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ABSTRACT L

The problem of efficiently processing queries in a

.

relational database management system is examined. The
major areas investigated are: 1) transformations of the
query statement prior to processing, 2) strategies which
take advantage of the structure of the query, and 3) tech-
niques which depénd upon the data referenced by a particular

query.

First, a query is examined to determine what charac-
teristics lend themselves to more efficient processing
methods. Then it is shown that transformations similar to
those used in compiler optimization can be applied to the
initial query prior to any data accesses to achieve certain

of these characteristics at a small cost.

Since the most expensive queries tend to be those which
involve several relations, several techniques for processing
these multi-relation queries are examined. The first is
tuple substitution which is essentially equivalent to creat-

ing the entire cross product a tuple at a time. Then the



idea of reduction-is introduced. Reduction takes advantage
of the structure of the query to break apart a single
multi-relation query into a sequence of queries, each
involving fewer relations than the original query. Using
both empirical and analytical methods, it is shown that gen-
erally a combination of reduction and tuple substitution
will result in a lower processing cost than tuple substitu-

tion alone.

Finally, certain options are discussed which attempt to
tailor the general processing algorithm to specific queries
and the data they reference. These techniques take advan-
tage of the distribution of the data and the storage charac-
teristics of the relations. Most of these intuitively good
ideas are shown to be quite useful through analysis and

empirical measurements.
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CHAPTER 1
INTRODUCTION

In the current trend of database management systems,
there are three data models which are most widely used.
They are the network model [CODAT1], the hierarchic model
[IBM70], and the relational model [CODD70]. There has been
much discussion as to which of these models should be used
(CODD74, DATETY4, BACHT4, SIBLT4, HELD75, DATET5]. The
advantages of the relational model have been eloquently
detailed in the literature [CODD70, DATETY4, CODD7Y4, CHAM76]
and hardly require further elaboration. There were two par-
ticular advantages which motivated our choice of the rela-
tional model: (1) the high degree of data independence pro-
vided, and (2) the possibility of providing a high level and
entirely procedure free facility for data definition,
retrieval, update, access control, support of views, and
integrity verification. Such a high-level, nonprocedural
language allows the system flexibility to optimize the exe-
cution of a given query and also allows for modifying the
stored data structures to reflect the changing needs of the

user.

The major unanswered question concerning the relational
data model is whether it can be implemented efficiently.

This work 1s concerned with the efficient processing of a
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user query. This includes possible transformation of the
query into a more efficient statement of the request and
determination of an execution plan for efficient processing'
of the particular query. To understand the nature of the
problem, first the relational model will be formally defined
and then techniques which are used in other relational sys-

tems will be discussed.

1.1 Relatidnal Model

In mathematics, the term relation can be defined as
follows: Given sets D1,D2,--.,Dn (not necessarily distinet),
a RELATION R(D1,---,Dn) is a subset of the Cartesian product
D1x-.-an. In other words, R is a set of n-tuples X =
(X1,X2,---,Xn) where Xy 1is an element of D; for each
i=1,2,...,n. The sets Di are called the DOMAINS of R and R
has DEGREE n. The number of tuples in R is called its CAR-
DINALITY. The only restriction put on relations is that
they be normalized [CODD71b]. Thus, each domain must be
simple, that is, it cannot have members which are themselves

relations.

Clearly,'R can be thought of as a table with each row

representing a tuple.



employee relation

salary

| name | dept | | manager | birth ! start |
iAdams . | candy | 12000 | Baker i 1939 T 1965 |
|Baker | admin ! 20000 |Harding | 1927 | 1955 |
{Harding | admin | 31000 | none I 1917 | 1949 |
| Johnson | toy | 14000 | Harding | 1946 | 1966 |
i Jones | toy | 14000 | Johnson | 1943 ! 1968 !
| Smith | toy | 10000 | Jones . | 1950 | 1970 |

Figure 1.1 A Sample Relation

An example of this representation is shown in Figure 1.1,
which illustrates a relation describing employees in a
department store. Observe the following properties of a
relation:

1. no two rows are identical,

2. tﬁe ordering of rows is not significant,

3. the ordering of columns is significant.
Each column can be considered as a function mapping R into
Di' These functions will be called ATTRIBUTES. Note that

more than one attribute can be based on the same domain.

1.2 Survey of Relational Database Management Systems

Different 1levels of implementation of a relational
model of data can be distinguished, ranging from the user's
view of an information structure to the actual storage
structure of the data. Two levels are clearly distinguish-
able, the tuple-by-tuple access level, and the set or rela-

tion operation level. Most implementations use a low level



tuple interface to the data even though the user may be
unaware of this lower level system. XRM [LORI74] and the
Gamma Zero interface [BJOR73] are examples of this low level
interface to the relational system. Their basic purpose is

to store and retrieve tuples.

User interfaces with languages based on the first-order
applied predicate calculus, as introduced by Codd [CObD71],
also provide a tuple access level to the data but at a
higher level than, for example, XRM. Implicitly, calculus-
- based languages state operations on sets of tuples but these
operations are stated in terms of the tuples themselves.
INGRES, DAMAS [ROTH72], and System R [ASTR76] are examples
of systems supporting this type of high level tuple inter-
face, although the language used in System R is a "mapping-
oriented" language rather than one based directly on the

relational calculus.

Most systems which use a set or relation interface at
the higher level support languages which are based on the
relational algebra [CODD71c]. The operations in these
languages refer to entire relations or subsets of them, thus
these interfaces tend to optimize accesses of all tuples of
a set at once. The MACAIMS System [GOLD70] and the PRTV
System [NOTL72] are examples of implementatiqns using sets
as the basic unit of data for manipulation. (See Appendix A

for definitions of the relational algebra operators.)



Codd has shown in [CODD71e] that any relational cal-
culus expression can be reduced into a formula of the rela-
tional algebra that defines the same result relation and
Palermo [PALE72] extended this algorithm by recognizing cer-
tain ingffieient operations and modifying them. His
improvements included performing projections prior to joins,
not creating the entire cartesian product explicitly, form-
ing the join in such an order that the result grows slowly.
However, his results depend upon the assumptions that (1) a
tuple is the basic retrieval unit, and (2) statistical
information concerning the number of distinct values and the
range of values for each domain is avéilable. In most sys-
‘ tems, unless the tuple size is very large or the page size
very small, a tuple will not be the unit of retrieval.
Also, there is considerable cost associated with gathering,
maintaining and storing the required statistical information

which he does not consider.

However some systems have adopted the approach of
implementing the relational algebra directly. One of these
is the MACAIMS system [GOLD70], developed at MIT and imple-
mented on MULTICS. 1In this system, data items are encoded
to a fixed-length identifier and these identifiers are used
in the stored relations rather than the actual data item.
Using this approach, the stored relations are usually much

smaller than the corresponding relations containing actual



data values and thus can be manipulated much more easily.

Another system using the relational algebra 1is the
Peterlee Relational Test Vehicle (PRTV) [NOTL72, TODD75,
TODD76] under development at the IBM Scientific Center in
Peterlee, England. In this system, when a user states a
query, the query is translated into a tree of operators. An
optimizer then modifies the tree to reflect the system deci-
sions concerning processing. These optimizations include
rearranging and combining the algebra operators in the fol-
lowing manner:

1. sequences of projections on a single relation are

combined into one projection.

2. sequences of selections on the same relation are
combined into a single selection.

3. selections are moved as far down the tree as possi-
ble, thus allowing them to be performed earlier.

4., common subexpressions are identified and possibly
evaluated.

5. removal of redundant relation operations.

6. combinations of un;ons and other set operators are
manipulated to minimize the total size of inter-
mediate results.

In [HALL75], these transformations are discussed in more
detail and consideration is given to the order in which they
@h' should be applied. Results of experiments performed using



these transformations are presented. The tree can also be
utilized to represent the choice of access paths for per-

forming specific operations.

The PRTV system additionally supports storing this tree
which defines a relation so that no actual tuples are
retrieved until they are needed for output. This allows for
combining and simplifying a sequence of queries that keep

building on the same set.

Smith and Chang [SMIT75] have independently developed
similar techniques for optimizing the performance of a user
query in the relational algebra. Many of the same transfor-
mations are presented but then consideration is given to
which operations could run concurrently or if the informa-
tion can be pipelined between two operations and to organiz-
ing intermediate results so they have the most useful sort
order for the subsequent operation. Clearly, opgrations
which must be performed on two different relations indepen-
dently can be run concurrently (assuming the underlying
operating system supports concurrent processes). For exam-
ple, a PROJECT on the EMPLOYEE relation and a SELECT on the
JOB relation can be run concurrently. There are also cer-
tain tasks which do not require a full relation to commence
operating. Such tasks can be pipelined, that is, as soon as
a tuple has been evaluated by the first task, it can be

handed to the second task. This technique increases the



throughput rate and also decreases the amount of intermedi-
ate storage required between operations. It should be noted
that this pipelining cannot be done for any operation which
could produce duplicate tuples since they define that each
temporary relation will not contain duplicates. Also note
that this type of pipelining can effectively be achieved by
a single process applying all operations to the tuple. For
example, a SELECT and PROJECT on the saﬁe relation can be

combined into a single operation.

In addition, Smith and Chang define a set of implemen-
tation procedpres for each relational algebra operator. The
procedures for each operator differ in the sort order of the
input relation(s) and output and thus vary in efficiency.
Using these procedures and an operator tree representing the
query, tasks are created "from these procedures in such a
way that the performance of the whole tree of cooperating
tasks is optimized. This is achieved by distributing and
analyzing the effects on sort order of possible implementa-
tion decisions, and then creating tasks so as to coordinate
sort order throughout the task tree." By requiring all
intermediate results to contain no duplicate tuples, most
often a sort will be required after each operation. It is
possible that the benefits gained from this additional sort

will be less than the cost of performing the sort.

Pecherer has done theoretical research on efficient



operations in a relational algebra environment [ PECHTS,
PECHT75a] and also on efficient exploration of product spaces
by nested iteration [PECH76]. When examining the product of
arbitrarily many relations by nested iteration, different
orders of iteration are possible.. He compares these orders
'ﬁith the goal of minimizing the amount of data volume which
must be transferred between secondary storage devices and
main memory. Data relations are assumed to reside on secon-
dary storage. Let ny denote the size of relation Ri (in
tuples) and bi the number of bits per tuple of Ri' Pecherer
presents the following results. At each step of the itera-
n;b

tion, the relation Ri which maximizes the ratio ni % should
. i~

be selected. When only a subset of the product is to be
retrieved, if the "effectiveness" of individual terms of the
subsetting predicate are known and independent, an expected
optimal order of iteration can be selected in a similar

manner.

There has, in addition, been research on various algo-
rithms for implementing the join operator [GOTL75, BLAST5].
Most of these algorithms expioit the use of indices or links
on the join columns or provide for sorting the relations
involved. No specific result of the type method A is always
better was reached but it was determined that there are cir-
cumstances under which each method is best. Due to this, it

is generally concluded that given the access paths available
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in a certain situation, an evaluator should be used to

determine the method with the minimum cost.

Yet other systems use a tuple level interface based on
a calculus language and opted for a more direct means of
implementation than translation to a relational algebra or
set interface. Rothnie [ROTH72, ROTHT7Y4, ROTHT75], while at
MIT, developed a system with a relational calculus language.
He proposed a technique for handling a query involving two
relations with a basiec method which is essentially
equivalent to the basic method presented here in Chapter 2.
He then defines three options which can be used as exten-
sions of the basic method. These options all use a concept
of back substitution. The values of one tuple from relation
A are inserted in the query resulting in a query ﬁhich now
involves only relation B. This query 1is then evaluated.
The tuples of B which satisfy this new query, or the fact
that no tuples satisfy, are then used to limit the remaining
tuples of A which will have their values substituted into
the original query. Experiments performed on certain
queries illustrate that a dramatic reduction in cbst can be
obtained using combinations of these options [ROTH74]. How-
ever, these ideas are not easily extendable to queries

involving more than two relations.

The SEQUEL system [ASTR7S5, ASTR75a, CHAMT7U4], which was

developed at IBM Reasearch in San Jose, provides a mapping-



11

oriented language. Since the SEQUEL system wuses XRM
(Extended Relational Memory [LORI74]) as the underlying
access method, the optimizer is mainly concerned with which
of the XRM-supported inversions to use to limit the tuples
which must be scanned for a given query. The ma jor diffi-
culty with this system was found to be the restrictions
imposed by the block structured language. This structure
limited somewhat the flexibility in selecting various orders

of the relations for processing.

Another relational system, called System R, is
currently under development at IBM Research in San Jose
[ASTR76]. System R will support the SEQUEL language as well
as other interfaces. The optimizer for this system deter-
mines a set of "reasonable" executibn paths given the set of
images and links which are pertinent. It then applies a
cost function to determine the minimum-cost method. One of
the most important parameters of the cost function is the
physical clustering of tuples and this is dominant in

selecting the execution method.

The optimizer of System R produces an "Optimized Pack-
age (OP)" which contains the parse tree and a plan of execu-
tion. ~This OP can be used directly to materialize the
requested tuples or it can be saved and executed only when a
specific request is made. Using this feature, it is possi-

ble to compile queries and then simply execute the OP. Thus
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at execution time, parsing and optimization are avoided. 1In
a production environment, where the same query is run fre-
quently, this can greatly reduce the processing time. How-
ever, any time that the underlying structures change, the

original SEQUEL query must be reoptimized to form a new OP.

There are two relational systems under implementation
at the University of Toronto, ZETA [CZAR75, MYLO75] and
OMEGA [SCHM75]. Both of these systems are constructed using
a multilevel architecture. 1In ZETA, the lowest level pro-
vides basic Vtuple-accessing operations, the middle 1level
performs the interpreting and optimizing for multi-relation
queries, and the top level supports several end-user inter-

faces. The system makes extensive use of indices [FARL75].

The OMEGA system uses an internal system language
called Link and Selector Language (LSL). This is an
expression-oriented language which provides subsetting
operations on a relation (selector) and'conneotions between
two relations (links). The dynamic optimization supported
includes choosing a fast accéss path, i.e., in which direc-
tion should a link be evaluated, and determining which of
the existing access structures will cause the fewest data
accesses. They also allow for different orders of evalua-
tion of clauses to take advantage of inverted files which
support a selector operation. This is similar to the tech-

nique used in the SEQUEL implementation [ASTR75]. Besides
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supporting inverted files (secondary indices) on domains of
relations, they also propose a selector structure, called a
subset element, which contains identifiers for tuples that
satisfy a particular boolean condition. This can be a very
useful tool especially when a particular subset of a rela-
tion is frequehtly referenced. The support for this struc-
ture is similar to that of an inverted file except that the
boolean condition must be stored in some canonical form to
identify the structure and the queries which contain the

condition.

There 1is much work being done currently on relational
systems but these are most of the major systems concerning
the implementation of relations. There are two main areas
for optimization which are considered by all of the systems.
First, the order of accessing the relations to evaluate the
condition on the Cartesian product, and second, making effi-
cient use of existing access paths in this evaluation.pro-

cess.

1.3 Overview of Dissertation

The goal of this work is to explore ways in which the
processing of a query can be performed efficiently. Most of
the ideas proposed can be applied to any relational system.
They will be presented with particular emphasis as to how
they can be used within the INGRES system [HELD75a], since
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that is the system which was used for development. To this
end, in Chapter 2 an introduction to the INGRES environment
is provided and the query language QUEL is introduced. The
implementation of INGRES is discussed in Chapter 3, in par-
ticular, the portion of the system which processes the
query. Then, starting with Chapter U, techniques for effi-
clent processing are presented. Chapter U4 is poncerned with
transformations which can be applied to the query before
processing begins. These are similar to techniques used in
compiler optimization and those presented by Hall [HALL75]
for the PRTV system. 1In Chapter.s, a general algorithm for
decomposing a multi-relation query into a series of single
relation queries which depends only on the query and not on
the data structures involved is presented. Then, in Chapter
6, tailoring certain steps of this algorithm to specific
queries and existing access paths is considered along with
dynamic creation of new access paths. The order in which
relations involved in a multi-relation query should be
accessed is examined in Chapter 7. This includes a discus-
sion of what are the critical parameters involved in the
cost of processing the query. Since these ideas were
developed using a working relational system, it was possible
to perform some experiments to test the hypotheses of
Chapters 5, 6, and 7. The results of these experiments are
presented in Chapter 8. 1In Chapter 9, the conclusions are

reviewed and areas for future work are outlined.
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CHAPTER 2

INTRODUCTION TO THE INGRES ENVIRONMENT

Although the ideas presented here are, for the most
part, applicable to any relational database system, it is
easier to consider issues which arise in the discussion in
terms of a specific system and query‘language. The system
used for this reasearch is the INGRES system and its query
language QUEL.

INGRES (INteractive Graphics and REtrieval System) is a
relational database and graphics system which is implemented
on top of the UNIX operating system [RITC74] developed at
Bell Telephone Laboratories for Digital Equipment Corpora-
tion PDP 11/40, 11/45 and 11/70 computer systems. The
implementation of INGRES is primarily programmed in "C"
[RITC74a], a high level language in which UNIX itself is
written. Parsing is done with the assistance of YACC, a
compiler-compiler available on UNIX [JOHNTAY4].

INGRES basically provides three user-interfaces. There
is a terminal monitor which supports the primary query
language, QUEL, and various utility operations. The second
user interface, CUPID, is a graphics oriented, casual user
language [MCDO75]. The EQUEL (Embedded QUEL) precompiler
[ALLM76], which allows the sﬁbstitution of a user-supplied C

program for the terminal monitor, has the effect of
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embedding all of QUEL in the general purpbse programming
language "C". The utility operations currently supported
are [STONT6]:

1. creation and destruction of relations

2. bulk copy of data

3. modification of the storage structure of a relation

y, miscellaneous commands such as those requesting

information about the database and its relations

In section‘1 the query language QUEL will be described.
Then, since the major topic of ﬁhis research is to determine
efficient ways of processing queries, a general description
of the algorithm used to decompose queries kill be presented

in Section 2.

2.1 QUEL: A Relational Query Language

QUEL (QUEry Language) is a calculus based language and
has points in common with Data Language/ALPHA fcoont11],
SQUARE [BOfC?H] and SEQUEL [CHAM74] in that it is a complete
[cODDT71e] query language which frees the programmer from
concern for how data structures are implehented and what
algorithms éfe‘operating on stored data. As suéh, it facil-

itates a considerable degree of data independence [STONT7Y4].

Each query of QUEL contains one or more Range-
Statements and one or more Retrieve-Statements. We shall

use {} to denote "one or more" and [] to denote "zero or
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more". With these conventions the form of a query in QUEL
can be expressed as
Query
= {Range-Statement}{Retrieve-Statement}
Range-Statement
= RANGE OF {Variable} IS {Relation}
Retrieve-Statement
= RETRIEVE INTO Result-Name (Target-List)
WHERE Qualification

Target-List = {Result-Domain=Function}

The goal of a query is to create a new relation for
each Retrieve-Statement. The relation so created is named
by the "Result-Name" clause and the domains in that relation
are named by the "Result-Domain" names given in the Target-
List. 1In the frequent case where the Function is simply
Variable.Domain-Name, the Result-Domain name may be omitted
and is then taken to be the same as the Domain-Name in the
Function. Also, if the "Result-Name" is TERMINAL then the
Eesult of the query is displayed on the user's terminal. To
create the desired relation, first consider the product of
the ranges of all variables which appear in the Target-List
and the Qualification of the Retrieve-Statement. Each term
in the Target-List is a funetion and the Qualification is a
truth function, i.e., a function with values true or false,

on the product space. The desired relation is created by
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evaluating the Target-List on the subset of the product
space for which the Qualification is true, and eliminating
duplicate tuples.

EXAMPLE 2.1.
CITY(CNAME, STATE, POPULATION, AREA)
"Find the population density of all cities in California

’

with population greater than 50k"

RANGE OF C IS CITY
RETRIEVE INTO W(C.CNAME,DENSITY=C.POPULATION/C.AREA)
WHERE C.STATE="California" AND C.POPULATION>50K
(note the default used for CNAME=C.CNAME and that the
result of the query is a relation W(CNAME, DENSITY).)

It is clear from the above discussion that the basic
quantities used in QUEL are functions of products of rela-
tions. The allowed functions can be exceedingly complex and
fall into three categories: (a) Functions resulting from
arithmetical combinations of attributes. (b) Set valued
functions such as "the set of cities for each state". (e¢)
Aggregate functions obtained by aggregating set functions,
e.g., "total population of the cities of each state". The
precise definition of the allowed classes of functions will
be given recursively as follows: Consider a nested sequence
of sublanguages of QUEL

QUELO,OUEL1,---,QUELn,-o-
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Let Ci denote the class of all functions and Qi the class of
all qualifications allowed in QUELi. We first define CO and
QO’

Co
(a) Any constant is in CO'
(b) Any attribute is in CO’
(¢) If £ and g are in Co then f+g, f-g, f¥*g, f/g, f%%g and

logfg are in CO’
(Note: The functions being combined need not have identi-
cal arguments. The resulting function is a function

of the union of the variables.)

(a) An atomic formula in 00 has the form f(comp)g, where
comp is any of the comparison operators: <, <, =, ¥4,
and f and g are in CO'

(b) QO consists of all sentences made up of atomic formu-
las connected by the Boolean connectives: NOT, AND,
OR.

Comment: A function in C0 will be referred to as an

ATTRIBUTE-FUNCTION. The value of an attribute function for

a tuple depends only on the data contained in that tuple.

This is not true for functions in Ci for i>0. A similar

comment applies to QO as well.

We now proceed to define QUELn recursively. Suppose

X:(X1,X2,---,Xm) are the declared tuple variables with range
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R=R1xR2x---me. Let X.f and X.qual be respectively a func-

tion and a qualification allowed in QUELn_ We define

1°
SET(X.f WHERE X.qual) as the set of f-values obtained by
evaluating f on the subset of R for which X.qual is true,
i.e., -

SET(X.f WHERE X.qual)

= {X.f: X is in R AND X.qual=true}

EXAMPLE 2.2.

X CNAME STATE POPU

ri SF CAL 1™
r2 NYC NY 6M
r3 CHI ILL 4M
ri LA CAL 3M

SET(X.POPU WHERE X.STATE=CAL) = {1M, 3M}
SET(X.POPU WHERE X.POPU>3M) = {u4M, 6M}

Comment: By definition a set contains no duplicate values.
HoWever, it is wuseful to define SET' as the collection
obtained by retaining duplicates, for example,

SET'(X.STATE WHERE X.POPU<UM) = {CAL, CAL}
The aggregation operators COUNT, SUM, AVG, MAX, MIN, ANY
have an obvious meaning when they operate on sets. If AGG
is any of these operators, we shall adopt the notation

AGG(X.f WHERE X.qual)

= AGG(SET(X.f WHERE X.qual))

and AGG' will denote AGG(SET').
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We shall refer to quantites of the form AGG(X.f WHERE
X.qual) as AGGREGATES. An aggregate depends on the data
contained in the range R but does not vary as X varies. The
appearance of X merely serves to indicate the range. In
this way, it acts as a dummy variable not unlike that in a
definite integral. To put it more precisely, denote a func-
tion in Cn by F(X,R) to indicate the fact that in general it
depends on both the tuple X and on R oVerall. Then we can
say that constants depend on neither X nor R, functions in
CO depend on X but not on R, aggregates depend on R but not

on X.

Now suppose that f and g are in Cn-1 and qual is in

Q Define

n-1°
SET(X.f BY X.g WHERE X.qual)

as a set valued function of X such that it is constant on
any set of X for which g is constant and oﬂ such a set it is
given by

SET(X.f BY X.g WHERE X.qual)(X.g = Y)

= SET(X.f WHERE (X.g=Y) AND X.qual)

EXAMPLE 2.3.

X X.STATE SET(X.CNAME BY X.STATE
WHERE X.POPU<5M)

ri CAL {SF, LA}
r2 NY empty
r3 ILL {CHI}

ry CAL {SF, LA}
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The notation AGG(X.f BY X.g WHERE X.qual) is now self-
explanatory, and so are the notations SET'(X.f BY X.g WHERE
X.qual) and AGG'(X.f BY X.g WHERE X.qual).

EXAMPLE 2.4.

X X.STATE MAX(X.POPU BY X.STATE
WHERE X.POPU<5M).

ri CAL 3M
r2 NY 0

r3 ILL UM
ri CAL 3M

Note that AGG(X.f BY X.g WHERE X.qual), unlike aggregates,
1s a function of both X and R and will be called an
AGGREGATE-FUNCTION. It is a function of X through X.g and
only through X.g. Thus, the three appearances of X play a
mixture of roles. This 1s an objectionable syntactic
feature, which however cannot be repaired by using a dummy
variable for the first and last term. AGG(X'.f BY X.g WHERE
X'.qual) involves aggregation on the product of ranges of X!
and X and means something quite different ffom AGG(X.f BY
X.g WHERE X.qual). Several possible solutions have been
considered but rejected for one rgason or another. 1In par-
ticular, if X is restricted to be a single variable, then
its presence can be suppressed in the first and third term.

For the time being, we have chosen not to impose such a res-

triction.
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Set functions of the form SET(X.f BY X.g WHERE X.qual)

can be combined by union, intersection, and relative comple-

ment.

QUELn
Sn
(a)
(b)

(e)

(d)

We can define the class of set functions allowed in

as follows:

SO contains all constant sets.

Sn includes Sn-1'

If £ and g are in Cn-1 and qual is in @ then

n-1
SET(X.f BY X.g WHERE X.qual) and SET(X.F WHERE X.qual)
are in Sn as are the corresponding SET' operations.

Sn is closed under union, intersection and relative

complement.

The classes Cn and Qn can now bé defined as follows:

Cn
(a)
(b)

(e)

(d)

(a)
(b)

Cn includes Cn-1’

If s is in Sn then AGG(s) and AGG'(s) are in Cn’

If f and g are in Cn-1 and qual in Qn- then AGG(X.f

1
BY ng WHERE X.qual) and AGG'(X.f BY X.g WHERE X.qual)

are in Cn‘
If f and g are in C_, then f4g, f-g, f*g, f/g, f4%g
and logfg are in Cn‘

Q. contains On_

n 1°

If f and g are in Cn’ then f(comp)g is in Qn’ where
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comp is any of the operators <, £, =, £.

(¢) If u and v are in Sn then u(set-comp)v is in Qn where
set-comp is any of the set-comparison operators inclu-
sion; strict inclusion, équality, and inequality.

(d) If s is in Sn and Y is a value, then (Y belongs to s)
is in Qn'

(e) Qn is closed under Boolean combinations.

b

EXAMPLE 2.5.

SUPPLY(SNUM, PNUM, PRICE) .
Query: Find those suppliers whose price for every part
that he supplies is greater than the average price for

that part.

RANGE OF S IS SUPPLY

RETRIEVE INTO W(S.SNUM)
WHERE COUNT(S.PNUM BY S.SNUM WHERE S.PRICE >
AVG'(S.PRICE BY S.PNUM)) = COUNT(S.PNUM BY S.SNUM)

Comments:
(a) It is clear that the Qualification of the Retrieve-
Statement is in 02.
(b) Instead of using COUNT, we could also have used the

operator SET. In terms of processing efficiency,

COUNT is preferrable.

Update statements are transformed into Retrieve-
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Statements followed by a sequence of insertions and dele-
tions. For this reason, all future examples and discussions
will be in terms of Retrieve-Statements but the same reason-

ing will hold for updates.

2.2 Decomposition Algorithm

In database management systems, the stored data is of
such large volume and of such long lifetime that it is only
economical to maintain the data on low cost storage deQices.
Such devices will be referred to as "secondary storage" dev-
ices as opposed to the faster "main storage" which is used
primarily as temporary storage during actual processing. By
the nature of the data in a database system, it will almost
always reside on secondary storage with pdrtions of it being
transferred to main storage for processing. The basiec quan-
tity of data transferred between main and secondary storage
will be referred to as a "page". It is assumed throughout
this work thap the transfer of pages between main and secon-
dary storage is costly and that by the nature of database
processing, this page transfer time will be the dominant
cost with actual computation time being small by comparison.
Therefore, the goal of processing a query will be to examine
the information in such a way so as to minimize the number
of page transfers required. As long as there continues to

be orders of magnitude difference in speed between main and
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secondary storage and as long as database processing contin-
ues to involve a high ratio of data search to computation,

this will remain a valid goal.

The general algorithm used in INGRES is a uniform algo-
rithm to deal with all queries rather than special stra-
tegies for special situations. The overall strategy can be
simply stated. Rather than compiling QUEL into a lower
level language, an arbitrary QUELn query. shall be decomposed
_into a series of one-variable QUEL, queriles, at which point
most of the difficult problems have disappeared. Thus, for
QUEL the "optimization" which is necessary for all high

level languages lies nearly entirely in decomposition.

