
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



QUERY PROCESSING FOR A RELATIONAL DATABASE SYSTEM

by

Karel A. Allen Youssefi

Memorandum No. UCB/ERL M78/3

6 January 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Research sponsored by the Joint Services Electronics Program Contract
F44620-76-C-0100 and the Army Research Office Grant DAAG29-76-G-0245.



Query Processing for a Relational Database System

Ph.D. Karel A. Allen Youssefi M EECS

Signature ^«**~*—
Chairman of Committee

ABSTRACT

The problem of efficiently processing queries in a

relational database management system is examined. The

major areas investigated are: 1) transformations of the

query statement prior to processing, 2) strategies which

take advantage of the structure of the query, and 3) tech

niques which depend upon the data referenced by a particular

query.

First, a query is examined to determine what charac

teristics lend themselves to more efficient processing

methods. Then it is shown that transformations similar to

those used in compiler optimization can be applied to the

initial query prior to any data accesses to achieve certain

of these characteristics at a small cost.

Since the most expensive queries tend to be those which

involve several relations, several techniques for processing

these multi-relation queries are examined. The first is

tuple substitution which is essentially equivalent to creat

ing the entire cross product a tuple at a time. Then the



idea of reduction is introduced. Reduction takes advantage

of the structure of the query to break apart a single

multi-relation query into a sequence of queries, each

involving fewer relations than the original query. Using

both empirical and analytical methods, it is shown that gen

erally a combination of reduction and tuple substitution

will result in a lower processing cost than tuple substitu

tion alone.

Finally, certain options are discussed which attempt to

tailor the general processing algorithm to specific queries

and the data they reference. These techniques take advan

tage of the distribution of the data and the storage charac

teristics of the relations. Most of these intuitively good

ideas are shown to be quite useful through analysis and

empirical measurements.
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CHAPTER 1

INTRODUCTION

In the current trend of database management systems,

there are three data models which are most widely used.

They are the network model [C0DA71], the hierarchic model

[IBM70], and the relational model [C0DD70]. There has been

much discussion as to which of these models should be used

[C0DD74, DATE74, BACH74, SIBL74, HELD75, DATE75]. The

advantages of the relational model have been eloquently

detailed in the literature [C0DD70, DATE74, CODD74, CHAM76]

and hardly require further elaboration. There were two par-

" ticular advantages which motivated our choice of the rela

tional model: (1) the high degree of data independence pro

vided, and (2) the possibility of providing a high level and

entirely procedure free facility for data definition,

retrieval, update, access control, support of views, and

integrity verification. Such a high-level, nonprocedural

language allows the system flexibility to optimize the exe

cution of a given query and also allows for modifying the

stored data structures to reflect the changing needs of the

user.

The major unanswered question concerning the relational

data model is whether it can be implemented efficiently.

I This work is concerned with the efficient processing of a



user query. This includes possible transformation of the

query into a more efficient statement of the request and

determination of an execution plan for efficient processing

of the. particular query. To understand the nature of the

problem, first the relational model will, be formally defined

and then techniques which are used in other relational sys

tems will be discussed.

1.1 Relational Model

In mathematics, the term relation can be defined as

follows: Given sets D^Dg,..-^ (not necessarily distinct),

a RELATION R(D1,...,Dn) is a subset of the Cartesian product

D1x«..xDn. In other words, R is a set of n-tuples X =

(X,j ,X2, •••,Xn) where Xi is an element of D^ for each

i=1,2,...,n. The sets D^^ are called the DOMAINS of R and R

has DEGREE n. The number of tuples in R is called its CAR

DINALITY. The only restriction put on relations is that

they be normalized [C0DD71b]. Thus, each domain must be

simple, that is, it cannot have members which are themselves

relations.

Clearly, R can be thought of as a table with each row

representing a tuple.
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name

Adams •

Baker

Harding
Johnson

Jones

Smith

employee relation

dept

candy
admin

admin

toy
toy
toy

salary

12000

20000

31000
14000

14000
10000

manager

Baker

Harding
none

Harding
Johnson

Jones

birth

1939
1927
1917
1946
1943
1950

Figure 1.1 A Sample Relation

start

1965
1955
1949
1966
1968
1970

An example of this representation is shown in Figure 1.1,

which illustrates a relation describing employees in a

department store. Observe the following properties of a

relation:

1. no two rows are identical,

2. the ordering of rows is not significant,

3. the ordering of columns is significant.

Each column can be considered as a function mapping R into

D1. These functions will be called ATTRIBUTES. Note that

more than one attribute can be based on the same domain.

1.2 Survey of Relational Database Management Systems

Different levels of implementation of a relational

model of data can be distinguished, ranging from the user's

view of an information structure to the actual storage

structure of the data. Two levels are clearly distinguish

able, the tuple-by-tuple access level, and the set or rela

tion operation level. Most implementations use a low level



tuple interface to the data even though the user may be

unaware of this lower level system. XRM [LORI74] and the

Gamma Zero interface [BJOR73] are examples of this low level

interface to the relational system. Their basic purpose is

to store and retrieve tuples.

User interfaces with languages based on the first-order

applied predicate calculus, as introduced by Codd [C0DD71],

also provide a tuple access level to the data but at a

higher level than, for example, XRM. Implicitly, calculus-

based languages state operations on sets of tuples but these

operations are stated in terms of the tuples themselves.

INGRES, DAMAS [R0TH72], and System R [ASTR76] are examples

of systems supporting this type of high level tuple inter

face, although the language used in System R is a "mapping-

oriented" language rather than one based directly on the

relational calculus.

Most systems which use a set or relation interface at

the higher level support languages which are based on the

relational algebra [C0DD71c]. The operations in these

languages refer to entire relations or subsets of them, thus

these interfaces tend to optimize accesses of all tuples of

a set at once. The MACAIMS System [GOLD70] and the PRTV

System [N0TL72] are examples of implementations using sets

as the basic unit of data for manipulation. (See Appendix A

for definitions of the relational algebra operators.)



Codd has shown in [C0DD71c] that any relational cal

culus expression can be reduced into a formula of the rela

tional algebra that defines the same result relation and

Palermo [PALE72] extended this algorithm by recognizing cer

tain inefficient operations and modifying them. His

improvements included performing projections prior to joins,

not creating the entire cartesian product explicitly, form

ing the join in such an order that the result grows slowly.

However, his results depend upon the assumptions that (1) a

tuple is the basic retrieval unit, and (2) statistical

information concerning the number of distinct values and the

range of values for each domain is available. In most sys-
JfPv
v terns, unless the tuple size is very large or the page size

very small, a tuple will not be the unit of retrieval.

Also, there is considerable cost associated with gathering,

maintaining and storing the required statistical information

which he does not consider.

However some systems have adopted the approach of

implementing the relational algebra directly. One of these

is the MACAIMS system [G0LD70], developed at MIT and imple

mented on MULTICS. In this system, data items are encoded

to a fixed-length identifier and these identifiers are used

in the stored relations rather than the actual data item.

Using this approach, the stored relations are usually much

f smaller than the corresponding relations containing actual
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data values and thus can be manipulated much more easily.

Another system using the relational algebra is the

Peterlee Relational Test Vehicle (PRTV) [N0TL72, T0DD75,

T0DD76] under development at the IBM Scientific Center in

Peterlee, England. In this system, when a user states a

query, the query is translated into a tree of operators. An

optimizer then modifies the tree to reflect the system deci

sions concerning processing. These optimizations include

rearranging and combining the algebra operators in the fol

lowing manner:

1. sequences of projections on a single relation are

combined into one projection.

2. sequences of selections on the same relation are

combined into a single selection.

3. selections are moved as far down the tree as possi

ble, thus allowing them to be performed earlier.

4. common subexpressions are identified and possibly

evaluated.

5. removal of redundant relation operations.

6. combinations of unions and other set operators are

manipulated to minimize the total size of inter

mediate results.

In [HALL75], these transformations are discussed in more

detail and consideration is given to the order in which they

should be applied. Results of experiments performed using
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these transformations are presented. The tree can also be

utilized to represent the choice of access paths for per

forming specific operations.

The PRTV system additionally supports storing this tree

which defines a relation so that no actual tuples are

retrieved until they are needed for output. This allows for

combining and simplifying a sequence of queries that keep

building on the same set.

Smith and Chang [SMIT75] have independently developed

similar techniques for optimizing the performance of a user

query in the relational algebra. Many of the same transfor

mations are presented but then consideration is given to

which operations could run concurrently or if the informa

tion can be pipelined between two operations and to organiz

ing intermediate results so they have the most useful sort

order for the subsequent operation. Clearly, operations

which must be performed on two different relations indepen

dently can be run concurrently (assuming the underlying

operating system supports concurrent processes). For exam

ple, a PROJECT on the EMPLOYEE relation and a SELECT on the

JOB relation can be run concurrently. There are also cer

tain tasks which do not require a full relation to commence

operating. Such tasks can be pipelined, that is, as soon as

a tuple has been evaluated by the first task, it can be

handed to the second task. This technique increases the
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throughput rate and also decreases the amount of intermedi

ate storage required between operations. It should be noted

that this pipelining cannot be done for any operation which

could produce duplicate tuples since they define that each

temporary relation will not contain duplicates. Also note

that this type of pipelining can effectively be achieved by

a single process applying all operations to the tuple. For

example, a SELECT and PROJECT on the same relation can be

combined into a single operation.

In addition, Smith and Chang define a set of implemen

tation procedures for each relational algebra operator. The

procedures for each operator differ in the sort order of the

input relation(s) and output and thus vary in efficiency.

Using these procedures and an operator tree representing the

query, tasks are created "from these procedures in such a

way that the performance of the whole tree of cooperating

tasks is optimized. This is achieved by distributing and

analyzing the effects on sort order of possible implementa

tion decisions, and then creating tasks so as to coordinate

sort order throughout the task tree." By requiring all

intermediate results to contain no duplicate tuples, most

often a sort will be required after each operation. It is

possible that the benefits gained from this additional sort

will be less than the cost of performing the sort.

Pecherer has done theoretical research on efficient
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operations in a relational algebra environment [PECH75,

PECH75a] and also on efficient exploration of product spaces

by nested iteration [PECH76]. When examining the product of

arbitrarily many relations by nested iteration, different

orders of iteration are possible. He compares these orders

with the goal of minimizing the amount of data volume which

must be transferred between secondary storage devices and

main memory. Data relations are assumed to reside on secon

dary storage. Let n± denote the size of relation R. (in

tuples) and b^ the number of bits per tuple of R.. Pecherer

presents the following results. At each step of the itera-

n.b.

tion, the relation R, which maximizes the ratio , should
i n.-1

be selected. When only a subset of the product is to be

retrieved, if the "effectiveness" of individual terms of the

subsetting predicate are known and independent, an expected

optimal order of iteration can be selected in a similar

manner.

There has, in addition, been research on various algo

rithms for implementing the join operator [GOTL75, BLAS75],

Most of these algorithms exploit the use of indices or links

on the join columns or provide for sorting the relations

involved. No specific result of the type method A is always

better was reached but it was determined that there are cir

cumstances under which each method is best. Due to this, it

is generally concluded that given the access paths available
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in a certain situation, an evaluator should be used to

determine the method with the minimum cost.

Yet other systems use a tuple level interface based on

a calculus language and opted for a more direct means of

implementation than translation to a relational algebra or

set interface. Rothnie [R0TH72, ROTH74, ROTH75], while at

MIT, developed a system with a relational calculus language.

He proposed a technique for handling a query involving two

relations with a basic method which is essentially

equivalent to the basic method presented here in Chapter 2.

He then defines three options which can be used as exten

sions of the basic method. These options all use a concept

of back substitution. The values of one tuple from relation

A are inserted in the query resulting in a query which now

involves only relation B. This query is then evaluated.

The tuples of B which satisfy this new query, or the fact

that no tuples satisfy, are then used to limit the remaining

tuples of A which will have their values substituted into

the original query. Experiments performed on certain

queries illustrate that a dramatic reduction in cost can be

obtained using combinations of these options [ROTH74], How

ever, these ideas are not easily extendable to queries

involving more than two relations.

The SEQUEL system [ASTR75, ASTR75a, CHAM74], which was

developed at IBM Reasearch in San Jose, provides a mapping-
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oriented language. Since the SEQUEL system uses XRM

(Extended Relational Memory [L0RI74]) as the underlying

access method, the optimizer is mainly concerned with which

of the XRM-supported inversions to use to limit the tuples

which must be scanned for a given query. The major diffi

culty with this system was found to be the restrictions

imposed by the block structured language. This structure

limited somewhat the flexibility in selecting various orders

of the relations for processing.

Another relational system, called System R, is

currently under development at IBM Research in San Jose

[ASTR76]. System R will support the SEQUEL language as well

^ as other interfaces. The optimizer for this system deter

mines a set of "reasonable" execution paths given the set of

images and links which are pertinent. It then applies a

cost function to determine the minimum-cost method. One of

the most important parameters of the cost function is the

physical clustering of tuples and this is dominant in

selecting the execution method.

The optimizer of System R produces an "Optimized Pack

age (OP)" which contains the parse tree and a plan of execu

tion.. This OP can be used directly to materialize the

requested tuples or it can be saved and executed only when a

specific request is made. Using this feature, it is possi-

f ble to compile queries and then simply execute the OP. Thus
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at execution time, parsing and optimization are avoided. In

a production environment, where the same query is run fre

quently, this can greatly reduce the processing time. How

ever, any time that the underlying structures change, the

original SEQUEL query must be reoptimized to form a new OP.

There are two relational systems under implementation

at the University of Toronto, ZETA [CZAR75, MYL075] and

OMEGA [SCHM75]. Both of these systems are constructed using

a multilevel architecture. In ZETA, the lowest level pro

vides basic tuple-accessing operations, the middle level

performs the interpreting and optimizing for multi-relation

queries, and the top level supports several end-user inter

faces. The system makes extensive use of indices [FARL75].

The OMEGA system uses an internal system language

called Link and Selector Language (LSL). This is an

expression-oriented language which provides subsetting

operations on a relation (selector) and connections between

two relations (links). The dynamic optimization supported

includes choosing a fast access path, i.e., in which direc

tion should a link be evaluated, and determining which of

the existing access structures will cause the fewest data

accesses. They also allow for different orders of evalua

tion of clauses to take advantage of inverted files which

support a selector operation. This is similar to the tech

nique used in the SEQUEL implementation [ASTR75]. Besides
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supporting inverted files (secondary indices) on domains of

relations, they also propose a selector structure', called a

subset element, which contains identifiers for tuples that

satisfy a particular boolean condition. This can be a very

useful tool especially when a particular subset of a rela

tion is frequently referenced. The support for this struc

ture is similar to that of an inverted file except that the

boolean condition must be stored in some canonical form to

identify the structure and the queries which contain the

condition.

There is much work being done currently on relational

systems but these are most of the major systems concerning

the implementation of relations. There are two main areas

for optimization which are considered by all of the systems.

First, the order of accessing the relations to evaluate the

condition on the Cartesian product, and second, making effi

cient use of existing access paths in this evaluation pro

cess.

1.3 Overview of Dissertation

The goal of this work is to explore ways in which the

processing of a query can be performed efficiently. Most of

the ideas proposed can be applied to any relational system.

They will be presented with particular emphasis as to how

they can be used within the INGRES system [HELD75a], since
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that is the system which was used for development. To this

end, in Chapter 2 an introduction to the INGRES environment

is provided and the query language QUEL is introduced. The

implementation of INGRES is discussed in Chapter 3, in par

ticular, the portion of the system which processes the

query. Then, starting with Chapter 4, techniques for effi

cient processing are presented. Chapter 4 is concerned with

transformations which can be applied to the query before

processing begins. These are similar to techniques used in

compiler optimization and those presented by Hall [HALL75]

for the PRTV system. In Chapter 5, a general algorithm for

decomposing a multi-relation query into a series of single

relation queries which depends only on the query and not on

the data structures involved is presented. Then, in Chapter

6, tailoring certain steps of this algorithm to specific

queries and existing access paths is considered along with

dynamic creation of new access paths. The order in which

relations involved in a multi-relation query should be

accessed is examined in Chapter 7. This includes a discus

sion of what are the critical parameters involved in the

cost of processing the query. Since these ideas were

developed using a working relational system, it was possible

to perform some experiments to test the hypotheses of

Chapters 5, 6, and 7. The results of these experiments are

presented in Chapter 8. In Chapter 9, the conclusions are

reviewed and areas for future work are outlined.
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CHAPTER 2

INTRODUCTION TO THE INGRES ENVIRONMENT

Although the ideas presented here are, for the most

part, applicable to any relational database system, it is

easier to consider issues which arise in the discussion in

terms of a specific system and query language. The system

used for this reasearch is the INGRES system and its query

language QUEL.

