der Pol oscillator circuit

(b) i -v curve of tunnel diode
D D

(c) Determination of two periodic solutions using the globally

convergent algorithm

(d) The periodic waveforms corresponding to y = 3.0 and T = 8.8598.

Fig. 12. (a) The oscillation period T -vs.- y relationship for the van der Pol

oscillator

(b) The freuqency response characteristics (amplitude of each harmonic

component as a function of y) for the van der Pol oscillator.
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