The overall strategy has two parts: (a) A QUELn query
will be replaced by a series of QUELn'_1 queries and one-

variable QUEL, queries. (b) A multivariable QUELO query

1

will be decomposed into a series of one-variable QUELo

queries. Thus, repeated applications of the algorithm will

decompose any QUELn query into a series of one-variable

1 or QUELO.

queries in QUEL

Consider a query involving one or more tuple variables
X:(X1,X2,---,Xn) with range R:R1xR2x~--an. Denote the
qualification by Q(X) and suppose Q(X) is expanded into con-
Junctive normal form so that it consists of clauses con-
nected by AND with each clause containing atomic formulas or

their negation connected by OR.
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(a) QUEL, -> QUEL_ _,

Suppose the query contains an aggregate function
AGG(X.f BY X.g WHERE X.qual) where f and g belong to Cn-1

and qual belongs to Q Create the aggregate function and

n-1°
store it in a temporary relation, TEMP. Add a new variable
Z with range TEMP to the query, replacing the occurrence of
the aggregate function by a reference to the appropriate
domain of TEMP and add any necessary linking terms to the

qualification.
EXAMPLE 2.6.
CITY(CNAME, STATE, POPULATION, AREA)

RANGE OF C IS CITY
RETRIEVE INTO W(C.STATE)
WHERE COUNT(C.CNAME BY C.STATE WHERE C.POP<4M) > 0

is replaced by

RANGE OF C IS CITY
RETRIEVE INTO TEMP(A=C.STATE, B=COUNT(C.CNAME BY C.STATE
WHERE C.POP<4M))

and

RANGE OF C,Z IS CITY,TEMP
RETREIVE INTO W(C.STATE)
" WHERE Z.B > O AND C.STATE = Z.A
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If the query contains an aggregate AGG(X.F WHERE X.qual),
the result created is a single value so it is not neces-
sary to create the temporary relation. This value simply

replaces the aggregate in the query.

(b) Multivariable QUEL, -> One-Variable QUEL

0 0

(0) Stop if query is already one-variable.

(1) For each variable, say X, with range Rys collect all

1

the attributes which depend on X and all the

1
clauses in the qualification which depend only on

X Say D D2,---,Dk are the attributes, and the

1° 1?
clauses put together yield Q1(X1). Issue the query

RANGE OF X, IS R

1 1
RETRIEVE INTO R1' (X1.D1,X1.D2,---,X1.Dk)
WHERE Q,(X,)

(2) Replace the range R1 of X1 in ihe original query by
Ry’
Comment: The purpose of (1) and (2) is to limit the
range of each variable in the original query to as
small a relation as possible by selecting the refer-
enced domains and by enforcing the part of the qual-
ification which operates only on this variable.

(3) Take the variable with the fewest tuples in its

range and substitute in turn the actual values of

its tuples. This reduces the number of variables by

1. After each substitution, repeat (0), (1), (2)
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and (3).
Comment: Step (3) will be referred to as tuple-
substitution and represents the most time consuming

step in the overall algorithm.

Part (a) simply removes all aggregates and aggregate
functions from the query and preprocesses them. Note that
these aggregates and aggregate functions will be answered

using the algorithm presented in part (b).

The algorithm presented in (b) is a general but simple
method for processing any QUEL0 query. However, there are
several questions which arise whed one considers tuning the

algorithm for specific classes of queries.

One of the most critical steps in the algorithm is
choosing which variable to tuple substitute. What are the
parameters which should be considered when selecting a vari-
able for substitution? 1Is the criterion of always selecting
the variable whose range relation has the fewest tuples a

good choice in general?

Steps‘(1) and (2) perform projections and restrictions
over all the relations involved in the query. Intuitively,
this appears to be a good strategy, but is it always so? It
is possible that no reduction in size would be gained by
this step or that useful structural characteristics of the

relation would be lost by this operation.
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Notice that steps (0), (1) and (2) are repeated for
each tuple in the range of the variable selected for substi-
tution. However, the structure of the query remaining after
the substitution does not depend on the specific tuple value
that is substituted. How can thié fact be used to obtain

more efficient processing?

Within this algorithm, tuple substitution is the only
method used for reducing the number of variables. Is there
another technique which can be used either in addition to or
in combination with tuple substitution which will decompose

a multivariable query into a series of one-variable queries?

These are the major issues which will be examined in
the remainder of this work. A combination of analytical and
-empirical methods were wused to draw the conclusions

presented.
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CHAPTER 3
IMPLEMENTATION

INGRES runs as a set of processes on top of the UNIX
operating system. A process in UNIX is an address space
(64K bytes or less for an 11/40, 128K bytes or less on an
11/45 and 11/70) which is associated with a user-id and is
the unit of work scheduled by the UNIX scheduler. Processes -
may "fork" subprocesses. Such processes may communicate
with each other via an inter-process communication facility
called "pipes". A pipe is basically a one direction commun-
ication link which is written into by one process and read
by another process. UNIX maintains synchronization of pipes
so that no messages are lost. The INGRES processes communi-

cate with each other via pipes.

3.1 INGRES Process Structure

Figure 3.1 shows the INGRES process structure. Process
1 is the process which communicates with the user. It may
take the form of an interactive terminal monitor, an EQUEL
program, or a graphics monitor for CUPID. Process 2 con-
tains a lexical analyzer and a parser which recognize syn-
tactically correct queries and convert them to a more con-
venient form for further processing. Also at this point,

the qualification of the query is converted to conjunctive
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normal form. The next process contains all query modifica-
tion routines. Here high level protection and integrity
constraints are added [STON74a, STON74b]. This process is
optional and can be deleted if protection is not desired.
Process 4 is where decomposition takes place. This process
decomposes a query into a series of one-variable queries.
These one-variable queries are then passed to Process 5, the
one-variable-query-processor (OVQP), which executes them.
Process 6 contains all code to support the utility commands.
This process is organized as a collection of overlays which

perform the various functions.

Processes 4 and 5 will be described in more detail in
the following section. For a further description of any of

the other processes see [STONT76].

| The actual accessing of data from all relations is han-
dled through the Access Method Interface (AMI). The AMI
language is implemented as a set of functions to perform the
following operations:
1. open and close relations
2. get, insert, replace and delete tuples

plus other associated actions.

3.2 Decomposition Processes

In the future, Process 4 will be referred to as Decom-

position and Process 5 will be called OVQP. Decomposition
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receives the query after all parsing and query modification
has been performed. At this point, the qualification is in
conjunctive normal form so that it consists of clauses con-
nected by AND with each clause containing atomic formulas or

their negation connected by OR.

The specific implementation of the general decomposi-
tion algorithm presented in Chapter 2 will now be discussed.
Let Q be an aggregate-free query in variables X1,X2,--»,Xn

with range relations R "”Rn respectively. Let RESULT

1'Ro0
denote the result relation for Q. The following routines

will then operate on Q(R1,R2,---,Rn, RESULT).

decomp(Q, R1,R2,-.-,Rn, RESULT)
{
if (Q is one-var or Q is zero-var)
call_ovqgp(Q, SOURCE, RESULT)
else
{
detach_one_var(Q)
exec_one_var(51,~~-,5n,R1,~--,Rn)
decomp1(Q"', R'1,...,R'n, RESULT)
}
}

decomp1(Q, R1,-~-,Rm, RESULT)
{
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i-= select_var(R1,--.,Rm)

detach_one_var(Qi)

reformat(611’...,Bim,R1,---,Ri_1,Ri+1,--o,Rm)

while (get_tuple(Ri))

{
exec_one_var(ai1,---,Eim’R1,~--,Ri_1,Ri+1,---,Rm)

if (Q'i is one-var or Q'; is zero-var)
call_ovqp(Q';, SOURCE, RESULT)

else

R

decomp1(Q'i,R' «++,R

1, ERSELAFPRTRLLEE A

RESULT)

céll_ovqp(Q, SOURCE, RESULT): This routine writes the query,
the name of the source and result relations and cer-
tain bookkeeping information into the pipe between
Decomposition and OVQP. It then awaits a response
from OVQP as to whether an error occurred or the
query was answered. In the case of a user error,
the error message is returned through the pipes to

the user and processing of the query is terminated.

detach_one_var(Q): This routine first examines the qualifi-

cation of Q. For each variable X if there is a

i)
one-variable clause in Xi it is detached from Q and
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added to the qualification of 51. After all one-
variable clauses have been detached from Q, this
results in a new query Q'. Then for each 51 which
has a non-void qualification, all domains of Ri
which are referenced by Q' are included in the tar-
get list of Q,. The result of this routine is thus
a new query Q' which contains no one-variable

clauses and a set of queries {Ei} such that each 51

is a one-variable query in Xi.

exec_one_var(ET,---,ak,R1,---,Rk): This routine accepts the
one-variable queries created by detach_one_var(Q)

and executes them, thus resulting in a new range R'i

for each. Xi for which 51 exists. There is one
exception: if the target 1list of Ej is empty for
some j, this means the one-variable clauses were
disjoint from Q. In this case, it is not necessary
to create a new range R'j since Xj is no 1longer
referenced by Q'. It is only necessary to verify

that at least one tuple of Ry satisfies Q If so,

j°
processing continues as if Ej were not present. If
no tuple of Rj satisfies 63, then no tuple satisfies
Q and a null result is returned to the user.

This routine is the main routine which requires

communication with Process 6, the database utilites.

@ﬁ In order to create the new ranges, R'i, it is neces-



37

sary to write the name of the new relation and its
domains to the utility process so the CREATE func-
tion can do the appropriate system bookkeeping. The
relations so cecreated are temporary relations and are
later destroyed (by calling the DESTROY function in

Process 6) prior to completion of the query.

select_var(R1,...,Rk): This routine selects the variable for
which tuple substitution will be performed.
Currently, it compares the range sizes of all vari-
ables appearing in Q and chooses the variable whose
range has the minimum number of tuples. The index

of this variable is the value returned.

Since it was recognized that the criterion of
minimum range size may not be the best, this routine
and its usage was organized in such a way that a new
criterion may be inserted without effecting the rest

of the decomposition process.

reformat(51,---,Ek,R1,---,Rk): When a variable has been
Selected for substitution, a large number of queries
each with one less variable will be executed. And,
the structure of these queries is always the same,
that is, it does not depend on the particular tuple
value substituted. If, after substitution, there
are one-variable clauses in some variable Xi’ it is

possible to modify the structure of Ri so that the
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domains used in 51 are keys. This will expedite the
execution of ai each time it is performed during
tuple subStitution.

The operation of reformatting involves several
steps. First, if Ri is already structured such that
some of the domains of 51 are keys, it is not neces-
sary to reformat Ri' If Ri is a small relation or
ai will be executed only a few times, the cost of
reformatting Ri can be greater than the cost of per-
forming the query without the modify. A crude cost
estimate function is included in this routine to
eliminate the obviously bad cases for reformat.

Once it has been determined that R should be

i
reformatted, the appropriate keys are determined by
examining the qualification of 61. Then a call is
issued to the MODIFY function in Process 6 to modify
the relation Ri to a hashed structure on the deter-
mined keys. (Currently, only modify to hash is sup=-
ported by reformat.) These stéps are peformed for
each Xi for which 31 is non-empty;

One further comment should be made. If Ri is the
user's relation (i.e., not a temporary relation),
then a copy is made of Ri into a temporary relation

and this temporary relation is then modified. The

user's relation will remain unchanged.



39

get_tuple(Ri): This is a call to the access method GET func-
tion which returns the next tuple of Ri into a named
buffer. If there are no more tuples, a special

value is returned.

That concludes the discussion of Decomposition, but
since OVQP 1is an integral part of the decomposition process,

a short description of its functions will also be presented.

OVQP is concerned solely with the efficient accessing
of tuples from a single relation given a particular one-
variable quer&. There are two major parts to this program:
STRATEGY and SCAN. STRATEGY is the first step. It deter-
mines what key (if any) may be profitably used to access the
relation, what the value(s) of that key will be to limit the
scan of the relation, and whether the access can be accom-
plished on the relation directly or if a secondary index on
the relation should be used. If a secondary index is to be
used, then STRATEGY must determine which one of possibly

many to use.

Then, SCAN processes the tuples retrieved according to
the access strategy selected. This involves evaluating each
tuple against the qualification of the query, creating tar-
get list values for the tuples qualifying and disposing of
these tuple appropriately. At the time the qualifying

typles are inserted in the result relation, it has a non-
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keyed structure and no checking for duplicates is performed.
Thus, duplicate tuples can appear in the result relation

when OVQP has finished its processing.

OVQP receives a one-variable query, the source relation
and the result relation for that query,‘and a value which
signifies whether the structure of this query is the same as
the last query it processed. Note that when Decomposition
gets a two-variable query, it will substitute values into
the query for one of the variables and then pass the remain-
ing one-variable query to OVQP. And, it will do this for
each tuple in the first variable's range. So the query that
OVQP receives will be the same each time except for certain
constants.‘ Recognizing this fact means that OVQP will not
have to select an access strategy every time, it will just
use the same strategy for the whole set of queries changing

the appropriate l1imit values.

Once the query has been processed by OVQP, it returns a
value as to whether the processing was successful or an
error occurred. If it was successful, OVQP awaits the next

one-variable query and Decomposition continues its process-
ing. If an error occurred, an appropriate'error message is
refurned to the user and Decomposition and OVQP both reset
themselves to await a new query. Once processing of the
entire user query is successfully completed, the user is

informed and Decomposition and OVQP are initialized for a



. new query.
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CHAPTER 4

TRANSFORMATIONS

Even though a query in a relational database system
does not specify an algorithm for finding a result as a com-
puter program does, there is a similarity between the two.
Often what one wishes to find as the result of a query can
be stated in more than one way. Although the answer does
not depend on how the query is expressed, the precise
expression may have an effect on how it is processed just as
the statement of an algorithm within a program can have an
effect on its run time. After examining some of the tech-
niques used in compiler optimization [BAUE7Y4, ALLET72], it
was recognized that a similar methodology could be applied
to queries to obtain more efficient processing. This metho-
dology includes determining characteristics of queries which
would lead to efficient processing and a means of achieving

such characteristics.

The characteristics which are of interest are those
which are applicable to all queries without regard to the
specific data that is referenced by the query. For this
reason, the techniques proposed only need to be applied once
per query prior to being executed by the query processor.
So these transformations will be applied after parsing and

query modification have been performed but prior to
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decomposition.

The preprocessing proposed consists of examining each
query to determine whether it possesses any characteristics
which would lead to inefficient processing and, if so,
applying a sequence of transformations which will produce
the same result as the original quéry. Such transformations
will provide improvement in terms of processing costs.
Similar ideas have been proposed by Hall for the PRTV System
[HALL75].

To determine what transfofmations are useful, it is
necessary to have a set of goals, or desirable characteris-
ties of queries which might serve as the target of the
transformations. Such characteristics of queries are
described in Section 1. 1In the remaining sections, the pro-
posed transformations are categorized and discussed in some

detail.

4.1 Desirable Query Characteristics

To define the characteristics of queries which will
lead to more efficient processing it is necessary to under-
stand the effect of the form in which a query 1is expressed
upon the way in which it will be answered. It is assumed
(as discussed in Chapter 2) that at the time the query is

received, the qualification is in conjunctive normal form.
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The following is a list of certain characteristics of

queries which would be beneficial to further processing.

1. Each clause contains a minimum number of constants.

2. Each clause is in simple form, that is, it has a
minimum number of operators.

3. Each clause/target list contains as few variables
as possible.

4. All single relation restrictions which can be
inferred from the query should be stated explicitly
as clauses.

5. All constraints are consistent.

The main fact considered here is that when a one-
variable query is being processed ohly certain clauses are
used to attempt to limit the number of tuples which must be
Sscanned. These are clauses of the form "Variable.domain op
constant" where op < (=, <, <, >, >}. By combining con-
stants, it is likely that more clauses will be of this form
and will therefore be used to reduce the amount of work
involved in answering the query. For example, "E.salary/2 =
1000" is equivalent to "E.salary = 2000" and the latter form
can be used more effectively. Another advantage is that if
the copstants are combined in this pre-processing step, this
need only be done once. However, if it is done at the time
the query is interpreted by OVQP, these calculations may

have to ©be done many times as a result of tuple
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substitution.

One of the advantages of the second characteristic is
also to decrease the amount of work in interpreting the
query by OVQP. 1If an expression has been simplified, the
number of operations to compute its value will be close to
minimal. However, achieving this characteristic can also
help to achieve the third characteristic, reducing the
number of variables appearing in a clause. By using the
laws of algebra'and boolean logic it is possible to elim-

inate variables from a clause.

The value of the third characteristic can be realized
if it 1is recognized that a clause involving n variables
represents ‘a condition to be verified on the n-fold carte-
sian product of their range relations. Therefore, each
clauae should contain as few variables as possible. So, if
a clause can be replaced by one with fewer variables without
changing the overall meaning of the query, it would be
advantageous to do so. For example, X.a = Y.a AND Y.a =
Y 1is semantically equivalent to X.a = Y AND Y.a = Y and

the latter form is clearly preferable.

If a condition on an n-fold cartesian product must be
verified, the relations involved should be as small as pos-
sible. Thus, if tuples which will not be of interest in the
final product can be eliminated beforehand by adding a sin-

gle relation restriction which is inferred by the other
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constraints, such an additional restrictive clause should be
included in the qualification. For example, X.a >
Y AND Y.a > X.a implies Y.a > Y and this one-variable
clause in Y will restrict the size of the range of Y and
thus the size of the cartesian product in the ranges of X

and Y which must be examined.

Any conditions which can be verified without referenc-
ing the data should obviously be performed. Usually this
will require examination of several clauses together and
determining their consistency with each other. For
example, X.a > Y AND X.a < Y.a AND Y.a < Y - 1 con-
sidered together are inconsistent and thus the result of the
query will be empty. Conditions of this form can often be
recognized prior to processing the query and it is clearly

advantageous to do so.

It should be realized that these characteristics are
not all feasibly obtainable. In the following sections,
specific transformations to achieve ~these characteristics
are proposed and shown to preserve the overall meaning of
the query. Also included is a short discussion of their
value and applicability. The transformations are grouped
according to the desirable query characteristic which they

are trying to achieve.

4.2 Minimizing the Appearance of Constants
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Transformation 2.1: combine several constants into a sin-

gle constant.

attr'1 op B relop attr2 op Y
-> attr, relop attr, op 8

where § = f(B, ¥) and op < {+, -, ¥, /}
and relop <& {<, &, >, >, =, #}

Example:

X.a+5>X.b-3 -> X.a>X.b-38

This transformation can only be applied when all values
involved are elements of the field of real numbers. Since
it involves only real numbers y 1t 1s an equivalence
transformation by virtue of the existence of inverses and
identities for addition gnd multiplication in the real

number system.

This manipulation can be very useful and is practical
in simple cases, namély where each term in the expression is
a single attribute or a constant. To apply this transforma-
tion to all possible cases would require the use of a gen-
eral theorem prover to produce the resulting clause. This
wouid be very costly in both time and space, and would, in

most cases, outweigh the benefit.

If this transformation takes into account which domains
the relations are keyed upon and tries to isolate such

domains from the constants, this would allow much more
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effective use of the available access paths. However, this
enhancement is not in the spirit of keeping these techniques

independent of the structure of the data involved.

Transformation 2.2: if a clause coﬁtains only constants,
evaluate the clause to true or false. If true, the
clause can be eliminated from the query. If false,
processing can be terminated and a null result

returned.

This 1is an equivalence transformation by the truth
table of the boolean operator AND, and is applicable for all

values, real numbers and characters.

The relative cost of this transformation is very small
and an interpreter to evaluate a constant clause already
exists within the system. However, the likelihood of such a

situation arising in the user's query is quite small.

Transformation 2.3: if the constant =zero (0) appears
within any expression, the expression can be simpli-
fied.

1) expr +,- 0 -> expr

2) 0 +,- expr -> (+)=- expr

3) expr * 0 -> 0

y) expf / 0 -> undefined (user error)

5) 0 / expr > 0

-
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This transformation is valid for all real numbers. 1
and 2 are equivalence transformations.by the existence of
identities for addition; 3 and 5 can be proven to be
equivalence transformations using the identity axioms, the
uniqueness property of multiplication and the distributive

law; and 4 is a system defined property.

If this situation occurs, it is quite advantageous to
recognize, but it is probable that this transformation will

be applicable quite infrequently.

Transformation 2.4: if the constant one (1) appears as a
denominator in a division or as an element of a mnulti-

plication, it can be removed.

This transformation also holds true for all real
numbers and 1is an equivalence transformation by the

existence of an identity for multiplication.

The same comment made for 2.3 holds here although the
benefit of this transformation may not be as great as that

of 2.3.

4.3 Simplification of Clauses

Transformation 3.1: a simple attribute divided by itself

can be replaced by the constant 1.

X.a / X.a -> 1
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This conversion only works when the Simple attribute
represents a non-zero real number and it is an equivalence
transformation by the cancellation law in the field of real

numbers.

In this simple form, the transformation is nearly free,
although it may not be a common occurrence. To expand it in
more general terms, i.e. expr / expr -> 1, could require

both a pattern matching algorithm and a theorem prover.

Transformation 3.2: reduction of a common attribute in a

single clause.

X.a op, expr relop X.a -> 1 op, expr relop 1
where op, 4 {*, /1 and X.a 20
and relop <« {<, <, >, >, =, #}
'Example:
X.a * Y.b > X.a > Y.b > 1
(Comment: if X.a < 0, then the direction of the relop must

be changed for the result of the transformation.)

X.a op2 expr relop X.a -> op2 expr relop O

where op, ¢ {+, -} and relop.é {<, & >, >, =, £}
Example:

X.a + Y.b > X.a -=> Y.b >0
(It should be noted that the resultant clauses will be sim-

plified further in the case where op1=* or op2=+.)
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This transformation only holds true for values from the
field of real numbers. It can be shown to be an equivalence
transformation by using the inverse axioms and the cancella-

tion laws of the real number system.

Again,'this transformation is relatively inexpensive in
its simple form since the query is in tree form when it is
being examined. To recognize the common attribute when it
appears within expr and determine if the transformation is
applicable is not as easy a task. Also, if the attribute
does not appear alone on one side of the relational opera-
tor, determining what is the common attribute and if it can

be cancelled out becomes more difficult.

Transformation 3.3: reduction of attributes constrained to

equality.
attr1 / attr2 relop expr AND attr-1 = attr2
-> 1 relop expr AND attr1 = attr2

Example:
X.a/ Y.b > Z.c AND X.a = Y.b
-> 1> 2Z.c AND X.a = Y.b

This reduction is only valid for real numbers, where
attr1 and a’ctr'2 are non-zero, and is an equivalence
transformation by the identity axiom on the field of real

numbers.
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Since this transformation is limited to a simple form,
there is little cost incurred in the recognition of it, and
it can reduce the size of the cartesian product which must

be examined for verification of the first clause.

Transformation 3.U4: a clause which is logically negated

can be simplified.

!(expr relop expr) -> expr !relop expr
where !relop is then simplified
and relop <« {>, >, <, £, #}
'Example:

!'(X.a > Y.b) <> X.a < Y.b

This transformation holds true for all possible values
for the expressions involved and the two clauses are

equivalent by virtue of the logical negation operator.

The cost of this operation is quite small. The rela-
tional operator '=' was excluded because it is of no more
benefit to have expr != expr than !(expr = expr) in terms
of processing. It can be added or excluded with no obvious

difference.

4.4 Minimization of The Number of Variables per Clause

Transformation 4.1: propagate any constant values.

X.a = B AND expr relop X.a
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-> X.a =B AND expr relop B
Example: -

X.a =5 AND Y.b = X.a => X.a =5 AND Y.b = 5

This transformation is valid for all values and is an
equivalence transformation by the transitive property of

equality.

The operation is performed very simply by examining
binary maps of clauses vs. attributes. Once the one-
variable clause is recognized, every other occurrence of the

variable.domain combination can be replaced by the constant.

Transformation 4.2: if a variable not appearing in the
target 1ist is involved in a simple comparative clause,

it can be replaced by the aggregate MIN/MAX.

expr >[<] Y.a AND Y & tl
=> expr >[<] MIN[MAX](Y.a)
Example:
RETRIEVE (X.a) WHERE X.b > Y.c
-> RETRIEVE (X.a) WHERE X.b > MIN(Y.c)

This is a valid transformation for all values. Since
the variable does not appear in the target list, it is an
existentially quantified variable and it is only necessary
to find the existence of one such value that satisfies the

clause. So, if expr > MIN(Y.a) it is greater than at
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least one value of Y.a.

This operation does not directly reduce the number of
variables in the clause but it effectively does. All aggre-
gates, in this case MIN/MAX, are pre-processed by decomposi-
tion and replaced by constants. So when the original query
is processed, this clause will be expr > B, where

B = MIN/MAX(Y.a).

The benefit of this transformation can be realized when
the cost of processing just that clause is considered. If
expr - contains only one other variable (say X), then before
the transformation the cost is X * Y. However, after the
transformation, since MIN/MAX is done separately, the cost

is Y + X.

If expr contains no variables, this transformation
should not be applied since it is already a one-variable
(disjoint) clause which will be done prior to processing the

remainder of the query.

Also, if the variable Y appears in any other multivari-
able clauses, this transformation should not be performed.
In this case, the cost of scanning R(Y) to find the MIN/MAX
is added, but R(Y) will have to be examined again to satisfy

the multivariable clauses in which it appears.

If it appears in only one-variable clauses elsewhere,

the transformation should be:
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Y £ t1, expr > Y.a AND Y.b = B
-> Y # tl, expr > MIN(Y.a WHERE Y.b = B)

That is, the one-variable clauses should restrict the range

over which the MIN/MAX is determined.

4.5 Inferred Restrictions

Transformation 5.1: if a one-variable clause is implied by

other constraints, it should be added.

X.a relop1 p AND Y.a relop2 X.a
-> X.a r'elop1 B AND Y.a relop2 X.a AND Y.a r*elop3 B
where r'elopi < {<, & >, >, =}

Example:

=-> X.a > 5 AND Y.a > X.a AND Y.a > 5

- The determination of r'elop.2 given relop1 and relop2

follows these rules:

1. r'elop1 = '<'" and relop2

= 1<, 1, o
-> r'elopq = '
2. relop1 = '>' and r'elop2 = >, 1>, 1o
-> r'elop3 = >
3. relop1 = '<' and r'elop2 = 'S, 1=t
=> r'elop3 = '
y, relop1 = '<'" and r'elop2 = 1<
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-> relop3 = <!

5. r'elop1 = '>' and relop2 = 1>, 1=t
-> relop3 = '
= 1!

6. r'elop1 = '>' and relop2
-> relop3 =">'

If re‘lop1 = '=', then this is tfansformation 4.1. Any other

combinations of r'elop1 and relop2 do not produce valid

inferences.

This is an equivalence transformation by the transitive

property of ordering and is valid for all values.

This transformation is inexpensive and can greatly
reduce the size of the cartesian product over which the mul-
tivariable condition must be verified. It is true that an
extra clause is being added, but the only time the addition
of this clause will not reduce the cost of processing is

when all tuples in the relation satisfy the restriction.

4.6 Consistency of Constraints

Transformation 6.1: if two or more clauses are inconsistent,
processing can be terminated and a null result

returned.

Since this transformation is performed by solving a
linear program, only those clauses involving real numbers,

not characters, can be included in the check for incon-
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sistency.

Consider each unique variable.domain pair as a variable
in the linear program. Then the constraints can be written

as:

§aijxj = bi i=1,...,n0. of constraints
and xj 20 J=1...,n0. of variables

This is the canonical form for a linear program and there
are standard manipulations available which can be used to

convert any linear program to this form (see [DANT63]).

The problem which needs to be solved is that of finding
an initial basic solution. If there exists a feasible solu-

tion, then there are no inconsistent constraints.

Convert

to

?0
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and insure that all bi 2505

For this set of constraints, there is an initial basic

solution, namely xj' = 0 for all j,  and vy = b

i

i
So the following linear program can be solved using the

simplex method.

There are two possibilities for the result:

min Sy S o0 —i no feasible solution
il

=> 1inconsistent constraint

or

min Sy o= 10 => feasible solution

=> constraints consistent

This linear program is a fairly simple one and since the
number of iterations for the simplex method is usually
related only to the number of constraints, it should not
require'many iterations to solve. Even though this is true,
setting up and solving this 1linear program will, on the

L]
average, not be worthwhile. i

i
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CHAPTER 5

QUERY PROCESSING TECHNIQUES

The decomposition algorithm as stated in Chapter 2 is
both a general and simple method for processing any query.
However, it is by no means the most efficient method of pro-
cessing for all queries. Within this chapter, the decompo-
sition algorithm will be analyzed to determine if certain
options can be added to make it more efficient but still
allow it to be a uniform algorithm for all queries. So the
ideas presented here are applicable to all queries without
regard to the specific relations involved or their storage
characteristics. 1In Section 1, the technique of tuple sub-
stitution is presented formally and possible enhancements to
it are discussed. A different means of reducing the number
of variables in the query, which was originally proposed by
Prof. E. Wong, is called reduction and this technique will
be discussed in Section 2. In Section 3, combining the
methods of reduction and tuple substitution is cdnsidered as
a processing strategy. Finally, in Section U4 a detailed
algorithm for processing a query using our proposed polic& _
is presented and the proposed policy is then analyzed
theoretically in Section 5.