INGRES (INteractive Graphics and REtrieval System) is a

relational database and graphics system which is implemented

on top of the UNIX operating system [RITC74] developed at

Bell Telephone Laboratories for Digital Equipment Corpora

tion PDP 11/40, 11/45 and 11/70 computer systems. The

implementation of INGRES is primarily programmed in "C"

[RITC74a], a high level language in which UNIX itself is

written. Parsing is done with the assistance of YACC, a

compiler-compiler available on UNIX [JOHN74].

INGRES basically provides three user-interfaces. There

is a terminal monitor which supports the primary query

language, QUEL, and various utility operations. The second

user interface, CUPID, is a graphics oriented, casual user

language [MCD075]. The EQUEL (Embedded QUEL) precompiler

[ALLM76], which allows the substitution of a user-supplied C

program for the terminal monitor, has the effect of
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embedding all of QUEL in the general purpose programming

language "C". The utility operations currently supported

are [STON76]:

1. creation and destruction of relations

2. bulk copy of data

3. modification of the storage structure of a relation

4. miscellaneous commands such as those requesting

information about the database and its relations

In section 1 the query language QUEL will be described.

Then, since the major topic of this research is to determine

efficient ways of processing queries, a general description

of the algorithm used to decompose queries will be presented

in Section 2.

2.1 QUEL: A Relational Query Language

QUEL (QUEry Language) is a calculus based language and

has points in common with Data Language/ALPHA [C0DD71],

SQUARE [BOYC74] and SEQUEL [CHAM74] in that it is a complete

[C0DD71c] query language which frees the programmer from

concern for how data structures are implemented and what

algorithms are operating on stored data. As such, it facil

itates a considerable degree of data independence [ST0M74],

Each query of QUEL contains one or more Range-

Statements and one or more Retrieve-Statements. We shall

use {} to denote "one or more" and [] to denote "zero or
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more". With these conventions the form of a query in QUEL

can be expressed as

Query

= {Range-Statement}{Retrieve-Statement}

Range-Statement

= RANGE OF {Variable} IS {Relation}

Retrieve-Statement

= RETRIEVE INTO Result-Name (Target-List)

WHERE Qualification

Target-List = {Result-DomainzFunction}

The goal of a query is to create a new relation for

each Retrieve-Statement. The relation so created is named

by the "Result-Name" clause and the domains in that relation

are named by the "Result-Domain" names given in the Target-

List. In the frequent case where the Function is simply

Variable.Domain-Name, the Result-Domain name may be omitted

and is then taken to be the same as the Domain-Name in the

Function. Also, if the "Result-Name" is TERMINAL then the

result of the query is displayed on the user's terminal. To

create the desired relation, first consider the product of

the ranges of all variables which appear in the Target-List

and the Qualification of the Retrieve-Statement. Each term

in the Target-List is a function and the Qualification is a

truth function, i.e., a function with values true or false,

on the product space. The desired relation is created by
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evaluating the Target-List on the subset of the product

space for which the Qualification is true, and eliminating

duplicate tuples.

EXAMPLE 2.1.

CITY(CNAME, STATE, POPULATION, AREA)

"Find the population density of all cities in California

with population greater than 50k"

RANGE OF C IS CITY

RETRIEVE INTO W(C.CNAME,DENSITY=C.POPULATION/C.AREA)

WHERE C.STATE="California" AND C.P0PULATI0N>50K

(note the default used for CNAME=C.CNAME and that the

result of the query is a relation W(CNAME, DENSITY).)

It is clear from the above discussion that the basic

quantities used in QUEL are functions of products of rela

tions. The allowed functions can be exceedingly complex and

fall into three categories: (a) Functions resulting from

arithmetical combinations of attributes, (b) Set valued

functions such as "the set of cities for each state", (c)

Aggregate functions obtained by aggregating set functions,

e.g., "total population of the cities of each state". The

precise definition of the allowed classes of functions will

be given recursively as follows: Consider a nested sequence

of sublanguages of QUEL

QUEL0,QUELr...,QUELn,...



19

Let Ci denote the class of all functions and Q. the class of

all qualifications allowed in QUEL^ We first define CQ and

V

co
(a) Any constant is in CQ.

(b) Any attribute is in CQ.

(c) If f and g are in CQ then f+g, f-g, f*g, f/g, f**g and

logfg are in CQ.

(Note: The functions being combined need not have identi

cal arguments. The resulting function is a function

of the union of the variables.)

Qo

(a) An atomic formula in QQ has the form f(comp)g, where

comp is any of the comparison operators: <, <, =, i,

and f and g are in CQ.

(b) QQ consists of all sentences made up of atomic formu

las connected by the Boolean connectives: NOT, AND,

OR.

Comment: A function in CQ will be referred to as an

ATTRIBUTE-FUNCTION. The value of an attribute function for

a tuple depends only on the data contained in that tuple.

This is not true for functions in C± for i>0. A similar

comment applies to Qn as well.

We now proceed to define QUELn recursively. Suppose

X=(X1,X2,•••,Xm) are the declared tuple variables with range
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RsR^xRgX. •*xRm. Let X.f and X.qual be respectively a func

tion and a qualification allowed in QUEL ... We define

SET(X.f WHERE X.qual) as the set of f-values obtained by

evaluating f on the subset of R for which X.qual is true,

i.e.,

SET(X.f WHERE X.qual)

= {X.f: X is in R AND X.qual=true}

EXAMPLE 2.2.

X CNAME STATE POPU

r1 SF CAL 1M
r2 NYC NY 6M
r3 CHI ILL 4M
r4 LA CAL 3M

SET(X.P0PU WHERE X.STATE=CAL) = {1M, 3M}

SET(X.P0PU WHERE X.P0PU>3M) = {4M, 6M}

Comment: By definition a set contains no duplicate values.

However, it is useful to define SET' as the collection

obtained by retaining duplicates, for example,

SET*(X.STATE WHERE X.P0PU<4M) = {CAL, CAL}

The aggregation operators COUNT, SUM, AVG, MAX, MIN, ANY

have an obvious meaning when they operate on sets. If AGG

is any of these operators, we shall adopt the notation

AGG(X.f WHERE X.qual)

= AGG(SET(X.f WHERE X.qual))

and AGG1 will denote AGG(SET!).
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We. shall refer to quantites of the form AGG(X.f WHERE

X.qual) as AGGREGATES. An aggregate depends on the data

contained in the range R but does not vary as X varies. The

appearance of X merely serves to indicate the range. In

this way, it acts as a dummy variable not unlike that in a

definite integral. To put it more precisely, denote a func

tion in Cn by F(X,R) to indicate the fact that in general it

depends on both the tuple X and on R overall. Then we can

say that constants depend on neither X nor R, functions in

CQ depend on X but not on R, aggregates depend on R but not

on X.

Now suppose that f and g are in c •« and qual is in

Qn-1. Define

SET(X.f BY X.g WHERE X.qual)

as a set valued function of X such that it is constant on

any set of X for which g is constant and on such a set it is

given by

SET(X.f BY X.g WHERE X.qual)(X.g = /)

= SET(X.f WHERE (X.g=X) AND X.qual)

EXAMPLE 2.3.

X X.STATE SET(X.CNAME BY X.STATE
WHERE X.P0PU<5M)

r1 CAL {SF, LA}
r2 NY empty
r3 ILL {CHI}
r* CAL {SF, LA}
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The notation AGG(X.f BY X.g WHERE X.qual) is now self-

explanatory, and so are the notations SET'(X.f BY X.g WHERE

X.qual) and AGG'(X.f BY X.g WHERE X.qual).

EXAMPLE 2.4.

X.STATE MAX(X.POPU BY X.STATE
WHERE X.POPU<5M)

r1 CAL 3M
r2 NY 0

r3 ILL 4M
r4 CAL 3M

Note that AGG(X.f BY X.g WHERE X.qual), unlike aggregates,

is a function of both X and R and will be called an

10* AGGREGATE-FUNCTION. It is a function of X through X.g and

only through X.g. Thus, the three appearances of X play a

mixture of roles. This is an objectionable syntactic

feature, which however cannot be repaired by using a dummy

variable for the first and last term. AGG(X'.f BY X.g WHERE

X'.qual) involves aggregation on the product of ranges of X'

and X and means something quite different from AGG(X.f BY

X.g WHERE X.qual). Several possible solutions have been

considered but rejected for one reason or another. In par

ticular, if X is restricted to be a single variable, then

its presence can be suppressed in the first and third term.

For the time being, we have chosen not to impose such a res

triction.
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Set functions of the form SET(X.f BY X.g WHERE X.qual)

can be combined by union, intersection, and relative comple

ment. We can define the class of set functions allowed in

QUELn as follows:

(a) SQ contains all constant sets.

(b) SM includes S„ -.
n n-i

(c) If f and g are in C 1 and qual is in Q « then
n- i n-i

SETCX.f BY X.g WHERE X.qual) and SET(X.F WHERE X.qual)

are in SR as are the corresponding SET' operations.

(d) Sn is closed under union, intersection and relative

complement.

The classes CR and Qn can now be defined as follows:

Cn

(a) Cn includes C

(b) If s is in S then AGG(s) and AGG'(s) are in C .
1 n

(c) If f and g are in C^ and qual in Q^ then AGG(X.f
BY X.g WHERE X.qual) and AGG'(X.f BY X.g WHERE X.qual)
are in C .

n

(d) If f and g are in Cn, then f+g, f-g, f*g, f/g, f*«g
and logfg are in C .

°n
(a) Qn contains Q

(b) If f and g are in Cn, then f(comp)g is in Q , where
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comp is any of the operators <, <., =, £.

(c) If u and v are in Sn then u(set-comp)v is in Q where

set-comp is any of the set-comparison operators inclu

sion, strict inclusion, Equality, and inequality.

(d) If s is in SR and X is a value, then (/ belongs to s)

is in Qn.

(e) Qn is closed under Boolean combinations.

EXAMPLE 2.5.

SUPPLY(SNUM, PNUM, PRICE)
i

Query: Find those suppliers whose price for every part

that he supplies is greater than the average price for

f* that part.

RANGE OF S IS SUPPLY

RETRIEVE INTO W(S.SNUM)

WHERE COUNT(S.PNUM BY S.SNUM WHERE S.PRICE >

AVG'(S.PRICE BY S.PNUM)) = COUNT(S.PNUM BY S.SNUM)

Comments:

(a) It is clear that the Qualification of the Retrieve-

Statement is in Qp.

(b) Instead of using COUNT, we could also have used the

operator SET. In terms of processing efficiency,

COUNT is preferrable.

f^' Update statements are transformed into Retrieve-
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Statements followed by a sequence of insertions and dele

tions. For this reason, all future examples and discussions

will be in terms of Retrieve-Statements but the same reason

ing will hold for updates.

2.2 Decomposition Algorithm

In database management systems, the stored data is of

such large volume and of such long lifetime that it is only

economical to maintain the data on low cost storage devices.

Such devices will be referred to as "secondary storage" dev

ices as opposed to the faster "main storage" which is used

primarily as temporary storage during actual processing. By

the nature of the data in a database system, it will almost

always reside on secondary storage with portions of it being

transferred to main storage for processing. The basic quan

tity of data transferred between main and secondary storage

will be referred to as a "page". It is assumed throughout

this work that the transfer of pages between main and secon

dary storage is costly and that by the nature of database

processing, this page transfer time will be the dominant

cost with actual computation time being small by comparison.

Therefore, the goal of processing a query will be to examine

the information in such a way so as to minimize the number

of page transfers required. As long as there continues to

be orders of magnitude difference in speed between main and
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secondary storage and as long as database processing contin

ues to involve a high ratio of data search to computation,

this will remain a valid goal.

The general algorithm used in INGRES is a uniform algo

rithm to deal with all queries rather than special stra

tegies for special situations. The overall strategy can be

simply stated. Rather than compiling QUEL into a lower

level language, an arbitrary QUELn query shall be decomposed

into a series of one-variable QUEL- queries, at which point

most of the difficult problems have disappeared. Thus, for

QUEL the "optimization" which is necessary for all high

level languages lies nearly entirely in decomposition.

The overall strategy has two parts: (a) A QUEL query;

will be replaced by a series of QUEL „ queries and one-
n-i

variable QUEL.J queries. (b) A multivariable QUELQ query

will be decomposed into a series of one-variable QUEL

queries. Thus, repeated applications of the algorithm will

decompose any QUELn query into a series of one-variable

queries in QUEL.J or QUELQ.

Consider a query involving one or more tuple variables

X=(X1 ,X2, •.. ,Xn) with range RrR^R^.. «xRn. Denote the
qualification by Q(X) and suppose Q(X) is expanded into con

junctive normal form so that it consists of clauses con

nected by AND with each clause containing atomic formulas or

their negation connected by OR.



jsspn.

(a) QUEL„ -> QUEL„ ,
n n-1

27

Suppose the query contains an aggregate function

AGGCX.f BY X.g WHERE X.qual) where f and g belong to C

and qual belongs to Qn_r Create the aggregate function and

store it in a temporary relation, TEMP. Add a new variable

Z with range TEMP to the query, replacing the occurrence of

the aggregate function by a reference to the appropriate

domain of TEMP and add any necessary linking terms to the

qualification.

EXAMPLE 2.6.

CITY(CNAME, STATE, POPULATION, AREA)

RANGE OF C IS CITY

RETRIEVE INTO W(C.STATE)

WHERE COUNT(C.CNAME BY C.STATE WHERE C.P0P<4M) > 0

is replaced by

RANGE OF C IS CITY

RETRIEVE INTO TEMP(A=C.STATE, B=COUNT(C.CNAME BY C.STATE

WHERE C.P0P<4M))

and

RANGE OF C,Z IS CITY,TEMP

RETREIVE INTO W(C.STATE)

WHERE Z.B > 0 AND C.STATE r Z.A
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If the query contains an aggregate AGG(X.F WHERE X.qual),

the result created is a single value so it is not neces

sary to create the temporary relation. This value simply

replaces the aggregate in the query.

(b) Multivariable QUELQ -> One-Variable QUELQ

(0) Stop if query is already one-variable.

(1) For each variable, say X- with range R,, collect all

the attributes which depend on X1 and all the

clauses in the qualification which depend only on

X.. Say D-yDp,'--^. are the attributes, and the

clauses put together yield Q^X-). Issue the query

RANGE OF X1 IS R1

RETRIEVE INTO R,, ' (X1 .D., ,X^ .D2, •••fX1 .Dk)

WHERE Q1(X1)

(2) Replace the range R. of X. in the original query by

v-
Comment: The purpose of (1) and (2) is to limit the

range of each variable in the original query to as

small a relation as possible by selecting the refer

enced domains and by enforcing the part of the qual

ification which operates only on this variable.

(3) Take the variable with the fewest tuples in its

range and substitute in turn the actual values of

its tuples. This reduces the number of variables by

1. After each substitution, repeat (0), (1), (2)
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and (3).

Comment: Step (3) will be referred to as tuple-

substitution and represents the most time consuming

step in the overall algorithm.

Part (a) simply removes all aggregates and aggregate

functions from the query and preprocesses them. Note that

these aggregates and aggregate functions will be answered

using the algorithm presented in part (b).

The algorithm presented in (b) is a general but simple

method for processing any QUELQ query. However, there are

several questions which arise when one considers tuning the

algorithm for specific classes of queries.

One of the most critical steps in the algorithm is

choosing which variable to tuple substitute. What are the

parameters which should be considered when selecting a vari

able for substitution? Is the criterion of always selecting

the variable whose range relation has the fewest tuples a

good choice in general?

Steps (1) and (2) perform projections and restrictions

over all the relations involved in the query. Intuitively,

this appears to be a good strategy, but is it always so? It

is possible that no reduction in size would be gained by

this step or that useful structural characteristics of the

relation would be lost by this operation.
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Notice that steps (0), (1) and (2) are repeated for

each tuple in the range of the variable selected for substi

tution. However, the structure of the query remaining after

the substitution does not depend on the specific tuple value

that is substituted. How can this fact be used to obtain

more efficient processing?

Within this algorithm, tuple substitution is the only

method used for reducing the number of variables. Is there

another technique which can be used either in addition to or

in combination with tuple substitution which will decompose

a multivariable query into a series of one-variable queries?

These are the major issues which will be examined in

the remainder of this work. A combination of analytical and

empirical methods were used to draw the conclusions

presented.
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CHAPTER 3

IMPLEMENTATION

INGRES runs as a set of processes on top of the UNIX

operating system. A process in UNIX is an address space

(64K bytes or less for an 11/40, 128K bytes or less on an

11/45 and 11/70) which is associated with a user-id and is

the unit of work scheduled by the UNIX scheduler. Processes

may "fork" subprocesses. Such processes may communicate

with each other via an inter-process communication facility

called "pipes". A pipe is basically a one direction commun

ication link which is written into by one process and read

by another process. UNIX maintains synchronization of pipes

so that no messages are lost. The INGRES processes communi

cate with each other via pipes.