5.1 Tuple Substitution
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An n-variable query implicitly requires verification of
certain conditions on the n-fold cartesian product of the
range relations. It is possible to examine this n-fold pro-
duct on a tuple-by-tuple basis. Consider the following

example.
EXAMPLE 5.1

RANGE OF (S,Y) IS (Supplier, Supply)
RETRIEVE (S.Sname) WHERE (Y.S#=S.S#)

Suppose that the range of Y is the relation

S#

SUPPLY 101
107
203

Then, successive substitution for tuples from the range

of Y yields
Q(101): RETRIEVE (S.Sname) WHERE (101=S.S#)
Q(107): RETRIEVE (S.Sname) WHERE (107=S.S#)
Q(203): RETRIEVE (S.Sname) WHERE (203=S.S#)

By appending the results of these three queries, the

result of the original query is obtained.

This example illustrates the technique called tuple

substitution. By successive substitution of a value for
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each variable exéept the last, a series of one-variable
queries are generated. Each of these queries represents a
portion of the cartesian product. In its simplest form,
values are substituted for each variable wuntil a one-
variable query remains and then the restriction and projec-
tion are performed at the time the one-variable query 1is
processed. In general terms, an n-variable query Q is
replaced by a family of (n-1)-variable queries resulting
from substituting for one of its variables tuple by tuple,

i.e‘

UKy XppeeesXpy) => (Qg" (Xp0Xg, e ey X)), B 4 Ry)

However, tuple substitution alone is equivalent to creating
the cartesian product, so this technique simply provides a
way of processing which is easier to handle on a computer,
mainly a computer with limited storage. But certain steps
which have beneficial results can be performed in conjunc-
tion with tuple substitution which could not be so easily

done when creating the entire cartesian product at once.

5.1.1 Enhancements to Tuple Substitution

Consider first the fact that tuple substitution for a
single variable means that the cost of processing the
remainder of the query is multiplied by a factor equal to
the cardinality of the range of the substituted variable.

Therefore a logical selection procedure for choosing the
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substitution variable is the smallest range size first.

Now it is possible to make some of the ranges involved
even smaller by performing any single variable restrictions
which appear in the query prior to substitution. Consider a
simple two variable query in the variables X and Y with
their respeetive ranges, R(X) and R(Y). The cost of pro-
cessing it by tuple substitution alone is the product of the
two range sizes, |R(X)!#*|R(Y)!. If there is a restriction
on the range of X it can be done at a maximum cost of !R(X)!
(implying a complete scan of the relation), resulting in a
new range R'(X). Now tuple substitution is performed over
the restricted range of X at a cost of !R'(X)!#!R(Y)!. For
the new method to db better than tuple substitution alone,
IR(X) 1 + IR'(X)I*IR(Y)] < {R(X)!#!R(Y)! which is true when-
ever more than a single tuple is eliminated by the restric-

tion, assuming |R(X)! < !R(Y)!.

This procedure of performing restrictions before sub-
stitution can be performed at every level of substitution.
And, 1if it 1is recognized that through substitution, new
one-variable restrictions are created, this step can be very

beneficial.

Another tool which can be used to reduce the range
sizes is the elimination of unnecessary domains from a rela-
tion (selection of columns). This step can be performed in

conjunction with restriction or it can be done even if a
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restriction over a relation is not present. 1Its main func-
tion, when combined with some sorting technique, is to elim-
inate duplicate tuple values in a single relation which
would result in duplicate tuples in the final cartesian pro-
duct. It also reduces the tuple width which reduces the
number of pages in stdrage required by that relation. How-
ever, the extra cost of sorting the relation is incurred in

order to determine duplicate tuple values.

5.2  Reduetion .

Both of the steps mentioned in 5.1.1 attempt to
decrease the cost associated with tuple substitution. A
different approach to the problem is a technique referred to
as reduction. This method attempts to construect the result
relation by assembling comparatively small pieces rather
than by paring down the cartesian product. This idea takes
- advantage of the fact that often portions of a query '"over-
lap" on a single variable. In general terms, a query Q is
replace by Q' followed by Q" such that Q' and Q" have only a

single variable in common.

Consider a query of the form
RANGE OF (X1,X2,...,xn) IS (R1,R2,...,Rn)

Q RETRIEVE T(X1,X2,...,Xm)
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WHERE B"(X1,X2,...,Xm)
AND B'(Xm,xm+1,...,xn)
It is natural to break off B' to forn

RANGE OF (Xm,Xm+1,...,Xn) IS (Rm,R yR_)

m+1’°°°"'"'n

Q' RETRIEVE INTO R ' (T'(Xm))

WHERE B'(Xm,x ,...,Xn)

m+ 1

where T'(Xm) contains the information on Xm needed by the

remainder of the query which can now be expressed as
RANGE OF (X1,X2,...,Xm) IS (R1,R2,...,Rm')
Q" RETRIEVE T(X1,X2,...,Xm)

WHERE B"(X1,X2,...,Xm)

Note that Q" is necessarily simpler than the original query
Q since m<n. The detachment of Q' does not lead to an
increase in the maximum number of variables for which sub-
stitution has to be made. To see this, note that the max-
imum number of variables to be substituted for in an n-
variable query is n-1. So, for Q' this number is (n-m+1)-1
and m-1 for Q" and the total is again n-1. Also, Q' and Q"
are strictly ordered. Q' needs no information from Q" so

that it can be processed completely before processing on 0"
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begins. At any given time, it is only necessary to deal

with a total of n or less variables.

There are two special cases of one overlapping-variable
Subqueries which should be mentioned. First, it may happen
that the detached subquery Q' has no variable in common with
the remainder Q". That is, B' is a function of only
(xm+1,...,xn) and not of X,- In such a.case, Q' will be
called a disjoint subquery. The interpretation of this case
is that if B' is satisfied by a nonempty set then Q is
equivalent to Q", otherwise the result of Q is empty. The
second case arises when m=n and B' is a one-variable query.
This is a quite frequent and important occurrence. A query
is connected if it has no disjoint subquery, one-free if it
has no one-variable subquery, and irreducible if it has no
one-overlapping-variable subquery. An irreducible query 1is
obviously both connected and one-free. The variable in com-
mon between components will be called the overlapping or

'joining variable.

It is possible to reduce a query into components which
have two or more variables in common. However the benefits
recognized in the single overlapping case do not generalize

to n-overlapping variables. Consider a query of the form

R_)

RANGE OF (X1,X2,...,Xn) IS (R1,R2,..., n

Q  RETRIEVE T(X,,X,,...,X,)
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WHERE B"(X1,X2,...,Xm)
AND  B'(Xp 4»Xps--X,)
.which breaks apart into
RANGE OF (Xp_4»Xp,-«-»X ) IS (R _,,R ... ,R))
Q"  RETRIEVE INTO R _,' (T'(X,_,,X ))
WHERE B' (X _1,X;,...,X,)
and the remainder

RANGE OF (X1,X2,...,Xm_1) IS (R1,R R )

2,..., m-1'

Q" RETRIEVE T(X1,X2,...,Xm_1)

WHERE B"(X,,X5,...,X _,)

Note that since the target list of Q' involves both Xm_1 and
Xm’ Xm_1 in Q" stands for occurrences of both Xm_1 and Xm in

Q.

The major difference is in the émount of information
‘passed from Q' to Q". 1In the single overlapping case, this
was only the range of a single variable. In the two over-
lapping case, the information needed is the (possibly res-
tricted) cross product of the two ranges. So, even though
the maximum number of variables which must be substituted

for remains the same, the range of one of those variables
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increases. As the number of overlapping variables is
increased, the number of ranges involved in this product
‘increases. For this reason, reduction was limited to only

the single overlapping variable case.

5.3 Tuple Substitution and Reduction as a Processing
Alternative |

‘It should be noted that even in the ideal case, reduc-
tion can only reduce an n-variable query to a series of
two-variable queries. Since the one-variable query was
chosen as the atomic unit for processing, reduction alone
will not suffice. The original proposal presented in
[WONG76] called for a combination of reduction and tuple
substitution such that, if possible, reduction into irredu-
cible components was always performed thus delaying tuple
substitution for as 1long as possible. Detachment of
subqueries involves an additive growth in complexity while

tuple substitution involves a multiplicative growth.

After further study, it was determined that there are
recognizable cases where the act of reducing will do worse
than if no reduction were done. When a query is reduced, a
series of component subqueries result. The only real res-
triction on the order of processing of those subqueries is
that if two of them contain the same variable (namely the

overlapping variable), one must be completely processed

[}
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before the next one can be started. However there is
another implied restriction. Consider the query given to
illustrate single overlapping detachment. If we had chosen
to process Q" before Q', the variables of Q" appear in the
target list of the original query Q so they must also be
passed between the two components in some manner. Either
the product is passed with the range of the overlapping
vari;ble, or the product is saved and only the range of the
overlapping variable is passed (a projection of this pro-
duct). In the first case, the range size passed is no
longer necessarily smaller than the original range of the
overlapping variable, which is the same reason that two or
more overlapping variables were not used. In the second
case, after processing Q', it will be necessary to go back
and combine the product created by Q" and the result rela-
tion of Q', which is T(Xm). In either case, the cost of
processing Q" followed by Q' is worse than Q' followed by
Q".

So the resulting conclusion is that the component
subquery which contains the original target 1list should be
the last subquery processed. Unfortunately, this is a
severe limitation to reduction and resdits in cases where by
reducing, the actual number of tuples accessed is greater

than if reduction were not performed.

EXAMPLE 5.2



Given the following three sample relations

STORE relation

numbericity

51San Francisco
TIE1l Cerrito
9iLos Angeles

SUPPLIER relation

number | name

{Los Angeles
lAtlanta
i San Francisco

199 | Koret
213 Cannon
33! Levi-Strauss
89| Fisher-Price
125} Playskool
42! Whitman's
15i{White Stag

ITEM relation

perform the following query.

number | name

26 |Earrings
118 Towels, Bath
43} Maze
1061 Clock Book
2311 1b Box
521 Jacket
165) Jean
258 Shirt
120! Twin Sheet

301}Boy's Jean Suit

RANGE OF (S,Y,I) IS (STORE, SUPPLIER, ITEM)
RETRIEVE (S.number)

WHERE TI.supplier=Y.number AND S.city=Y.city

iDallas
| Denver
iWhite Plains

| suppli

EOUVONON AN -
WAHROOUNMNO OO0 O
W —aW = =N oo
WL LW WU N ITO
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where |STORE| = 3, |SUPPLIER} = 7, and }ITEM| = 10.

The processing of this query using only tuple substitu-
tion and execution of one-variable restrictions would
be the following.
1. Substitute for S since it has the smallest
range.
2. Perform the one-variable restriction,
Y.City=B, B < STORE resulting in a new range

P

3. Substitute for Y since it now has the smallest

Rp' for Y which depends on B.
range.

4y, Execute the remaining one-variable query in I.

For the purpose of this argument assume that the cost
associated with substituting for a variable X is }R(X)!

+ S C(Qg). That is, the cost of reading each tuple
B4R(X) P

value to be substituted plus the cost of performing the
remaining query once for each substituted value. So,
the cost of processing Q by the steps given above is:

Cost(Q(S,Y,I)) = 3 + S Cost(Qx(Y,I))
B4R(S) P

Cost(Qg(¥,1)) = Cost(ap(Y)) + Cost(Qg(Y', 1))

Cost(QP(Y)) =7 for each B

for B = 1st tuple, IR (Y)! = 1
Cost(Qg(Y',1)) = 1+ 1%10 = 11

for B = 2nd tuple, (R'(Y){ =0
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Cost(Qp(Y',I)) =0
for B = 3rd tuple, |R(Y)| = 1
Cost(Qp(Y',I)) = 11
So, Cost(Q(S,Y,I)) = 3 + (7+11) + (7+0) + (7+11) = 46

Processing this query using both reduction and substi-
tution would involve the following steps.
1. Reduce on the joining variable Y resulting in
two components, one in (Y,I) and the other in
(y,s).
2. Execute the two-variable subquery in (Y,I)
since S is in the target list. This results
in a new range R’ for Y.

3. Execute the two-variable query in S and Y’.

Cost(Q(S,Y,I)) Cost(Q(Y,I)) + Cost(Q(S,Y’))

Cost(Q(Y,I)) = 7 + S Cost(Q.(I))

B<R(Y) P
7+ T*10 = 77

From the data it can be seen that the new range size of
Y after Q(Y,I) is still 7, so

Cost(Q(S,Y")) = 3 + 2 Cost(Q
B<R(S) P

= 3 + 3%7 = 24

(Y°))

Thus, Cost(Q(S,Y,I)) = 101.

It can easily be seen that the cost of reduction in

this case is worse than if no reduction were performed.
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Even though this example illustrates that reduction is
not always a good idea, there are many cases where the bene-
fits gained by reduction will be quite large. If the cases -
where reduction does not perform as well as substitution
alone are recognizable, it is possible to use the combina-
tion of tuple substitution and reduction to determine an

efficient processing strategy.

5.4 Reduction-Substitution Algorithm

The following is a detailed description of the proposed
algorithm which uses both tuple substitution and reduction
as processing options. The processing of a query Q has
eight major steps. These steps will be presented in the
overall algorithm and then each step will be discussed

further.
Reduction-Substitution Algorithm

0. If Q 1is disjoint, reduce it. Then for each
subquery, go to step 1.

1. If Q 1is one-variable, call OVQP (one-variable-
query-processor).

2. Perform any one-variable restrictions.

3. Select a variable, Xi, for substitution.

4. 1Is Q reducible? If yes, go to step 5. If no, go to
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step 7.

5. Should Q be reduced given X;? If no, go to step 7,
else continue.

6. Reduce Q to n subqueries, each of which is con-
nected and one-free. For each subquery Qj’ go to
step 3.

7. Substitute for Xi. For each Qi(p); p4xi, go to step
1.

This algorithm is both recursive and iterative. It is
recursive in the sense that after a decision has been made
(steps 6 or 7), the same decision process starts over with a
new subquery. It is iterative since this same recursive
algorithm is applied to each subquery of substitution or

reduction.

Let X = (XT’X -,Xn) denote the variables of Q and

o1t
let T(X) and B(X) denote its target list and qualification
respectively. It is assumed that B(X) is expressed in con-

junctive normal form, that is

B(X) = /i\ C; (X)

where each clause Ci(x) contains only disjunctions of atomic
formulas or their negation. Now consider a binary (0 or 1)
matrix with p+1 rows corresponding to T(X) and the p
clauses, and with n columns corresbonding to the variables

X ""Xn' An entry of 1 will denote the presence of a

1’



T4

variable in a cléuse (or target 1list), and 0 will denote its
absence. This matrix shall be called the incidence matrix
of Q.
EXAMPLE 5.3
For the following query

RANGE OF (S,P,Y) IS (SUPPLIER, PARTS, SUPPLY)

RETRIEVE (S.sname)

WHERE S.city="New York" AND P.pname="bolt" AND P.size=20
AND Y.snum=S.snum AND Y.pnum=P.pnum AND Y.quan>200

the incidence matrix is

IS P tY |

| T: S.sname 11 10 10 E
1 C,: S.city="New York" ' 1 10 !0 |
' C.: P.pname="bolt" 10 t1 o |
' Co: P.size=z20 10 11 10 |
i Cy: Y.snum=S.snum 11 70 11 E
1 C.: Y.pnum=P.pnum 10 t1 11
Cg; Y.quan>200 !0 to 1 |

For the Reduction-Substitution Algorithm there are
three steps which require more detailed algorithms. Step 0
requires a test for connectedness, and a means of separating
Q into disjoint components if required. Step U4 requires a
means of determining if O is reducible and Step 6 needs a
way of separating Q into components and ordering them if 0

is reducible.

Connectivity Algorithm

Figure 5.1 shows the connectivity algorithm. If the
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connectivity algorithm results in a matrix with a single row
which is not all 1's then the variables corresponding to the
zero entries are superfluous and can be eliminated. If the
final matrix has more than one row, then the sets of vari-
ables corresponding to different rows must be disjoint. 1If
the algorithm records which original rows were combined to
make up each of the rows of the final matrix, then the con-

nected components of the query can be separated.
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The

Consider Example 5.3 modified by the deletion of Cu
incidence matrix now has the form

EXAMPLE 5.4

~Hojlo|o]~—]|~

—fbedd-

Hlojlololo] |~

Ll ok e kL

—fedade

e el

Applying the connectivity algorithm, we get successively

[ 1

o |1

(=

: C')’C’)icc

T,C.
J_ CG’CGQC:’CK

the query is not connected and the connected com-

ponents are (T, C1) and (02’ C3, CS’ C6).

Hence,

@h
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Reducibility Algorithm

Let Q be a connected multivariable query. Observe that
it is reducible if the elimination of any one variable
results in Q being disconnected. Let a variable with this
property be called a joining variable. Thus, Q is irreduci-
ble if and only if none of its variables is a joining Qari-
able. Joining variables have some important properties
which greatly facilitate the reduction algorithm, and these

are summarized as follows:

Proposition 1. Suppose that X is a joining variable of Q
such that its removal disconnects Q into k connected com-
ponents. Then any joining variable of one of the components
is a joining variable of Q, and every joining variable of 0
is a joining variable of one of the components. - Further,
successive elimination of two joining variables in either

order results in reducing Q to the same disjoint components.

proof.
Each joining variable joins a number of components which can
overlap only on the joining variable. Let X be a joining

variable of Q which joins components Q1,Q ""Qk' Let Y be

27
a Jjoining variable of one of these components, say 01.
Then, Y joins components Q1{,Q12,---,Q1j of Q,, only one of
which can contain X, say Q11. Therefore, (012,---,Q1j)
overlaps the remainder of Q only on Y and Yvis a joining
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variable of Q. Conversely, let Y be a Jjoining variable of
Q, and jbin components Q1',Q2',---,Qj'. Only one of the set
{01',~-~,Qj'} can contain X, Say Q,', and only one of the
set {Q1,---,Qk} can contain Y, say Q,. Then {Q2',-..,Qj'}
and {02,---,Ok} must be disjoint since each Qi’ i>2, can
overlap its remainder in ¢ only on X and none of
{Qz"””Qj'} contains X. Hence, Q2',...,le are subsets of
01 joined to it only by Y, so that Y is a Joining variable
of Q1. It is clear that Q has components {Q2,...,Qk} each
joined by only X, {02',-.-,Qj'} each joined by only Y, and a
component QXY joined by both X and Y. Elimination of X and
Y in either order results in disjoint components
{62,...,6k,62v,...,Ejv,BXY} where Q; denotes Q; with X
removed, Qi' denotes Qi' with Y removed and QXY denotes QXY
with both X and Y removed. 0Q.E.D.

The substance of Proposition 1 is illustrated by Figure
5.1.

FIGURE 5.1. Joining Variables.

e ———————
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The results of Proposition 1 mean that the irreducible
components of Q can be found by successively checking each
variable for the possibility of being a joining variable.
Each variable only needs to be examined once, and the order
they are tested is immaterial. Further, since a variable is
joining if and only if its elimination disconnects Q, the

connectivity algorithm can be used for the test.

Take the incidence matrix of Q and eliminate from it
all rows with only a single "1"., Beginning with the first,
eliminate each column in turn and test for connectedness.
Suppose that when column m is eliminated Q breaks up into k
connected components with n1;ﬁ2,.-.,nk variables respec-
tively. Then, these correspond to components of Q with
n1+1,n2+1,-~-,nk+1 variables respectively, any pair of which
overlap only on Xm. Now, proceed to test columns m+1,...,n.
Note that each of the variables xm+1,.--,xn occur in only
one of the components so that after the mth column (i.e. the
first joining variable) the tests are performed on matrices

of reduced size.

Each irreducible component of Q corresponds to one or
more rows of the incidence matrix, and can be represented by
the "logical or" of the corresponding rows. Hence, Q can be
represented in terms of its irreducible components by a
matrix with variables as columns and components as rows.

This shall be called the reduced-incidence matrix.
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Section 5.5 presents a set of guidelines as to when
reduction should be used rather than substitution. Using
those rules and the reduced-incidence matrix of Q, it can be
determined if Q should be reduced given that xi was selected
for substitution. Then it is only a simple matter of com-
bining irreducible components to form the appropriate

subqueries.

There are only two basiec rulés to follow in determining
the order of processing for the resultant subqueries.
1) The subquery containing the original target 1list
will be processed last.
2) 1If X; is not in the subquery with the target 1list,
the subquery containing Xi will be processed first.
Any further rules on the ordering require more information
about the relations involved tq predict a good ordering.
The first rule above must be followed for reduction to be
more efficient by the reasoning presented in Section 5.3.

The second rule is not required but is logical.

Step 2 of the Reduction-Substitution Algorithm consists
of detaching one-variable clauses appearing in 0 and execut-
ing them. This will result in a new range size for each

variable which had a restriction performed.

Step 2 of the algorithm involves selecting a variable
for substitution. This step can be a very critical one in

the processing algorithm and thus deserves more attention.
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Chapter 7 discusses several strategies for choosing such a

variable.

Step 7 performs tuple substitution. For each tuple in
Ri’ Q becomes an (n-1)-variable query Q(B) in the variables
Xi,---,Xi_1,Xi+1,---,xn. For each B, Q(B) is then passed to
step 1 of the algorithm. The result of Q(B) for all B in Ri

are accumulated at each step.

An empirical comparison of this algorithm, using the
reducibility rules presented in Section 5.5, with an algo-
rithm using only substitution is presented in Chapter 8.
Also compared is this algorithm with the option of always
reducing (obviously, only if Q is reducible) to all irredu-

cible components.

5.5 Theoretical Analysis of The Proposed Policy

The results in the previous section caused a re-
examination of the policy to always reduce whenever possi-
ble. The discussion to follow assumes that it has a query
and that a variable appearing in the query has been selected
for substitution. The choices available are to reduce the
query or to substitute for this variable. It is assumed
that if reduction is performed, the same variable will be
selected for substitution after the reduction. Thus, there
is a continuity of the selection criterion which is unaf-

fected by reduction. It 1is also assumed that all range
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relations are non-empty.

We introduce the following aésumption.
Assumption A. If the substitution variable appears in the
target list of the query and in a one-variable clause, at

least one tuple will satisfy that one-variable clause.

The following notation will be used throughout this section.
Let Q be a query in variables X1,X2,---,Xn with range rela-

tions R1,R2,..-,Rn. Xy = {Ri}, i=1,...,n. Define V

{x1,-.f,xn} as the set of variables appearing in Q. 1If a
variable Xi is chosen for substitution in Q, the cost of
processing Q by substituting first for Xi is assumed to be

c(Q) = Xy + 2 C(0g) which includes the cost of reading
p<R, P

each tuple value to be substituted plus the cost of perform-

ing the remaining query once for each substituted tuple.
'CR(Q)
CS(Q)
c(Q(v))
c(a(as))

cost of processing Q if Q is reduced

cost of processing Q if substitution is performed
CQ(Xyy---,%))
0

The following general result can be stated.

Theorem 1. If a query Q can be split into two disjoint
subqueries (i.e. reduced into disjoint components), it will
be more efficient in terms of processing cost to perform

this reduction than to substitute for any variable, 1if
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Assumption A is true.

proof.

Let Q be a query in variables X1,X2,---,Xn.

—,Xn) as the disjoint components

Define
Q»](X.],"’,Xm) and QZ(Xm_._],-'
and let Q2 contain the target list of Q. Let xi be the

variable chosen for substitution.

Basis of induction

n = 2 which implies that m = 1.

Assume Vi = {xi} without loss of generality.
CR = C(Q1) + 61C(Q2) = X1 + 61X2
Co = 3 (14+YoC(Q(V={X.}))) = x. + ( 3 Yu)x.
S i i J
p<k, P P p<R, P
where
. .
21 if at least one tuple satisfies Q1
[}
61 = EO if no tuples satisry Q1
i
|
B if at least one tuple satisfies Qﬁ
\ .
'8 = 10 1if no tuples satisfy %
|
! .
If X; = X, then pé%iyp = Y% 2 61 so that Cg > Cp.

Ir Xi = X2, then by Assumption A, Yixi > 1

which implies that Cg 2 Xq + X, 2 X, + 61x2 = Cp.
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Induction step

n = k+1; assume theorem holds for n=k.

Cgp = C(Q)) + 61C(Q2)

s =%+ 3 C(QgV-{x,}))
B<R, B

where by induction

C(QUV-{X,; 1))

CCQ(Xy,ee X)) = CQ(V ={X;}))

then

Cg = x, + péii[C(Q‘(v‘-{xi})) + YpC(Q,(V,=1X;1))]

If X, <« V then

Cg = C(Q;) + (3 Yp)c(ay)

B<R;
but  Y;x; > 8, so Cg > Cp. |
If Xi 4 V2 then
Cq = Pga‘[f + C(Q) + 8,C(Q,(V,={X;1))]
b
= xiC(Q1) + 61C(Q2) + (1-61)xi
> Cp.

Therefore, reduction into disjoint cdmponents is always
better than substitution for the selected variable, under

Assumption A. Q.E.D.
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Assumption A is required, in the general case, because
reduction is forced to do that one-variable clause as part

of Q2. If it is not satisfied, then

CR = C(01) + 61xi

as before but now CS = Xy, and the assertion C., > C, no

S R
longer holds, which is critical in the induction step. But
Assumption A does not appear as a very restrictive assump-
tion. Note: under the current implementation of INGRES,
Assumption A is not required in the induction étep. Substi-
tution for X2 results in a constant clause which will not be
interpreted until a tuple from R1 is retrieved and it will
if

be interpreted for each tuple of R So, C

1° s = x2 + x2x1

the one-variable clause in X, is not satisfied.

2

Corollary 1. Theorem 1 hélds if Q reduces to n disjoint

components.

This can be easily verified by noting that n-1 components
can be grouped into a single component. This results in two
disjoint components and Theorem 1 can then be applied.

QOE'D.

If a variable is selected for substitution and then a
decision is made whether the query should be reduced at each
step in the processing strategy, it is not always necessary

to reduce the query to its irreducible components. If a
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query 1is split into reducible components, then a decision
will be made for each of these components individually
whether it should be reduced further. Due to Proposition 1
the order in which the compdnents are reduced does not
affect the final irreducible components obtained. And, by
not reducing completely at each step, more flexibility in
the processing strategy is gained. The following are guide-
lines for how much reduction should be performed given the
role of the variable selected for substitution. The propo-
sitions included after these guidelines demonstrate that
such "partial" reductions are possible and illustrate the

means by which they can be achieved.

Let Xi denote the variable selected for substitution.

1) 1If X; is a Jjoining variable, the query will be
split into components such that Xi appears in every
component (that is, the query will be reduced only
on Xi even if there are other joining variables in
the query). Note that the resulting compohents are
not necessarily irreducible.

2) If Xi is not a joining variable and does not appear
in the irreducible component containing the target
list, then the query will be split on a joining
variable which will separate the query into com-
ponents such that Xy and the target 1list are in

different components and the component containing .
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Xi is the "smallest".

3) If Xi is not a joining variable and does appear in
the irreducible component containing the target
list, the query will be split on the joining vari-
able appearing in the irreducible target list com-

ponent.

All propositions make the assumption that the original
query Q is connected or that the disjoint components have

been detached if Q is not connected and that Q is reducible.

Proposition 2. If 'a variable X is not a joining variable
and X is not in the irreducible component with the target
list, then there is a joining variable in the irreducible
component with X which will split the query into two com-
ponents such that X and the target list are in different
components. |

proof.

The proof will be done by induction on the number of joining

variables in the irreducible component containing X, IC(X).

Assume there is one joining variable in IC(X). Then if the
query is split on that joining variable such that one of the
resulting components is IC(X), X and the target list will be

in different components by definition.

Assume that the proposition is true for n-1 joining vari-

ables in IC(X). Let there be n joining variables in IC(X).
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Choose one of those, say J, and make a split on J resulting
in two components, Q° and Q" and X appears in Q".  Now,
either the target list is in Q" or Q". -If the target list
is in Q°, then X and the target list are separated and the
proof is complete. If the target list is in Q", then either
(a) J is still a joining variable of Q",

or (b) J is not a joining variable of Q".

If (a) is true, then Q" can be split again on J until (b)
becomes true. This splitting process will terminate because
there are only a finite number of variables in the original
query and each time a split is done, the Q° portion must
contain at least one variable other than J. So there are a

finite number of times that Q" can be split on J.

If (b) is true, then IC(X) now has only n-1 joining vari-
ables because J is no longer joining, so, by the induction
hypothesis, the query can be split on a joining variable in
IC(X) such that X and the target list are in separate com-

ponents. Q.E.D.

Proposition 3. If a variable X is not a joining variable

and X is not in the irreducible component with the target
list, then there is one and only one Joining variable in the
irreducible component containing X which will separate the
query into two components, one contaiﬁing the target 1list

and the other containing X.
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proof.
Proposition 2 has already shown the existence _of such a

Joining variable; this proposition will show its uniqueness.

Trivially, if there is only one joining variable in the

irreducible component with X (IC(X)), this is true.

Assume there are n joining variables in IC(X), Jyseeesdp,
such that reduction on any one of them will separate X from
the target list. Split the query on all of them, J1,...,Jn,
resulting in at least n+1 components. One of these com-
ponents contains J1,...,Jn and X, namely IC(X). Since each
of the variables J1""’Jn separates X from the target list,
the target list must appear in every component except IC(X).
But, join one of these components, say the one containing
Ji’ back with IC(X). Then'this oew component and any other
component have more than a single variable in common, namely
the joining variable and the targeﬁ list. But, by defini-
tion, any pair can have at most a single variable in common.
Therefore, the target 1list can appear in only one component,
so there is ‘only one joining variable which will separate X

from the target list. Q.E.D.

Proposition 4. If a variable X is not a joining variable
and not an element of the irreducible component containing
the target 1list, it is possible to find the "smallest"

subquery containing X and not the target list. That is, it



91

is possible to separate the query into two component
subqueries Q1 and Q2 such that X is in Q1 and the target
list is in Q2 and any other éuch split will result in X
being in a component which includes Q1.

proof.

Propositions 2 and 3 have already shown that there is always
exactly one joining variable, say J*, in the irreducible
component of X which will separate X from the target 1list.
When the query is split on J*, two components, Q*

1
* *
result such that Q1 contains the target list and Q2 contains

*
and Q2,

*

X. If this separation is done so that J is no longer a
* *

joining variable in Q2, the component Q2 is the "smallest"

subquery containing X and not the target list. The proof of

this statement will be separated into two parts.

* .
I. Q2 is a subset of every other component containing X
which results from a split separating X from the target

list.

There are two possible ways that a separation resulting in a
component other than Q; can occur.
(a) there is more than one way to separate the query
on J*.
(b) there is another joining variable not in IC(X)
which separates X from the target list. |

These are the only possibilities since Proposition 3 states

%
that J is the only joining variable in IC(X) which
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separates X from the target list.

Assume there is a split resulting in componentst1 and Q2 by
(a), such that Q1 contains the target list and Q2 contains
X. Then J* must be a joining variable in Q2. So 02 can be
split on J* until J* is no longer a joining variable. But

* *
then this is Q2, so Q2 includes Q2.

Assume there is a split resulting in components Q1 and Q2 by
(b), such that Q1 contains the target list and Q2 contains
X. Then J* must also be in Q, since J* is in IC(X) and X is
in Q2. But if J* is in Q2 it must be a joining variable in
Q2 and therefore 02 can be split on J* resulting in QZ’ and
Q2" such that X is in Q2" and J* is not a joining variable

. * %
in Q,", but then Q2" = QZ' So, Q2 includes Q2.

*
Therefore Q2 is a subset of every other component containing
X which results from a split separating X from the target

list.

II. This is the "smallest™" separation, that is, there is no
other separation which results in a component containing X

*
which is a subset of Q2.

Assume there is such a component, QZ’ resulting from a split
on J1. J1 must be a joining variable in the irreducible
component containing X otherwise Q2 includes Q; by part I.

*
But, by Proposition 3, then J.I = J Dbecause there is only
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one joining variable in IC(X) which separates X from the

target list. Therefore, Q*

> is the smallest.

*
Thus, Q2 is a subset of every other component containing X
and not the target list and there is no separation which

#
will result in a component smaller than Q2. Q.E.D.

After spending a great deal of time comparing the cost
of processing queries using reduction or substitution on a
case by case basis, it was determined that the structure of
the query was the critical parameter and a means of
representing this structure would be most helpful. Several
unsuccessful attempts were made to find a graphical
representation to represent both the struétural characteris-
ties and the cost assoeiatéd with that structure. The
graphical representation which was selected for use to aid
the anaylsis depicts only the structure of the query. But,
using this representation and a specific cost function, it
was possible to partition the queries into several groups by
recognizing patterns in the graph. This graphical represen-
tation will now be defined and sevéral examples given to

illustrate its use.

Let Q be a query with variables X1,X2,---,Xn. Denote
X=X ,,..,X . Let T(X) be the target list of Q and let B(X)
be the qualification of Q. We assume that B(X) is in con-

junctive normal form, i.e.,
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B(X) = A C;(X)
i

where Ci(X) represents a clause which contains only disjunc-

tions of atomic formulas or their negation.

Define a graph G(N,E) to represent Q such that

N =-{x1,x2,.-.,xn} = set of nodes.

ED = set of direct edges
nodes i, j are connected directly if variables i and
J appear in clause Cy such that !Ck{ = 2. This will
be represented by a solid line between nodes i and
j.

EID = set of indirect edges

@“ nodes i and j are connécted indirectly if variables

i and j appear in clause Ck ;uch that {Ck{ > 2.
This will be represented by a dotted line between

nodes i and j.

g = ED U EID = explicit edges

EI = implicit edges
nodes i and j are connected implicitly if variables
i and j appear in T(X). If variable i & T(X), node
i will be circled on the graph. All circled nodes
are implicitly connected but no actual edge will be
drawn on the graph.

E=E. UE

E I

EXAMPLE 5.5.




Q: RETRIEVE (X1.a, X

2

.a)

WHERE X2.b=X3.b AND X1.c=X3.c+Xu.c

N = {X1,X2,X3,Xu}

G(N,ED)
X1
XU /////XZ
X3
G(N,EE)
X
//I1
27
. ! X
B :/2
N
AN
X

w

A query Q is completely

disconnected.

G(N,E)

G(N,EID)
X
1
/ |
X, ' X
H\ l 2
LN |
AN \xl
3A
G(N,EI)
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disconnected if the graph G(N,E) is

A query Q is explicitly disconnected if the graph G(N,EE) is
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disconnected.

A completely disconnected query is explicitly disconnected.

Given a graph G(N,E) for a query Q and a variable X. to

i
be substituted, define GS(Ni, EE(\(NiXNi)) as the graph of Q

if Xi is substituted tuple by tuple where Ni = N-Xi. This
involves the following operations on G.

1) remove the node Xi from G(N,E).

2) remove all explicit edges from G(N,E) which were-

connected to the node Xi.

Define GR ='{Gj} as the graph of Q if the query is reduced
given that Xi was selected for substitution.

1) reduce Q on the appropriate joining variable, Xj,
resulting in n subqueries.

2) create a graph Gj for each of the n subqueries.

The node circled (i.e. the variable appearing in

the target list) in graphs G,,...,G will be only

17 N1

Xj with the understanding that Qn corresponding to

Gn contains the original target list of Q.

EXAMPLE 5.6.
Q: RETRIEVE (X1.a, X2.a)
WHERE X1.b=X3.b AND
(X1.d=Xn.d OR X3.c=Xu.C)
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G(N,E)
,/
e ®
\\
X3
X1 is the substitution variable.
GS QS(X1) is completely disconnected
* &
u\
N
\\X
3
GR = {G1, G2} XJ = X1
G4 G,

Q: RETRIEVE (x1;a, X2.a)

1.b=X2.d

AND X2.c=x3.c+Xu.d

WHERE X2.b:Xu.b AND X

G(N,E)

X1 is the substitution variable.

Gg
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). G
3\
N 7
N /,
Xy
GR = {G1, G2} Xj = X2
G, G,
X&:.__._._
N /Z,
\X"/
N

The following theorem and conjectures are a result of the
analyses performed, using the above graphical representation
of a query and the cost function as described at the begin-

ning of this section.

It is assumed that the original query Q has no disjoint
subqueries, since by Theorem 1, these should be reduced. It
is also assumed that any time an operation results in dis-
Joint subqueries, this fact will be taken advantage of.
Obviously, all queries under consideration will be assumed

reducible.

Theorem 2. Let Xi be the variable selected for substitu-
tion. If Xi is a joining variable, then QS will be com-
pletely disconnected and the cost of substituting for Xi
will be less than the cost of reduction followed by substi-

tution for Xi first in each of the resulting components.
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If Xi is a'Joining variable, then by definition it is the

only variable in common among two or more

subqueries.

Therefore, by substituting for Xi, these two or more

subqueries will be disjoint.

Let n

number of connected components in G

number of subqueries in GR

Induction basis

n=2
Co = 2 (1 + C(Q,) + YaC(Q.))
S p<Ri 1 ﬁ 2

= X, + XiC(Q1) +

s c(a,)

p<n {:

if Q1B is not satisfied

- O

where 7p = if Q1p is satisfied

- e e —————

CQ(V,ULX;1)) + §,C(Q,(V,U{xX]}))

S (1+C(Q )) + 6 p (1+C(Qz))

<R, 1
p<Ri

1 1
X, + xiC(Q1) + 61xi + 61xiC(Qz)
where Rl = the relation carried over between

which is = {tuples <Ri : YP = 1} (A4).

By. (A)

subqueries
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1 - 1
61xi ﬁ<R ﬁ S0 C = CS + 61xi 2 CS'

Induction step

Assume the theorem is true for n-1, prove for n.

C(Q,UQ,U---UQ,_1) + 8, ,c(Q (v, u{x2~T}))

-1
> Cg(QuU---UQ,_4) + 8 _,c(Q (V U{X;™'}))

by the induction hypothesis

n

Cg(Q,U---0Q, ) + & _.x" 1(1+c(Q ))

- 1 n-2 n-1
-1
- C U..o C
But yR- L §  .x2-1 by the same reasoning as (A)

ﬁéR p n-1"1
applied n-2 times.

So,

Cs = CS(Q1U' . 'UQn_ol

-1
) + Sn_1x2 C(Qn)'

+ 6 x0=1 5 ¢ .

Therefore, C_ > CS n-1%i

R

The following results are presented as conjectures.
They are believed to be true but it was not possible to
develop a general proof using the methodology presented

above.
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Conjecture 1. Let Q be a query and X, be the variable

1

chosen for substitution. Assume X, ¢ T(X) and if X

1 1 < B(X)
then X1 < Ck such that Ck is a three or more variable clause
(i.e., X1 has no direct connections to any other nodes in
G). Then, if GS is connected, reduction is a better stra-
tegy than substitution in terms of processing cost.

Reasoning. In this case, substitution for X1 basically
loses because this substitution will have no immediate
effect on the query. It just implies that the cost of the
remaining query will be multiplied by 3R1: and no other
range relations will be affected. Reduction, by splitting
the cost of the whole query into a sum.of costs for smaller

queries, has a good chance of being less than the substitu-

tion cost.

EXAMPLE.
//' \\
x7 X
A 3T T
Xy X

CS = x1(1+x2(1+xu+pxux3))
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CR = x2(1+xu) + x1(1+x2’(1+x3))

Conjecture 2. Let Q be a query and x1 the variable chosen
for substitution. Assume X1 % T(X). then if X1 is directly
connected to some node X; & T(X) and Gg 1is explieitly
disconnected, substitution will do bettér than reduction in
terms of processing cost.

Reasoning. This situation implies that Xi is the joining
variable for reduction, otherwise X1 must be joining and
this case 1is covered by Theorem 2. Therefore, X1 will
appear in the first component of reduction and reduction

will match the substitution cost except that reduction must

re-read the range of Xi.

EXAMPLE.
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¥ e = — x3-___._..®
& Gy

Cg = x1(1+x2+x2'(1+x3+px3xu))

G1 G

//X 13 @
S : @

CR = x1(1+x2+x2'(1+x3)) + x;(1+xu)

2

Conjecture 3. Let Q be a query and let X, be the variable

1
chosen for substitution. If X1 has no direct connections to
any node X; < T(X) and Gg is explicitly disconnected, then
reduction will do better than substitution in terms of pro-
cessing cost.

Reasoning. Here the fact that xi is joining and gets res-
tricted before executing the second component is the winning

point for reduction. Substitution must substitute for at

least two variables before it will get the same effect.

EXAMPLE.
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CR = x1(1+x2(1+x3)) + x2'(1+xu)

Conclusions

As a result of the previous discussion, it is proposed
that in the following cases substitution for the selected
variable should be performed:

1) when the variable selected for substitution is a
joining variable,

2) when the variable selected for substitution is not in
the target 1list but is involved in a two-variable
clause with some other variable that is in the target
list. |

In all other cases reduction should be performed on an

@h appropriate joining variable. It is true that the previous
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discussion does.not show that reduction is the winning stra-
tegy for all other cases and, depending on the distribution
of the domains, substitution could be less expensive in cer-
tain cases. However, it is felt that generally reduction
has a much better chance of incﬁrring a lesser cost than
substitution. This is particularly true if an operation to
remove duplicates in the result relation is included between
the processing of subsequent components resulting from

reduction.
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CHAPTER 6

DATA DEPENDENT OPTIMIZATION TECHNIQUES

In the previous chapters, techniques for efficient pro-
‘cessing which did not depend on the characteristies or
structure of the data involved were discussed. However, if
certain information is known about the data itself there are
many ways to use this knowledge effectively. The information
which can be of use falls into two catagories, that pertain-
ing to the distribution of values within domains and that
pertaining to the way the data is actually stored within the

system.

Distributional information can be very useful when
answering queries involving more than oné relation. These
queries require searching multiple relations and the order
in which these searches are performed can greatly affect the
processing costs. Using the distribution, it is possible to
estimate the cost of different orderings and thus eliminate
at least the obviously expensive ones. Also, at one point
in the algorithm, all single relation restrictions appearing
in the qualification are executed. If the distributional
information is available, it would be possible to determine
which of these restrictions would do the most good and which
would do no good at all in terms of reducing the number of

tuples which must be retained for resolution of the
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remaining query. Those restrictions reéulting in the selec-
tion of the fewest tuples can be done initially in the pos-
sibly remote hope that no tuples will satisfy and processing
beyond that point will be unnecessary. The restrictions
which would select a high percentage of the tuples can be
put off indefinitely and perhaps not performed until that

relation must be examined to satisfy some other condition.

The second category of information is concerned with
how the data is stored and the access paths that are avail-
able to it. There are two general classes of data struc-
tures, keyed and non-keyed. A keyed structure is one in
which a domain (or combination of domains) of a tuple is
used to determine where in secondary "storage the "tuple
should be stored. This domain is called the "primary key"
or simply, "key". In such structures, when a value of the
key domain is specified, the tuple(s) having the specified
value}éan be located directly without a full scan of the
relation. On the other hand, non-keyed structures are ones
in which the tuples are stored using some criteria which
does not depend on the value of the tuple. Non-keyed struc-
tures do not provide any ability to limit the number of
tuples examined when specific values of one or more domains

are supplied.

Knowing whether a relation is stored as a keyed or

non-keyed structure, what domains are keys and if there are
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any secondary indices (inversions) on the relation all
determine how the data can be accessed. Compiling this
information and determining an efficient access path for a
given single relation query is not a straight forward pro-
cess. However, that is the problem addressed by the strategy
portion of OVQP and is not discussed here. But, if decompo-
sition is aware of these considerations and uses them in
determining 1its overall strategy, many benefits can be
gained. For example, before passing a one-variable query to
OVQP, decomposition can restructure the relation involved so
that it has a useful access'path.ior, in determining which
variable to tuple-substitute, it can select one such that

the remaining relation can be efficiently accessed by OVQP.

These two types of data-dependent information can be
used together at each step in the processing of a query to
determine an efficient means for answering the query. The
information upon the storage characteristics is readily
available and incurs no extra cost since it is required by
the access methods to retrieve the stored data. However,
the information concerning the distribution of values for
each domain is not required by any other part of the system
and there could be considerable cost associated with compil-
ing and maintaining it. Before requiring the use of this
distributional information in the processing decisions of

decomposition, it is necessary to consider the steps when it
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could be used and if the benefits gained from its usage will
outweigh the associated costs. The purpose of this chapter
is to discuss the processing steps which could take advan-
tage of the distributional information and to analyze the

effect it would have on the decisions made at each step.

In the first section an introduction to the analysis is
presented. This includes a discussion of the model used for
estimating costs and the assumptions and terminology which
will be used throughout the chapter. In the next four sec-
tions, the use of statisties in the following processing
steps is analyzed: (1) preprocessing one-variable restric-
tions, (2) projecting a relation prior to tuple substituting
for it, (3) reformatting (modifying the storage structure)
of remaining relations taking into account the effect of the
substitution which just occurred, and (4) creating a secon-
dary index rather than reformatting. Then, in Section 6.6,
the cost and effectiveness of various types of distribu-
tional information which could be used are compared. In
this chapter, the analysis of these options is presented;
the results of empirical studies of the same questions are

presented in Chapter 8.

It should be noted that the results of this chapter
will not be a definite answer as to whether distributional
information should be maintained. These analyses are

presented simply to examine the effect statisties would have
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on these particular decisions. And the steps discussed' here
are not the only places where distributional information
could be used. One major area where these statistics would
be invaluable is when trying to estimate the costs of vari-
ous processing paths. This problem is discussed in Chapter

7.

6.1 Introduction to the Analysis

Since the decision made at each step should reflect the
option with the minimum processing cost, it is necessary to
develop a cost function to compare the decision which would

be made when statisties are available and the'choice without

statisties. Let Q be a query in variables x1,x2,...,xn with
respective ranges R1,R2,~--,Rn, The following terminology
will be used throughout the analyses.

ti the number of tuples in relation Ri'

Wy the width of a tuple in r'elation'Ri in bytes.

wi' the width after referenced columns have been

éelecﬁed from Ri.
ey tuple capacity of a page in Ri - the number of

tuples in IH_ which can fit on a single page of
secondary storage (the integer bortion of page
size divided by tuple size since INGRES does not.
allow a tuple to be split between pages).

c., tuple capacity of a page in Ri where tuple width
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-

is w.
1 i

Pi the number of pages required to store relation‘Ri.

The access methods currently provide two page bpffers
for use in accessing relations. This'fact means that when
OVQP is reading tuples from the source relation and writing
tuples to the result relation, a page from each relation
will remain in main storage so that the cost of 0OVQP’s pro-
cessing is essentially in pages even though it works on a
tuple at a time. However, this fact does not aid decomposi-
tion while it is tuple substituting. After a tuple is read
and its value substituted, if any other operations are per-
formed, such as opening a temporary relation which is the
result of a one-variable restrictiqn, before going back to
get the next tuple value for substitution, the page will
have to be re-read. So, decomposition has to read a page

for every tuple in most cases.

Thése observations lead to the cost of processing Q, in
pages referenced, using only tuple substitutioen and assuming
that the order of substitution is x1,X2,oo-,Xn as

C=t¢t, + t1(t2 + tz(t3 +eeer b (P )eer)
The first term is the cost of reading each tuple of R1 to
substitute its value; the second term is the cdst of reading

each tuple of R2 once for each tuple of R1; ete. The final

term is the cost of performing the one-variable query in Xn
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once for every combination of  tuples from relations

R This formulation assumes that Rn does not have

1"'°’Rn-1° ,
a useful keyed structure which OVQP can use to 1limit the

scan, thus it must access all pages.

If Q contains a one-variable clause in X1 which is ¢to

be executed prior to substitution of X this will be

17
reflected in the cost function by
C=P,+t, =+ t1l(t2+t2(t3+"'+tne1(Pn)°")

P1 is the cost for OVQP to perform the one-variable restric-
tion in X1 (again assuming all pages' must be accessed),
resulting in t1’ tuples in the new range'R1'.

Throughout the analyses to follow these assumptions
will be made:

(a) unless specifically stated otherwise, the relation
‘being accessed in any one-variable query has no useful
keyed strﬁcture so that bVQP will have to perform a
full scan of the relation.

(b) t; 2 1 for all i=1,...,n.

(c) tuple substitution is the only method available for
reducing the number of variables. Since the options
discussed either refer specifically to substitution or

play the same role in reduction as in substitution,

this assumption will have no effect on the generality

of the results.
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All costs will be in units of pages referenced.
6.2 One-Variable Restrictions

Consider the following two variable query

FIND THE PART NAMES AND SUPPLIER NUMBERS FOR ALL PARTS USED
BY PROJECT 10 WHICH HAVE LESS THAN 10 UNITS ON HAND

RANGE OF (P, S) IS (PARTS, SUPPLY)
RETRIEVE (P.pname, S.snum) WHERE P.pnum = S.pnum
AND P.qoh < 10 AND S.jnum = 10

Since this is a two variable query, reduction is not an
available tactic and the remaining alternatives are tuple
substitution and detachment of one-variable subqueries. The
question being addressed here is whether the one-variable
clauses should be processed before tuple substitution com-

mences.

Intuitively, performing all restrictions prior to sub-
stitution is a good idea since the cost of processing a
one-variable query is small compared to the possible reduc-
tion in the size of the cross product which must be exam-
ined. Consider a three-variable query in X1,X2;X3. If the
cross product was constructed by tuple substitution alone,

the cost would be

C = t1 + t.t, + £t t,P

172 17273

The dominant term in this cost is clearly t1t2P3 (assuming
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t t2,P3.reasonably large). If this term can be reduced by

1?
simply adding a linear term to the cost, namely the cost of

performing a restriction, then it would appear advantageous

to do so. For example, if a restriction in X, was present,

2
the cost would become

C = P2 + t1'+ t1t2 + t1t2 P3

And, hopefully t2’<<t2.
behind performing one-variable restrictions, that is, to

This example illustrates the idea
reduce the size of the cross product which must be examined.

6.2.1 Generalized Restriction Problem

For the purpose of this discussion it will be assumed
that an n-variable query has the following characteristics:
(1) one or more clauses involving all n variables,

(2) at least one one-variable restrictive clause for
each of the n variables.

And all clauses are of type (1) or (2).

This assumption is made to simplify the calculations
which are presented and does not affect the generality of
the results. If there is a clause with m<n variables, then
at some point during the substitution it will become a one-
variable clause. At that point the query will have charac-
teristies (1) and (2) and the analysis can be applied. By

making this assumption, it allows the cost function to
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reflect the cost of performing these restrictions all at
once prior to any substitution. Otherwise it must be deter-
mined what ciauses become one-variable after which level of
substitution. Characteristic (2) can be relaxed so that
only m<n variables have one-variable clauses present but in

its current form it allows for the general analysis.

Let p. i=1,2,...,n, be the percentage of tuples

l’
(pages) in Ri which satisfy the corresponding one-variable

restriction, O<pi$1 (pi can be zero, but obviously in this
case, performing the restriction is the correct action).
Let C;, 1=0,1,...,n, be the cost of proceésing Q given that
i of the available n restrictions are performed prior to

substitution.

The results will assume, for simplicity, that the order

of substitution will be X1,X --.,xn. In the general form,

2’

(1+...+tn-1(P Yoo

n

m
C_ = §1Pi + p1t1(1+p2t2(1+---+pmtm(1+tm+1

mo
For all restrictions to be performed, it must be true that

CnSC ..£C The conditions forced upon the pi's by this

n-1%""£Co-

ordering will be examined by considering pairs of the Ci's.

C. £¢C if and only if
P1 _
+t2t3+--~+t2t3~--t

< C1 if and only if

Py £1- t1(1+t2
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P, £ 1 - P2 :E
2 = D1t1t2(1+t3+t3tu+---+t3tu---tn_1Pn) 2
Cm £ Cm-1 if and only if
p, £ 1=~ EIB“ :E
m = p1t1'"pm-1tm-1tm(1+tm+1+"'+tm+1"'tn-1pn) n
Cn £ Cn 1 if and only if
<1 1 =p
Pp & 1 = t = Py

PytyPoto Py 1tn_g

For Cn to be the minimum cost, all of these conditions must

be satisfied, that is p; £ p; for i=1,...,n. Clearly, if

i
P.<P

L...<P and Pn>0’ the 3.'3 form a decreasing

1= 2 i

sequence, i.e., Ei<;i-1‘ So, if pigsn, i=1,...,n, Cn will

n-1

be the minimum cost. But,

n-1 '
A
p, = =%

n n-1

00

P;ts

i=1

which in most cases will be very close to 1. If no ordering
is required on the Pi's, each bound can be examined indivi-
P.

dually remembefing that El £ 1. If the ti’s are large, the

i
sum of products term in the denominator of each ;i will be
quite large, thus bringing the bound closer-to 1. Examining

the En expression, note that if any two of the piti terms

are greater than 3 (tuples), Bn > .9.

This analysis illustrates that even if the exact pi's



M7

were known for each one-variable restriction, in the major-
ity of the cases the restriction should be performed due to
the fact that the bounds on the pi's beyond which no benefit
would be gained are so close to 1. So, for the purpose of
deciding whether to perform the restrictions, distributional

information will not have a major effect.

6.3. Projectioh Prior to Substitution

Consider the following two-variable query

FIND THOSE PARTS WHICH ARE SUPPLIED BY SOME SUPPLIER
RANGE OF (P, S) IS (PARTS, SUPPLY)
RETRIEVE (P.pname) WHERE P.pnum = S.pnum

Suppose that S was selected for tuple substitutioh; then the
remaining one-variable quefy in P would be executed |R(S)]
times. Now, it is possible that more than one supplier sup-
plies parts with the same part number so there could be
duplicate values in the pnum column of SUPPLY. If only the
column of SUPPLY representing pnum was retained and then
sorted to remove duplicates, the number of tuples which are
substituted could be reduced. So, instead of having to do
the remaining query [R(S)! times, it would only have to be
done once for each unique value in the pnum column of SUP-

PLY.

Only selecting the columns referenced by the query will
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never reduce the number of tuples, it only reduces the tuple
width. This operation is equivalent to sending a one-
variable query over the SUPPLY relation to OVQP which has a
target list containing only the domain pnum and no qualifi-
cation. OVQP does not check for duplicates when creating
the result relation, iﬁ simply~copies the appropriate column
from the original relation. Thus, an additional operation
is required to remove duplicate tuples. If a variable which
is to be substituted had a oné-variable restriction which
was preprocessed, the selection of referenced columns took
place at that time so only the operation to remove dupli-

cates would be required prior to substitution.

6.3.1 Analysis of Removal of Duplicates

In the INGRES system there are two available methods
for removing duplicates. The first is to hash the relation,
checking for duplicates, and the second is to sort. For a
complete discussion and comparison of these methods within
INGRES, see Appendix B. From the results presented there,
it is clear that whenever the tuple width is small, sorting
is less expensive than hashing even when the number of
tuples is large. Since the operation to remove duplicates
is a concomitant of projection, it is likely that the pro-
jected tuple width will be small. For this reason, in the

general case, sorting will be used to remove duplicates.
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However, it is possible to define an upper bound on the
width and whenever that bound is reached, switch to hashing

as the method for removing duplicates.

First, a two-variable query will be examined to deter-
mine under what conditions projection prior to substitution
would be advantageous. Then, it will be shown how these

two-variable results generalize to an n-variable query.

IPAGE is an INGRES-defined constant for page size; p is
the percentage of duplicates in thé reduced-width relation
(so, q=1-p is the percentage of non-duplieateé), 0<pL1.
UPAGE and BUF are as defined in Appendix B. Note that
1$wi'5wi$IPAGE. It is assumed that variables are selected

for substitution according to their size in tuples.

The cost of processing if X1 is substituted and no pro--

Jjection is performed is

C = t1 + t1P2

The cost of processing if X1 is substituted and a projection
is performed on R1 is (refer to Appendix B for a description

of the sorting cost)

C_ = selection cost + modify cost + gt

p + qt1P

1 2

S ’
- ’ ’ 'd L4 . 1
cp = (P1+P1 ) + (2P1 +us1 +2S, (1nt(log7(§ﬁ§-1)+1)))
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+ qt, + qt1P

1 2
where S1 refers to the number of UNIX pages required for
relation R1. (Appendix B explains the difference between .

UNIX pages and INGRES pages.)

C £ C if and only if

P
_;L_=;L 3., 2 -El: i
1 ]
Q1= 1+P2§c1 + 01' + k1'(2+1nt(1°g7(BUF'1)+1))E

where k1 is the tuple capacity of a'UNIX page = iﬁGE.
1

The lowest value for the right-hand-side of the ine-

quality is when the quantity being subtracted is as large as

’

1
possible. The smallest value ¢, can be is 1; since sorting

possible. This occurs when c1,c1', and k are as small as

is the method being used to remove duplicates, this implies
that w1’ is small, say less than half of the page size, so
the smallest c1' and k,” can be is 2. For these values, the

1
bound becomes

1

Q<1 - 1+P2(5.5 + int(log7(.o1t1-1))) for BUF=50

For reasonably large P2 (P2>1OO), the term
(5.5+int(log7(.O1t1-1)))/(1+P2) approaches zero since
int(log7(.01t1-1)) << P,. Therefore, as P, gets large, the

bound on q approaches 1.

Take the case t1=105. The percentage of duplicates
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needed for q to be below the bound is

% of dups P

2

8.4 100
1.7 500
.849 1000
7 5000

which are reasonable numbers.

When the restriéted tuple width is large, so that hash-

ing should be used, the results are

C. £ C if and only if

P
[} ]
2171 1 ! 2
This bound is also quite close to one for large P2.

The case when a restriction has already been performed
on R1 so that only the operation to remove duplicates is
required differs from the previous case only in that the
first two terms of the cost function associated with the

selection cost are no longer included. So,

CS L C if and only if
] s . ]
1 1.2 y 2 ;. 1 '
q _<. 1 - 1+P2ic1’+k1’+k1’(lnt(1°g7(BUF-1)+1);

Using the same reasoning as in the first case, the right-

hand-side becomes
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1
q<1 - 14_1,2(14 + int(log7(.01t1-1)))

Since the constant term in the numerator is smaller than the
corresponding case including the selection operation, this

bound on g approaches even closer to 1 as P2 gets large.

For the restricted width large and thus the use of

hashing to remove duplicates,

CS L C if and only if
1 1 3.888
q1- 1+P2(c1’ + 2.888) <1 - 1+P2

which is a bound also quite close to t for large P2.

These analyses of the two-variable case show that the
number of duplicate tuples needed to make the projection or
sorting worthwhile is quite small. So, the operation of

removing duplicates would be beneficial whether statistics

were available or not.