3.1 INGRES Process Structure

Figure 3-1 shows the INGRES process structure. Process

1 is the process which communicates with the user. It may

take the form of an interactive terminal monitor, an EQUEL

program, or a graphics monitor for CUPID. Process 2 con

tains a lexical analyzer and a parser which recognize syn

tactically correct queries and convert them to a more con

venient form for further processing. Also at this point,

the qualification of the query is converted to conjunctive



i—
*

i l
r
-

I
1

3
—

i i i i
».

L
If5 1 J

U
S

E
R

T
E

R
M

IN
A

L
4

1

• 2

•
I

1

4
"
*

6

L
5

FI
GU
RE

3.
1.

IN
GR
ES

pr
oc
es
s

st
ru
ct
ur
e.

r
o



j^

Jptev

33

normal form. The next process contains all query modifica

tion routines. Here high level protection and integrity

constraints are added [ST0N74a, ST0N74b], This process is

optional and can be deleted if protection is not desired.

Process 4 is where decomposition takes place. This process

decomposes a query into a series of one-variable queries.

These one-variable queries are then passed to Process 5, the

one-variable-query-processor (OVQP), which executes them.

Process 6 contains all code to support the utility commands.

This process is organized as a collection of overlays which

perform the various functions.

Processes 4 and 5 will be described in more detail in

the following section. For a further description of any of

the other processes see [STON76].

The actual accessing of data from all relations is han

dled through the Access Method Interface (AMI). The AMI

language is implemented as a set of functions to perform the

following operations:

1. open and close relations

2. get, insert, replace and delete tuples

plus other associated actions.

3*2 Decomposition Processes

In the future, Process 4 will be referred to as Decom

position and Process 5 will be called OVQP. Decomposition
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receives the query after all parsing and query modification

has been performed. At this point, the qualification is in

conjunctive normal form so that it consists of clauses con

nected by AND with each clause containing atomic formulas or

their negation connected by OR.

The specific implementation of the general decomposi

tion algorithm presented in Chapter 2 will now be discussed.

Let Q be an aggregate-free query in variables X„tX„.•••,X
1' 2* ' n

with range relations R.|,R2,'--,R respectively. Let RESULT

denote the result relation for Q. The following routines

will then operate on Q(R1,R2,...,Rn, RESULT).

#* decomp(0, R., ,R2, •••,Rn, RESULT)

{

if (Q is one-var or 0 is zero-var)

call_ovqp(Q, SOURCE, RESULT)

else

{

detach_one_var(Q)

exec_one_var(Q1,•••,Qn,R1,•••,Rn)

decompKQ', R'-jf-.R1 , RESULT)

decompKQ, Rr...,Rm, RESULT)

{



#*"

i = select^varCR..,... ,R )

detach_one_var(Q.)

refon,at(«ii,--»VRr — 'Hi-i'Bi+r •••.»«>
w

{

while (get_tuple(R.))
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exec_one_var(Qi1i...,Qim(Rl>...(Ri_i(Ri+i(...iRm)

if (Q'j, is one-var or Q» is zero-var)

eall_ovqp(Q«±f SOURCE, RESULT)

else

decomp1(Q'i,R'l/..,R.i_i,R.i+i,...,Rfm>
RESULT)

call_ovqp(Q, SOURCE, RESULT): This routine writes the query,

the name of the source and result relations and cer

tain bookkeeping information into the pipe between

Decomposition and OVQP. It then awaits a response

from OVQP as to whether an error occurred or the

query was answered. In the case of a user error,

the error message is returned through the pipes to

the user and processing of the query is terminated.

detach_one_var(Q): This routine first examines the qualifi

cation of Q. For each variable X±l if there is a
one-variable clause in x± it is detached from Q and
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added to the qualification of Q.. After all one-

variable clauses have been detached from Q, this

results in a new query Q'. Then for each Q. which

has a non-void qualification, all domains of R.

which are referenced by Q» are included in the tar

get list of Qi# The result of this routine is thus

a new query Q' which contains no one-variable

clauses and a set of queries {Q.} such that each Q.

is a one-variable query in X..

exec_one_var(Qt,...,Qk,R1,...,Rk): This routine accepts the

one-variable queries created by detach_one_var(Q)

Jk and executes them, thus resulting in a new range R»

for each Xi for which Q± exists. There is one

exception: if the target list of Q. is empty for

some j, this means the one-variable clauses were

disjoint from Q. In this case, it is not necessary

to create a new range R* since X. is no longer

referenced by Q1. It is only necessary to verify

that at least one tuple of R. satisfies Q,. If so,
J J

processing continues as if Q were not present. If

no tuple of Rj satisfies Q., then no tuple satisfies

Q and a null result is returned to the user.

This routine is the main routine which requires

communication with Process 6, the database utilites.

X In order to create the new ranges, R' it is neces-
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sary to write the name of the new relation and its

domains to the utility process so the CREATE func

tion can do the appropriate system bookkeeping. The

relations so created are temporary relations and are

later destroyed (by calling the DESTROY function in

Process 6) prior to completion of the query.

select_var(R1,...,Rk): This routine selects the variable for

which tuple substitution will be performed.

Currently, it compares the range sizes of all vari

ables appearing in Q and chooses the variable whose

range has the minimum number of tuples. The index

of this variable is the value returned.

Since it was recognized that the criterion of

minimum range size may not be the best, this routine

and its usage was organized in such a way that a new

criterion may be inserted without effecting the rest

of the decomposition process.

reformat(Q1,...,Qk,Rl,...,Rk): When a variable has been

selected for substitution, a large number of queries

each with one less variable will be executed. And,

the structure of these queries is always the same,

that is, it does not depend on the particular tuple

value substituted. If, after substitution, there

are one-variable clauses in some variable X., it is

possible to modify the structure of R. so that the



38

domains used in Q± are keys. This will expedite the

execution of Qi each time it is performed during

tuple substitution.

The operation of reformatting involves several

steps. First, if Ri is already structured such that

some of the domains of Q^ are keys, it is not neces

sary to reformat R±. If R± is a small relation or

Qi will be executed only a few times, the cost of

reformatting R^^ can be greater than the cost of per

forming the query without the modify. A crude cost

estimate function is included in this routine to

eliminate the obviously bad cases for reformat.

\. Once it has been determined that R. should be

reformatted, the appropriate keys are determined by

examining the qualification of Q±. Then a call is

issued to the MODIFY function in Process 6 to modify

the relation Ri to a hashed structure on the deter

mined keys. (Currently, only modify to hash is sup

ported by reformat.) These steps are peformed for

each Xi for which Qi is non-empty.

One further comment should be made. If R. is the

user's relation (i.e., not a temporary relation),

then a copy is made of R^^ into a temporary relation

and this temporary relation is then modified. The

m>.. user's relation will remain unchanged.
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get_tuple(Ri): This is a call to the access method GET func

tion which returns the next tuple of R. into a named

buffer. If there are no more tuples, a special

value is returned.

That concludes the discussion of Decomposition, but

since OVQP is an integral part of the decomposition process,

a short description of its functions will also be presented.

OVQP is concerned solely with the efficient accessing

of tuples from a single relation given a particular one-

variable query. There are two major parts to this program:

STRATEGY and SCAN. STRATEGY is the first step. It deter-

(P mines what key (if any) may be profitably used to access the

relation, what the value(s) of that key will be to limit the

scan of the relation, and whether the access can be accom

plished on the relation directly or if a secondary index on

the relation should be used. If a secondary index is to be

used, then STRATEGY must determine which one of possibly

many to use.

Then, SCAN processes the tuples retrieved according to

the access strategy selected. This involves evaluating each

tuple against the qualification of the query, creating tar

get list values for the tuples qualifying and disposing of

these tuple appropriately. At the time the qualifying

#*. typles are inserted in the result relation, it has a non-
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keyed structure and no checking for duplicates is performed.

Thus, duplicate tuples can appear in the result relation

when OVQP has finished its processing.

OVQP receives a one-variable query, the source relation

and the result relation for that query, and a value which

signifies whether the structure of this query is the same as

the last query it processed. Note that when Decomposition

gets a two-variable query, it will substitute values into

the query for one of the variables and then pass the remain

ing one-variable query to OVQP. And, it will do this for

each tuple in the first variable's range. So the query that

OVQP receives will be the same each time except for certain

constants. Recognizing this fact means that OVQP will not

have to select an access strategy every time, it will just

use the same strategy for the whole set of queries changing

the appropriate limit values.

Once the query has been processed by OVQP, it returns a

value as to whether the processing was successful or an

error occurred. If it was successful, OVQP awaits the next

one-variable query and Decomposition continues its process

ing. If an error occurred, an appropriate error message is

returned to the user and Decomposition and OVQP both reset

themselves to await a new query. Once processing of the

entire user query is successfully completed, the user is

informed and Decomposition and OVQP are initialized for a
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new query.
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CHAPTER 4

TRANSFORMATIONS

Even though a query in a relational database system

does not specify an algorithm for finding a result as a com

puter program does, there is a similarity between the two.

Often what one wishes to find as the result of a query can

be stated in more than one way. Although the answer does

not depend on how the query is expressed, the precise

expression may have an effect on how it is processed just as

the statement of an algorithm within a program can have an

effect on its run time. After examining some of the tech

niques used in compiler optimization [BAUE74, ALLE72], it

was recognized that a similar methodology could be applied

to queries to obtain more efficient processing. This metho

dology includes determining characteristics of queries which

would lead to efficient processing and a means of achieving

such characteristics.

The characteristics which are of interest are those

which are applicable to all queries without regard to the

specific data that is referenced by the query. For this

reason, the techniques proposed only need to be applied once

per query prior to being executed by the query processor.

So these transformations will be applied after parsing and

query modification have been performed but prior to
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decomposition.

The preprocessing proposed consists of examining each

query to determine whether it possesses any characteristics

which would lead to inefficient processing and, if so,

applying a sequence of transformations which will produce

the same result as the original query. Such transformations

will provide improvement in terms of processing costs.

Similar ideas have been proposed by Hall for the PRTV System

[HALL75].

To determine what transformations are useful, it is

necessary to have a set of goals, or desirable characteris

tics of queries which might serve as the target of the

transformations. Such characteristics of queries are

described in Section 1. In the remaining sections, the pro

posed transformations are categorized and discussed in some

detail.

4.1 Desirable Query Characteristics

To define the characteristics of queries which will

lead to more efficient processing it is necessary to under

stand the effect of the form in which a query is expressed

upon the way in which it will be answered. It is assumed

(as discussed in Chapter 2) that at the time the query is

received, the qualification is in conjunctive normal form.
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The following is a list of certain characteristics of

queries which would be beneficial to further processing.

1. Each clause contains a minimum number of constants.

2. Each clause is in simple form, that is, it has a

minimum number of operators.

3. Each clause/target list contains as few variables

as possible.

4. All single relation restrictions which can be

inferred from the query should be stated explicitly

as clauses.

5. All constraints are consistent.

a The main fact considered here is that when a one-

variable query is being processed only certain clauses are

used to attempt to limit the number of tuples which must be

scanned. These are clauses of the form "Variable.domain op

constant" where op <{ =,<,<,>,>}. By combining con

stants, it is likely that more clauses will be of this form

and will therefore be used to reduce the amount of work

involved in answering the query. For example, "E.salary/2 =

1000" is equivalent to "E.salary = 2000" and the latter form

can be used more effectively. Another advantage is that if

the constants are combined in this pre-processing step, this

need only be done once. However, if it is done at the time

the query is interpreted by OVQP, these calculations may

* have to be done many times as a result of tuple
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substitution.

One of the advantages of the second characteristic is

also to decrease the amount of work in interpreting the

query by OVQP. If an expression has been simplified, the

number of operations to compute its value will be close to

minimal. However, achieving this characteristic can also

help to achieve the third characteristic, reducing the

number of variables appearing in a clause. By using the

laws of algebra and boolean logic it is possible to elim

inate variables from a clause.

The value of the third characteristic can be realized

if it is recognized that a clause involving n variables

represents a condition to be verified on the n-fold carte

sian product of their range relations. Therefore, each

clause should contain as few variables as possible. So, if

a clause can be replaced by one with fewer variables without

changing the overall meaning of the query, it would be

advantageous to do so. For example, X.a = Y.a AND Y.a =

y is semantically equivalent to X.a = / AND Y.a = y and

the latter form is clearly preferable.

If a condition on an n-fold cartesian product must be

verified, the relations involved should be as small as pos

sible. Thus, if tuples which will not be of interest in the

final product can be eliminated beforehand by adding a sin

gle relation restriction which is inferred by the other
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constraints, such an additional restrictive clause should be

included in the qualification. For example, X.a >

y AND Y.a > X.a implies Y.a > y and this one-variable

clause in Y will restrict the size of the range of Y and

thus the size of the cartesian product in the ranges of X

and Y which must be examined.

Any conditions which can be verified without referenc

ing the data should obviously be performed. Usually this

will require examination of several clauses together and

determining their consistency with each other. For

example, X.a > y AND X.a < Y.a AND Y.a < y - 1 con

sidered together are inconsistent and thus the result of the

query will be empty. Conditions of this form can often be

recognized prior to processing the query and it is clearly

advantageous to do so.

It should be realized that these characteristics are

not all feasibly obtainable. In the following sections,

specific transformations to achieve these characteristics

are proposed and shown to preserve the overall meaning of

the query. Also included is a short discussion of their

value and applicability. The transformations are grouped

according to the desirable query characteristic which they
are trying to achieve.

4.2 Minimizing the Appearance of Constants
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Transformation 2.1: combine several constants into a sin

gle constant.

attr.j op p relop attr2 op /

-> attr^ relop attr2 op 6*

where 6 = f(p, y) and op < {+, -, *, /}

and relop 4 {<, <, >, >, =, *}

Example:

X.a + 5 > X.b - 3 -> X.a > X.b - 8

This transformation can only be applied when all values

involved are elements of the field of real numbers. Since

it involves only real numbers , it is an equivalence

transformation by virtue of the existence of inverses and

identities for addition and multiplication in the real

number system.

This manipulation can be very useful and is practical

in simple cases, namely where each term in the expression is

a single attribute or a constant. To apply this transforma

tion to all possible cases would require the use of a gen

eral theorem prover to produce the resulting clause. This

would be very costly in both time and space, and would, in

most cases, outweigh the benefit.

If this transformation takes into account which domains

the relations are keyed upon and tries to isolate such

domains from the constants, this would allow much more
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effective use of the available access paths. However, this

enhancement is not in the spirit of keeping these techniques

independent of the structure of the data involved.

Transformation 2.2: if a clause contains only constants,

evaluate the clause to true or false. If true, the

clause can be eliminated from the query. If false,

processing can be terminated and a null result

returned.

This is an equivalence transformation by the truth

table of the boolean operator AND, and is applicable for all

values, real numbers and characters.

The relative cost of this transformation is very small

and an interpreter to evaluate a constant clause already

exists within the system. However, the likelihood of such a

situation arising in the user's query is quite small.

Transformation 2.3: if the constant zero (0) appears

within any expression, the expression can be simpli

fied.

1) expr +,- o -> expr

2) 0 +,- expr -> (+)- expr

3) expr * 0 -> 0

4) expr / 0 -> undefined (user error)

X 5) 0 / expr -> o
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This transformation is valid for all real numbers. 1

and 2 are equivalence transformations by the existence of

identities for addition; 3 and 5 can be proven to be

equivalence transformations using the identity axioms, the

uniqueness property of multiplication and the distributive

law; and 4 is a system defined property.

If this situation occurs, it is quite advantageous to

recognize, but it is probable that this transformation will

be applicable quite infrequently.

Transformation 2.4: if the constant one (1) appears as a

denominator in a division or as an element of a multi

plication, it can be removed.

This transformation also holds true for all real

numbers and is an equivalence transformation by the

existence of an identity for multiplication.

T&e same comment made for 2.3 holds here although the

benefit of this transformation may not be as great as that

of 2.3.

4.3 Simplification of Clauses

Transformation 3.1: a simple attribute divided by itself

can be replaced by the constant 1.

X.a / X.a -> 1
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This conversion only works when the simple attribute

represents a non-zero real number and it is an equivalence

transformation by the cancellation law in the field of real

numbers.

In this simple form, the transformation is nearly free,

although it may not be a common occurrence. To expand it in

more general terms, i.e. expr / expr -> 1, could require

both a pattern matching algorithm and a theorem prover.

Transformation 3.2: reduction of a common attribute in a

single clause.

#^. x-a QPt expr relop X.a -> 1 op1 expr relop 1

where OP.J < {*, /} and X.a i 0

and relop < {<, <, >, >, =, £}

Example:

X.a * Y.b > X.a -> Y.b > 1

(Comment: if x.a < 0, then the direction of the relop must

be changed for the result of the transformation.)

X.a op2 expr relop X.a -> op2 expr relop 0

where op2 < {+, -} and relop <{<,<,>,>,=, £}
Example:

X.a + Y.b > X.a -> Y.b > 0

(It should be noted that the resultant clauses will be sim-

s* plified further in the case where op1=* or op?=+.)
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This transformation only holds true for values from the

field of real numbers. It can be shown to be an equivalence

transformation by using the inverse axioms and the cancella

tion laws of the real number system.

Again, this transformation is relatively inexpensive in

its simple form since the query is in tree form when it is

being examined. To recognize the common attribute when it

appears within expr and determine if the transformation is

applicable is not as easy a task. Also, JLf the attribute

does not appear alone on one side of the relational opera

tor, determining what is the common attribute and if it can

be cancelled out becomes more difficult.

Transformation 3.3: reduction of attributes constrained to

equality.

attr(| / attr2 relop expr AND attr.. = attr2

-> 1 relop expr AND attr.. = attr?

Example:

X.a / Y.b > Z.c AND X.a = Y.b

-> 1 > Z.c AND X.a = Y.b

This reduction is only valid for real numbers, where

attr,j and attr2 are non-zero, and is an equivalence

transformation by the identity axiom on the field of real

numbers.
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Since this transformation is limited to a simple form,

there is little cost incurred in the recognition of it, and

it can reduce the size of the cartesian product which must

be examined for verification of the first clause.

Transformation 3.4: a clause which is logically negated

can be simplified.

!(expr relop expr) -> expr !relop expr

where !relop is then simplified

and relop 4 {>, >, <, <, *}

Example:

!(X.a > Y.b) -> X.a < Y.b

This transformation holds true for all possible values

for the expressions involved and the two clauses are

equivalent by virtue of the logical negation operator.

The cost of this operation is quite small. The rela

tional operator '=' was excluded because it is of no more

benefit to have expr != expr than !(expr = expr) in terms

of processing. It can be added or excluded with no obvious

difference.

4.4 Minimization of .The Number of Variables per Clause

Transformation 4.1: propagate any constant values.

X.a = p AND expr relop X.a
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-> X.a = p AND expr relop p

Example:

X.a = 5 AND Y.b = X.a -> X.a = 5 AND Y.b = 5

This transformation is valid for all values and is an

equivalence transformation by the transitive property of

equality.

The operation is performed very simply by examining

binary maps of clauses vs. attributes. Once the one-

variable clause is recognized, every other occurrence of the

variable.domain combination can be replaced by the constant.

Transformation 4.2: if a variable not appearing in the

target list is involved in a simple comparative clause,

it can be replaced by the aggregate MIN/MAX.

expr >[<] Y.a AND Y A tl

-> expr >[<] MIN[MAX](Y.a)

Example:

RETRIEVE (X.a) WHERE X.b > Y.c

-> RETRIEVE (X.a) WHERE X.b > MIN(Y.c)

This is a valid transformation for all values. Since

the variable does not appear in the target list, it is an

existentially quantified variable and it is only necessary

to find the existence of one such value that satisfies the

clause. So, if expr > MIN(Y.a) it is greater than at
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least one value of Y.a.

This operation does not directly reduce the number of

variables in the clause but it effectively does. All aggre

gates, in this case MIN/MAX, are pre-processed by decomposi

tion and replaced by constants. So when the original query

is processed, this clause will be expr > p, where

p = MIN/MAX(Y.a).

The benefit of this transformation can be realized when

the cost of processing just that clause is considered. If

expr contains only one other variable (say X), then before

the transformation the cost is X * Y. However, after the

transformation, since MIN/MAX is done separately, the cost

is Y + X.

If expr contains no variables, this transformation

should not be applied since it is already a one-variable

(disjoint) clause which will be done prior to processing the

remainder of the query.

Also, if the variable Y appears in any other multivari-

able clauses, this transformation should not be performed.

In this case, the cost of scanning R(Y) to find the MIN/MAX

is added, but R(Y) will have to be examined again to satisfy

the multivariable clauses in which it appears.

If it appears in only one-variable clauses elsewhere,

the transformation should be:
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Y 4 tl, expr > Y.a AND Y.b = p

-> Y 6 tl, expr > MIN(Y.a WHERE Y.b = p)

That is, the one-variable clauses should restrict the range

over which the MIN/MAX is determined.

4.5 Inferred Restrictions

Transformation 5.1: if a one-variable clause is implied by

other constraints, it should be added.

X.a relop1 p AND Y.a relop2 X.a

-> X.a relop1 p AND Y.a relop2 X.a AND Y.a relop, p

where relop^^ < (<,<»>, >, =}

Example:

X.a > 5 AND Y.a > X.a

-> X.a > 5 AND Y.a > X.a AND Y.a > 5

The determination of relop^ given relop. and relop-

follows these rules:

1. relop«j = '<♦ and relop2 = »<', »<» , »=»

-> relop- = ♦<'

2. relop1 = '>» and relop2 = '>♦, »_>» , '='

-> relop- = '>»

3. relop.! = '<♦ and relop- = »<' , '=»

-> relop- = f<.»

4. relop1 = ♦<.' and relop2 = '<»



56

-> relop- = '<'

5. relop1 r ♦>♦ and relop- = »>', »='

-> relop- = '>'

6. relop. = '2f and relop- = '>♦

-> relop- = '>'

If relop^ = ♦=♦, then this is transformation 4.1. Any other

combinations of relop. and relop- do not produce valid

inferences.

This is an equivalence transformation by the transitive

property of ordering and is valid for all values.

This transformation is inexpensive and can greatly

reduce the size of the cartesian product over which the mul-

tivariable condition must be verified. It is true that an

extra clause is being added, but the only time the addition

of this clause will not reduce the cost of processing is

when all tuples in the relation satisfy the restriction.

4.6 Consistency of Constraints

Transformation 6.1: if two or more clauses are inconsistent,

processing can be terminated ' and a null result

returned.

Since this transformation is performed by solving a

linear program, only those clauses involving real numbers,

not characters, can be included in the check for incon-
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sistency.

Consider each unique variable.domain pair as a variable

in the linear program. Then the constraints can be written

as:

^aiJXj = bi i = 1>'-»»no' of constraints
w

and Xj > 0 j = 1,...,no. of variables

This is the canonical form for a linear program and there

are standard manipulations available which can be used to

convert any linear program to this form (see [DANT63]).

The problem which needs to be solved is that of finding

an initial basic solution. If there exists a feasible solu

tion, then there are no inconsistent constraints.

Convert

fij'V • bi

x • > 0

to

fij'V +*i =bi

x • > 0

y^ > o



and insure that all b. > 0.

For this set of constraints, there is an initial basic

solution, namely x ' = 0 for all j, and y. = b..

So the following linear program can be solved using the

simplex method.

min ly±

s.t. fij'V +yi =bi

x .' > 0

Y± > 0

There are two possibilities for the result:

min 2yj_ > 0 => no feasible solution

=> inconsistent constraint

or

min ^ =0 => feasible solution
i

=> constraints consistent

This linear program is a fairly simple one a'nd since the

number of iterations for the simplex method is usually

related only to the number of constraints, it should not

require many iterations to solve. Even though this is true,

setting up and solving this linear program will, on the

average, not be worthwhile.



59

CHAPTER £

QUERY PROCESSING TECHNIQUES

The decomposition algorithm as stated in Chapter 2 is

both a general and simple method for processing any query.

However, it is by no means the most efficient method of pro

cessing for all queries. Within this chapter, the decompo

sition algorithm will be analyzed to determine if certain

options can be added to make it more efficient but still

allow it to be a uniform algorithm for all queries. So the

ideas presented here are applicable to all queries without

regard to the specific relations involved or their storage

characteristics. In Section 1, the technique of tuple sub

stitution is presented formally and possible enhancements to

it are discussed. A different means of reducing the number

of variables in the query, which was originally proposed by

Prof. E. Wong, is called reduction and this technique will

be discussed in Section 2. In Section 3, combining the

methods of reduction and tuple substitution is considered as

a processing strategy. Finally, in Section 4 a detailed

algorithm for processing a query using our proposed policy

is presented and the proposed policy is then analyzed

theoretically in Section 5.

5.1 Tuple Substitution
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An n-variable query implicitly requires verification of

certain conditions on the n-fold cartesian product of the

range relations. It is possible to examine this n-fold pro

duct on a tuple-by-tuple basis. Consider the following

example.

EXAMPLE 5.1

RANGE OF (S,Y) IS (Supplier, Supply)

RETRIEVE (S.Sname) WHERE (Y.S#=S.S#)

Suppose that the range of Y is the relation

S#

SUPPLY 101

107

203

Then, successive substitution for tuples from the range

of Y yields

Q(101): RETRIEVE (S.Sname) WHERE (101=S.S#)

Q(107): RETRIEVE (S.Sname) WHERE (107=S.S#)

Q(203): RETRIEVE (S.Sname) WHERE (203=S.S#)

By appending the results of these three queries, the

result of the original query is obtained.

This example illustrates the technique called tuple

j»v substitution. By successive substitution of a value for
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each variable except the last, a series of one-variable

queries are generated. Each of these queries represents a

portion of the cartesian product. In its simplest form,

values are substituted for each variable until a one-

variable query remains and then the restriction and projec

tion are performed at the time the one-variable query is

processed. In general terms, an n-variable query 0 is

replaced by a family of (n-1)-variable queries resulting

from substituting for one of its variables tuple by tuple,

i.e.

Q(XrX2,...,Xn) -> (Qg'(X2,X3,...,Xn), p4 R^

However, tuple substitution alone is equivalent to creating

the cartesian product, so this technique simply provides a

way of processing which is easier to handle on a computer,

mainly a computer with limited storage. But certain steps

which have beneficial results can be performed in conjunc

tion with tuple substitution which could not be so easily

done when creating the entire cartesian product at once.

5.1.1 Enhancements to Tuple Substitution

Consider first the fact that tuple substitution for a

single variable means that the cost of processing the

remainder of the query is multiplied by a factor equal to

the cardinality of the range of the substituted variable.

Therefore a logical selection procedure for choosing the
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substitution variable is the smallest range size first.

Now it is possible to make some of the ranges involved

even smaller by performing any single variable restrictions

which appear in the query prior to substitution. Consider a

simple two variable query in the variables X and Y with

their respective ranges, R(X) and R(Y). The cost of pro

cessing it by tuple substitution alone is the product of the

two range sizes, |R(X)I*jR(Y)|. If there is a restriction

on the range of X it can be done at a maximum cost of |R(X)!

(implying a complete scan of the relation), resulting in a

new range R'(X). Now tuple substitution is performed over

the restricted range of X at a cost of |R' (X) !*jR( Y) j. For

the new method to do better than tuple substitution alone,

!R(X)J + !R'(X)}*!R(Y)| < !R(X)|*jR(Y)i which is true when

ever more than a single tuple is eliminated by the restric

tion, assuming |R(X)J < |R(Y)|.

This procedure of performing restrictions before sub

stitution can be performed at every level of substitution.

And, if it is recognized that through substitution, new

one-variable restrictions are created, this step can be very

beneficial.

Another tool which can be used to reduce the range

sizes is the elimination of unnecessary domains from a rela

tion (selection of columns). This step can be performed in

conjunction with restriction or it can be done even if a
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restriction over a relation is not present. Its main func

tion, when combined with some sorting technique, is to elim

inate duplicate tuple values in a single relation which

would result in duplicate tuples in the final cartesian pro

duct. It also reduces the tuple width which reduces the

number of pages in storage required by that relation. How

ever, the extra cost of sorting the relation is incurred in

order to determine duplicate tuple values.

5.2 Reduction

Both of the steps mentioned in 5.1.1 attempt to

decrease the cost associated with tuple substitution. A

different approach to the problem is a technique referred to

as reduction. This method attempts to construct the result

relation by assembling comparatively small pieces rather

than by paring down the cartesian product. This idea takes

advantage of the fact that often portions of a query "over

lap" on a single variable. In general terms, a query Q is

replace by Qf followed by 0" such that Q» and 0" have only a

single variable in common.

Consider a query of the form

RANGE OF (XrX2,...,Xn) IS (R,, ,R2, ...,Rn)

|f~. Q RETRIEVE T(XrX2,...,Xm)
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WHERE B"(XrX2,...,Xm)

AND B'(Vxm+r--"V

It is natural to break off Bf to form

RANGE OF (Xm,Xm+1,...,Xn) IS (Rm,Rm+1,...,R„)

Q1 RETRIEVE INTO R ' (T'(X ))
m m

WHERE B'(X.X -,...,XJ
m7 m+1' 7 n

where Tf(Xm) contains the information on X needed by the
ra m J

remainder of the query which can now be expressed as

RANGE OF (XrX2,...,Xm) IS (R1 ,R2,. ..,Rn»)

Q" RETRIEVE T(X<| ,Xg, ...,X )

WHERE B»(XrX2,...,Xm)

Note that Q" is necessarily simpler than the original query

Q since m<n. The detachment of Q» does not lead to an

increase in the maximum number of variables for which sub

stitution has to be made. To see this, note that the max

imum number of variables to be substituted for in an n-

variable query is n-1. So, for Q1 this number is (n-m+1)-1

and m-1 for 0" and the total is again n-1. Also, Q1 and 0"

are strictly ordered. Qf needs no information from 0" so

that it can be processed completely before processing on 0"
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begins. At any given time, it is only necessary to deal

with a total of n or less variables.

There are two special cases of one overlapping-variable

subqueries which should be mentioned. First, it may happen

that the detached subquery Q' has no variable in common with

the remainder 0". That is, B» is a function of only

^Xm+1''' *,Xn^ and not of xm" In such a case> Q1 will be
called a disjoint subquery. The interpretation of this case

is that if B» is satisfied by a nonempty set then Q is

equivalent to 0", otherwise the result of Q is empty. The

second case arises when mm and B» is a one-variable query.

This is a quite frequent and important occurrence. A query

is connected if it has no disjoint subquery, one-free if it

has no one-variable subquery, and irreducible if it has no

one-overlapping-variable subquery. An irreducible query is

obviously both connected and one-free. The variable in com

mon between components will be called the overlapping or

joining variable.

It is possible to reduce a query into components which

have two or more variables in common. However the benefits

recognized in the single overlapping case do not generalize

to n-overlapping variables. Consider a query of the form

RANGE OF (XrX2,...,Xn) IS (R1 ,R2,...,Rn)

0 RETRIEVE T(X1,X2,...,Xffl)
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WHERE B»(X1,X2,...,Xm)

AND B,(Vrxm V

which breaks apart into

RANGE OF (Xm.1,Xm,...,Xn) IS (^.R, Hn)

Q» RETRIEVE INTO Rm » (T»(X «,X ))
m-i m-i m

WHERE B»(Xm 1,Xm,...,XM)
m-1 m7 ' n

and the remainder

RANGE OF (X1,X2,...,Xm_1) IS (RrR2,...,Rffl-1')

f^ Q" RETRIEVE T(X1,X2,...,Xm_1)

WHERE B"(XrX2,...,Xm-1)

Note that since the target list of Q» involves both X , and
m-i

xm» xm 1 in °" stands for occurrences of both X ., and X in
m m~' m—1 m

Q.

The major difference is in the amount of information

passed from Q' to Q". In the single overlapping case, this

was only the range of a single variable. In the two over

lapping case, the information needed is the (possibly res

tricted) cross product of the two ranges. So, even though

the maximum number of variables which must be substituted

|Ps for remains the same, the range of one of those variables
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increases. As the number of overlapping variables is

increased, the number of ranges involved in this product

increases. For this reason, reduction was limited to only

the single overlapping variable case.

5.3 Tuple Substitution and Reduction as a Processing

Alternative

It should be noted that even in the ideal case, reduc

tion can only reduce an n-variable query to a series of

two-variable queries. Since the one-variable query was

chosen as the atomic unit for processing, reduction alone

jp* will not suffice. The original proposal presented in

[WONG76] called for a combination of reduction and tuple

substitution such that, if possible, reduction into irredu

cible components was always performed thus delaying tuple

substitution for as long as possible. Detachment of

subqueries involves an additive growth in complexity while

tuple substitution involves a multiplicative growth.

After further study, it was determined that there are

recognizable cases where the act of reducing will do worse

than if no reduction were done. When a query is reduced, a

series of component subqueries result. The only real res

triction on the order of processing of those subqueries is

that if two of them contain the same variable (namely the

overlapping variable), one must be completely processed
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before the next one can be started. However there is

another implied restriction. Consider the query given to

illustrate single overlapping detachment. If we had chosen

to process 0" before Q», the variables of Q» appear in the

target list of the original query 0 so they must also be

passed between the two components in some manner. Either

the product is passed with the range of the overlapping

variable, or the product is saved and only the range of the

overlapping variable is passed (a projection of this pro

duct). In the first case, the range size passed is no

longer necessarily smaller than the original range of the

overlapping variable, which is the same reason that two or

more overlapping variables were not used. In the second

case, after processing Q», it will be necessary to go back

and combine the product created by 0" and the result rela

tion of Q», which is T(Xm). In either case, the cost of

processing Q" followed by Q' is worse than 0' followed by

Q".