To generalize these results to the n-variable case,
note first that this two-variable query is the final query
in an n-variable query (n>2). That is, a three-variable
quéry after substitution for one of its variables would be a
family of two-variable queries. So, that in the inner loops

of substitution the analysis above can be applied directly.

At the outer levels of an n-variable query (n>2), the

cost function would be of the same form as above with an
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additional cost reflecting the substitution of the first n-2
variables. For example, the cost of a three-variable query

without projection is

C = t1 + t1(t2 + t2P3)

Considering projection prior to substituting for X, changes

1
the bound on q only in that it increases the denominator of

the term which is substracted from 1, i.e.,

Q<1 - T (exer)

2723
resulting in the right-hand-side of the inequality becoming

even closer to 1.

Thus, the conclusions reached for the two-variable case
generalize to the n-variable case in that having statistics

available would not greatly effect the decision to project.

There is one case where the projection should not be
performed. If- it is known that the operétion of selecting
. the referenced columns will cause all columns of the origi-
nal relation to be retained, the projection should not be
performed since, by definition, relations do not contain

duplicate tuples{

One other comment should be made. This step should be
dissociated from the process of selecting a variable for
substitution. Clearly, it is infeasible to do this at each

level prior to selecting a variable because of the cost
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involved. It can be done after the variable has been
selected under the premise that a good variable has been
chosen and this operation will make it even better. Or, it
could be done once at the beginning of processing for the
entire query. This would involve projecting all relations
involved in the query. It is felt that the first option is
better since this allows for combining the retention of
columns .operation with a possible restriction even though
the true size (without duplicates) would not be available to

the variable selection process.

6.4 Reformatting

Consider the following three-variable query.

FIND THE EMPLOYEES WHO HAVE MADE SALES AND THE ITEMS THEY
SOLD

RANGE OF (E,I,S) IS (EMPLOYEE, ITEM, SALES)

RETRIEVE (E.name, I.name)

WHERE E.number=S.employee AND S.inumber=I.number

If S were substituted for first, this would result in a fam-
ily of queries of the form

RETRIEVE (E.name, I.name)

WHERE E.number=p AND B=I.number
where B <& SALES.

This query has two one-variable restrictive clauses which,
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according to Section 6.2, should be performed prior to con-
tinuing. It is known that these one-variable subqueries are
going to be executed |R(S)! times, that is, once for each
tuple in SALES. If the relations EMPLOYEE and ITEM were
modified to keyed structures on the appropriate domains,
OVQP would be able to process the one-variable subqueries
more efficiently. This operation is called reformatting.
It is possible to reformat after every substitution which

produces any one-variable clauses.

There are certain drawbacks to reformatting however.
For example, in the above query, if the EMPLOYEE relation is
to be reformatted, a copy must be made of it first since it
is the user’s relation. Then, the copy of the relation can
be keyed on the domain number. Both of these operations
have significant costs associated with them. And, if the
SALES relation has very few tuples which must be substi-
tuted, the cost associated with reformatting could far
outweigh the benefit gained. Also, if EMPLOYEE has only a
small number of tuples, the cost of reformatting might be
too great to warrant its use. Thus the cases where the cost

outweighs the benefit must be recognized.

If a user’s relation is to be reformatted, it was men-
tioned that a copy would have to be made first. This copy
could be made retaining only the domains referenced by the

query since there is no extra cost associated with selecting
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specific columns. And, by retaining only required columns,
the tuple width will most likely be reduced and thus the
number of pages required to store the relation will
decrease. Since OVQP works with pages, this operation alone
could have sufficient effect to warrant thé structure modif-
ication unnecessary. This reformatting option will be dis-

cussed in sub-section 1.

Clearly, if the original relation is already keyed on a
useful domain, reformatting should not be performed. The
analysis to follow assumes that the original relation has no
useful structure for processing the current one-variable

subquery.

If it is desired to modify the storage structure of a
relation to alldw for more efficient retrieval of its
tuples, there are two keyed structures available within
INGRES. The relation can be hashed on a given key or sorted
on a given key (ISAM). Each of these structures are useful
under certain conditions. If a tuple is being retrieved
searching for a specific value (i.e., equaliﬁy constraint),
then hashing is usually more efficient. If a tuple is being
retrieved to determine if it lies within a range of values
(i.e., comparative constraint), then ISAM is better. Both
choices are available to reformatting and its decision
should be based on the characteristics of the restrictive

clauses to be executed. The case when hashing is the best
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structure is presented in sub-section 2 and the use of an

ISAM structure is analyzed in sub-section 3.

IPAGE is an INGRES-defined constant for the page size;
1gwi'gwi$IPAGE. When the relation has been modified to a
keyed structure, the tuples with the same key.values will be
clustered and thus the number of pages which must be
accessed to find a specific key value can be limited to less
than the total number of pages. P; = E[pi(p)] is the
expected percentage of pages of Ri which will be accessed to
verify the constraint in X

and p < R where Xj is the

i J’
variable previously substituted, assuming that Ri has been
modified to an appropriate keyed structure. For a discus-
sion of the costs used for the operations of modifying a

relation to a hashed or ISAM structure, refer to Appendix B.

6.4.1 Selection of Referenced Domains

The operation of retaining only the referenced domains
while making a copy of the user’s relation has essentially
no overhead as compared with simply making a copy. Since
OVQP works on units of pages, if more tuples can be fit on a
page by reducing the tuple width, a large savings can be
gained by doing this selection operation even without a sub-
sequent modify operation. Clearly since this operation does
not eliminate any tuples, the total number of tuples in the

relation will remain unchanged. And, since a convenient
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access structure has not been imposed on the reduced width
relation, OVQP will have to examine every tuple to verify
the constraint. Thus, for only selecting the needed
domains, statistics on the percentage of tuples satisfying a
given restriction will not play a role in determining the
benefit of this operation. The important factor here is the
reduction in tuple width and thus a reduction in totél pages
for the relation. So, this discussion will not affect the
overall conclusion as to the benefits gained from having the
statisties available, but it is included for completeness of

the analysis of reformatting.

1 and X2 will be examined

since the costs will appear in the same form within an n-

A two-variable query in X

variable query. The cost of pﬁocessing using only tuple

substitution and assuming that X1 is substituted is

C = t1 + tJPZ

The cost of processing if the appropriate domains of R., are

2
selected is

Cp = t1 + selection cost + t1P2
Cs = t1 + P2 + P2 + t1P2
Cs L C if and only if
P2 ) t1-1
P, = t.+1

2 1
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c, t1-1 t2 t2
which is equivalent to 7 £ since P_ === and P, =—%,
c t,+1 2°¢c 2 "¢
2 1 2 2
c
2 - rd . l- .
Clearly, E;? £ 1 since LAY ng. Also, if LY which

-’

implies C, =Cy, this operation should not be performed since

t1-1

t1+1

< 1.

As L increases, more reduction in width is required so

that the reduction will have an effect on the number of

pages. For example, when w2 > IPgGE only one tuple will fit
on a page, so for the selection of columns operation to be
beneficial w2’ < lﬁ%gg.

The conclusion of the analysis is that, since all quan-

tities are known at the time the decision'is to be made, the

c t,-1
calculations should be performed to determine if c;% < t1+1‘

2 1
If so, reduce the tuple width; otherwise eliminate this

operation alone as an alternative. A decision to perform
the selection of columns does not eliminate the possiblity
of doing a subsequent modify. All it says is, that if the
modify is determined to be not worthwhile, the operation to
reduce the tuple width should still be performed. Likewise
for the decision to not perform the selection of columns -
the decision does not preclude doing this operation in con-

nection with a subsequent modify.

6.4.2 Reformatting to a Hashed Structure
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The following analysis will use the assumption that a
variable is selected for substitution on the basis of its
size in tuples. Thus, for the order of substitution
Xq0¥X5,- 1585
here, the cost of modifying a relation to a hashed structure

"’Xn’ t. <Lt S"'Stn‘ In the cost functions presented
will use a value for an "average" page for the overhead
associated with overflow pages (0.888, refer to Appendix B).
In practice, this additional cost can be computed using the

tuple capacity of a page in the relation under considera-

tion.

1 and X2 with

2° The cost of processing without reformatting is

Consider first a two-variable query in X

t.<t

1

C = t1 + t1P2

The cost if reformat, including selection of the referenced

columns while making a copy, is performed is

CR = t1 + copy cost + modify cost + t1p2P2
= t1 + (P2+P2 ) + (P2 +2.888t2) + t1p2P2
CR £ C if and only if
e, ie,”’ |
2 1,2 p
Pr £ —— - T-I—=— + 2.888¢c + 2!
2 cy t”c2 2 E
) . . e,
Since L ng, c, 202 so that 72; 2 1. Thus, the right-

hand-side of the inequality is smallest when w2=w2'=1 and
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the dominant term in CR becomes 2.888t2. This results in

.

< 1 _ 335.888

ty

P2
These results can be expanded to the n-variable case in the

form that to reformat the ith relation (including the copy),

4 4

c

C. e, | _
py & = - it +2+42.888c, 7! < 1 - 3%5&8& = b,
. i i-10 % ! i-1

where ti_1 refers to the variable just previously substi-

tuted, that is, the order of substitution is X1,X2,---,Xn.

Since ti-1$ti’

= _,.335.888 = _ . _ 335.888
P12 1= 7, S P T T T

Therefore, p.<p. is satisfied if p; < 52 = 1 - 335.888
i=2’.‘.’n.

However, if t1<336, this results in a negative lower
bound on P which is clearly infeasible. This illustrates

that there is a threshold value on t in terms of c¢., and

1 2
02', and, if t1 is below this threshold, reformatting should

not be considered.

This equation in P, can be used to define a threshold
value on t1 given an upper bound A on Py That is, by solv-
ing the right-hand portion of the following inequality for
ty
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C2

o < A
2

]

1I

Py, £ = - i
2 2ty

+ 2.88802' + 2
a threshold value for t1 can be obtained. Research done by
Lum et al [LUM71] and Severance and Duhne [SEVE74] indicates
that on the average there will be 1.5 page accesses for a
single tuple retrieval (using hash with chained overflow).
Thus, A=.10 is a reasonably high bound for more than 15

pages. This results in a condition on t. of

1

L4

2
2

+ 2.88802' + 2

- —

|
!
]
|
1
|

which is an easily calculatable bound. The largest value

for this bound occurs when w2=w2'=1 and results in t12372.

The conclusion is that setting a threshold on t. would

1
be of more use to reformatting than trying to use statistics
to estimate the percentage of pages which must be accessed
for a given key value. This threshold could be calculated
for each instance of reformatting since w

W and page

2’ "2
size are known quantities. This threshold formula could be
calculated assuming A=.20 which is reasonable whenever the
number of pages in Ri is more than 7. A similar bound on t1
can be calculated when it is not necessary to make a copy of

the user’s relation.

Currently the INGRES system supports the option of
reformatting to a hashed structure. The one ma jor drawback

discovered in practice has been in the case when one of the
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relations involved is fairly small. It was found that by
inserting a crude cost function which used a fixed value of

Py it was possible to filter out those cases when the ranges
involved were too small to warrant reformatting. This

experience supports the conclusions reached by the analysis.

6.4.3 Reformatting to an ISAM Structure

This analysis also makes use of the assumption that a
variable is selected for substitution on the basis of‘its
size in tuples. Thus, for the order X1,X2,oo-,xn,

Consider first the two-variable case. The original
cost, without reformatting, is

C = t1 + t1P2
The cost if reformatting and a copy are performed is
CR = t1 + (P2+P2 )
) . S,°
+ (2.25P, +48,"+25, (1nt(log7(§ﬁ§-1)+1)))

+ t1p2P2

where 82 refers to the number of UNIX pages for R2.

CR £ C if and only if
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. —2_
T T ’lnt(l°g7(BUF'1)+1)

l rd
22 2 '1 . 3.25 4 2 S
- ti1% cp Tk Tk,

|

v (4)

E .
where k2 is the capacity of a UNIX page.

Now consider that c, is the original capacity of a page

in R, and 02' is the new capacity after the width has been

2
02'
reduced. So, o is the gain in tuples per page achieved by
2
c2'
the domain selection operation. Define g = P Equation

(A) can now be rewritten as

' be, " 2¢.° S.’
1 2 .~ "2 . —2_ 1y
Py £g - s Eg+3.25+k —+ R ’1nt(1°g7(BUF'1’+1)

2 2

g+3.25+4+2int (108, (.01t ,=1)+1) |
!

Assume that t,=10 (as t, decreases, log7(.01t2) also

decreases), then

1
P, L 8 - t1(g + 17.25)

If g=1.2, or there is a 20% increase in tuples per page
after the reduction in tuple width, then
_ 18.45

p2.§. 1.2 t.] (B)

If t12100, (B) becomes P,<1 which is always true. Clearly,

the lowest bound occurs when g=1 so that P, £ t
1

This formulation for the bound of Py illustrates that if the

width reduction had any effect on the number of tuples per
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page, the modification to an ISAM'structure will be benefi-
cial for large t1 regardless of the statisties. Even in the
case where there is no reduction in width, for large t1, the

bound is very close to 1.

In the case where the copy operation is unnecessary,

CM £ C 1if and only if

c, | S,° |
2 02 i —2_' _L_ |
Py < 1 - 7;—5%;—? YTt R ’lnt(1°g7(BUF 1)+1):
1 1 2 2 ’ : !
A |
<1 - t1i2'25 + 4 + 21nt(log7(.01t2-1)+1)5
When t_=10%, p, ¢ 1 - 16:22
R t, °

1
This analyses can be generalized to the n-variable case

in the same manner that was used in the section on hashing.

It might seem that the effectiveness of modifying to an
ISAM structure depends highly on the reduction in width
gained during the copy, which would imply that selection of
domains is the important operation and little more benefit
is gained by'the modify. But compare the cost of doing only
a copy with retention of referenced domains to the cost of
doing a copy and modify. This is equivalent to performing
only a modify assuming the copy'has already been done. The
analysis of this case shows that the modify has a large

benefit of its own.
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The conclusion is that whenever g > 1.1 reformatting to
an ISAM structure should be performed (for x12185 tuples).
Even when g = 1, the bound on P, is high enough so that
whenever X4 is reasonably large (x12100 tuples) reformatting

to an ISAM structure would be beneficial.

6.5 Creating Secondary Indices Dynamically

A secondary index (inversion) on a domain is a binary
relation between values of the domain and tuples (or tuple
identifiers) from the data relation. Given a relation R,

the following query will create an index on domain a of R:

RANGE OF X IS R
RETRIEVE INTO AINDEX(X.a, ptr=X.tid)

Clearly, a secondary index will have the same cardinality as
the relation it is indexing, but usually it will occupy less

pages since the tuple width will be smaller.

If an index is used in the processing, then, when a
value is supplied, the index is accessed. By only accessing
the index, it is possible to obtain the tuple identifiers of
all tuples in the original relation which have that key
value. In essence, the existence of an index transfers the
search for satisfying tuples to the index rather than the

original relation.
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A combined index, as described in [LUM70] and [MULLT1],
is an approach which takes advantage of several domains
being specified. Here the index relation consists of a pro-
jection of several domains and the tid from the data rela-
tion instead of just a single domain as in a simple index.
Since this discussion concerns dynamic'creation of indices
and it will be known at creation time which domains will
hafre values specified, this type of index can be useful
whenever the condition to be verified does not contain dis-

junctions.

The other option available when several domains are
involved in the constraint is to use list processing tech-
niques to combine the qualifying tids obtained from indices
on each domain individually. This technique is not

currently supported by INGRES.

Note that when a condition such as "X.a > value1 OR X.Db
< valuez" is to be verified, the only technique which will
limit the tuples to be scanned is a simple index on each of
the domains involved. The qualifying tids from each index
can then be unioned to produce the set of all qualifying
tids. A combined index on both domains will be of no help
andb neither will modifying the structure of the primary
relation so that it is keyed on the concatenation of both

domains. Since list processing techniques to combine two or

more indices are not supported by INGRES, conditions such as
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the above containing disjunctions will be excluded from the

following discussion.

Consider the situation where it is known that a one-
variable restriction will be executed many times due to a
previous substitution. It would be advantageous to make the
evaluation of this one variable query as efficient as possi-
ble. One available technique, which has already been dis-
cussed, is to dynamically reformat the relation involved to
a keyed structure on the referenced domains.‘ The purpose of
this sectipn is to present an alternative to reformatting,
namely dynamically creating an index on the referenced

domains, and to compare the effects of these techniques.

Examine the one-variable query over a relation R which
is to be executed. It will be of the form

RETRIEVE T(R)

WHERE domain1=value1 AND domainzzvalue2 AND ... AND
domalnk=valuek
(the "=" can also be an inequality) where T(R) is a function

of the domains of R which are to be retrieved.

Consider the costs associated with evaluating‘this only
once. If R has no primary or secondary access paths which
can be used, it will be necessary to examine every page of R
to determine the qualifying tuples. If the structure is
such that R is keyed on domain

1,---,domaink, then the quali-

fying tuples can be accessed directly. Thus only a single
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page will have to be retrieved if there are only a few
tuples with the specified values. Using a secondary index
on domain1,~'-,domaink, a page of the index will be accessed
and then the page of the primary relation containing the

qualifying tuple will have to be retrieved.

Suppose this one-variable query will be executed n
times. With no structure, nP(R) pages will be accessed,
where P(R)=no. of pages in R. 1If éxactly one tuple satis-
fies for each set of values, using a keyed structure 1n
pages must be retrieved while 2n pages are required using an
index. It can be seen clearly that the cost of accessing
the tuples is less using a keyed struqture for the primary

relation.

However consider now the cost of providing the two
access paths. To modify the relation R to a structure keyed
on domain1,-..,domaink requires retaining
domain1,---,domaink and any other domains referenced by
T(R). Then this resulting relation must be sorted or hashed
on domain1,---,domaink. If it is to be hashed, the cost is
on the order of 2|R| page accesses while if it is to be
sorted, the cost is on the order of P(R)logP(R) page opera-

tions. To create the index, only domain «+,domain, must

1°° k
be retained along with the tuple identifier and then sorted.
If T(R) references several more domains than

domainT,---,domaink, the number of pages in the index will
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be quite smaller than P(R), and thus the sort, which is on

the order of P(I)logP(I) operations, will be less expensive.

Combining the cost of providing the access path and
accessing the tuples in the case where exactly one tuple
satisfies for each set of values, unless n is much larger
than P(R), the secondary index will be the access method
preferred. This will also be true when ﬁhere are certaiﬁ
sets of values for whiech no tdples satisfy or when only a
few tuples satisfy, for example the number of tuples which

fit on a single page of R.

The next case to consider is when many tuples qualify

for each set of values for domain «+,domain This can

1'° k’
happen if some of the clauses are inequalities or if one of
the domains is such that many tuples have the same value.
The costs of providing the two access paths will remain the
same but the cost of accessing the qualifying tuples will
change. Using a keyed structure, the data pages will be
"elustered” with respect to the values of
domain1,---,domaink. That is, in accessing the pages con-
taining qualifying tuples, each page will only be accessed
once and a minimum number of pages, usually less than P(R),
will have to be retrieved. However, using an index, first
an access is made to the index resulting in the tid of a

tuple that qualifies, and then this tid is used to access

the relation R. When many tuples qualify, this results in



141

random references to the pages of the data relation R. Usu-
ally this will require a page fetch for R for each tuple

that qualifies.

To illustrate this difference, consider a single execu-
tion of the one-variable subquery where m tuples satisfy.
Using the keyed structure, this will require approximately %
page accesses to R, where c¢ is the tuple capacity of a sin-
gle page. With an index, m page accesses to R will usually
be required, plus the additional accesses to the index. If
c is taken to be only about 20, it can be seen the consider-
able effect that the clustering property has on performance.
When this effect is multiplied by n, the difference can be

very large.

For these reasons, when multiple tuples are to be
retrieved for most sets of key values, the advantage of the
clustering effect gained by reformatting the data relation

will usually outweigh the extra cost incurred to achieve it.

These observations illustrate though that the distribu-
tion of the key values would be valuable in determining
whether to create an index or to reformat the data relation.

The decision depends upon each query and the key domains

involved.

6.6 Comparison of Available Statistics



142

If it is decided that statisties should be available
for decision making there is a wide range of choices as to
exactly what information is used and how it is made avail-
able. These choices fall into two categories. The first is
information which is gathered when each relation is created
and is then updated whenever the relation is updated, and
the second is information obtained by sampling the appropri-

ate subset of the database dynamically.

Within the first category there are many choices as to
the exact information which is gathered and maintained.
Basically, there will be a trade-off between the cost of
updating the statistics and their accuracy in depicting the
behavior of the data. The statistics within this first
category will assume that each domain is independent of all
other domains even though this may not always be a reason-
able assumption. But, if this assumption is not made, joint
distribution statistics would also have to be maintained for
all conceivable combinations of domains. Clearly, this would

be an unreasonable amount of information to maintain.

The simplest statistics to keep in terms of maintenance
costs are probably the maximum and minimum value for each
domain of each relation. When the relation is created and
the data entered, this would require a maximum of two com-

parisons per domain per tuple. If the relation is updated,

to update the maximums and minimums would again require a



143

maximum of two comparisons per updated tuple for every
domain affected by the update. It would be possible to add
this information to the system ATTRIBUTE relation which
already contains certain characteristies of each domain. If
character domains were encoded in some manner, it should be
possible to store this information using two words for each ‘

value.

But now consider using the maximum and minimum as
statisties. If it is desired to know the percentage of
tuples from a relation R which have domain a equal to some
value B, the distribution of values between the maximum and
minimum must be assumed. If an even distribution is assumed,
then this percentage is simply the number of tuples divided
by the number of possible values. First of all, this is
undefined if the domain under consideration is a floating
point domain (i.e., a real number) since the number of‘
values is infinite. Second, if the actual data does not fit
the assumed distribution, the information gained is more
than likely quite inaccurate. The conclusion is that even
though a maximum and minimum are very inexpensive to main-
tain, the statistics provided by them alone are not accurate
enough for optimal decision making. But this points out the
fact that some basic knowledge of the distribution of values

for each domain would be helpful.

Suppose that a count of the humber of different values
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occurring within each domain was maintained. The storage
required by this information would be minimal (namely, two
words per domain) and this could also be stored with other
characteristics of the domain in the system ATTRIBUTE rela-

tion.

However the updating costs would be quite high since
every time an update is performed, the entire relation would
have to be read to recount phe number of different values.
This is because the values themselves are not being kept, so
when a tuple is added, deleted or changed, it is not known

if the values in that tuple are unique to that tuple or not.

However, this information alone is not much more useful
than the maximum/minimum values, since it still must be
assumed what the distribution of tuples among the possible
values is. So, if it is known that there are 10 different
values for domain a and that there are 100 tuples, first it
must be assumed that B is one of those 10 values. This in
itself may not be true. Then, it must be assumed that, for
example, these 100 tuples are evenly distributed among the
10 values. Again, if the actual data does not fit the
assumed distribution, the indication of behavior used by the

decision-making process may be quite inaccurate.

Even if the maximum and minimum values together with a
count of different values were maintained, an assumption

would still have to be made as to the actual distribution of
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the tuples. So nothing much is gained by keeping both sets

of information.

The next logical step in information is keeping a type
of histogram associated with each domain. This would make
available the number of different values and the number of
occurrences of each value. Actually, this information is
easier to update than the count of different values because
it is not necessary to scan the whole relation to determine
the effect of an update. It is only necessary to adjust the
count of occurrences for the value appearing in each domain
of the updated tuple. However, there could be difficulties
when a new value is added or a value no longer occurs. This
depends on the type of histogram which is maintained. Basi-
cally, there are two choices - a fixed interval histogram or

a variable-interval histogram.

For a fixed interval histogram, it is defined a priori
that there will be n equal-sized intervals and the values
falling within each interval are determined by the maximum
and minimum. For an example see Figure 6.1. This type of
histogram is easy to update unless it is the maximum or
minimum which is changed. This would require that the whole
histogram be recalculated if the limits for each interval
are affected. This type of histogram also requires a fixed
amount of storage, namely a maximum, minimum for the whole

domain and a count for each of the n intervals since the
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10 20 30 40 50 60 70 80 90 100
Figure 6.1. Fixed-interval histogram.
1 1 1 1 ] 1 i ]
10 20 30 40 50 60 70 80 90 100

Figure 6.2. Variable-interval histogram.
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limits on each interval can be determined from the maximum
and minimum values. However, if the range between the max-
imum and minimum is quite large, then certain information
can get lost, particularly if n is small. It may happen
that certain intervals have a very largé number of
occurrences while others have none. And, if the range of a
given interval is large, then there is still the problem of
assuming a distribution for the number of occurrences within
the interval to the available values. True, by breaking the
entire range into intervals, the error should not be as
great as that using only a maximum, minimum and count for
the whole domain, but it is still possible there will be a
large discrepancy between the estimated value and the actual
value. For this type of histogram, it is unreasonable to
make the number of intervals equivalent to the number of
possible values unless this number is quite small, mainly

because of the storage involved.

The second type of histogram proposed will be called a
variable-interval histogram. Basically, the limits for each
interval are variable but the number of occurrences within

each interval is fixed. Define n as the number of

0
occurrences for each interval; then a sequence ki’ i=1,...,m
defines the interval limits such that n(ki’ki+1) = n,. Fig-
ure 6.2 illustrates this type of histogram for the same

domain described in Figure 6.1. The main advantage of this
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technique is that in areas where the values are very dense,
the interval limits will be smaller so this histogram dep-
icts the true distribution more accurately. The number n,
can be determined by some function of the total number of

tuples and this determines the number of intervals.

This histogram requires only slightly more storage than

the fixed interval histogram. Namely, the value n. must be

0
stored, the maximum and minimum values must be stored and a
limit for each interval. Also, this type of histogram is
more difficult to update. When tuples are added or deleted,
this can affect the number of occurrences within one inter-
val, namely for some j, n(kj,kj+1) £ n,, So that the limits
for every interval and possibly the n, value must be recal-
culated. There is an option to updating and possibly recal-
culating the histogram every time an update is performed to
the domain. If a date is associated with the histogram,
then the system, during "free time", can compare this date
with the date when the relation was last updated and if
there is a large discrepancy, recalculate the histogram. In
this way, no extra cost or delay is added to the user’s

updates, but the penalty is that the statistics available

are possibly inaccurate at times.

It should be mentioned that both types of histograms
are best used for determining tuples which fall within a

specified range of values. To answer the question of the
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number of tuples equal to a specific value requires more
exact information than a histogram supplies, unless of
course each interval contains only a single value. But to
answer this question of equality really requires a 1list of
all values and the number of tuples containing that value,
which is infeasible in the general case. And, this would be

tantamount to maintaining an index for every domain.

If the cost of storing and méintaining the statisties
is to be avoided, then there must be a method of obtaining
the statistics dynamically when they are needed. This would
require either calculating the statistices discussed previ-
ously "on-the-fly" or sampling the subset of the database
involved in the current query. Since calculating the
statistics on-the-fly would be equivalent to answering the

query, this does not seem like a logical choice.

Sampling the database is equivalent to answering the
query on a small subset of the data. If the amount of data
involved in the original query is quite large and sampling
determined the optimal processing strategy, the overhead
involved in the sampling might be quite insignificant com-
pared to the cost of processing by a sub-optimal path. How-
ever, if the amount of work involved in answering the
optimal query is not significant, clearly sampling should
not be used. There should be some type of threshéld,

defined perhaps by the size of the cross product involved or
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an estimate of total worst case processing time, which would

limit the cases where sampling could be cénsidered.

The major problem associated with sampling is defining
what the sample should be. First of all, the size of the
sample must be determined considering storége cost vs. accu-
racy. Second, the tuples which are included in the sample
should be "random" tuples. So, if the relation is sorted, it
is not sufficient to select the first n tuples to be
included in the sample. This implies that the organization
of the original relation (i.e. storage structure and keys)
must be considered. Obviously, if the sample selected is
not a good one, the information obtained from it could be
misleading in selecting a processing strategy. The cost of
sampling involves creating and filling a sample relation for
each relation involved in the current query, and then, pro-
cessing the query for those sample relations. It should be
mentioned that in order to take full advantage of the sample
and make an "optimal" decision, it is possible to process
more than one query at each decision point. That is, the
Same query may be run more than once in order to compare
options. For example, rather than deciding lhat variable X
is going to be substituted and then sampling to determine if
projecting and removing duplicates would be worthwhile, it
is possible to project and remove duplicates on all the sam-

Ple relations and then determine which one should be substi-
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tuted (i.e., which one has the fewest tuples). If the sam-
ple is going to be made anyway, full advantage should be

taken of the information contained in it.

Conclusions. If the exact distribution of all data is

known by the user when the relation is created and this dis-
tribution will not change as the data is updated, then the
user could inform the system of this information. However,
relying on the user to know the distribution of all of his
data is not wusually feasible. If it is determined that
statistics should be available to the system, then it seems
tﬁat either a variable-interval histogram should be main-
tained or sampling should be used if the size of the data-
base warrants it. This decision is based mainly on the fact
that the accurac& of the information made available by these
methods is much more than that of only slightly less expen-

sive methods.