So the resulting conclusion is that the component

subquery which contains the original target list should be

the last subquery processed. Unfortunately, this is a

severe limitation to reduction and results in cases where by

reducing, the actual number of tuples accessed is greater

than if reduction were not performed.

EXAMPLE 5.2



Given the following three sample relations

STORE relation

number!city

5!San Francisco {Calif
i
i

91 Los Angeles
7!El Cerrito }Calif

ICalif

SUPPLIER relation

!state

number name ieity istate

199 Koret jLos Angeles {Calif
213 Cannon !Atlanta {Ga
33 Levi-Strauss !San Francisco {Calif
89 Fisher-Price !Boston {Mass
125 Playskool {Dallas {Tex
42 Whitman's {Denver {Colo
151White Stag {White Plains {Neb

ITEM relation

69

{number{name [dept jprice 'qoh !suppli,1

{ 26{Earrings 1 14! 1000 1 20 1 199!
1 118{Towels, Bath 26! 250 1 1000 213!
{ 43{Maze 49 { 325 200 89!
! 106{Clock Book 49! 198 150 125!
! 23{1 lb Box 10! 215 100 42{
} 52{Jacket 60! 3295 300 15!
! 165{Jean 65! 825 500! ^3!
{ 258{Shirt 58! 650{ 1200, 33!
! 120{Twin Sheet 26! 800! 750} 21 3 J
{ 301{Boy1s Jean Suit { 43! 1250! 500{ 33{

perform the following query

RANGE OF (S,Y,I) IS (STORE, SUPPLIER, ITEM)

RETRIEVE (S.number)

WHERE I.supplierrY.number AND S.city=Y.city
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where {STORE} = 3, {SUPPLIER} = 7, and }ITEM{ = 10.

The processing of this query using only tuple substitu

tion and execution of one-variable restrictions would

be the following.

1. Substitute for S since it has the smallest

range.

2. Perform the one-variable restriction,

Y.CitysjB, jB 4 STORE resulting in a new range

RB» for Y which depends on jB.

3. Substitute for Y since it now has the smallest

range.

4. Execute the remaining one-variable query in I.

For the purpose of this argument assume that the cost

associated with substituting for a variable X is }R(X){

+ 2 C(QR). That is, the cost of reading each tuple
p<R(X) P

value to be substituted plus the cost of performing the

remaining query once for each substituted value. So,

the cost of processing 0 by the steps given above is:

Cost(Q(S,Y,I)) = 3 + 2 Cost(0R(Y,D)
f34R(S) P

Cost(0n(Y,D) = Cost(Q„(Y)) + Cost(QR(Y',D)
_P P P

Cost(Qp(Y)) = 7 for each jB

for p = 1st tuple, }R'(Y)} = 1

Cost(Qp(YM)) = 1+ 1*10 = 11

for p = 2nd tuple, !R*(Y)! = 0
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Cost(Qp(Y',I)) = 0

for p = 3rd tuple, }R'(Y){ = 1

Cost(Qp(Y',I)) = 11

So, Cost(Q(S,Y,I)) = 3 + (7+11) + (7+0) + (7+11) = 46

Processing this query using both reduction and substi

tution would involve the following steps.

1. Reduce on the joining variable Y resulting in

two components, one in (Y,I) and the other in

(Y,S).

2. Execute the two-variable subquery in (Y,I)

since S is in the target list. This results

in a new range R' for Y.

3. Execute the two-variable query in S and Y'.

Cost(Q(S,Y,I)) = Cost(Q(Y,I)) + Cost(Q(S,Y'))

Cost(Q(Y,I)) = 7 + 2 Cost(Q0(I))
p4R(Y) P

= 7 + 7*10 = 77

From the data it can be seen that the new range size of

Y after Q(Y,I) is still 7, so

Cost(Q(S,Y')) = 3 + 2 Cost(Qn(Y'))
P4R(S) P

= 3 + 3*7 = 24

Thus, Cost(Q(S,Y,I)) = 101.

It can easily be seen that the cost of reduction in

this case is worse than if no reduction were performed.
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Even though this example illustrates that reduction is

not always a good idea, there are many cases where the bene

fits gained by reduction will be quite large. If the cases

where reduction does not perform as well as substitution

alone are recognizable, it is possible to use the combina

tion of tuple substitution and reduction to determine an

efficient processing strategy.

5.4 Reduction-Substitution Algorithm

The following is a detailed description of the proposed

algorithm which uses both tuple substitution and reduction

as processing options. The processing of a query 0 has

eight major steps. These steps will be presented in the

overall algorithm and then each step will be discussed

further.

Reduction-Substitution Algorithm

0. If Q is disjoint, reduce it. Then for each

subquery, go to step 1.

1. If Q is one-variable, call OVQP (one-variable-

query-processor) .

2. Perform any one-variable restrictions.

3. Select a variable, X±1 for substitution.

4. Is 0 reducible? If yes, go to step 5. If no, go to
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step 7.

5. Should Q be reduced given X±? If no, go to step 7,

else continue.

6. Reduce Q to n subqueries, each of which is con

nected and one-free. For each subquery Q., go to

step 3.

7. Substitute for X±. For each Qi(p), p4X., go to step

1.

This algorithm is both recursive and iterative. It is

recursive in the sense that after a decision has been made

(steps 6 or 7), the same decision process starts over with a

new subquery. It is iterative since this same recursive

algorithm is applied to each subquery of substitution or

reduction.

Let X = (X.j ,X2,... ,Xn) denote the variables of Q and

let T(X) and B(X) denote its target list and qualification

respectively. It is assumed that B(X) is expressed in con

junctive normal form, that is

B(X) = A C,(X)
i 1

where each clause Ci(X) contains only disjunctions of atomic

formulas or their negation. Now consider a binary (0 or 1)

matrix with p+1 rows corresponding to T(X) and the p

clauses, and with n columns corresponding to the variables

X1,,"*,Xn* ^n en^ry °f 1 will denote the presence of a
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variable in a clause (or target list), and 0 will denote its

absence. This matrix shall be called the incidence matrix

of 0.

EXAMPLE 5.3

For the following query

RANGE OF (S,P,Y) IS (SUPPLIER, PARTS, SUPPLY)
RETRIEVE (S.sname)
WHERE S.city="New York" AND P.pname="bolt" AND P.size=20

AND Y.snumrS.snum AND Y.pnum=P.pnum AND Y.quan>200

the incidence matrix is

I S "I P ! Y
T: S.sname jj 1.0 !0

u+
!Ca

+-&
+-S*

J-£*

S.citys"New York" j 1 | 0 ; 0
P.pname="bolt" {0 j 1 jp
P.size=20

Y.snum=S.snum

Y.pnum=P.pnum
Y.quan>200

! 1
-r

1 l0_i^
! 0 i 1 ! 1

! 0 LI

For the Reduction-Substitution Algorithm there are

three steps which require more detailed algorithms. Step 0

requires a test for connectedness, and a means of separating

Q into disjoint components if required. Step 4 requires a

means of determining if 0 is reducible and Step 6 needs a

way of separating Q into components and ordering them if 0

is reducible.

Connectivity Algorithm

Figure 5.1 shows the connectivity algorithm. If the
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connectivity algorithm results in a matrix with a single row

which is not all 1's then the variables corresponding to the

zero entries are superfluous and can be eliminated. If the

final matrix has more than one row, then the sets of vari

ables corresponding to different rows must be disjoint. If

the algorithm records which original rows were combined to

make up each of the rows of the final matrix, then the con

nected components of the query can be separated.



yes

yes

no

i = i+1

form the logical or
of all rows with a 1

in column i

of the rows with 1 in
column i, replace the first
by the logical or and delete

the rest

FIGURE 5.1. Connectivity

76

connected

yes

-*• not

connected
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EXAMPLE 5.4

Consider Example 5.3 modified by the deletion of C,. The

incidence matrix now has the form

i T

I~"c

"HP"

1 1 i 0 I 0
! 1

1 I 0

i 0 i 1
• 0 i 1

Applying the connectivity algorithm, we get successively

! T,C1 i1 !° |Q

44
i 0 M IP

0

lo lo 1-1 !

S 1 p Y

! T,C 1 0 0

.!_?£_>.C,,C- 0 1 1

I c6 0 0 1

T'c1
1 CQrC3;Cr;TC<

{ S ! P ! Y

i 1 i 0 { 0

Hence, the query is not connected and the connected com-

ponents are (T, C.,) and (C2> C^, C5> Cg).
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Reducibilitv Algorithm

Let Q be a connected multivariable query. Observe that

it is reducible if the elimination of any one variable

results in 0 being disconnected. Let a variable with this

property be called a joining variable. Thus, Q is irreduci

ble if and only if none of its variables is a joining vari

able. Joining variables have some important properties

which greatly facilitate the reduction algorithm, and these

are summarized as follows:

Proposition J.. Suppose that X is a joining variable of 0

such that its removal disconnects Q into k connected com

ponents. Then any joining variable of one of the components

is a joining variable of Q, and every joining variable of 0

is a joining variable of one of the components. Further,

successive elimination of two joining variables in either

order results in reducing 0 to the same disjoint components.

proof.

Each joining variable joins a number of components which can

overlap only on the joining variable. Let X be a joining

variable of Q which joins components Q-,Q2, •••,Q. . Let Y be

a joining variable of one of these components, say Q1#
Then, Y joins components Q() 1,Q12,... ,q<| of Q1, only one of
which can contain X, say Qir Therefore, (Q ... ,Q .)

overlaps the remainder of 0 only on Y and Y is a joining
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variable of Q. Conversely, let Y be a joining variable of

Q, and join components Q,•,Q2»,...fQj.. Only one of the set
Ky.-'-.Qj'} can contain X, say Q1 •, and only one of the
set {Qr...,Qk} can contain Y, say Qr Then {Q^ ,... ,q .»}
and {Q2,...,0k} must be disjoint since each Q i>2, can
overlap its remainder in 0 only on X and none of

{Q^,---^.^} contains X. Hence, Q»,...,Q ' are subsets of
01 joined to it only by Y, so that Y is a joining variable

of Qr It is clear that 0 has components {Q_,...,Q.} each
joined by only X, {Cy ,... f0j •} each joined by only Y, and a
component Qxy joined by both X and Y. Elimination of X and

Y^ in ^either order results in disjoint components
{Q2''--.0k.02''---<0j'»0xY} where ^i denotes Q. with X
removed, 0^ denotes Q±' with Y removed and QYV denotes Q„„

ax XY

with both X and Y removed. Q.E.D.

The substance of Proposition 1is illustrated by Figure
5.1.

FIGURE 5.J.. Joining Variables.
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The results of Proposition 1 mean that the irreducible

components of 0 can be found by successively checking each

variable for the possibility of being a joining variable.

Each variable only needs to be examined once, and the order

they are tested is immaterial. Further, since a variable is

joining if and only if its elimination disconnects Q, the

connectivity algorithm can be used for the test.

Take the incidence matrix of 0 and eliminate from it

all rows with only a single "1". Beginning with the first,

eliminate each column in turn and test for connectedness.

Suppose that when column m is eliminated Q breaks up into k

connected components with n ',n2,...,n, variables respec

tively. Then, these correspond to components of Q with

n.j+1,n2+1,... ,nk+1 variables respectively, any pair of which

overlap only on Xm. Now, proceed to test columns m+1,...,n.

Note that each of the variables X -,•••,X occur in only

one of the components so that after the mth column (i.e. the

first joining variable) the tests are performed on matrices

of reduced size.

Each irreducible component of Q corresponds to one or

more rows of the incidence matrix, and can be represented by

the "logical or" of the corresponding rows. Hence, 0 can be

represented in terms of its irreducible components by a

matrix with variables as columns and components as rows.

This shall be called the reduced-incidence matrix.
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Section 5.5 presents a set of guidelines as to when

reduction should be used rather than substitution. Using

those rules and the reduced-incidence matrix of Q, it can be

determined if Q should be reduced given that X. was selected

for substitution. Then it is only a simple matter of com

bining irreducible components to form the appropriate

subqueries.

There are only two basic rules to follow in determining

the order of processing for the resultant subqueries.

1) The subquery containing the original target list

will be processed last.

2) If X± is not in the subquery with the target list,

the subquery containing X± will be processed first.

Any further rules on the ordering require more information

about the relations involved to predict a good ordering.

The first rule above must be followed for reduction to be

more efficient by the reasoning presented in Section 5.3.

The second rule is not required but is logical.

Step 2 of the Reduction-Substitution Algorithm consists

of detaching one-variable clauses appearing in 0 and execut

ing them. This will result in a new range size for each

variable which had a restriction performed.

Step 3 of the algorithm involves selecting a variable

for substitution. This step can be a very critical one in

the processing algorithm and thus deserves more attention.



82

Chapter 7 discusses several strategies for choosing such a

variable.

Step 7 performs tuple substitution. For each tuple in

Rit Q becomes an (n-1)-variable query Q(jB) in the variables

Xif... ,Xi_1 ,Xi+1,... ,Xn. For each p, 0(jB) is then passed to

step 1 of the algorithm. The result of Q(jB) for all p in R,

are accumulated at each step.

An empirical comparison of this algorithm, using the

reducibility rules presented in Section 5.5, with an algo

rithm using only substitution is presented in Chapter 8.

Also compared is this algorithm with the option of always

a reducing (obviously, only if Q is reducible) to all irredu

cible components.

5-5 Theoretical Analysis of The Proposed Policy

The results in the previous section caused a re

examination of the policy to always reduce whenever possi

ble. The discussion to follow assumes that it has a query

and that a variable appearing in the query has been selected

for substitution. The choices available are to reduce the

query or to substitute for this variable. It is assumed

that if reduction is performed, the same variable will be

selected for substitution after the reduction. Thus, there

is a continuity of the selection criterion which is unaf

fected by reduction. It is also assumed that all range
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relations are non-empty.

We introduce the following assumption.

Assumption A. If the substitution variable appears in the

target list of the query and in a one-variable clause, at

least one tuple will satisfy that one-variable clause.

The following notation will be used throughout this section.

Let Q be a query in variables X(|,X2,-..fXn with range rela

tions RrR2,...,Rn. x± = {Rj,}, i=1,...,n. Define V =

{X,j,...,Xn} as the set of variables appearing in Q. If a

variable X^^ is chosen for substitution in 0, the cost of

processing Q by substituting first for X± is assumed to be

f* C(Q) = x± + 2 c(0 which includes the cost of reading
P4Ri "

each tuple value to be substituted plus the cost of perform

ing the remaining query once for each substituted tuple.

CR(0) = cost of processing 0 if Q is reduced

Cg(Q) = cost of processing Q if substitution is performed

C(Q(V)) = C(Q(Xr...,Xn))

C(Q(d)) = 0

The following general result can be stated.

Theorem ±. If a query Q can be split into two disjoint

subqueries (i.e. reduced into disjoint components), it will

be more efficient in terms of processing cost to perform

f this reduction than to substitute for any variable, if
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Assumption A is true.

proof.

Let Q be a query in variables X1fX2>•-•,Xn. Define

Q1(X1,•••,Xm) and Q2(Xm+1»•••»XR) as the disjoint components

and let Q2 contain the target list of Q. Let X. be the

variable chosen for substitution.

Basis of induction

n = 2 which implies that m = 1.

Assume VjL = {XjL} without loss of generality.

where

CR = CCQ^ + 6^C(Q2) = x<1 + 6^2

2 (1+>'jBC(Qp(V-{Xi})))
p<R.

x, + ( 2 yn)x,
1 p<R± P J

V

. if at least one tuple satisfies Q1

0 if no tuples satisfy Q

. if at least one tuple satisfies QD
' P
0 if no tuples satisfy Q„

If X± = X1 then 2 /« = Y±x± > 6., so that C„ > C
p<R. P S - "R

If Xi = X2, then by Assumption A, y.x. > 1

which implies that Cs > x., + x2 > x., +6^ = CR.



Induction step

n = k+1; assume theorem holds for n=k.

CR = Cd^) + 6.,C(Q2)

C = x + 2 C(QR(V-{X.}))
5 X p4Rj_ P 1

where by induction

C(Q(V-{X.})) = C(Q(Xr...,Xk)) = C(Ql(V1-{Xi}))

+ yiC(Q2(V2-{X.}))

then

CS =xi + 2R CC(Q1(V1-{Xi})) + ypc(Q2(v2-{Xi}))]

If Xx < V. then

but y±x± > 6^ so cs > CR.

If X± < V2 then

cs = 2 [1 + C(Q ) + 61C(Qp(Vp-{X1}))]
° P<R. 1 12 2 1
= xiC(Q1) + ^1C(Q2) + O-o^x.
> V
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Therefore, reduction into disjoint components is always

better than substitution for the selected variable, under

Assumption A. Q.E.D.
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Assumption A is required, in the general case, because

reduction is forced to do that one-variable clause as part

of Q2. If it is not satisfied, then

CR = C(Q^) + 6<|xi

as before but now Cg = x^ and the assertion C„ > CR no

longer holds, which is critical in the induction step. But

Assumption A does not appear as a very restrictive assump

tion. Note: under the current implementation of INGRES,

Assumption A is not required in the induction step. Substi

tution for X2 results in a constant clause which will not be

interpreted until a tuple from R1 is retrieved and it will

be interpreted for each tuple of Rr So, Cg = x2 + x2x. if

the one-variable clause in X2 is not satisfied.

Corollary J.. Theorem 1 holds if 0 reduces to n disjoint

components.

This can be easily verified by noting that n-1 components

can be grouped into a single component. This results in two

disjoint components and Theorem 1 can then be applied.

Q.E.D.

If a variable is selected for substitution and then a

decision is made whether the query should be reduced at each

step in the processing strategy, it is not always necessary

to reduce the query to its irreducible components. If a
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query is split into reducible components, then a decision

will be made for each of these components individually

whether it should be reduced further. Due to Proposition 1

the order in which the components are reduced does not

affect the final irreducible components obtained. And, by

not reducing completely at each step, more flexibility in

the processing strategy is gained. The following are guide

lines for how much reduction should be performed given the

role of the variable selected for substitution. The propo

sitions included after these guidelines demonstrate that

such "partial" reductions are possible and illustrate the

means by which they can be achieved.

Let Xi denote the variable selected for substitution.

1) If Xj is a joining variable, the query will be

split into components such that X. appears in every

component (that is, the query will be reduced only

on X± even if there are other joining variables in

the query). Note that the resulting components are

not necessarily irreducible.

2) If X^^ is not a joining variable and does not appear

in the irreducible component containing the target

list, then the query will be split on a joining

variable which will separate the query into com

ponents such that Xi and the target list are in

different components and the component containing
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X± is the "smallest".

3) If Xj^ is not a joining variable and does appear in

the irreducible component containing the target

list, the query will be split on the joining vari

able appearing in the irreducible target list com

ponent.

All propositions make the assumption that the original

query Q is connected or that the disjoint components have

been detached if Q is not connected and that Q is reducible.

Proposition 2. If a variable X is not a joining variable

and X is not in the irreducible component with the target

^ list, then there is a joining variable in the irreducible

component with X which will split the query into two com

ponents such that X and the target list are in different

components,

proof.

The proof will be done by induction on the number of joining

variables in the irreducible component containing X, IC(X).

Assume there is one joining variable in IC(X). Then if the

query is split on that joining variable such that one of the

resulting components is IC(X), X and the target list will be

in different components by definition.

Assume that the proposition is true for n-1 joining vari

ables in IC(X). Let there be n joining variables in IC(X).
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Choose one of those, say J, and make a split on J resulting

in two components, Q' and Q" and X appears in Q". Now,

either the target list is in Q' or Q". If the target list

is in Q', then X and the target list are separated and the

proof is complete. If the target list is in Q", then either

(a) J is still a joining variable of Q",

or (b) J is not a joining variable of Q".

If (a) is true, then Q" can be split again on J until (b)

becomes true. This splitting process will terminate because

there are only a finite number of variables in the original

query and each time a split is done, the Q' portion must

contain at least one variable other than J. So there are a

^ finite number of times that Q" can be split on J.

If (b) is true, then IC(X) now has only n-1 joining vari

ables because J is no longer joining, so, by the induction

hypothesis, the query can be split on a joining variable in

IC(X) such that X and the target list are in separate com

ponents. Q.E.D.

Proposition 3. If a variable X is not a joining variable

and X is not in the irreducible component with the target

list, then there is one and only one joining variable in the

irreducible component containing X which will separate the

query into two components, one containing the target list

(^ and the other containing X.
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proof.

Proposition 2 has already shown the existence of such a

joining variable; this proposition will show its uniqueness.

Trivially, if there is only one joining variable in the

irreducible component with X (IC(X)), this is true.

Assume there are n joining variables in IC(X), J„,...fJ ,
1 n7

such that reduction on any one of them will separate X from

the target list. Split the query on all of them, J„,....J ,
l n7

resulting in at least n+1 components. One of these com

ponents contains J1f...,J and X, namely IC(X). Since each

of the variables Jlf...,J separates X from the target list,

the target list must appear in every component except IC(X).

But, join one of these components, say the one containing

Ji? back with IC(X). Then this new component and any other

component have more than a single variable in common, namely

the joining variable and the target list. But, by defini

tion, any pair can have at most a single variable in common.

Therefore, the target list can appear in only one component,

so there is only one joining variable which will separate X

from the target list. Q.E.D.

Proposition 4. If a variable X is not a joining variable

and not an element of the irreducible component containing

the target list, it is possible to find the "smallest"

subquery containing X and not the target list. That is, it
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is possible to separate the query into two component

subqueries Q1 and Q2 such that X is in Q and the target

list is in Q2 and any other such split will result in X

being in a component which includes Q1.

proof.

Propositions 2 and 3 have already shown that there is always

exactly one joining variable, say J , in the irreducible

component of X which will separate X from the target list.

When the query is split on J , two components, Q and Qp,

result such that Q1 contains the target list and Qp contains

X. If this separation is done so that J is no longer a

joining variable in Q2, the component Q is the "smallest"

subquery containing X and not the target list. The proof of

this statement will be separated into two parts.

*

I. Q2 is a subset of every other component containing X

which results from a split separating X from the target

list.

There are two possible ways that a separation resulting in a

component other than Q- can occur.

(a) there is more than one way to separate the query
»

on J .

(b) there is another joining variable not in IC(X)

which separates X from the target list.

These are the only possibilities since Proposition 3 states

that J is the only joining variable in IC(X) which
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separates X from the target list.

Assume there is a split resulting in components Q1 and Q by

(a), such that Q1 contains the target list and Qp contains
X. Then J must be a joining variable in Qp. So Q can be

split on J until J is no longer a joining variable. But

then this is Q2, so Q2 includes Qp.

Assume there is a split resulting in components Q and Qp by

(b), such that Q1 contains the target list and Q2 contains
X. Then J must also be in Q2 since J is in IC(X) and X is

m Q2. But if J is in Q2 it must be a joining variable in

Q2 and therefore Q2 can be split on J resulting in Q ' and

I Q2" such that X is in Q2" and J* is not a joining variable
in Q2", but then Q2" =Q*. So, Q2 includes Q*

Therefore Q2 is a subset of every other component containing

X which results from a split separating X from the target

list.

II. This is the "smallest" separation, that is, there is no

other separation which results in a component containing X

which is a subset of Q .

Assume there is such a component, Q2, resulting from a split
on Jr J1 must be a joining variable in the irreducible

p component containing Xotherwise Q2 includes Q* by part I.
But, by Proposition 3, then J1 = J* because there is only
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one joining variable in IC(X) which separates X from the

target list. Therefore, Q is the smallest.

Thus, Q2 is a subset of every other component containing X

and not the target list and there is no separation which

will result in a component smaller than Qp. Q.E.D.

After spending a great deal of time comparing the cost

of processing queries using reduction or substitution on a

case by case basis, it was determined that the structure of

the query was the critical parameter and a means of

representing this structure would be most helpful. Several

unsuccessful attempts were made to find a graphical

representation to represent both the structural characteris

tics and the cost associated with that structure. The

graphical representation which was selected for use to aid

the anaylsis depicts only the structure of the query. But,

using this representation and a specific cost function, it

was possible to partition the queries into several groups by

recognizing patterns in the graph. This graphical represen

tation will now be defined and several examples given to

illustrate its use.

Let Q be a query with variables X..,Xp,...,X . Denote

X=X1,...,Xn. Let T(X) be the target list of Q and let B(X)

be the qualification of Q. We assume that B(X) is in con

junctive normal form, i.e.,
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where Ci(X) represents a clause which contains only disjunc

tions of atomic formulas or their negation.

Define a graph G(N,E) to represent Q such that

N = •{X1,X2,•••,X } = set of nodes

ED = set of direct edges

nodes i, j are connected directly if variables i and

j appear in clause Ck such that !C,i = 2. This will

be represented by a solid line between nodes i and

j.

EJD = set of indirect edges

nodes i and j are connected indirectly if variables

i and j appear in clause Ck such that ,'C.! > 2.

This will be represented by a dotted line between

nodes i and j.

Eg = ED U EID = explicit edges

E_ = implicit edges

nodes i and j are connected implicitly if variables

i and j appear in T(X). If variable i < T(X) , node

i will be circled on the graph. All circled nodes

are implicitly connected but no actual edge will be

drawn on the graph.

E - EE U EI

EXAMPLE 5.5.
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Q: RETRIEVE (Xra, Xg.a)

WHERE X2.b=X3.b AND X1 .csXg.c+Xj, .c

N r IX- ,Xp|X-,Xj, j

G(N,ED) G(N,EID)

/
/
A,

x:

G(N,EE) GCN^j)

•* ©
x4 a

N

Nx:

G(N,E)
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A query Q is completelv disconnected if the graph G(N,E) is

disconnected.

A query Q is explicitly disconnected if the graph G(N,E„) is
E
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disconnected.

A completely disconnected query is explicitly disconnected.

Given a graph G(N,E) for a query Q and a variable X. to

be substituted, define Gs(N±f EgfKNjX!^)) as the graph of Q

if X± is substituted tuple by tuple where N. = N-X. . This

involves the following operations on G.

1) remove the node X. from G(N,E).

2) remove all explicit edges from G(N,E) which were-

connected to the node X..

Define GR = {G.} as the graph of Q if the query is reduced

given that Xi was selected for substitution.

^ 1) reduce Q on the appropriate joining variable, X.,

resulting in n subqueries.

2) create a graph G. for each of the n subqueries.

The node circled (i.e. the variable appearing in

the target list) in graphs G1,...,Gn^l will be only

X. with the understanding that Q corresponding to
j n

Gn contains the original target list of Q.

EXAMPLE 5.6.

Q: RETRIEVE (Xra, X2-a)

WHERE Xrb=X3.b AND

(Xrd=X4.d OR X3.c=X4.c)



G(N,E)

X- is the substitution variable.

Qs(X.j) is completely disconnected

\

NX.

GR = {Gr G2} xj = xi

,^£l

Q: RETRIEVE (X.,.a, X2-a)

WHERE X2.b=X4.b AND X^bsXp.d

AND X2.c=X3.c+X^.d

G(N,E)

X. is the substitution variable

©
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\—-p

GR = {Gr G2} Xj = X2

G1 G2

. ^

The following theorem and conjectures are a result of the

analyses performed,using the above graphical representation

of a query and the cost function as described at the begin

ning of this section.

It is assumed that the original query Q has no disjoint

subqueries, since by Theorem 1, these should be reduced. It

is also assumed that any time an operation results in dis

joint subqueries, this fact will be taken advantage of.

Obviously, all queries under consideration will be assumed

reducible.

Theorem 2. Let X± be the variable selected for substitu

tion. If Xi is a joining variable, then Q„ will be com

pletely disconnected and the cost of substituting for X.

will be less than the cost of reduction followed by substi

tution for Xi first in each of the resulting components.
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proof.

If Xi is a joining variable, then by definition it is the

only variable in common among two or more subqueries.

Therefore, by substituting for X±, these two or more

subqueries will be disjoint.

Let n = number of connected components in GQ

= number of subqueries in GD

Induction basis

n=2

where yo =
P

Cs = 2(1+ C(QJ + ynC(Q9))
* p4Ri ] P 2

= x. + x.C(Q ) + 2 XrC(CU)
1 1 ] (B<Ri P 2

0 if Q^ is not satisfied

1 if Q1p is satisfied

where R

which is =

By (A)

cR = c(q1(v1u{x1})) +61c(q2(v2u{x^}))

= 2 (1+C(Q )) +6-2 (1+C(CU)
v 1 p^R^

=x. +x.C(Q1) +6^ +6lX^C(Q2)

= the relation carried over between subqueries

{tuples <R± : y = 1} (a).



^v

61Xi = 2 ^R S0 CR = C* + 6-X.1 > CQ.1 x p<R. r R S 11- S

Induction step

Assume the theorem is true for n-1, prove for n

CR = C(Q1UQ2U...UQn_l) + 6n_lC(Qn(VnU{X^-1}))

> Cs(QlU...UQn-Bl) + 6n-lC(Qn(VnU{x;-1}))

by the induction hypothesis

=Cs<Q1U...UQn_1) +^n_1x^1(1+C(Qn))

100

cs- 2 <' +C<V +^(Q2) ♦-..+ $-2c(Qn_,) ♦ )£-1c(Qn))

=Cg(Q1D...0Qn.1) +[2 ^1]C(Qn)
P<Ri r

But 2 )p~ = ^n;_1xi" by the same reasoning as (A)
p<Ri r

applied n-2 times.

So,

Cs = Cs(QlU...UQn-1) + 6n-1x»-1C(Qn).

Therefore, CR > Cs +^x0"1 >Cg. Q.E.D.

The following results are presented as conjectures.

They are believed to be true but it was not possible to

develop a general proof using the methodology presented

above.
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Conjecture J.. Let Q be a query and X. be the variable

chosen for substitution. Assume X1 < T(X) and if X1 < B(X)

then X- < C. such that Ck is a three or more variable clause

(i.e., X- has no direct connections to any other nodes in

G). Then, if Gg is connected, reduction is a better stra

tegy than substitution in terms of processing cost.

Reasoning. In this case, substitution for X- basically

loses because this substitution will have no immediate

effect on the query. It just implies that the cost of the

remaining query will be multiplied by JR..J and no other

range relations will be affected. Reduction, by splitting

the cost of the whole query into a sum. of costs for smaller

queries, has a good chance of being less than the substitu

tion cost.

EXAMPLE.

GS

Cs = x.j( 1+x2( 1+x^+px^xO)
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V
G1 G2

x„ x~ -^Qk4 XJ

CR = x2(1+x2|) + x1(1+x2'(1+x3))

Conjecture 2. Let Q be a query and X- the variable chosen

for substitution. Assume X1 < T(X). then if X- is directly

connected to some node X± < T(X) and G„ is explicitly

disconnected, substitution will do better than reduction in

terms of processing cost.

Reasoning. This situation implies that X. is the joining

variable for reduction, otherwise X1 must be joining and

this case is covered by Theorem 2. Therefore, X1 will

appear in the first component of reduction and reduction

will match the substitution cost except that reduction must

re-read the range of X±.

EXAMPLE.



jP^

Gs

X -©

© ©
Cg = x.j( 1+x2+x2'( 1+x3+px3xl|))

G2
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X3 3§) ©
CR = x-jd+Xg+Xg'd+x^)) + x2(1+x^)

Conjecture 3. Let Q be a query and let X1 be the variable

chosen for substitution. If X1 has no direct connections to

any node Xi < T(X) and Gg is explicitly disconnected, then

reduction will do better than substitution in terms of pro

cessing cost.

Reasoning. Here the fact that X. is joining and gets res

tricted before executing the second component is the winning

point for reduction. Substitution must substitute for at

least two variables before it will get the same effect.

EXAMPLE.



^

ipN

xX1
/ N

s

X

Gs

J. J(g) x3 __@

© ©
Cg = x.j( 1+x2( 1+x3+px3x^))

G":
G1 G2

/X ©

3——© x„

CR = x1(1+x2(1+x3)) + x2'(1+x4)
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Conclusions

As a result of the previous discussion, it is proposed

that in the following cases substitution for the selected

variable should be performed:

1) when the variable selected for substitution is a

joining variable,

2) when the variable selected for substitution is not in

the target list but is involved in a two-variable

clause with some other variable that is in the target

list.

In all other cases reduction should be performed on an

appropriate joining variable. It is true that the previous
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discussion does not show that reduction is the winning stra

tegy for all other cases and, depending on the distribution

of the domains, substitution could be less expensive in cer

tain cases. However, it is felt that generally reduction

has a much better chance of incurring a lesser cost than

substitution. This is particularly true if an operation to

remove duplicates in the result relation is included between

the processing of subsequent components resulting from

reduction.
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CHAPTER 6

DATA DEPENDENT OPTIMIZATION TECHNIQUES

In the previous chapters, techniques for efficient pro

cessing which did not depend on the characteristics or

structure of the data involved were discussed. However, if

certain information is known about the data itself there are

many ways to use this knowledge effectively. The information

which can be of use falls into two catagories, that pertain

ing to the distribution of values within domains and that

pertaining to the way the data is actually stored within the

system.

Distributional information can be very useful when

answering queries involving more than one relation. These

queries require searching multiple relations and the order

in which these searches are performed can greatly affect the

processing costs. Using the distribution, it is possible to

estimate the cost of different orderings and thus eliminate

at least the obviously expensive ones. Also, at one point

in the algorithm, all single relation restrictions appearing

in the qualification are executed. If the distributional

information is available, it would be possible to determine

which of these restrictions would do the most good and which

would do no good at all in terms of reducing the number of

tuples which must be retained for resolution of the
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remaining query. Those restrictions resulting in the selec

tion of the fewest tuples can be done initially in the pos

sibly remote hope that no tuples will satisfy and processing

beyond that point will be unnecessary. The restrictions

which would select a high percentage of the tuples can be

put off indefinitely and perhaps not performed until that

relation must be examined to satisfy some other condition.