-
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CHAPTER 7

VARIABLE SELECTION

In the general decomposition algorithm presented in
Chapter 2, a variable is chosen for substitution on the
basis of the number of tuples in.its range relation. It has
yet to be shown if this is a good or even reasonable selec-
tion criterion. The selection of a vaﬁiable for substitu-
tion is a very critical step in the processing of a query.
If a wrong choice is made, it can have catastrophic results
on the total processing cost. The purpose of this chapter
is to discuss the parameters involved in the cost of pro-
cessing a query and how these parameters can be used to

develop a good selection eriterion.

Within most other relational systems, an execution plan
for processing the entire query 1is determined before any
actual processing begins. System R [ASTR76] does this so
they can compile queries and thus avoid the optimization
overhead in a production environment. The policy opted for
in the INGRES system is to make the decision process a
dynamic one. Thus, at each phase of the processing a deci-
sion is made only as to what the next step should be. 1In
this way, the current decision takes into account the effect
of the last decision on the query environment. It is felt

that this allows more flexibility and thus more possible
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optimization in the processing.

Using the dynamic decision policy, there are several
factors which will influence the decision made at each step.
These include the size of the relations involved, both
number of tuples and number of pages, the storage charac-
teristics of the relations which determine the available
access paths, the structural characteristics of the query
itself, and any distributional informatibn which is known
about the domains referenced in the query. All of these
factérs except the last depend upon information which is
readily available and thus do not incur much cost to be
included in the decision process. The distributional infor-
mation could involve a large cost for storage and mainte-
nance but it also could provide a much more accurate predic-

tion for the effect of a particular decision.

The following sections will consider the effect of
these factors on the choice of a variable for substitution.
Results of experiments run on queries using various selec-
tion criterion are presented in Chapter 8. In the first
section, a discussion of two-variable queries will be
presented. This is included as a special case for two rea-
sons. First, the initial decision in a two-variable query
essentially determines the execution plan for the entire
query thus allowing for a prediction of the entire cost.

Second, in the processing of any multivariable query, at



154

some point a two-variable query will be involved. So, by
executing two-variable queries in an efficient manner there
is a better chance for processing three or more variable

queries with minimal cost.

When a query involves three or more variables, the
problem becomes more complex. n variables are available for
substitution and reduction becomes an available tactic. The
general problem of three or more variable queries and what
this step is attempting to do are discussed in Section 7.2.
Then, in the next sections, each of the factors will be con-
sidered individually and its effect examined on queries

involving three or more variables.

The discussion to follow will assume that the decision
as to whether one-variable clauses should be preprocessed is
independent of the variable selection decision. Thus, if
one-variable restrictions are to be preprocessed, they will
have been done so prior to this step. But the existence of
one-variable clauses is not excluded as a possibility in the
proposed estimation procedures. Let Q be a query in vari-
ables X1,X2,--.,Xn with rangés R1,B2,.--,Rn. The following
notation will be used'throughout the discussion.

t, the number of tuples iﬁ relation Ri.

1

cy tuple capacity of a page in Ri - the number of

tuples in Ri which can fit on a single page of

secondary storage (the integer portion of page
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size divided by tuple size since INGRES does not
allow a tuple to be split between pages).

P. the number of pages required to store relation Ri.

7.1 Two-Variable Queries

There are several points to recognize concerning two-
variable queries before examining their processing. First,
the one-variable query was chosen as the basic unit of pro-
cessing for the INGRES system. Thus the methods proposed in
the literature [GOTL75, BLAS75] for computing joins are not
directly applicable. They do, however, provide indications
as to what structures are most useful. Second, reduction is
not an available tactic so tuple substitution is the only
alternative to reduce the number of variables. Third, it is
known that the relation whose tuples will not be substituted
will be accessed by OVQP. Because of this, the unit of its
access will be pages and a keyed structure can be used

advantageously.

Consider a two-variable query in variables X1, X2 with
ranges R1 and RZ‘ The criteria to select a variable for
substitution will be considered in the order of simple to
more complex and then the applicability of eaéh criterion

will be examined.

(1) Size Only. 1In this case, to make the decision, it is

assumed that there are no useful access paths for either

t
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'the ratio
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relation. Using the cost function presented in Chapter
6, which from experiments performed is exact for this
situation,

Cost of substituting for X1

= t1 + t1P2

Cost of substituting for X2

= t2 + t2P1

Thus, the variable Xi should be selected which minimizes

s
1+Pi

results [PECH76] for nested iteration. Both ti and Pi

This result is similar to Pecherer’s

are known at the time the decision is to be made so it
is a simple matter to calculate the ratio for each i and
then select the minimum.

Some simple observations can be noted. If t1:t then

2
the relation with the largest number of pages will be
selected. If P1:P2, the relation with the fewest tuples
is selected. 1In general,lthe relation with the smallest
tuple capacity per page, or equivalently, the largest
tuple width, will be selected for substitution. These

results are not surprising.

Size and Query Structure. The structural characteris-
tics of the query which have an effect on a two-variable
query are limited and involve only a minor modification
to criterion (1). First, by simple examination, it can

be determined if the query is disjoint. That is, for
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example, the qualification involves only X1 and the tar-

get list only X Obviously in this case, the query

¢
should be split into two separate one-variable queries
with the one involving the qualification being executed
first. The modified decomposition algorithm proposed in
Chapter 5 includes recognition of this case as a
separate step prior to variable selection.

Execution of one-variable clauses appearing in the
qualification is considered as a sepérate decision from
variable selection and thus will not be included here.

The only other point which can be included is examin-
ing the qualification to see if it contains any clauses
which involve disjunctions. If so, since combination of
simple indices is not supported, no access path will be
of any help in limiting the scan. Therefore the vari-
able selection can be made on size alone since that will

be the determining factor.

Size, Query Structure and Available Access Paths. To
examine fully the effect storage structure has on the
variable selection process it is necessary to also have
statisties available. This case is considered in the
next criterion. But, if certain assumptions are made,
Some general rules can be concluded.

t1 t

1+P

.2
“1+P

First, assume that so there is no strong

1 2
preference as to which variable should be substituted
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considering only size. Obviously if one of the rela-
tions has a keyed access path which can be used, then
the other relation should be selected for tuple substi-
tution. This allows OVQP to take advantage of the
access path and limit the number of pages which must be
fetched.

If both relations have a useful access path, under
this assﬁmption the only clear preference is for a keyed
structure on the primary relation rather than access via
a secondary index. Also, in the case of ISAM struc-
tures, if one has an exact key (i.e. all key domains
specified) as compared to only a (leftmost) subset of
the keys being specified, the first access path will
limit the scan the most.

If the distribution of the linking domains is assumed
to be uniform, a cost estimating procedure can be used
to compare the effect of substituting for each variable.
If a query is to be executed once- for each of m Kkey
values and there are n tuples in the relation to be
examined, then ﬁ tuples will satisfy each execution
using the uniformity assumption. Thus the following
estimates can be used

Cost of substituting for X
t

1

N

=t +t1(

: L)y =t, +p

1 C2 1
Cost of substituting for X2

ct

2
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ct

14
+ t(——/) =t
2 2 t2 c,

This formulation also implicitly assumes that each value

=t P

2 * 5
substituted in the key domains is unique. Using these
estimates implies that the quantity ti - Pi should be
minimized when both relations have a keyed structure.
Note that the assumptions used to obtain these estimates

are in general not assumptions that fit the true data

very well.

Criterion Using Statistics. Here all the previous
characteristics will be used and it will also be assumed
that complete distributional information is available
for the domains involved. If only limited statistics
are available, assumptions can be imposed to estimate
the required parameters. The interesting case to con-
sider is when one or both of the relations has a useful
storage structure. If neither relation is keyed on the
linking domain(s), a full scan will have to be made for
either choice of substitution variable and statistics
will not be of any help.

Assume that Xi is selected for substitution. Let qj
be the expected number of tuples that will satisfy the
one-variable query in Xj for each tuple value from Ri'
If the access path is direct to the data relation, i.e.,

an index is not used, then the tuples will be clustered

with respect to the values of the key domains. So,
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q; :
approximately El pages of Rj must be accessed to

J
retrieve the qj qualifying tuples. Thus,

Cost of substituting for X1

q
2
= t.' +t1 —‘02

Cost of substituting for X
9
= t2+t2 01

If one of the relations has no useful access path, g

2

J
can be set to tj and the comparisons can still be car-

ried out.
: - 4 9
The quantities to be compared are t1/1+E: and t2/1+€;
and the variable which minimizes this ratio will be
selected for subétitution. Clearly, if one of the ti's
is very large compared to the other quantities, this
will be the dominant factor and the other variable will
be selected for substitution. If one of the ti's is
very small, then this will imply that the associated
variable should be substituted. But these are the

intuitively obvious conclusions.

Consider the case when one of the variables, say X1,
Wwould be selected if only size were considered. Thus,
t ts
1+P1 < 1+P2' But, R1 also has an efficient access path

whereas R2 doesn’t, so q2=t2. Compare the quantities
a4 s _

t1/1+3— and T+P." which is asking the question - under
1 2 :
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what conditions is the access path more dominant than

size?
ts

q
T+P < t /1+—l then X, will be selected for sub-

2 1 c1 2

stitution and the access path for R1 will be the impor-

If

tant factor. But this relationship is true if and only
if

q, < c1(t1£']:—:21 - 1) (7.1)
From this equation it can be seen that if t2 2 (1+P2)t1
then the right-hand-side becomes non-positive, thus
imposing an impossible condition on q,- So size will be
the dominant factor.

If t, < %(14-?2)1:1 then whenever q,<e or at most a

1?
single page of R1 will be accessed for each substitution
value, clearly equation 7.1 will be satisfied and X2
should be selected for substitution. As t2 gets smaller
and approaches t1, then the bound on q, gets larger and

approaches P.c

2°1°
. 1 ‘ .
In the interval (1+P2)t1 >ty 2 2(1fP2)t1, the impli-
' t.(1+P,) .
cation is that 0 < _l_E__Z_ £ 1 and since this factor
2

multiplies .y c1 becomes the critical parameter. For
small s this could imply the condition q1<1 which is

obviously impossible.

'
¢
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This argument has illustrated the use of statistics

‘combined with a knowledge of size and access paths to deter-

mine which variable should be tuple substituted in a two-
variable query. Note that criterions (3) and (4) can also
consider the possibility of reformatting one of the rela-
tions in order to provide a more efficient processing plan

in making their selection.

7.2 n-Variable Queries (n > 2)

Up to this point, the purpose of this step in the algo-
rithm has been to select a variable which will subsequently
be substituted for tuple-by-tuple. However, when consider-
ing a query which involves three or more variables, there is
also a possiblity of reducing the query into components.
But, whether reduction should be used depends upon the role
of the variable selected by this step. So, the selection of
a variable "for substitution" in actuality determines which

processing option, reduction or substitution, will be used.

For these reasons, this decision should be made consid-
ering the effects of both options if an attempt is to be
made to minimize the processing costs. And, the result of
this step will really be either (1) a variable which should
be substituted, or (2) the components into which the query

should be reduced.
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When processing three or more variable queries there
are two major reasons why this decision process becomes more
complex. First, reduction is an available tactic thus
increasing the number of possible processing paths which
must be considered. Second, the query involves more vari-
ables which means the query itself is generally more com-
plex. For an n-variable query, considering only tuple sub-
stitution, there are n! possible orderings for substitution.

So, the complexity of the problem can explode quite easily.

7.3 Size as a Selection Criterion

Using only the sizes of the relations involved in the
query forces the selection process to consider tuple substi-
tution as the only alternative becéuse whether reduction can
be used and what the components will be depends upon the
structure of the query. Thus it is possible to set up a
model comparing the costs of different substitution vari-
ables in the following manner. Let Ci be the cost of pro-
cessing the query if variable i is substituted. Then

...,xn))

CCpm by 2 COQpT (X, Xy 00Xy g,

B<R.
[ |
which is the cost of substituting for Xi plus the cost of

processing the remaining query once for each tuple in Ri'

"Xn)) must be estimated. If

Now ClQp™(Xqy-==sXy 12X s

this cost is assumed independent of B, it can be
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approximated by t1t2"'ti-1ti+1°"tn‘ This approximation
ignores the fact that the cost of the last step will be in
pages since it is not known which variable will be remaining
at the end. Using these assumptions,

Ci = ti + ti(t1"'ti-1ti+1"'tn)

Thus the minimum Ci will correspond to the minimum ti.

Obviously this criterion does not consider the effect
of substituting for Xi on the structure and complexity of
the remaining query. But,. there is no way, just using size
to take this into account. However it must be considered
that cardinality is a readily available quantity and the
decision process is simple. As a first step, this heuristic
is not bad and since size is an import#nt factor in deter-
mining the processing cost, it will certainly be used in
some way in any selection process. But, by itself, it can-

not claim to be even near-optimal.

Note that this criterion makes the choicé of wusing
reductibn. a separate decision. The variable is selected
considering only substitution with the premise that if
reduction can be used, it will do even better. This is not

always a valid premise.

7.4 Size and Query Structure Criterion
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The structure of the query obviously plays an important
role in determining the processing costs. It determines
what combinations of relations must be examined and thereby
dictates the minimum product terms in the cost function. By
using simply size and the structure of the query it should
be possible to make a decision whiech will result in a near-
minimal processing cost. Most of the observations concern-
ing how the structure affects the cost are qualitative at
this point -but are still useful in selecting a "good" vari-

able.

Consider first that when trying tq estimate the effect
of the current decision, the processing of the query can be
examined all the way to completion. But this means consid-
ering a very large number of possible paths. Thus, the
estimates which will be used only take into account the
immediate effect of a decision and then use é perhaps crude
estimate of the cost of processing the remaining query, not
considering the many possible ways of answering that

remainder.

Let Q be a query in variables X1,--~,Xn with ranges
R1,.--,Rn, n>2. Let us examine the cost of processing Q if
Xi is the variable selected "for substitution". First, if

Xi is actually substituted for, this will mean that every

clause which originally involved Xi Will now have one less

variable. If any of the original clauses were two-variable
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with Xi, they are now one-variable clauses and can be exe-
cuted to reduce the range size of one of the remaining vari-
ables. Thus, the size of the éross product which is to be
examined will also be reduced. So, generally speaking, the
more one-variable clauses which are a result of the substi-
tution, the more the restriction which is gained. This can
also be used in a negative sense. That is, when considering
the substitution of a pérticular variable, if no restric-

tions are generated, it is usually not a good choice.

There is a particular class of one-variable restric-
tions which are beneficial to recognize. These are disjoint
one-variable clauses. If such a clause appears, it is only
necessary to verify the existence of a tuple which satisfies
the condition and that range will not have to be included in
any further processing. It can be shown that if substitu-
tion for a variable results in the query breaking apart into
a series of disjoint one-variable subqﬁeries, substitution
for that variable will result in a cost less than substitu-
tion for any other variable, regardless of the respective

range sizes. Thus, for a query such as

RETRIEVE (X1.a)
WHERE X1.b=X2.b AND X1.c=X3.c

X1_should be selected considering only substitution. And

since X1 is a joining variable in such a situation, substi-
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tution for x1 does better than reduction on X1. Thus, this

substitution will result in the minimum cost.

Note also that substitution for a joiniﬁg variable is
guaranteed to split the remaining query into disjoint
pieces. Even though they may not all be one-variable
pieces, this will break the cost into a sum of smaller pro-
ducts rather than one large product. Thus it is frequently
more efficient to substitute for a joining variable instead

of a non-joining one.

It is possible to compare the costs using reduction by
determining what the joining variables are. Then reducing
on each joining variable results in a set of components for
each one. The cost for each reduction can be estimated as
the sum of the product of the set of variables in each com-
ponent. Then the reduction and its associated joining vari-
able with the minimum cost can be selected. Now compare
this result using only reduction with the selection made
considering only substitution. Let {QR} designate the set
of components which result in the minimum reduction cost and
let XR be the associated joining variable. Let Xi be the
variable selected when considering only substitution. The
query can be reduced into a set of components {QS} given Xi

using the rules presented in Chapter 5.

If {QS} and {QR} are the same set of components, there

is no problem. By using the conclusions of Chapter 5 it can
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be determined whether reduction or substitution should be

performed.

When {QS} and {QR} are different, first examine Xi and
{QS}. If the conclusions of Chapter 5 designate that reduc-
tion to {QS} should be performed given Xi, then, sinée {QR}
results in the minimum reduction cost, reduction to {QR}

should be performed.

The only case remaining is when {QS} and {QR} are dif-
ferent and Xi should be substituted rather than reducing to
{QS}. This implies, from Chapter 5, that either Xi is a
joining variable or Xi is in the target 1list component of
{QR}. Consider first when X; is joining. It is known that
substitution for XR is better than reducing to {QR}. And
since substitution forvxi is less expensive than substitu-
tion for XR’ substitution for Xi is more efficient than
reducing to {QR}. When Xi is in the target 1list component
of {QR}, to accurately compare the two'under>all-conditions,
statisties are required. However it is felt that reduction
should be chosen for the following reasons. ‘The effect of
substitution for Xi is isolated to one component and thus
can be realized all at once just as if substitution were
performed now. But the remainder of the query which is not
effected by Xi is split off and thus its cost will not be

multiplied by the cost of substituting for Xi‘
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It is felt that by using these intuitive guidelines
concerning the query’s structure, tempefed by the relative
range sizes, a near-optimal choice can be made for the
current decision. Obviously when there is a variable whose
range size is oustandingly small or large this will influ-
ence the selections suggested. But whenever there is not a
large discrepancy among the range sizes, the structure of
the query will be dominant and the above observations will

hold.

7.5 Size, Query Structure and Storage Structure Criterion

When trying to decide what the next processing action
should be for a query which involves three or more vari-
ables, the storage characteristics of the relations will not
play as important a role as it does for two-variable
queries. Since the effect of an action is only considered
for one level, the remaining query will involve at least two
variables and the storage strué¢ture is only useful at the
one variable 1level. However there are certain intuitive

observations which can be stated.

If one 1is trying to 'decide between 'two substitution
variables with similar costs, if one of their ranges has an
advantageous structure, the. other variable should be
selected for substitution purposes. This will allow the

structured relation to remain available at the next level,
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which is perhaps a two-variable query where it can be used

beneficially.

This points out that generally substitution over rela-
tions with useful storage.characteristics should be delayed
for as long as possible. But, this consideration should not
be a dominant factor in the selection criterion‘above the
two-variable level because the savings gained by using the
access path at the bottom'level may not be enough to over-
come the extra cost incurred by using énother more expensive

choice at a higher level.

7.6 Selection Criterion Using Statistics

When statistics are available it is possible to combine
the observations made previously in a qualitative sense into
a more accurate quantitative cost estimating procedure.
Define Ci as the cost of processing%Q if Xi is selected.

Then

C; =ty + pfniC(Qi(P))

if X, is substituted tuple-by-tuple. Or

Ci = 2 C(q)

if Q is reduced given Xi, where Si’;is the sequence of

subqueries Q is reduced to. Which of the costs will be used

i
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for each Xi will be governed by the conclusions of Chapter
5. Then we can define
. .
C = min{C.}
i i

The following discussion will develop means of estimating Ci

*
so that C can be determined.

The first approach to estimating Ci is to consider only
the cost if Xi is substituted. This assumes that the best
variable for substitution is alsoA the best variable for
reduction. With this assumption, C(Qi(p)) can then be taken
as independent of B and i. This will result in selecting Xi
with minimum range size. This policy was discussed in Sec-
tion 7.3. quever, since this does not take advantage of
the statisties which aﬁe avéilablé, there seems no reason to

keep the estimation this simple.

The next approach attempts to go one step further.
First, determine if Q is reducible. If not, substitution is
the only alterhative. But, if Q is. reducible, determine for
each Xi if Q should be reduced by the rules outlined in
Chapter 5. If so, this will reduce Q to .a sequence Si of

subqueries. So we have

.

C; = 2 C(a).
q<S;

Now since this reflects the structure of Q, a rela-



172

tively crude estimate could be used for C(q). For example,

we might take
C(q) = Mt
J&«q
Now it is necessary to estimate the cost of substitu-

tion for Xi assuming Q should not be reduced for Xi. We

have

i+ 2 cla (@)
B<R; T

A very crude estimate would be

Ci=ti+lmtj
J
where j = 1,2,...,n. This obviously does not consider the

structure of Q at all and it seems fairly clear that if
there was some Xi‘for which Q should be reduced, it would be
selected over all Xj which should be substituted. Also,

this method still does not take advantage of the statisties.

It is possible to consider if Qi(p) is reducible. But
to make use of this fact, it would have to be assumed that

for some Xj in Qi(p), reducing Qi(ﬁ) would be optimal. Even

assuming that much, it is not clear exactly what the
sequence of subqueries would be since this depends on the

Xj. To carry the process further, that is estimating

C(Qi(p)) for each xj in Qi(p), would quickly result in a
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combinatorial estimation problem. So, it does not seem rea-
sonable to consider the reducibility of Qi(p). But there

are certain structural characteristics which can be used.

First, substituting for Xi could have generated one-

variable clauses. Using these results in

Cpo=ty+ 2 (IR 4 My (7.2)

1
B<R; J<J

where J is the set of indices for the ranges involved in the
one-variable clauses and tk' = tk if k& J. This equation is
more accurate and since statistics are available, tk’ can be

estimated.

Equation 7.2 can easily be made slightly more accurate
by differentiating between the variables Xi, i ¢ J which are
now disjoint, i.e. those variables which appear only in

one-variable clauses.

C; =t., + 3 ( 3 P, + 3 p.P.)+ [0 t, °
i . J . JJa k
ﬁ<Ri J<J1 J<J2 k‘J2

where Ji = [j:xj<Qi(ﬁ) - Ei(xj)] and
Jo = [3:Q;(BNQ;(X5) = 8] (disjoint).

The pj's used in the equation are meant to represent

the average percentage of Rj which will have to be examined

to determine the existence of a qualifying tuple (ngj$1).

The equation can be simplified by simply setting p‘j = 1.

However, if the statistics are available to estimate what
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tk' would be, an estimate of pJ would also be possible.

It is also possible that substitution of Xi will cause
Q to be split into several disjoint pieces. Since it is

.known that each piece will be processed separately,

C, =t, +t, 3 Mt
i® % 1q<Dik4q k

where Di is the sequence of disjoint components. Obviously,
the one-variable clause formulas can also be included in

this cost if applicable.

By using the statistices to estimate the reduced range
Ssizes involved in the remaining product, it is possible to
obtain a reasonable estimate as to what the effect of sub-
stitution for a particular variable will be. In the esti-
mate suggested above for the reduction cost, the statistiecs
were not really used. Again, it is possible to estimate the
effect of a restriction appearing in one of the components.
But, if all one-variable élauses are preprocessed, no new
ones will be generated through reduction. Statisties could
be used to estimate the range size of the Joining variable
for each component. However, this means. examining possibly
several domains® distributions and determining their joint
effect on the joining variable’s range. This would also
have to assume that each domain is independent and that a
sort operation is included between consecutive components to

.remove duplicates.
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It is felt that by just considering the separate combi-
nations of variables achieved by reduction enough of the
query’s structure is reflected to obtain a reasonable esti-
mate. And adding the calculations conerniqg the range size
of the joining variable would greatly complicate the deci-
sion process. Thus, the main usage of the statisties would
be in estimating the reduced range sizes after a restriction
is generated. 'They could also be uséd, as was mentioned in
the previous section, to determine the effectiveness of a

useful storage structure.

Another option available is to use sampling to obtain a
cost estimate. If the number of variables in Q is small it
might even be possible to push thé estimation all the way
down to one-variable queries, using a small sample for the
relations in Q. Certain options at each level can be elim-
inated as contenders since it is probable the costs of dif-
ferent paths will vary greatly. By being very selective at
each level about which paths to continue, the n! possible

paths could be reduced to a manageable number.

However, even if sampling is used in this manner, it
would in general not be wise to use the path selected as a
fixed order of processing. The fiqal path selected should
be dependent upon B and the one obfained by sampling would
either be for an "average" B or it would be a set of paths

parameterized by B. The conclusion is that if sampling is
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used, no matter how far down the decision tree the estima-
tion is pushed, the final result should only affect the

selection made at the top of the current decision tree.

Certain final comments should be made regarding sam-
pling. First, if the database being used is not very large,
sampling would be quite expensive. Either the sample would
be too small to accurately reflect the characteristics of
the data or it would be almost the same size as the database

itself. Neither option is acceptable.

Second, if sampling is to be an option, the only feasi-
ble way of using it cost effectively would be if the sample
was always available. It is not reasonable to create a sanm-
ple every time it is to be used. So, the saﬁple would be
created along with the database, but would‘only be updated
occasionally. In this way, the cost of creating and main-
taining the sample would be associated with many uses of it,

not just a single usage.
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CHAPTER 8

EXPERIMENTAL RESULTS

The INGRES database System is an implemented, working
relational database system. Due to this fact, it was possi-
ble to perform experiments to evaluate the hypotheses pro-
posed in £he previous chapters. The basic system uéed'for

this evaluation was version 6.0 of INGRES.

In evaluéting these hypdtheses we have taken as the
cost function the number of data pages accessed. It is true
that there are other costs involved in processing a query.
However, many of these other costs, such as computing the
target 1list function, will remain the same no matter what
techniques are used for intermediate processing. Thus such
costs can be ignored. 1In general, if the number of data
page accesses is minimized, the overall processing cost for

the query will also be minimized.

Using this 'criterion of evaluatidn, probes were
inserted in the utilities process, the decomposition process
and the one-variable-query-processor. These probes simply
consisted of counters for measuring the number of pages
accessed in the source and result relations for various
types of queries. As such, the probes themselves have no

effect on the measurements.
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The decomposition process also was modified in the fol-

lowing respects to allow testing of all hypotheses:

1) a new substitution-variable selection routine was
inserted to allow tuple substitution in a predeter-
mined order. |

2) a version was compiled which did not preprocess
one-variable restrictions.

3) a version was compiled which allowed reformatting to
be either always performed-or never performed.

All of these changes caused oniy minor modifications in the

standard decomposition process.

The results of the measurements will be presented in
three sections. In the first section, the hypotheses con-
cerning the usage of statisties in processing will be
evaluated. Included here are topics such as preprocessing
one-variable clauses and dyngmically modifying the structure
of relations. Even though statistics’can play a very impor-
tant role in variable selection it was felt that this step
involves many .other factors too and that the different
selection criteria available should be presented together
allowing for easier comparisons. So, variable selection
criteria is the topic of the second section. Since the
analysis of reduction was not able to reach any absolute
conclusions for all cases, a number of experiments were per-

formed to explore the many facets of reduction and to
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attempt to determine the real value of reduction as a pro-
cessing tactic. The evaluation of reduction is presented in

Section 3.

8.1 Hypotheses Concerning the Usage of Statistics

There are many areas within the processing algorithm
where statistics can be used. In Chapter 6 several options
which could take advantage of statistics were proposed and
the effect upon the decisions made was analyzed assuming
that full statistical knowledge of the doméins was avail-
able. These steps included: 1) preprocessing one-variable
restrictions, 2) projection prior to tuple substitution, 3) °
reformatting a relation to provide an efficient access path,
and 4) -dynamically creating a secondary index rather than
. médifying the data relation. Experiments were performed
considering each of these options separately in an attempt

to verify the theoretical anaiysis in practical application.

8.1.1 One-Variable Restrictions

One of the ways statistics on the data can be used is
to determine, for each restriction, its effectiveness ratio
(# tuples satisfying/total # tuples). The value of this
ratio is then used to decide whether the restriction would
be preprocessed. 1In Section 6.2 our analysis concluded that

unless the ratio was very close to 1, the restriction should
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be performed. Thus, the knowledge of the distribution would

not have an effect in the majority of cases.

To verify this conclusion, we processed several queries
which called for a restricted product of two or more rela-
tions. A variety of restrictions were used in the queries
in order to get a range of values for the effectiveness
ratio. The sizes of the relations in the queries were also
varied. 1In Tables 8.1 and 8.2 the measurements for two-
variable and three-variable queries respectively are
presented. Ci denotes the cost (in pages‘accessed) for the
query when i of the available restrictions were prepro-
cessed; this number includes the cost of processing the i
restrictions. pj deﬁotes the effectiveness ratio for the
restriction in variable j; Ej is phe bound proposed by our
earlier analysis. Thus, pj must be less than Bj for execut-
ing the restriction to be'cOSt-beneficial, according to the

theoretical analysis. In all queries, variable 1 was

selected for substitution first, then variable 2, etc.

In both tables, C0 is by far the largest cost, even
when Py is very close to 1. In Table 8.1, there are three
queries for which C1 is the minimum cost rather than 02 -
queries 2, 4 and 11. For query 2, this is because p2 = 1.0
so that even if the number of tuples was reduced by the res-
triction, they still occupy the same number of pages.

Queries 4 and 11 both have a very small Pqs thus the benefit
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TABLE 8.1. Performing one-variable restrictions in

two-variable queries.

c

Py Py P> Pa 0 1 2

1 <957 .9995 041 .9886 36432 34867 1910

2 .957 .9991 1.0 .9886 4140 3965 4009

3 .80 .9978 .226 .9967 20520 16464 4053

Y 426 .9978 .226 .9938 20520 8796 2207

5 .207 .9971 .9uy .ouT7Y 1748 366 365

6 .10 .9979 .934 .9737 23560 2404 2313

7 .048 .9998 .207 .9891 1464870 70041 15507

8 .0096 .9998 .0047 .50 4y726 436 226

9 .006 .9958 .583 .50 4290 4y 46

10 .006 .9989 L4375 .50 16170 116 110

TABLE 8.2. Performing one-variable restrictions in
three-variable queries. C0 = 13,735,860 for all queries.
query P, P, P, Py P3 P3 C, C, Cq

1 .982 .999997 .9897 - .999996  .262 .999995 13482879 13344176 3659292
2 426 .999997 .551 .99994 .262 .99998 5855862 3224387 884358
3 .10 .999997 .106 .99996 .262 .99958 1373634 146211 4o2s52
y .011 .999997 . 106 .99963 .262 .99597 144636 15481 4382
5 .003  .999997  .106 -9985 .262  .98387 36195 3946 171
6 .003 .999997 .091 .9985 .262 .9811 36195 3388 1064

Lgl
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gained from the first restriction is very dominant. But
note that for all these queries, 02 and C1 are very close;
the extra co§t of C2 is not more than about 119%. And, if
Table 8.2 is examined, the bounds Si get even closer to 1
than in the two-variable case. For query 6, even though p1A
and Py both are iess than .1, 33 = .9811 which is reasonably

large.

These queries were run on relations varying from 92 to
3330 tuples and 5 to 758 pages. If these sizes get larger
or when the number of variables is three or more, the advan-
tages of preprocessing the restrictions will be even

greater.

All of these measurements ﬁere performed on relations
which had non-keyed structures. Thus every tuple had to be
examined. Clearly if the relation is keyed on the domain(s)
in the one-variable clause, the cost of performing that res-
triction would decrease. If that relation is later selected
for tuple substitution, this will be the only effect on the
results. However if that relation is not selected for sub-
stitution, then OVQP will be accessihg it at some 1later
point. If the restriction is not preprocessed, then that
relation will only have to be accessed once to perform both
the restriction and the final query. And this access can
made using the keyed structure. When the restriction is

preprocessed though, the result relation defaults to a non-
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keyed structure. So we have the option of leaving it non-
keyed and thus having to access all pages or modifying the
structure to one which can be used by the remaining query.
But, this is a completely different issue than the one being
examined here and the option of delaying the preprocessing

of restrictions was not considered.

8.1.2 Projection Prior to Substitution

The intuitive reasoning behind this option is quite
obvious. Tuple substitution is the most costly step in the
decomposition algorithm. If the number of tuples which must
be substituted can be reduced by removing duplicates, it
would appear a profitable operation. The analysis supports
this. Again, a bound was obtained on the percentage of
non-duplicate tuples which must be found for the operation

to be advantageous. This bound is very'close to 1.

The queries run for measurement were all two-variable
queries since it can easily be seen how the results general-
ize. The parameters varied were the percentage of non-:
duplicate tuples which must be substituted and the pages in
the relation remaining after substitution. The results are
separated into two cases. First, in Table 8.3, the case
when a complete projection must be performed, i.e. the
referenced columns selected and a sort d&ne to remove dupli-

cates. And, second, in Table 8.4, when the selection of
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TABLE 8.4. Removal of duplicates prior
to substitution.

q q P2 C | Cp
.19108 = 60/314 .99459 18 5966 1162
.99342 = 302/304 .99630 53 16416 16390
.26316 = 5/19 .99751 53 1026 275
.99013 = 301/304 .99048 20 6384 6370
.26316 = 5/19 .98965 12 247 70
.18421 = 7/38 .99286 27 1064 202
71591 = 63/88 .99303 16 1496 519

The interesting thing to note here is the high values asso-
ciated with E. In all of the test queries, the number of

original tuples and particularly P., were fairly small and

2

yet the values of E are quite high. When these values of P2
and original tuples are larger, the bound E' will become

quite close to 1.

8.1.3 Reformatting

This option was a very controversial one within the
INGRES project. Intuitively, it appears that the cost of
modifying a whole relation might be too high a price for the
benefits obtained. However the analysis concluded that
whenever the query on the reformatted relation is to be exe-
cuted many times (at least 100 times), reformatting can be

advantageous.

No experiment was done for the. first case studied in
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the analysis of reformatting where a modify is not performed
but only the referenced domains are selected from the origi-
nal relation. The conclusions reached for that case are
straightforward and present no questions in understanding or

implementing.

Several queries were run where reformatting was used.
The parameters varied include the number of substitutions to
be performed, the distribution of the key domains and thus
the percentage of pages which must be accessed using the
keyed structure, and the reduction in width. 1In Table 8.5
the measurements for reformatting to a hashed structure are
presented and Table 8.6 contains the results for modifying
to an ISAM structure. For these tables, t1 is the number of
substitutions to be performed (and thus the number of times
the one-variable subquery will be executed), cz'/c2 is the

ratio of new page capacity to the original, is the

P2
expected percentage of pages which must be accessed for each
substituted value to answer the one-variable subquery. p2
must be less than ;2 for the reformatting to be affordable
according to the analysis. Another measure developed in the
case of modify to hash is E1 which is the lower bound on the
number of substitutions to be performed. Cr is the cost of
processing the whole query using reformatting, including the

cost of the copy and modify operations, and C is the cost if

refofmatting is not performed; both costs are in units of
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pages accessed.

The interesting thing to note in the first table is the

correlation between 31, 32 and 02’/0 As the ratio of page

>
capacity increases, both of the bounds €1 and 52 are
relaxed. In other words, 52 increases and E& decreases.
Specifically note that whenever t1 2 100, if 02’/02 > 1,
then 52 > 1, and thus the constraint is always satisfied.
For smaller values of t1, as would be expected, the cases
must be examined more closely. If the actual values of Py
are examined, in most cases using a bound of P, =~ .2 to cal-
culate E1 is quite conservative. The main cases for which
statisties would be helpful would be to predict when P will

be 1large, or equivalently, when there are only a small

number of unique key values.
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TABLE 8.6. Reformatting to an ISAM structure.

query t1 02'/02 Py Py - C Cr
1 330 1.091 .05517 1.0611 17820 1955
2 330 4.375 .062375 4.3367 16170 1486
3 162 1.0 .05217 .9398 8748 1356
y 100 2.636 .19194 2.5259 5400 916
5 92 1.0 LAU452 .8982 1196 972
6 92 1.689 .24908 1.5854 1196 4oy
7 92 1.689 .824 1.5854 552 504
8 87 1.0 .31417 .8923 1191 500
9 38 1.727 . 16327 . .T415 1710 937

For every query run, reformatting to an ISAM structure was
less expensive than no reformatting, even when there was no
reduction in tuple width. The same observation also holds
here about the correlation between 02'/c2 and 52, only more
so. That is, even.when the page capacity ratio is 1, the
values of 52 are quite high. Since a majority of the
queries run for testing in the ISAM case involved only
equalities, it might seem that reformatting to ISAM would be

more useful than reformatting to a hashed structure.

8.1.4 Dynamic Index Creation

The analysis of this option was not as successful as
the other cases in that no definite conclusions were
reached. The only result was that distributional informa-
tion would be very ﬁelpful in determining the effect of not

clustering the values. It was hoped that performing some
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. experiments would give a better indication of the costs.

The current INGRES system only supports using indices
in a limited way. Thét is, when an index is available, an
access is made to the index to retrieve the identifier of a
qualifying data tuple. That data tuple is retrieved and
then the index is examined again to find the next qualifying
tuple. Also, the way that the tuple identifier is stored in
the index does not allow ordering by data page number. If
all identifiers of qualifying tuples are retrieved and then
sorted by page number or even if the iﬁdex is also ordered

by page number, the use of indices would be more efficient.

Table 8.7 presents the results of the measurements in a
comparative fashion. That is, the costs of modifying to
hash, ISAM or creating an index are all included to gain
some insight into their relationships. The first column in
the table references the graphs following for the distribu-
tion of the key domains (Figure 8.1a-h). The next three
columns are the cosﬁs involved in making the access path
available - i.e., modifying the relation to-hash (H) or ISAM
(I), or creating the index (SI), which inecludes building it
and modifying it to an ISAM structure. Then the following
three columns are the costs of processing the query using
the three options. These costs include the cost of provid-
ing the access path. All costs are in terms of data pages

accessed. The last two columns give the ratio of page capa-
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city for the modified relation to the original or the index
to the original relation. Note that each index tuple con-

tains the key domains and a 4 byte tuple identifier.

It can be seen from Table 8.7 that whenever reformat-
ting includes a reduction in tuple width (¢ /c > 1), creat-
ing an index is not a winning policy. Obviously if the
tuple width of the index is the same or larger than the ori-
ginal relation, reformatting should be performed rather than
indexing. In general however, the cost of creating the
index and modifying it to an ISAM structure is less than
modifying the structure of the original relation as was

expected.

The following observations can be made from examining

the distributions of the key domains:

1) hashing seems to do better when there are a small
number of distinet key values and vonly' a few of
these key values account for most of the
occurrences.

2) an ISAM structure, either for the primary relation
or used for aﬂ index, is to be preferred when there
is a fairly uniform distribution of occurrences vs.
key values.

These conclusions are not unexpected. Notice however that
the domains which are favorable to indexing have a distribu-

@h‘ tion very similar to those for which reformatting to an ISAM
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structure is preferable. However in the queries where
indexing was better, for over half of the substituted
values, no tuples in the accessed range satisfied. Whereas
the queries favoring the ISAM structure had less than one-

fourth of the substituted values without qualifying tuples.

So the conclusions seem to indicate that there are four
characteristics which must be present in order for creating
an index to be the preferred poliecy: 1) tuple width of the
index must be 1less than tﬁat‘of the original relation, 2)
reformatting the relation causes no reduction in tuple
width, 3) there is a fairly uniform distribution of
occurrences vs. key values, preferably only one or two
occurrences per value, and Y4) there is a relatively high
percentage of substituted values for which there are no

qualifying tuples.
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8.2 Variable Selection

This section will present the results of experiments
run to test the hypotheses proposed in Chapter 7 on select-
ing a variable for tuple substitution. The experiments were
broken down into two major groups - those for two-variable
queries and measurements for queries involving three or more
variables. Within each group, the query characteristics
mentioned in Chapter 7 were varied and their effect on the
'processing cost considered. The first subsection contains
the results of these experiments for two-variable queries
and then, in the second subsection, three or more variable

queries are discussed.

8.2.1 Two-Variable Queries

The following hypotheses were tested:

1) If size alone is considered, the variable which
minimizes the ratio 3%7 should be selected, where t
is the‘cardinality and P is the number of pages for
a relation. ‘

2) The only useful query structure characteristic is
the number of variables in the target list. 1In gen-
eral, if there is only one, that variable should be
selected for substitution.

3) If only one of the relations has a keyéd structure

which can be used, the other variable should be
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selected for substitution to allow OVQP to take
advantage of the access path.

4) If statistics are available, a cost estimate should
be made considering all of the above characteristics
of the query environment and the distribution of the
linking domains. |

Not only were each of these criterion tested separately to
evaluate their credibility, but their effect was considered
to determine their overall importance. This type of evalua-
tion will help to define the order in ﬁhich the criteria
should be applied to a query to result in a minimum process-

ing path.

.In order to evaluate the first hypothesis, several
queries were run varying the number of tuples and pages in
each relation. The queries all essentially performed a join
between the two relations and thus were of the form:

RETRIEVE (X1.a, X,.a)

2

WHERE X1.b = X2.b
Both relations had non-keyed structures for this phase of

the testing.

The costs are in units of pages accessed by decomposi-
tion for substitution purposes and OVQP for answering the
set of one-variable queries. C1’2 is the cost of substitut-
ing for variable 1, while C2’1 is the cost when variable 2

is substituted.



204

As can be seen from Table 8.8, the criterion of minim-
izing the ratio 5&7 accurately selects the variable with the
minimum processing cost. Notice that using only the number
of tuples or only pages does not work as well. Thus the
first hypothesis for the case when size alone is ~used
appears true from the experimental results. Note that as

the two ratios approach equality, the costs become more

similar.

For testing the second hypothesis concerning query
structure, several queries of the form
RETRIEVE (X1.a)
WHERE X1.b = X2.b
were run, varying the sizes and domain distributions
involved. Again for this phase, non-keyed structures were
used. In the following table (Table 8.9), the results of
the experiments are presented. C and C
1,2 2,1
described for Table 8.8. Variable 1 is always the variable

are as

which appeared in the target list.

For all queries except 2 and 8, the hypothesis is shown
to be valid even though variable 2 would be selected using
the size criterion. The reason this happens is that there
is an implied existential quantifier on the variable not
appearing in the target list. Once substitution is made for
the target-list variable, the range relation of the remain-

ing variable only needs to be examined until the first qual-
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ifying tuple is found. In most cases, the resulting savings
will be the dominant factor in variable selection. The rea-
sbn that queries 2 and 8 do not follow this pattern is due
to the distribution of the 1linking domain. For a large
number of values of that domain in relation 1 there are no
matching occurrences in relation 2, so the whole relation
must be examined. When this happens, the savings made pos-
sible by the query structure are diminished due to the dis-
tribution. This detrimental effect can only be predicted if

the distributions are known.

The results in Table 8.9 strongly suggest that when
there is only one target-list variable it should be selected
for substitution, especially when no statistical information
is available. The potential savings are large and the occa-
sional losses are limited. There is another advantage to
this policy. Since OVQP simply retrieves all tupleé that
satisfy and appends them to the result relation without
checking for duplicates, the potential size of the result
relation is the product of the number of tuples of each
relation. When the target-list variable is substituted
first however, the result relation is bounded by the size of
its range instead of the product of the two range sizes.
This will have a beneficial effect on the cost if the result
relation is subsequently modified to remove duplicates or if

the result of this query is the first in a series.
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The third hypothesis is very ;mportant for two-variable
queries because this allows OVQP to take full advantage of
the storage structure of the relations. This c¢riterion
should be used in combination with the size and query struc-
ture policies discussed above. Clearly, if variable 1 is
selected for substitution using, for example the size cri-
terion, and variable 2 has a keyed range relation, consider-
ing the storage structure will have no effect on the selec-
tion because the preferred ordering has already been chosen.
However if variable 1°s range has the keyed structure then
there could be some effect. For this reason, the experi-
ments run only considered the effect of a keyed'structure
for the range of a variable which would be selected for sub-
stitution using either (a) the size criterion, or (b) the
query structure criterion. The following table will include
the minimum éqst for each query from either Table 8.8 or 8.9
so that a comparison can be made to the cost using the deci-
sion policy of hypothesis 3. C will denote the minimum cost
using non-keyed structures and K the costs measured consid-

ering the availaple keyed structure.
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TABLE 8.10. Two-variable queries using a
keyed storage structure.

query = C K
ail 2104 3511
a2 2355 143
a3 3709 3764
aly 1950 2728
a5 1135 773
ab 1329 1105
a7 595 86
a8 2014 524
ag 1329 205
b1 145 1631
b2 3922 196
b3 1759 2785
bl 733 1501
b5 4y1 783

From these results it can be seen that hypothesis 3 is not
in general true. For queries where the variable selection
is made using the query structure (b1-5) in fact, the policy
suggested by this hypothesis is almost always the wrong one.
The only exception is query b2 which was a query where the
selection using the query structure alone resulted in the
greater cost. So its savings using a keyed structure is

understandable.

For queries al1-9 where the selection was made on a
basis of size, the results are varied and the benefit of the
keyed structure depends on the distribution of the key. 1In
approximately two-thirds of the cases, though, a substantial

savings was achieved by deciding in favor of the keyed

structure.
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The fourth hypothesis 1is a fairly obvious one and
clearly whenever statistices are available, an estimation
procedure will predict the better path. From the previous
discussions, the knowledge of the distribution would solve
many questionable deciéions. Unfortunately, INGRES does not
support the capability of either maintaining or using sta-
tistical information currently so it was not possible to
actually perform experiments to test this procedure. How-
ever, for several of the queries, the estimating procedure

was carried out by hand. In all cases, the order selected

~was the one with the minimum processing cost when the query

was run.

The results of the experiments and the analysis for
selection of a substitution variable can be summarized as
follows. Given a two-variable query, these factors should

be considered in this order:

1) If distributional information is available, a cost
estimate function should be applied to determine the
processing path which accesses a minimum number of
data pages.

When statistics are not available,

2) If the target list contains_on}y a single variable,
that variable should be seleéted for substitution
regardless of size or storage structure.

3) When the target list contains two-variables, if one
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of those variable has a keyed structure on the
domain(s) in the qualification, select the other
variable for tuple substitution.

4) If none of the above criteria applies, select the

variable for substitution which minimizes the ratio
t

P_-;-T.

Note that these conclusions hold for all of the queries
measured and will hold true in general. However, it is
tacitly assumed that none of the relationé are predominantly
small (£ 10) or large. 1In these cases, size will undoubt-
edly be the dominant factor but, according to the previous
conclusions, size is the last factor considered. What would
be useful is some general measure which would reflect all of

these considerations simultaneously.

One technique which can be used is to always consider
the ratio t/(P+1) but to have P represent the "effective"
pages of the relation. USing the actual number of pages the
relation occupies is essentially assuming that every page
Wwill be accessed. When there is only a single target-list
variable or a relation has a keyed structure, this assump-
tion is not valid. Thus P can be modified to indicate the
expected number of pages which will be accessed under these
conditions. Clearly when statistics are available, it is a
simple matter to estimate the effective P. When statistics

are not available, it is still possible to wuse this
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technique.

When there is only a single target-list variable, it is
always possible to c;eate an index on the other relation and
thus guarantee a single access per substituted value. Thus,
Peff for the qualification variable can be taken as 1.
Another option is to assume that for 50% of the substituted
values, all pages must be examined and for the remaining
half, only a single page must be retrieved. Thus,

.StSP + .Sts

eff = ts = .5(P + 1)

P

where ts is the number of tuples in the range of the
target-list variable and P is the actual number of pages

occupied by the other relation.

There has been considerable study done on determining
the average number of page accesses required using a keyed
structure [SEVET4, LUM71, HELD75c]. For a hashed structure,
it is approximately one page access but this depends on the
number of tuples per page. For a directory structure
(ISAM), it depends on the range of values being retrieved.
But, using these type of estimates for Peff’ the effect of

the storage structure can be reflected.

—t

Thus, for two-variable queries, the ratio
Peppt!

should

be used as the selection criterion.
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8§.2.2 Multi-Variable Queries

For these experiments, a variety of three and four-
variable queries were run. The structure of the queries,
the sizes of the relations and the domains appearing in the
qualifications (and thus the distributions) were all varied.
Since Section 8.3 contains the evaluation of reduction as a
processing alternative, this section will present the
results considering only substitution as a processing tac-
tic. As in the two-variable case, it was not possible to
actually perform experiments‘tq evaluate using statistics in.
a cost function as a prediction method. However, this pro-
cedure was carried out by hand and the meaéurements for the

processing order selected by this method are included.

The following criteria for selecting a variable for
substitution were compared:
a) select the variable whose range relation has the
fewest tuples.

b) select the variable whose range characteristics

Lt
P+1°

¢) select the variable which will have the greatest

minimize the ratio

immediate effect on the remaining variables; that
is, the variable which appears in the most two-
variable clauses.

Although it is not a selection criterion as such, experi-

ments were also performed to test the hypothesis that
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storage structure does not play a dominant role for queries
involving three or more variables. To illustrate this, the
queries were also run with keyed structures available in an
attempt to see if the same order was the best whether or not

the storage structure was considered.

The results of the experiments will be presented in the
following manner. First, a graph, as described in Chapter
5, for each query will be presented. Then the resulting
costs in data pages accessed will be tabulated by query by
criterion being evaluated and the variable selected for sub-
stitution will be indicated. Since there are several possi-
ble orderings for substitution starting with the same first
variable, the cost tabulated is the minimum cost associated
when the indicated variable is the first one selected for
substitution. Also included in the last columns of Table
8.11 is the decision which would be made using complete
statistics to estimate the various costs and the measured
cost for -that decision. The cost estimates using the

statistiecs were calculated by hand.

Query 1
e t, =66 P, = 15
tg = 56 Pg = 13
6 O tC = 51 PC = 14
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Query 2
t, =66 P, = 15
th = 56 PR = 13
tC = 51 PC = 14
B———
Query 3
A t, =66 P, = 15
\\\ th = 56 PA = 13
tC = 150 PC = 39
B——-c
Query 4
A t, =66 P, = 15
tp = 56 PR = 13
tC=150PC=39
Query 5
t, =62 P, = 32
(&) tg = 62 PL = 17
tC = 56 PC = 29
(B) c
Query 6
t, =66 P, = 15
&) tp = 51 PA = 1
tC = 56 PC = 13

()




Query 7

Query 8

Query 9

Query 10
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79
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62

112
97

62
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17
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26
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29
17
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17
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Query 11
A 6
_ t, =62 P, = 17
//// : tg = 51 Pg = 14
B
t. =62 P. = 32
; t5 = 56 pg = 29
D
Query 12
A
/,’: ty = 51 P, = 14
B, | @ tB = 56 PB = 29
N tc = 62 P, = 17
\@ tD = 62 PD = 32
Query 13
/A\\ u
7 : ‘ t, =51 P, =1
27N\ A< A S
e __.-.:‘C tB = 56 PB = 29
t. =62 P. = 32
C - Cc_
tD = 62 PD = 17

First, a few comments about Table 8.11. Query 1 has no
interesting query structure - all three variables appear in
the target 1list and each variable appears in two two-
variable clauses. Thus, the query structure criterion is
not applicable. For queries 9 and 12, there are two entries
in the criterion (c) column. This is because there are two

variables which possess the same query structure charac-
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teristics. So some other criterion must be used to decide

between the two, but both are available.

- The results presented in Table 8.11 seem to point to

several conclusions:

1) Size in terms of number of tuples alone is generally
not an adequate criterion to minimize the processingj
cost.

2) The structure of the query, specifically the number
of two-variable clauses each variable appears in, is

a dominant factor in determining the processing

cost.
3) Using the ratio 3%7 is a more successful criterion

than using only t to.select a substitution variable.

The only result which is perhaps unexpected is that the
ratio of tuples to pages is better than tuples alone when
considering only size to select a substitution variable.
This implies that the assumption made in Chapter 7 that the
last step of a multi-variable query being in pages could be

ignored was not a valid assumption.

When the storage structures of the relations were modi-
fied so they were keyed on a useful domain, obviously, the
total costs went down but the relationship between the costs
using the three criteria was unaffected. This would seem to

indicate that storage structure does not play an important
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role in the selection procedure when more than two variables

are involved.

The conclusions of this ecriterion evaluation for
selecting a variable for substitution in a query involving

three or more variables can be stated as:

1) Obviously, if statistics are available, a cost func-
tion should be used to estimate the order of substi-
tution with minimum cost.

2) For each variable, count the number of two-variable
clauses in which it appears. Also, if the target
list is one or two variable, this should be included .
in the count for the appropriate variables. Select
the variable for substitution whose associated count
is the largest. If there is a tie between two or
more variables, use the next criterion as the decid-
ing factor.

3) Select the variable whose range relation charac-

t

teristics minimize the ratio F:T'

It should be noted at this point that in obtaining these
results we did not consider reduction as a possible process-
ing alternative. The effect of reduction on variable selec-
tion for tuple substitution will be considered in the next

section.



220

8.3  Reduction

" The idea of reducing a query into components which have
only a single variable in common is an important part of
this work and it is a new technique in the context of data-
base processing. As such, there are many questions which
arise concerning it. 1In Chapter 5, an attempt was made to
answer one of the major questions. Namely, how useful is
this technique as opposed to tuple substitution. But no
definite conclusions were reached for all cases and it has

yet to be shown how valid those results are in practice.

The‘ ideal case for reduction is when the resulting
sequence of components contains only two-variable queries
because generally two-variable queries are less expensive to
process than three or more variable queries. What can be
learned by examining such cases? First of ;ll, note that
all components except the last, which contains the original
target list, are guaranteed to have only a single variable
in the target list, namely the joining variable. This fact
will surely have an effect on the cost of processing. Since
the cost will be a sum of costs for two-variable queries, is'
there a single component which will dominate the cost? This
fact could be useful in predicting the total cost of pro-

cessing and comparing this method to others.

When reduction is used, it is known that the result of

an intermediate component will be used as a source relation
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for a subsequent component. One of the points in favor of a
single-overlapping variable reduction is the fact that this
result relation will usually be smaller than the original.
Once can guarantee that it will be no larger by performing a
sort operation to remove duplicates between intermediate
components. But obviously this operation will have a cost
associated with it. So the question to be answered is how
beneficial is it to remove the duplicates between intermedi-

ate components.

One final question concerns the effect of keyed storage
structures on reduction. The analysis performed in Chapter
5 considered that all relations possessed non-keyed struc-
tures so that all tuples had to be examined. This implied
the assumption that a keyed structure would have no effect
on the conclusions of reduction vs. tuple substitution.

However, it was not shown that this was a valid assumption.

These are the basic questions which were considered
when performing the evaluation of reduction. The case of
reducing to all two-variable components and performing a
sort between components is presented in the first subsec-
tion. Then the measurements concerning the hypotheses pro-
posed in Chapter 5 for reduction vs. substitution are dis-
cussed in the second subsection. Also the effect of keyed

structures is considered.
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8.3.1 Reduction to Two-Variable Components

A series of three to five-variable queries were run to

test the following hypotheses:

1) In every component except the last, which contains
the original target 1list, the joining variable
should be selected for substitution.

2) Either the first component executed or the last one
will have the dominant cost compared to all other
components. If the rule in hypothesis (1) is fol-
lowed, it will generally be the last component which
is dominant.

3) If the rule in hypothesis (1) is followed, the sort-
ing cost will be minimal and the total cost of pro-~
cessing including the sort will be better than the
cost without the sort.

The second hypothesis is based on the following reasoning.
The first component executed will generally have a large
cost compared to the other components because there is no
effect of the reduction yet. All subsequent components will
involve a joining variable whose range has hopefully been
reduced. The last component will usually involve examining
a cross product whereas all previous components were
guaranteed to have only a single target-list variable.
Thus, its cost can conceivably be larger than the other com-

ponents. This fact, if true, could be of use in predicting
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the cost of the entire query or in determining which com-
ponent deserves the most attention for possible optimiza-

tion.

Since the queries tested all reduce to two-variable
components, the possible query structures are limited. The

structures considered were of the following form:

(a) A

(b) () (c) : A

For queries of the form of (a) there are obviously different
orderings for executing the components, i.e. 1 = A,C; 2 -
A,D; 3 - A,B or 1 - A,D; 2 - A,C; 3 - A,B. It would be
useful to be able to predict which ordering results in the
minimum cost. Unfortunately the measurements did not pro-

vide any definitive answer to this question since in
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reality, it depends on the distribution of the domains
involved. However, in general, it appears that performing
the component which involves the relation with the smallest
number of pages first is a good policy when statisties are
not available. Thus, the measurements presented will be for

the minimum cost ordering of components only.

For the other structures, little choice is available in
the order of processing components. For form (b), the only
order is 1 - C,D; 2 - B,D; 3 - A,B. For (c), there are two
orderings: 1 - A,B; 2 - C,D; 3 - A,D or 1 - C,D; 2 - A,B;
3 - A,D. Since componénts 1 and 2 are not connected, the

ordering will make no difference on the cost.

The sizes of the relations involved vary from 15
tuples, 2 pages to 138 tuples, 70 pages. All relations have
non-keyed structures. Table 8.12 contains the results of
the experiment. The letter in the structure column refers
to the structures shown graphically above. Order 1 refers
to the order of substitution within a component as described
in the first hypothesis; that is, always suﬁstituting for
the joining variable in the intermediate components. Order
2 is when the non-joining variable is chosen for substitu-
tion in the first component and then the Jjoining variable in
all remaining intermediate components. Tests were run where
the order was also varied in other components, but the first

component seems to be the critical one. Under the columns,



TABLE 8.12. Reduction to two-variable components.

Query ! Order 1 i Order 2
No. Graph | w/sort w/0 sort Size | w/sort w/0 sort Size
] ]
1 a 11044425 3698 55/24 | 3710+1157 314102  4785/24
2 a I 765+30 2505 55/24 1 22534270 40145 1430/24
3 a I 732425 2359 55/24 1 2072+723 56052 2750724
Y a I 775+20 1169 62/38 1 24404669 - 58625 3472738
5 a I 395+20 1226 55/13 | 1403+262 29228 1430/13
6 a I 1021425 3724 55/24 | 1305+25 4008 55/24
7 a I 1037+57 3367 138/67 1 4274+1704 246798 6900/67
8 b I 673+25 2573 51/4 1 13554591 109086 2856/4
9 b bTTT+11 3558 50/1 1 1298+11 4078 50/ 1
10 b b 724420 7985 51/4 1 978+47 9899 20474
11 b I 865+25 5155 51/4 1 15474591 108988 2856/4
12 c I 1105+15 1159 15/3 1 2076+124 3585 750/3
13 c i 1016+30 2709 15/3 i 1987+139 3680 750/3
14 c | 1016430 2709 55/23 | 2504+239 15311 1430723

gee
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order w/sort, the numbers are of the form x + Y. Yy refers
to the cost of the sort operations while x is the cost of
processing the query excluding the sort cost. The numbers
in the size columns are the number of tuples before the

sort/after the sort for the result of the first component.