The second category of information is concerned with

how the data is stored and the access paths that are avail

able to it. There are two general classes of data struc

tures, keyed and non-keyed. A keyed structure is one in

which a domain (or combination of domains) of a tuple is

v used to determine where in secondary storage the tuple

should be stored. This domain is called the "primary key"

or simply, "key". In such structures, when a value of the

key domain is specified, the tuple(s) having the specified

value can be located directly without a full scan of the

relation. On the other hand, non-keyed structures are ones

in which the tuples are stored using some criteria which

does not depend on the value of the tuple. Non-keyed struc

tures do not provide any ability to limit the number of

tuples examined when specific values of one or more domains

are supplied.

Knowing whether a relation is stored as a keyed or

f* non-keyed structure, what domains are keys and if there are
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any secondary indices (inversions) on the relation all

determine how the data can be accessed. Compiling this

information and determining an efficient access path for a

given single relation query is not a straight forward pro

cess. However, that is the problem addressed by the strategy

portion of OVQP and is not discussed here. But, if decompo

sition is aware of these considerations and uses them in

determining its overall strategy, many benefits can be

gained. For example, before passing a one-variable query to

OVQP, decomposition can restructure the relation involved so

that it has a useful access path. Or, in determining which

variable to tuple-substitute, it can select one such that

\ the remaining relation can be efficiently accessed by OVQP.

These two types of data-dependent information can be

used together at each step in the processing of a query to

determine an efficient means for answering the query. The

information upon the storage characteristics is readily

available and incurs no extra cost since it is required by

the access methods to retrieve the stored data. However,

the information concerning the distribution of values for

each domain is not required by any other part of the system

and there could be considerable cost associated with compil

ing and maintaining it. Before requiring the use of this

distributional information in the processing decisions of

^ decomposition, it is necessary to consider the steps when it
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could be used and if the benefits gained from its usage will

outweigh the associated costs. The purpose of this chapter

is to discuss the processing steps which could take advan

tage of the distributional information and to analyze the

effect it would have on the decisions made at each step.

In the first section an introduction to the analysis is

presented. This includes a discussion of the model used for

estimating costs and the assumptions and terminology which

will be used throughout the chapter. In the next four sec

tions, the use of statistics in the following processing

steps is analyzed: (1) preprocessing one-variable restric

tions, (2) projecting a relation prior to tuple substituting

for it, (3) reformatting (modifying the storage structure)

of remaining relations taking into account the effect of the

substitution which just occurred, and (4) creating a secon

dary index rather than reformatting. Then, in Section 6.6,

the cost and effectiveness of various types of distribu

tional information which could be used are compared. In

this chapter, the analysis of these options is presented;

the results of empirical studies of the same questions are

presented in Chapter 8.

It should be noted that the results of this chapter

will not be a definite answer as to whether distributional

information should be maintained. These analyses are

presented simply to examine the effect statistics would have
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on these particular decisions. And the steps discussed' here

are not the only places where distributional information

could be used. One major area where these statistics would

be invaluable is when trying to estimate the costs of vari

ous processing paths. This problem is discussed in Chapter

7.

6.1 Introduction to the Analysis

Since the decision made at each step should reflect the

option with the minimum processing cost, it is necessary to

develop a cost function to compare the decision which would

be made when statistics are available and the choice without

statistics. Let Q be a query in variables X«,X0,...,X with
\ 2 n

respective ranges R1,R2,•••,R . The following terminology

will be used throughout the analyses.

ti the number of tuples in relation R..

wi the width of a tuple in relation R. in bytes.

wi' the width after referenced columns have been

selected from R..

ci tuple capacity of a page in Ri - the number of

tuples in R. which can fit on a single page of

secondary storage (the integer portion of page

size divided by tuple size since INGRES does not.

allow a tuple to be split between pages).

c±' tuple capacity of a page in R± where tuple width
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IS w. .

Pi the number of pages required to store relation R..

The access methods currently provide two page buffers

for use in accessing relations. This fact means that when

OVQP is reading tuples from the source relation and writing

tuples to the result relation, a page from each relation

will remain in main storage so that the cost of OVQP's pro

cessing is essentially in pages even though it works on a

tuple at a time. However, this fact does not aid decomposi

tion while it is tuple substituting. After a tuple is read

and its value substituted, if any other operations are per

formed, such as opening a temporary relation which is the

X result of a one-variable restriction, before going back to

get the next tuple value for substitution, the page will

have to be re-read. So, decomposition has to read a page

for every tuple in most cases.

These observations lead to the cost of processing Q, in

pages referenced, using only tuple substitution and assuming

that the order of substitution is X-jXp,...^ as

C = t1 + t^t2 + t2(t3 +...+ tn-1(Pn)...)

The first term is the cost of reading each tuple of R1 to

substitute its value; the second term is the cost of reading

each tuple of R2 once for each tuple of R.; etc. The final

^ term is the cost of performing the one-variable query in X
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once for every combination of tuples from relations

R1,*"*,Rn-1* Tnis formulation assumes that R does not have

a useful keyed structure which OVQP can use to limit the

scan, thus it must access all pages.

If Q contains a one-variable clause in X- which is to

be executed prior to substitution of X-, this will be

reflected in the cost function by

c = p1 + t.,' + tl'(t2+t2(t3+...+tn_1(pn)...)

P.j is the cost for OVQP to perform the one-variable restric

tion in X1 (again assuming all pages must be accessed),

resulting in t^ tuples in the new range R'

Throughout the analyses to follow these assumptions

will be made:

(a) unless specifically stated otherwise, the relation

being accessed in any one-variable query has no useful

keyed structure so that OVQP will have to perform a

full scan of the relation.

(b) t± > 1 for all i=1,...,n.

(c) tuple substitution is the only method available for

reducing the number of variables. Since the options

discussed either refer specifically to substitution or

play the same role in reduction as in substitution,

this assumption will have no effect on the generality

of the results.
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All costs will be in units of pages referenced.

6.2 One-Variable Restrictions

Consider the following two variable query

FIND THE PART NAMES AND SUPPLIER NUMBERS FOR ALL PARTS USED
BY PROJECT 10 WHICH HAVE LESS THAN 10 UNITS ON HAND

RANGE OF (P, S) IS (PARTS, SUPPLY)

RETRIEVE (P.pname, S.snum) WHERE P.pnum = S.pnum

AND P.qoh < 10 AND S.jnum = 10

Since this is a two variable query, reduction is not an

available tactic and the remaining alternatives are tuple

substitution and detachment of one-variable subqueries. The

question being addressed here is whether the one-variable

clauses should be processed before tuple substitution com

mences.

Intuitively, performing all restrictions prior to sub

stitution is a good idea since the cost of processing a

one-variable query is small compared to the possible reduc

tion in the size of the cross product which must be exam

ined. Consider a three-variable query in X-,X2,X-. If the

cross product was constructed by tuple substitution alone,

the cost would be

c = t1 + t^2 + t1t2P3

The dominant term in this cost is clearly t-tpP- (assuming
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t1 ,t2,P-. reasonably large). If this term can be reduced by

simply adding a linear term to the cost, namely the cost of

performing a restriction, then it would appear advantageous

to do so. For example, if a restriction in Xp was present,

the cost would become

c = p2 + t1 + t1t2' + t1t2'?3

And, hopefully t '<<tp. This example illustrates the idea

behind performing one-variable restrictions, that is, to

reduce the size of the cross product which must be examined.

6.2.1 Generalized Restriction Problem

For the purpose of this discussion it will be assumed

that an n-variable query has the following characteristics:

(1) one or more clauses involving all n variables,

(2) at least one one-variable restrictive clause for

each of the n variables.

And all clauses are of type (1) or (2).

This assumption is made to simplify the calculations

which are presented and does not affect the generality of

the results. If there is a clause with m<n variables, then

at some point during the substitution it will become a one-

variable clause. At that point the query will have charac

teristics (1) and (2) and the analysis can be applied. By

making this assumption, it allows the cost function to
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reflect the cost of performing these restrictions all at

once prior to any substitution. Otherwise it must be deter

mined what clauses become one-variable after which level of

substitution. Characteristic (2) can be relaxed so that

only m<n variables have one-variable clauses present but in

its current form it allows for the general analysis.

Let p., i=1,2,...,n, be the percentage of tuples

(pages) in R. which satisfy the corresponding one-variable

restriction, 0<p.<.1 (p. can be zero, but obviously in this

case, performing the restriction is the correct action).

Let C., irO, 1,... ,n, be the cost of processing Q given that

i of the available n restrictions are performed prior to

substitution.

The results will assume, for simplicity, that the order

of substitution will be X„,X0,»-«,X . In the general form,
1 2 n

m

C = 2 Pn- + p1t1(1+p9t9(1+ -. •+Prntrn(1+t^1(1+.. .+t A?)---)
m ... l 11 2 2 mm m+i n-i n

For all restrictions to be performed, it must be true that

C„<Cw i<...<Cn. The conditions forced upon the p.'s by this
n~~ n-1-- — 0 r ri '

ordering will be examined by considering pairs of the C.'s.

C1 < CQ if and only if

Pj -
p1 * 1 ti(1+t2+t2t3+,"+t2t3*"tn-1Pn) =?1

f^ C2 < C1 if and only if
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?2 _
P211" Pitit2(1+t3+t3tit+---+t3t4"-tn-1Pn) =*2

Cm * Cm-1 if and only if

n < i m —
pm - Pit-, •••?_, .,tm .tfl+t 1+...+t ,...t ,P ) = pm

1 1 m-1 m-1 m m+1 m+1 n-1 n

Cn < Cn-1 if and only if

< - 1
pn- - Plt1P2t2...pn-1tn-l = pn

For Cn to be the minimum cost, all of these conditions must

be satisfied, that is pi < p± for i=1,...,n. Clearly, if

P1<P21- •'^n.-i and P^0' tne pi's fopm a decreasing

sequence, i.e., Pi<Pi_r So, if P±<Pn, i=1,...,n, Cn will

be the minimum cost. But,

n-1

00 P,t. - 1
« i=1
pn s STi

00 P,t
i=1 x 1

which in most cases will be very close to 1. If no ordering

is required on the Pi's, each bound can be examined indivi-

Pidually remembering that — < 1. If the t.'s are large, the
i x

sum of products term in the denominator of each p. will be

quite large, thus bringing the bound closer to 1. Examining

tne Pn expression, note that if any two of the p.t. terms

are greater than 3 (tuples), pn >. .9.

This analysis illustrates that even if the exact p.'s
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were known for each one-variable restriction, in the major

ity of the cases the restriction should be performed due to

the fact that the bounds on the p.'s beyond which no benefit

would be gained are so close to 1. So, for the purpose of

deciding whether to perform the restrictions, distributional

information will not have a major effect.

6.3- Projection Prior to Substitution

Consider the following two-variable query

FIND THOSE PARTS WHICH ARE SUPPLIED BY SOME SUPPLIER

RANGE OF (P, S) IS (PARTS, SUPPLY)

RETRIEVE (P.pname) WHERE P.pnum = S.pnum

Suppose that S was selected for tuple substitution; then the

remaining one-variable query in P would be executed |R(S)|

times. Now, it is possible that more than one supplier sup

plies parts with the same part number so there could be

duplicate values in the pnum column of SUPPLY. If only the

column of SUPPLY representing pnum was retained and then

sorted to remove duplicates, the number of tuples which are

substituted could be reduced. So, instead of having to do

the remaining query !R(S)| times, it would only have to be

done once for each unique value in the pnum column of SUP

PLY.

Only selecting the columns referenced by the query will
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never reduce the number of tuples, it only reduces the tuple

width. This operation is equivalent to sending a one-

variable query over the SUPPLY relation to OVQP which has a

target list containing only the domain pnum and no qualifi

cation. OVQP does not check for duplicates when creating

the result relation, it simply copies the appropriate column

from the original relation. Thus, an additional operation

is required to remove duplicate tuples. If a variable which

is to be substituted had a one-variable restriction which

was preprocessed, the selection of referenced columns took

place at that time so only the operation to remove dupli

cates would be required prior to substitution.

6.3.1 Analysis of Removal of Duplicates

In the INGRES system there are two available methods

for removing duplicates. The first is to hash the relation,

checking for duplicates, and the second is to sort. For a

complete discussion and comparison of these methods within

INGRES, see Appendix B. From the results presented there,

it is clear that whenever the tuple width is small, sorting

is less expensive than hashing even when the number of

tuples is large. Since the operation to remove duplicates

is a concomitant of projection, it is likely that the pro

jected tuple width will be small. For this reason, in the

a general case, sorting will be used to remove duplicates.
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However, it is possible to define an upper bound on the

width and whenever that bound is reached, switch to hashing

as the method for removing duplicates.

First, a two-variable query will be examined to deter

mine under what conditions projection prior to substitution

would be advantageous, Then, it will be shown how these

two-variable results generalize to an n-variable query.

IPAGE is an INGRES-defined constant for page size; p is

the percentage of duplicates in the reduced-width relation

(so, q=1-p is the percentage of non-duplicates), 0<p<.1.

UPAGE and BUF are as defined in Appendix B. Note that

Kw^^w^IPAGE. It is assumed that variables are selected

for substitution according to their size in tuples.

The cost of processing if X. is substituted and no pro

jection is performed is

c = t, + trp2

The cost of processing if X. is substituted and a projection

is performed on R1 is (refer to Appendix B for a description

of the sorting cost)

C r selection cost + modify cost + qt, + qt„P«
P 112

S '
Cp =(P.J+PP +(2Pl'+4Sl'+2Sl'(int(log7(^-.1)+1)))
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+ qt1 + qt^Pg

where S^ refers to the number of UNIX pages required for

relation R«j. (Appendix B explains the difference between

UNIX pages and INGRES pages.)

C < C if and only if

where k. is the tuple capacity of a UNIX page = UPAGE.
w1

The lowest value for the right-hand-side of the ine

quality is when the quantity being subtracted is as large as

possible. This occurs when c^Cj', and k^ are as small as

possible. The smallest value c.j can be is 1; since sorting

is the method being used to remove duplicates, this implies

that w^ is small, say less than half of the page size, so

the smallest Cj' and k1' can be is 2. For these values, the
bound becomes

Q<1-u^(5.5 +int(log7(.01tr1))) for BUF=50
For. reasonably large P2 (P2>100), the term
(5.5+int(log7(.01trl)))/d+P2) approaches zero since
int(log7(.01trl)) « P2. Therefore, as P2 gets large, the
bound on q approaches 1.

Take the case t1 =l0 . The percentage of duplicates
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needed for q to be below the bound is

% of dups

8.4

1.7
.849
.17

which are reasonable numbers.

100

500

1000

5000
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When the restricted tuple width is large, so that hash-

ing should be used, the results are

C < C if and only if

q < 1 -
1+P

-1- + T^ + 2.888
1 1

< 1 -
5.888

1+P«

This bound is also quite close to one for large P..

The case when a restriction has already been performed

on R- so that only the operation to remove duplicates is

required differs from the previous case only in that the

first two terms of the cost function associated with the

selection cost are no longer included. So,

C„ < C if and only if

q < 1 -
1

1+P.

S '

^+^+k7<int(log7(BUF-1)+l)
Using the same reasoning as in the first case, the right-

hand-side becomes
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Q < 1- ^P~(4 + int(log?(.01tl-1)))

Since the constant term in the numerator is smaller than the

corresponding case including the selection operation, this

bound on q approaches even closer to 1 as Pp gets large.

For the restricted width large and thus the use of

hashing to remove duplicates,

Co < C if and only if

which is a bound also quite close to T for large P .

These analyses of the two-variable case show that the

number of duplicate tuples needed to make the projection or

sorting worthwhile is quite small. So, the operation of

removing duplicates would be beneficial whether statistics

were available or not.

To generalize these results to the n-variable case,

note first that this two-variable query is the final query

in an n-variable query (n>2). That is, a three-variable

query after substitution for one of its variables would be a

family of two-variable queries. So, that in the inner loops

of substitution the analysis above can be applied directly.

At the outer levels of an n-variable query (n>2), the

^ cost function would be of the same form as above with an
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additional cost reflecting the substitution of the first n-2

variables. For example, the cost of a three-variable query

without projection is

C = t1 + t^t2 + t2P3)

Considering projection prior to substituting for X1 changes

the bound on q only in that it increases the denominator of

the term which is substracted from 1, i.e.,

qi 1- i+t2It2P3(exPr)
resulting in the right-hand-side of the inequality becoming

even closer to 1.

Thus, the conclusions reached for the two-variable case

generalize to the n-variable case in that having statistics

available would not greatly effect the decision to project.

There is one case where the projection should not be

performed. If* it is known that the operation of selecting

the referenced columns will cause all columns of the origi

nal relation to be retained, the projection should not be

performed since, by definition, relations do not contain

duplicate tuples.