In all cases, the total cost of processing the query is
less when the sort operation is performed than when the
duplicates are not removed, and the difference is usually
large. Order 1, where the intermediate target list vari-
ables are chosen for substitutioh, is always preferable to
order 2 whether the sort operation is included or not. This
supports the conclusions of the two-variable selection eri-

terion for structured queries.

One must realize that most of these queries reduce to
three or four components, so the sort cost indicated is the
sum of the sort costs after each component except the last.
When the individual components are examined, it turns out
that only the sort operation after the first component exe-
cuted results in much reduction in the range size, except
for queries with structure (c). For structure (e¢), there
are essentially two "first" components since they have no

variable in common.

Table 8.13 presents the individual component costs for
each query and the size of the result relation before and

after the sort operation. The costs used are those when



TABLE 8.13. Reduction to two-variable components,

individual component costs.

Component
Query | ' 2 ' 3 i 4
No. Graph | Cost Size | Cost Size |} Cost Size | Cost
1 a i 162 55/24 1 198 24/12 1 684 - i
2 a i 149 55/24 | 195 24/13 1 37 12712 | 384
3 a I 150 55724 1 198 24712 | 384 - |
y a | 154 62/38 | 621 - | |
5 a | 140 55/13 | 157 13713 | 62 12712 I 36
6 a i 139 55/24 | 198 24712 | 684 - !
7 a I 344 138767 | 277 33713 | 416 - i
8 b I 114 51/4 | 38 3/1 | 29 55/12 | 384
9 b | 364 50/1 1 29 56/12 | 384 - '
10 b | 165 51/4 | 38 3/1 I 29 55/12 | 384
11 b I 114 51/4 | 38 3/1 | 29 55/12 | 684
12 c | 429 56/12 | 672 15/3 | y - !
13 c | 149 55/23 | 191 23/12 | 672 15/3 | y

Lee
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ofder 1 of substitution is used. Component n always con-
tains the original target list and the order of execution
was component 1,2,...,n. The sort costs are not ineluded.
One can see from this table that usually the most reduction
in size from the sort is gained after the first component.
However since the relation monotonically decreases in size,
the sorting cost of the subsequent components also

decreases.

Note that for queries with structures (a) or (b), the
dominant component in terms of cost is usually the last com-
ponent. For query 5, this is not true but the size of the
variable which appeared in the target list with the joining
variable was approximately 1/10th of the largest variable.
Thus, one would expect the cost of the last component to be
small. For queries with structure (c), one would expect the
last component to be the smallest also. This component con-
tains two joining variables which have already been reduced
in size. So hypothesis (2) appeafs to be true for queries
of structures (a) or (b) when the size of the remaining tar-
get list -variable is not very small compared to the other
relations. However it is felt that this observation is not
really that helpful since it really does not give a good
indication of the total cost of processing. Also,hthe last
component may have the largest cost but there could be oth-

ers which are quite close.
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Reduction vs. Tuple Substitution

In Chapter 5, reduction was proposed as a processing

technique and an analysis was performed in an attempt to

determine exactly when reduction should be used prior to

tuple substitution. The results of that analysis can be

summarized as follows:

1.

When the variable selected is a Jjoining variable,
substf%ution for that variable will requife less
total page accesses than reduction on that variable
followed by substiﬁution for it first in each com-
ponent.

When the variable selected (Xi) is not in the target
list but is jnvolved in a two-variable clause with a
variable in the target 1list, substitution for the
selected variable will be better than reduction
assuming that Xi is selected for substitution first
in the component in which it appears.

When the variable selected (Xi) is in the target

list and appears only in a clause involving three or

more variables or not at all in the qualifiecation,

and, if substitution results in a connected
subquery, reduction will be less expensive than sub-
stitution for xi when Xi is substituted first in the

reduction component containing the target list.

. When the variable selected (Xi) is not in the target
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list and does not appear in any two-variable clauses
with a variable in the target list and substitution
for Xi results in a subquery whose graph is expli-
citly disconnected, reduction does better than sub-
stitution for Xi when Xi is substituted first in the
first reduction component.
In all other cases, no definite conclusion could be stated
but it was felt that reduction would perform better in gen-
eral. The assumptions made for the purpose of the analysis
were that none of the relations had a keyed structure, no
sort operation to remove duplicates was performed between
intermediate reduction components, and that the same vari-

able would be selected for substitution after a reduction as

before.

Obviously the results of this analysis depend upon
which variable is selected for substituﬁion. In order to
test all cases, measurements were taken for each variable
that would be selected using any of the criteria discussed
in Section 8.2. Also, since is was not known if the assump-
tions made for the analysis were valid, experiments were

performed where the assumptions were relaxed.

The analysis of Chapter 5 used the guidelines presented
there for how far a query should be reduced given the role
of the variable selected for substitution. Since the exper-

iments can fully reveal the effect of only the first deci-



231

sion, all levels of reduction were run to get an idea of the

total processing costs.

The purpose of the measurements in this section is,
first, to evaluate the results of the theoretical analysis
of Chapter 5. Second, it is felt that the assumption that
the same variable will be selected before and after reduc-
tion is too striet. So, this assumption will be relaxed and
the results p;ésented. Third, the hypothesis that storage

structure has no effect on the decision as to whether to use

reduction or substitution will be tested.

The following graphs depict the structure and charac-

teristics of the queries used in the experiments.

Query 1
t, =66 P, = 15
O th = 56 Ph = 13
tc = 51 PC = 14

B—¢C

Query 2
A t, = 66 P, = 15
\ th = 56 PR = 13
tC = 150 PC = 39



232

Query 3
A t, =66 P, = 15
tg = 56 Pé = 13
tC = 150 PC = 39
Query 4
t, = 62 P, = 32
O tp = 62 Py = 17
\._ t'C = 56 PC = 29
. C
Query 5
t, =66 P, = 15
O té_: 51 Pp = 1
tC = 56 PC = 13
(B) C
Query 6
A 8
t, = 9 P, = 50
A A
B/ k} tB = 79 PB = 17
t. = 62 P, = 17
C C
@ tD = 40 PD = 3
Query 7
(A)
. tA = 56 PA = 29
t, = 62 P, = 17
B o B B
t~ = 112 P. = 57
C C




233

Query 8
‘ (4] . £ = 62 P, = 32
G tg:51 szw
. B
tC = 5h PC = 29
. te = 62 P = 17
D D
D
Query 9
(’ t, = 62 P, = 32
tg = 62 Pé = 17
B ()
tC = 138 PC = 70
tD = 51 PD = 14
A D
Query 10
A
t, =62 P, = 17
/ - tp = 51 PR = 14
B
t. =62 P, = 32
; ts = 56 PC = 29
D .
Query 11
_ /% .
6 b4 I3 Bl
B
‘ \\ : . tC = 62 PC = 17
' ‘ \zt> tD = 62 PD = 32

The first measurements to be presented are those concerning
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the hypotheses of Chapter 5. The results will be broken
down into categories. Table 8.14 presents the measurements
when a variable selected for substitution is a joining vari-
able (hypothesis 1). The second table contains the results
when the variable selected is in the target list (hypothesis
3), and the third is when the variable selected is not in
the target list (hypotheses 2 & 4). Note that there will be
some queries in.the second and third tables which do not fit
the criterion of the hypotheses, thus which hypothesis is

applicable, if any, will be indicated.

Each table will include the query number, the variable
selected for substitution, the cost "if that variable is sub-
stituted, and the cost if that query is reduced using the
guidelines for how much to reduce presented in Chapter 5.
Since there are various orders of substitution possible even
after the first variable is selected, the cost included will
be the minimum one. The reduction cost is the cost assuming
the selected variable is substituted first in whichever com-
ponents it may appear. Also included are each of these

costs when keyed structures are used.
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TABLEA8.1H. Substitution variable is a-joining variable.
]

Query Substitution Cost Reduction Cost
No. Var non-keyed keyed non-keyed keyed
1 B 793 255 794 257
2 C 2343 479 2346 u82
3 C 2261 636 2351 726
L A 1083 157 1169 210
5 B 1015 469 1120 485
6 A 3015 1637 3176 1798
6 C 4516 1783 3399 713
7 A 3670 3357 3698 3386
8 A 4257 2230 4257 2230
8 C 11266 : 6048 11349 6182
9 C 4329 3145 1677 261
10 B 3367 1951 3414 2013
10 C 927 357 942 372
11 D 14751 14751 2091 762

From Table 8.14, it can be seen that generally when the
variable selected for substitution is a joining variable,
substitution for that variable is better than reduction fol-
lowed by substitution for it first in each component. How-
ever, there are exceptions even to this. But note that the
existence of keyed structures does not affect the relative

costs.

Hypothesis 3 proposes that reduction does better than
substitution under its conditions. From Table 8.15, it can
be seen that whether the hypothesis is true .or not, reduc-
tion should be the technique selected to gdhieve a minimum
processing cost. This result makes sense because generally
when a variable appears in the target list and is not a

joining variable, it will not be very dominant in the
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qualification. Thus substituting for it gains essentially
nothing and reduction can gain quite a 1lot. Again, the

storage structure did not change the relative costs.

The results of Table 8.16 indicate that reduction does
better than substitution in almost all cases where the sub-
stitution variable is not in the target list. The main rea-
son that reduction loses in query 4 is that the result of
the first reduction component contains |R(A)!!R(C)! tuples,
since all tuples are retrieved for each substituted value.
If either the operation to remove duplicates is ineluded or
the order of substitution for the first componeqt is
changed, the reduction cost drops dramatically. However,

these results refute hypothesis 2 and verify hypothesis 4.

Examining hypothesis 2 and the queries where it is
applicable, there is a possible explanation for why it is
false. Since X1 is not in the target 1list, it does not
appear in the last component, only in the first. Thus,
reduction is free to select any variable for substitution in
all components except the first. This flexibility allows
for more optimization. Also, in Conjecture 2, the cost com-
parisons are made using tuples only. The Jjoining variable
will likely have a larger reduction in pages than in tuples

since the tuple width will be restricted. These two factors

could easily outweigh the advantage that suggested Conjec-

ture 2.



TABLE 8.15. Substitution variable is in the target list.

”.

Cuery Hypo. 3 { Substitution Cost |  Reduction Cost
No. Var Applicable | non-keyed keyed | non-keyed keyed
1 A no i 980 892 i T4y 208
2 B no ] 2265 1450 i 1888 263
3 B yes I 144760 12713 i 1944 319
4 B no ! 1986 540 i 364 364
5 A no i 2458 2054 ' 578 323
6 D yes i 128083 51420 : 2508 1130
9 A no I 113296 88470 H 2114 698
11 c yes | 112716 34038 | 1914 - 645

LEe



TABLE 8.16. Substitution variable is not in the target list.

-

Reduction Cost

Query Applicable | Substitution Cost |

No. Var Hypothesis | non-keyed keyed i non-keyed keyed
1 C - i 3942 2526 i 820 316
2 A - ! 9840 7530 | 2708 351
3 A 2 ! 7970 5660 | 4052 1695
y C 2 | 13496 13496 | 58625 4921
5 C 2 i 3260 2732 | 1753 1189
7 B 2 i 168516 154143 | 5034 3372
8 B 2 | 28681 4y83 | 5042 1110
9 D 2 i ~72569991 - I ~209270 -
10 A - | 1335 633 | 902 198
10 D 2 | ~43486 - i 8780 3291
11 A i i 15778 11086 | 1597 1570
11 B 4 | 15829 1442y | 3074 1769

gee
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From the results in the last thpee tables, and under
the assumptions made in Chapter 5, substitution is the pre-
ferred method only when the variable selected is a joining
variable. In all other cases, reduction usually performs
better and there are even cases when the variable selected
is a joining variable and reduction is better. Due to these
conclusions, it appears that the analysis performed in
Chapter 5 forces too many assumptions on the environment to

be practically applicable.

This result enforces even more the desire to examine
reduction when certain of the assumptions are relaxed,
specifically the assumption concerning the continuity of the
selection criterion after reduction. The evaluation of
queries which reduce to all two-variable components provide
a hint to the fact that the role of a variable before and
after reduction cani change. And, the results of the vari-
able selection criteria evaluation show that the structure
of a query plays a dominant role in selecting a minimum pro-
cessing path. So these factors should be considered for the

processing of each component individually.

The following gable (Table 8.17) thus presents fdr each
query, the variable selected for substitution on the basis
of the query structure criterion as stated in Section 8.2.2.
Then, the cost of substituting for that variable is compared

to the cost of reduction, the selection criteria of Section
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8.2 being applied to each component individually. The
resulting sequence of components is also included. Finally,
the minimum attainable reduction cost and the corresponding
sequence of components are given. The costs for both keyed

and non-keyed structures are included.

The substitution costs using the query structure cri-
- terion are generally the minimum substitution cost. In the
cases where it’s not, there is little difference between it
and the minimum. Thus the results of this table show that
reduction on the variable selected results in a lower pro-
cessing cost than substitution for that variable. These
redugtions were performed without any operation to remove
duplicates. If this is included, the reduction costs should
Vdecrease because the intermediate result ranges are bounded
by the size of the joining variable’s range, so the sort
costs should be small generally. In the cases where the
reduction cost for the selected variable and the minimum
reduction cost do not match, the difference is usually due
to the order in which ihe components were executed. So the
heuristic of performing the component involving the relation
with the smallest number of pages first may not be a good
one. For query 10, where the minimum reduction cost
corresponds to reducing on a different variable, notice from
its graph tﬂat variable B is also a plausible selection

using the query structure criterion.



TABLE 8.17. Reduction vs. substitution.

Substitution Reduction } Minimum Reduction
{ non-keyed keyed non-keyed keyed components | non-keyed keyed components
1 1
1 B | 806 257 TUY 208 ! T4Y 208
2 c | 2343 479 1888 263 { 1888 263
3 c | 2261 636 1944 319 4 1944 319
y A | 1083 157 354 354 ' 354 354
5 B | 10154 469 578 323 ! 578 323
6 Ao 3015 1637 519 519 ! 519 519
7 A 1 3670 3357 957 643 ! 953 641
8 c | 11266 6048 1302 871 ! 1159 302
9 c | 6249 4920 uysg 3042 L1677 261
10 c | 927 357 655 B9 | B 159
1 p | 14751 1751 1914 645 i 1914 645
12 B | 19815 19815 1992 1128 | 1992 1128

vz
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We can summarize these conclusions as follows: Whenever
a query is reducible and the query structure criterion is
applicable, the query should be reduced using the guidelines
of Chapter 5 to determine how far to reduce it. Then each
component should be evaluated by applying the variable
selection criteria to it individually. In general, when an
intermediate component involves only two vvariables, the
variable in the target 1list, which is the joining variable,
should be selected for substitution. If this policy is used
even for three or more variable components, the cost of per-
forming a sort to remove duplicate tuples will be small and
usually affordable. Note that if the option of removing
duplicates prior to substitution as proposed in Chapter 6 is
used, the sort operation between intermediate components

wiil generally not be needed.

This conclusion is for the general case. Obviously,
one can generate queries where reduction will lose due to
thé distribution of the data. However the analysis came up
with only two cases where substitution would definitely win.
The first one, hypothesis 2, was disputed by the measure-
ments. The second one, when the substitution variable is a
Joining variable, was supported by the measurements under
the assumptions of the analysis. But when the continuity of
a Selection criterion assumption was relaxed, this result

was no longer valid. The relaxation of this assumption
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allows reduction more flexibility to take advantage of the
effect of one component on the next. Thus in a query such
as
RETRIEVE (X.a, Y.a)
WHERE X.b = Z.b

the order: 1 - X,Z, 2 - Y,X could result in a lower cost
due to the effect of the first component. Substitution can-
not take gdvantage of this while reduction can. So even
though the measurements are for a limited numbef of queries
and data, the reasoning behind their results is sound and

the results can therefore be stated as general conclusions.

In Figure 8.2 a graphical representation of the results

of this section is presented. This figure contains a plot
of cost

vs. no. of variables on semi-log paper. Included in
avg

this graph is the minimum measured processing cost (@), in
data pages accessed, for the test queries (assuming non-
keyed structures) and certain bounds on these processing
costs. Obviously, for any query with any number of vari-
ables, ZPi (O) is a lower bound. There are two upper bounds
which were compared. Since the test queries did not all
reference éhe same relations, these upper bounds appear on
the graph as a range of values. The first is I]Uti L .
Clearly, this is a greatest upper bound and this bound will
generally not be attained due to the fact that OVQP accesses

pages. The graph supports this observatioq. The second
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upper bound considered is mwi (/). Because of preprocessing
of one-variable restrictions and reduction, this can be used

as an upper bound.

If we examine Figure 8.2, it can be seen that for two-
variable queries, MPi is actually a lower bound rather than
an upper bound. This is to be expected in this case because
reduction is not an available processing alternative. The
only queries whose measured processing costs fall below MPi

are those with a single target-list variable.

However, whenever the number of variables is more than
two, the actual cost falls below MPi and a large distance
below Mki. In fact, the measured costs are generally much
closer to the lower bound of ZPi than to either of the upper
bounds. Since the minimum processing costs wusually
correspond to some reduction for the queries involving three
or more variables, this attests to the fact that the use of

reduction leads to more efficient processing.



107,

|llllll' T llllllll U T TTTTI

10%

I lllllll

COST/ Pavg. (data pages accessed)

A 7Tt
a 77 Pj
o X Pj
¢ MINIMUM MEASURED
COST

Lol . Lattinl
Vv

L1 Ll l 1

1 lllllll

A

© ' ' E
. s A
: ; g 3

A . .
10§ =
o =

| | |
2 3 4 5

NUMBER OF VARIABLES

FIGURE 8.2. Cost/(avg. no. of pages) vs no. of variables.



246

CHAPTER 9
CONCLUSIONS

In this dissertation we have examined the topic of
efficient processing of queries in a relational database
management system. Techniques which can be used at dif-
ferent stages of the processing and which depend on various
characteristics of the query environment have been proposed
in an attempt to achieve a minimum processing cost for a
query. In this chapter, the highlights of this work will be
briefly summarized and directions for future research will

be indicated.

9.1 Query Transformations

In Chapter 4, queries were examined to determine what
characteristies a query should ideally possess, independent
of the data being referenced, to lead to more efficient pro-
cessing. Then using these characteristics as goals, a set
of transformations which can be applied to any query to
acquire these characteristics were stated. The idea behind
this technique is similar to thét used in compiler optimiza-
tion. Some wbrk on developing and testing these techniques
has been done in a relational algebra environment [HALLT75,
SMIT75]. However, no work has been done specifically to

evaluate its usefulness in a relational-calculus based
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environment.

9.2 Query Processing

In Chapter 5, the concept of tuple substitution, or

nested iteration, was defined and shown to be a sufficient
tool for processing any query. However this tactic is
equivalent to creating the entire cross product specified by
the query on a tuple-by-tuple basis. A second concept
called reduction, which exploits the structural characteris-
tics of the query, was then introduced. Since reduction can
result at best in only a sequence of two-variable
subqueries, it is necessary to use a combination of reduc-
tion and tuple substitution to process a query to comple-
tion. From the theoretical analysis of Chapter 5, it
appeared that there were only a limited number of caseé
where reduction should be applied to a Query prior to sub-
stitution. However several assumptions were forced on the
query environment in order to perform this analysis, and it
turned out that some of these assumptions were too restric-
tive. The measurements performed for Chapter 8 to compare
the usage of reduction and substitution have shown that
reduction should always be applied if possible. This result
is true when each component resulting from the reduction is
examined as an individual query and techniques for efficient

processing applied to it without any assumptions related to
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decisions made for the original query.

All of the ideas discussed thus far are independent of
the specific data and its structure that the query refer-
ences. Certain steps which could be taken to tailor the
processing algorithm to this information were detailed in
Chapter 6. These steps included preprocessing of one-
variable restrictive clauses, performing a projection to
reduce the number of tuples prior to tuple substituting for
a relation, and dynamically modifying the storage structure
of a relation to allow more efficient access. Obviously the
degree of effectiveness of these options depends on the
value distribution of the domains involved. However both
the analysis in Chapter 6 and the measurements in Chapter 8
have shown that knowledge of the distributions would have
little effect on the basic decision as to whether these

options should be exercised.

However in the case of dynamic storage modification, it
was shown that this information would be useful in deciding
between modifying the primary structure or building a secon-
dary index. Whenever the expected number of tuples
retrieved per substitution is one or less or whenever there
is a high percentage of substitution values for which no
tuples will qualify, the decision should be made in favor of
indexing. If statisties are not available to make this

choice and the wrong decision is made, the results can be
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catastrophic.

9.3 Variable Selection

Selecting the variable whose range is to be tuple sub-
stituted is clearly a critical step in the processing of any
query. There are several factors which should influence
this decision. These include the size in tuples and pages
of each relation involved, the storage characteristics of
those'relations, the structure of the query and the distri-
bution of the domains referenced by the query. All informa-
tion except the distributions is readily available and a
reasonable selection strategy using those factors was

developed. For two-variable queries, the variable which

t
eff
tion. Peff is the number of data pages to be accessed con-

minimizes the ratio should be selected for substitu-

P +1
sidering the effect of the query structure and storage

structure.

For queries involving three or more variables there is
a more specific ordering:
1. query structure, specifically the number of two
variable clauses in which a variable appears,
2. size, specifically the ratio tuples/(pages + 1),
3. in the case of a close decision on the basis of
another criterion, storage structure characteristics

!

should be used as the determining factor. !
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If information depiecting the distribution of the
domains is available to make this decision, it is necessary
to develop a cost estimate function to consider the effect
of all of these factors. This cost function must be reason-
ably accurate but it is also necessary to limit it in a cer-
tain way. For an n-variable query, there are n! possible
orderings for tuple substitution and perhaps more than one
available reduction. To estimate and compare all of these
when n is large would be quite expensive. Thus some way of

limiting the number of candidate paths must be developed.

In conclusion, this work has presented several tech-
niques which will 1lead to more efficient processing of
queries in a relational database environment. As such, it
is an attempt to demonstrate that a database system based on
the concept of relations is a plausible organization. The
main area for future research is in the usage and mainte-
nance of statistical information to reflect. the database
environment. This 1includes determining what information
would be valuable, and efficient means for gathering and
maintaining it. Since the areas discussed here are not the
only ones which could benefit from such information,
developments in this direction would be advantageous to the

entire database system.
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APPENDIX A
RELATIONAL ALGEBRA OPERATORS

Let R be a relation and D1, D2""’Dn the domains of R.
Then R is a subset of the cartesian product of its domains,

R = D1xD2x---an.

Project: a unary operator which acts on a relation R by
eliminating some of its columns and then deleting any dupli-
cate tuples which might result in the subset of original
columns. Let 1 = (i1,12,‘--,im) be a subset of the integers
1 through n. Then the projection of R on {Dj’ j%1}, denoted

R[D ], is defined by
1

R[D‘] = {(r'i yP. yeee, P, )t (r1,r2,---,rn) 4 R}
i

1 12 1m

Let R have domains D1,---,Dn and S have domains D°,,...,D n

1’
If r ¢ R and s & S, we shall denote by (r,s) the concatena-

tion of r and s, i.e.,

((r1,...,pn),(s1,...,sm)) = (p1,...,rn,s1,...,sm)

The expanded cartesian product R x S is defined by

Rx S = {(r,s): r4<R and s<S}

A distinction can be made between the cartesian product R x

S which is a collection of pairs r and s and'R Xx S which is
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a collection of the concatenations of r and s, but it is

hardly worth making.

Restrict or Select: Let P(x) be a truth function defined on
the cartesian product D1xD2x---an. That is, for each x in
D1xD2x---an, P(x) has a unique value which is either 1
(true) or 0 (false). Then the subset R[P] of R for which P

is true is called the restriction of R relative to P.

R(P] = {r: r € R and P(r) = 1}

Let x stand for any of the comparison operators: =, £, <, >,
<, 2, and let the predicates [P (not P), P A Q (P and Q), P
v Q (Por Q), and P ==> Q (P implies Q) be defined as in

standard logiec.

Then let 60 be the set of predicates on mmi defined by
the properties:

(a) Dy }.k & 60 for each i and every constant k in D,.

(b) Dy x D; 4 §, for 1<igicn.

(e) P &8y ==>TP < 8,.

(d) P, Q ¢ 60 ==> PAQ ¢4 60 and P v Q ¢ 60.

(e) 60 is minimal with respect to (a) through (d).
Then for each P & 60, the restriction R[P] is well-defined.

Join: Let R and S be two relations with domains D «,D

107"

respectively. Let P be a predicate on
[]

n

and Dn+1 A ’Dn+m

.
.
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D «,D belonging to 60. Then the join of R with S

177"
relative to P is defined by

n+m

R[P]S = (R x S)[P]

If the condition P in the join is an equality between two
domains, one from each of the two relations participating in
the join, then the join is said to be an equi-join. An
equi-join clearly always has two identical columns, and if
one of them is eliminated by projection, then the result is

known as the natural join.
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APPENDIX B
ANALYSIS OF MODIFYING TO HASH STRUCTURE vs. SORTED STRUCTURE

e et S iv——— | ———————————tiey  —

This analysis attempts to model these modify operations
according to the way they are performed in the current
implementation of INGRES. It is felt that the cost associ-
ated with reading and writing the pages of the relation
being modified will, in general, be larger than the cost of
computing the hash function or comparing tupie values. For
this reason, the costs will be estimated assuming that the
I/0 is the dominant factor. That is, the costs of computing

the hash function or comparing tuple values will be ignored.

There are certain system defined constants and some
notation which will be used throughout the discussion which
will be explained first. A page is the basic unit of access
between memory and secondary storage devices. For UNIX, a
page is 512 bytes (UPAGE). A page storing tuples of a rela-
tion also contains certain system information so that all
512 bytes are not available for data. Currently,
IPAGE = 498 bytes are useable for data within INGRES. How-
ever, tuples cannot be split between pages. So, if a tuple
contains 250 bytes, only a single tuple will fit on one
page. This is true for all pages containing data from rela-
tions in INGRES. However, the sorting routine uses UNIX

size pages and does not force a page to contain only com-
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plete tuples.

The sorting routine reads as many tuples as possible
into a core buffer and then sorts them. The size of this

core buffer (BUF) determines the size and number of the

intermediate merge files required. Currently, max(BUF) = 63

pages. '

It will be assumed in the following discussion that a
relation R is being modified. t is the number of tuples in
R, w is the width (in bytes) of a tuple of R, P is the
number of INGRES pages in secondary storage that R occupies,

and S is the number of UNIX pages that R occupies.

First, for hashing, all original pages of R must be
read. Then, for each tuple, the haéh address is computed
and the tuple written to the appropriate output page. If
the tuples are input in a random order, it cannot be assumed
that two consecutive tuples will hash to the same output
page. So, for each tuple, the output page on which the last
tuple was inserted must be written and the page on which the
current tuple belongs must be read. This results in a write
and a read of the output file for each tuple in R. Even if
a duplicate tuple is encountered, the page it hashes to must
be read to determine that it is a dﬁplicate. This results
in a cost for hashing of P + 2t. However, this funection
does not include the cost of examining overflow pages which

might occur in the resulting relation. The following table
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purposes of comparison here, an average bucket size of 20
will be used. Thus, approximately 9% of the tuples will
reside on overflow pages and an additional read will be
required for those tuples. This results in a final cost for

hashing of:

C(hash) = P + 2.888t

Note that the percentages presented in Table A.1 assume a

random distribution for the key domain.

For sorting, the first thing done is that the original
relation R is copied to a UNIX file (with UPAGE bytes per
page). This file is then read in blocks of BUF pages. Each
block of BUF pages is sorted and written to an intermediate
merge file. Then a 7-way merge is performed as many times
as necessary. If F is defined as the number of original
intermediate merge files, then no matter what F is, each
page must be read and written at least once. If F=1, then
once is enough to complete the sort. Otherwise additional

reads as defined by the following table must be done.
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P : P
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[ i1
Thus, we can define

0 if x < 1

f(x) = if x> 1

log7x

Finally, once the sort/merge is complete, the UNIX file
is copied back into the relation R and the directories are
built to complete the ISAM structure. The cost associated
with building the directories is approximately 20% of the
number of pages for the first level, 20% of that number for
the second level, etc. The cost used will be 25% of the
number of pages. It should be noted that if this method is
used strictly to remove duplicates and the tuples will not
be accessed using the ISAM structure, the process of build-

ing the directories can be eliminated.

This results in a cost for ISAM of
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C(ISAM) = P + S + 2S!f(=2=) + 1! + S + 2.5P

BUF
Note that since P = L and S = B the costs
T IPAGE ~ UPAGE
int( w2 )

of modifying to ISAM and hash can be'compared as a function
of t and w. The following table presents the results of
such comparisons using IPAGE = 498, UPAGE = 512, BUF = 63,

and the percentages of Table A.1.

The letter in each box indicates the operation with the

least cost for the associated (t, w) pair.

It can be seen that whenever the tuple width is greater
than 164 bytes, hashing is the less expensive operation
regardless of the cardinality of the relation. Notice that
a width of 165 bytes corresponds to two tuples per page
while 164 corresponds to 3 tuples per page. In actuality,
this boundary between hashing and ISAM is determined by the

page capacity for a given relation.

However since the cases where comparison is of impor-
tance are all dealing with temporary relations whose domains
are only the subset of the original domains referenced by
the query, usually the tuple width will be small. If this
is true, modifying to an ISAM structure will be the least

expensive of the two operations.
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