One other comment should be made. This step should be

dissociated from the process of selecting a variable for

substitution. Clearly, it is infeasible to do this at each

level prior to selecting a variable because of the cost
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involved. It can be done after the variable has been

selected under the premise that a good variable has been

chosen and this operation will make it even better. Or, it

could be done once at the beginning of processing for the

entire query. This would involve projecting all relations

involved in the query. It is felt that the first option is

better since this allows for combining the retention of

columns operation with a possible restriction even though

the true size (without duplicates) would not be available to

the variable selection process.

6.4 Reformatting

Consider the following three-variable query.

FIND THE EMPLOYEES WHO HAVE MADE SALES AND THE ITEMS THEY

SOLD

RANGE OF (E,I,S) IS (EMPLOYEE, ITEM, SALES)

RETRIEVE (E.name, I.name)

WHERE E.number=S.employee AND S.inumber=I.number

If S were substituted for first, this would result in a fam

ily of queries of the form

RETRIEVE (E.name, I.name)

WHERE E.number=p AND jB=I.number

where jB < SALES.

This query has two one-variable restrictive clauses which,
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according to Section 6.2, should be performed prior to con

tinuing. It is known that these one-variable subqueries are

going to be executed |R(S)i times, that is, once for each

tuple in SALES. If the relations EMPLOYEE and ITEM were

modified to keyed structures on the appropriate domains,

OVQP would be able to process the one-variable subqueries

more efficiently. This operation is called reformatting.

It is possible to reformat after every substitution which

produces any one-variable clauses.

There are certain drawbacks to reformatting however.

For example, in the above query, if the EMPLOYEE relation is

to be reformatted, a copy must be made of it first since it

i is the user's relation. Then, the copy of the relation can

be keyed on the domain number. Both of these operations

have significant costs associated with them. And, if the

SALES relation has very few tuples which must be substi

tuted, the cost associated with reformatting could far

outweigh the benefit gained. Also, if EMPLOYEE has only a

small number of tuples, the cost of reformatting might be

too great to warrant its use. Thus the cases where the cost

outweighs the benefit must be recognized.

If a user's relation is to be reformatted, it was men

tioned that a copy would have to be made first. This copy

could be made retaining only the domains referenced by the

f^ query since there is no extra cost associated with selecting
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specific columns. And, by retaining only required columns,

the tuple width will most likely be reduced and thus the

number of pages required to store the relation will

decrease. Since OVQP works with pages, this operation alone

could have sufficient effect to warrant the structure modif

ication unnecessary. This reformatting option will be dis

cussed in sub-section 1.

Clearly, if the original relation is already keyed on a

useful domain, reformatting should not be performed. The

analysis to follow assumes that the original relation has no

useful structure for processing the current one-variable

subquery.

If it is desired to modify the storage structure of a

relation to allow for more efficient retrieval of its

tuples, there are two keyed structures available within

INGRES. The relation can be hashed on a given key or sorted

on a given key (ISAM). Each of these structures are useful

under certain conditions. If a tuple is being retrieved

searching for a specific value (i.e., equality constraint),

then hashing is usually more efficient. If a tuple is being

retrieved to determine if it lies within a range of values

(i.e., comparative constraint), then ISAM is better. Both

choices are available to reformatting and its decision

should be based on the characteristics of the restrictive

clauses to be executed. The case when hashing is the best
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structure is presented in sub-section 2 and the use of an

ISAM structure is analyzed in sub-section 3.

IPAGE is an INGRES-defined constant for the page size;

Kw^lw^lIPAGE. When the relation has been modified to a

keyed structure, the tuples with the same key values will be

clustered and thus the number of pages which must be

accessed to find a specific key value can be limited to less

than the total number of pages. p. = E[p.(p)] is the

expected percentage of pages of R. which will be accessed to

verify the constraint in X^^ and jB < R., where X. is the

variable previously substituted, assuming that R. has been

modified to an appropriate keyed structure. For a discus-

f sion of the costs used for the operations of modifying a

relation to a hashed or ISAM structure, refer to Appendix B.

6.4.1 Selection of Referenced Domains

The operation of retaining only the referenced domains

while making a copy of the user's relation has essentially

no overhead as compared with simply making a copy. Since

OVQP works on units of pages, if more tuples can be fit on a

page by reducing the tuple width, a large savings can be

gained by doing this selection operation even without a sub

sequent modify operation. Clearly since this operation does

not eliminate any tuples, the total number of tuples in the

f^ relation will remain unchanged. And, since a convenient
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access structure has not been imposed on the reduced width

relation, OVQP will have to examine every tuple to verify

the constraint. Thus, for only selecting the needed

domains, statistics on the percentage of tuples satisfying a

given restriction will not play a role in determining the

benefit of this operation. The important factor here is the

reduction in tuple width and thus a reduction in total pages

for the relation. So, this discussion will not affect the

overall conclusion as to the benefits gained from having the

statistics available, but it is included for completeness of

the analysis of reformatting.

A two-variable query in X1 and Xp will be examined

since the costs will appear in the same form within an n-

variable query. The cost of processing using only tuple

substitution and assuming that X- is substituted is

C = t1 + t1P2

The cost of processing if the appropriate domains of Rp are

selected is

C r t- + selection cost + ti^p'

Cs = fc1 + P2 + V + fc1P2'

Cc < C if and only if

<^1P2 - t +1
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cp t.,-1 t t0
which is equivalent to —-%• < t-1—r since P0=~ and P '=—4

c2 ~ ti+1 2 c2 2
c

Clearly, —r < 1 since w2'<w2. Also, if w'=w2 which

implies c2'=c2, this operation should not be performed since
t -1

r^r < 1-t-+i

As w2 increases, more reduction in width is required so

that the reduction will have an effect on the number of

TP APF*pages. For example, when w2 > 2U* only one tuple will fit

on a page, so for the selection of columns operation to be

beneficial wg' < IP2°E.

The conclusion of the analysis is that, since all quan

tities are known at the time the decision is to be made, the

c0 t.,-1
calculations should be performed to determine if —4 < ' „.

c2 t-+1

If so, reduce the tuple width; otherwise eliminate this

operation alone as an alternative. A decision to perform

the selection of columns does not eliminate the possiblity

of doing a subsequent modify. All it says is, that if the

modify is determined to be not worthwhile, the operation to

reduce the tuple width should still be performed. Likewise

for the decision to not perform the selection of columns -

the decision does not preclude doing this operation in con

nection with a subsequent modify.

6.4.2 Reformatting to a Hashed Structure
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The following analysis will use the assumption that a

variable is selected for substitution on the basis of its

size in tuples. Thus, for the order of substitution

X-fXp, •••fX , tXt2<. •.<t . In the cost functions presented

here, the cost of modifying a relation to a hashed structure

will use a value for an "average" page for the overhead

associated with overflow pages (0.888, refer to Appendix B).

In practice, this additional cost can be computed using the

tuple capacity of a page in the relation under considera

tion.

Consider first a two-variable query in X.- and Xp with

t1<.t2- The cost of processing without reformatting is

c - fci + v2

The cost if reformat, including selection of the referenced

columns while making a copy, is performed is

CR = t.j + copy cost + modify cost + t.-PpP '

= t1 + (P2+P2') + (P2'+2.888t2) + t1p2P2'

CR < C if and only if

n <^L J-
p2 - ~ " IT

c2
-—- + 2.888c0' + 2
c2 2

c?
Since w2 <w2, c2'>c2 so that -^- > 1. Thus, the right-

hand-side of the inequality is smallest when w2=w '=1 and
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the dominant term in CD becomes 2.888t0. This results in

P2 < 1 "
^5.888

fc1

These results can be expanded to the n-variable case in the

form that to reformat the ith relation (including the copy),

p. <^-
1 - ci

1
c.

-f—+2+2.888c.'
ci x

< 1 . n?-888 = p.
fci.ii-1

where t. .. refers to the variable just previously substi

tuted, that is, the order of substitution is X-jXp,--*^ .

Since t. .<t. ,

- . - 335^888 - 33^888
1 " fci-i i+1 " fci

Therefore, P1-lPi is satisfied if p. <. p. = 1

X*b y • • • yII•

^5.888

*1

However, if t.<336, this results in a negative lower

bound on p. which is clearly infeasible. This illustrates

that there is a threshold value on t. in terms of cp and

c2', and, if t1 is below this threshold, reformatting should

not be considered.

This equation in p2 can be used to define a threshold

value on t.^ given an upper bound A on pp. That is, by solv

ing the right-hand portion of the following inequality for
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°2 1
P2 * c " t* C2 *1
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c

-~- + 2.888c ' + 2
C2 2

< A

a threshold value for t1 can be obtained. Research done by

Lum et al [LUM71] and Severance and Duhne [SEVE74] indicates

that on the average there will be 1.5 page accesses for a

single tuple retrieval (using hash with chained overflow).

Thus, A=.10 is a reasonably high bound for more than 15

pages. This results in a condition on t. of

C2
1^ c2'-.1c2

c2
-f~ + 2.888c ' + 2
c2 d

which is an easily calculatable bound. The largest value

for this bound occurs when Wp=w'=1 and results in t.,2372.

The conclusion is that setting a threshold on t. would

be of more use to reformatting than trying to use statistics

to estimate the percentage of pages which must be accessed

for a given key value. This threshold could be calculated

for each instance of reformatting since w2, w ' and page

size are known quantities. This threshold formula could be

calculated assuming A=.20 which is reasonable whenever the

number of pages in R^^ is more than 7. A similar bound on t,.

can be calculated when it is not necessary to make a copy of

the user's relation.

Currently the INGRES system supports the option of

reformatting to a hashed structure. The one major drawback

discovered in practice has been in the case when one of the
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relations involved is fairly small. It was found that by

inserting a crude cost function which used a fixed value of

p^ it was possible to filter out those cases when the ranges

involved were too small to warrant reformatting. This

experience supports the conclusions reached by the analysis.

6.4.3 Reformatting to an ISAM Structure

This analysis also makes use of the assumption that a

variable is selected for substitution on the basis of its

size in tuples. Thus, for the order X„,XOJ.-.,X ,
12 nJ

i~~ d— ~" n

Consider first the two-variable case. The original

cost, without reformatting, is

C = t1 + t1P2

The cost if reformatting and a copy are performed is

CR = t1 + (p2+p2')

V+ (2.25P2'+4S2'+2S2'(int(log7(ggp-1)+1)))

+ V2V

where S2 refers to the number of UNIX pages for R?.

CR < C if and only if
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P2^ ^+^+V+Vint(l°g7(5uF"1)+1)
(A)

where k2 is the capacity of a UNIX page.

Now consider that c2 is the original capacity of a page

in R2 and c' is the new capacity after the width has been

Q2
reduced. So, •—— is the gain in tuples per page achieved by

c2

the domain selection operation. Define g r —^—. Equation
c2

(A) can now be rewritten as

p2 < g - -r
4c ' 2c ' S '

g+3.25+-j^+-j^r-int(log7(g|p-1)+l)

-JU< g - ri-;g+3.25+4+2int(log„( .01to-1)+D
z1! 72

Assume that t2=10 (as t2 decreases, log?(.01tp) also

decreases), then

P2 <g-^"(g + 17.25)

If g=1.2, or there is a 20$ increase in tuples per page

after the reduction in tuple width, then

Po < 1.2 -
18.45

fc1
(B)

If t«j2100, (B) becomes p2<.1 which is always true. Clearly,

the lowest bound occurs when g=1 so that p0 <. 1 - + .

This formulation for the bound of p2 illustrates that if the

width reduction had any effect on the number of tuples per
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page, the modification to an ISAM structure will be benefi

cial for large t1 regardless of the statistics. Even in the

case where there is no reduction in width, for large t., the

bound is very close to 1.

In the case where the copy operation is unnecessary,

CM < C if and only if

°2
p2 * 1 " -T V^ +V +vint(log7( '̂1)+1)

< 1 - T*~\2.25 + 4 + 2int(log„(.01to-1)+1)!
11• 7 2 !

When t2=106, P2 <1-1Y2S.

This analyses can be generalized to the n-variable case

in the same manner that was used in the section on hashing.

It might seem that the effectiveness of modifying to an

ISAM structure depends highly on the reduction in width

gained during the copy, which would imply that selection of

domains is the important operation and little more benefit

is gained by the modify. But compare the cost of doing only

a copy with retention of referenced domains to the cost of

doing a copy and modify. This is equivalent to performing

only a modify assuming the copy has already been done. The

analysis of this case shows that the modify has a large

benefit of its own.
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The conclusion is that whenever g > 1.1 reformatting to

an ISAM structure should be performed (for x-2185 tuples).

Even when g = 1, the bound on p2 is high enough so that

whenever x1 is reasonably large (x,.>100 tuples) reformatting

to an ISAM structure would be beneficial.

6.5 Creating Secondary Indices Dynamically

A secondary index (inversion) on a domain is a binary

relation between values of the domain and tuples (or tuple

identifiers) from the data relation. Given a relation R,

the following query will create an index on domain a of R:

RANGE OF X IS R

RETRIEVE INTO AINDEX(X.a, ptr=X.tid)

Clearly, a secondary index will have the same cardinality as

the relation it is indexing, but usually it will occupy less

pages since the tuple width will be smaller.

If an index is used in the processing, then, when a

value is supplied, the index is accessed. By only accessing

the index, it is possible to obtain the tuple identifiers of

all tuples in the original relation which have that key

value. In essence, the existence of an index transfers the

search for satisfying tuples to the index rather than the

original relation.
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A combined index, as described in [LUM70] and [MULL71],

is an approach which takes advantage of several domains

being specified. Here the index relation consists of a pro

jection of several domains and the tid from the data rela

tion instead of just a single domain as in a simple index.

Since this discussion concerns dynamic creation of indices

and it will be known at creation time which domains will

have values specified, this type of index can be useful

whenever the condition to be verified does not contain dis

junctions.

The other option available when several domains are

involved in the constraint is to use list processing tech

niques to combine the qualifying tids obtained from indices

on each domain individually. This technique is not

currently supported by INGRES.

Note that when a condition such as "X.a > value1 OR X.b

< value" is to be verified, the only technique which will

limit the tuples to be scanned is a simple index on each of

the domains involved. The qualifying tids from each index

can then be unioned to produce the set of all qualifying

tids. A combined index on both domains will be of no help

and neither will modifying the structure of the primary

relation so that it is keyed on the concatenation of both

domains. Since list processing techniques to combine two or

more indices are not supported by INGRES, conditions such as
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the above containing disjunctions will be excluded from the

following discussion.

Consider the situation where it is known that a one-

variable restriction will be executed many times due to a

previous substitution. It would be advantageous to make the

evaluation of this one variable query as efficient as possi

ble. One available technique, which has already been dis

cussed, is to dynamically reformat the relation involved to

a keyed structure on the referenced domains. The purpose of

this section is to present an alternative to reformatting,

namely dynamically creating an index on the referenced

domains, and to compare the effects of these techniques.

Examine the one-variable query over a relation R which

is to be executed. It will be of the form

RETRIEVE T(R)

WHERE domain1rvalue1 AND domain2=value2 AND ... AND

domain. =value,

(the "=" can also be an inequality) where T(R) is a function

of the domains of R which are to be retrieved.

Consider the costs associated with evaluating this only

once. If R has no primary or secondary access paths which

can be used, it will be necessary to examine every page of R

to determine the qualifying tuples. If the structure is

such that R is keyed on domain1,...,domain,, then the quali

fying tuples can be accessed directly. Thus only a single
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page will have to be retrieved if there are only a few

tuples with the specified values. Using a secondary index

on domain.,...,domain, , a page of the index will be accessed

and then the page of the primary relation containing the

qualifying tuple will have to be retrieved.

Suppose this one-variable query will be executed n

times. With no structure, nP(R) pages will be accessed,

where P(R)=no. of pages in R. If exactly one tuple satis

fies for each set of values, using a keyed structure 1n

pages must be retrieved while 2n pages are required using an

index. It can be seen clearly that the cost of accessing

the tuples is less using a keyed structure for the primary

relation.

However consider now the cost of providing the two

access paths. To modify the relation R to a structure keyed

on domain.,...,domain, requires retaining

domain.,.-•,domain, and any other domains referenced by

T(R). Then this resulting relation must be sorted or hashed

on domain.,... ,domain. . If it is to be hashed, the cost is

on the order of 2|R| page accesses while if it is to be

sorted, the cost is on the order of P(R)logP(R) page opera

tions. To create the index, only domain.,... ,domain, must

be retained along with the tuple identifier and then sorted.

If T(R) references several more domains than

domain1,...,domaink, the number of pages in the index will
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be quite smaller than P(R), and thus the sort, which is on

the order of P(I)logP(I) operations, will be less expensive.

Combining the cost of providing the access path and

accessing the tuples in the case where exactly one tuple

satisfies for each set of values, unless n is much larger

than P(R), the secondary index will be the access method

preferred. This will also be true when there are certain

sets of values for which no tuples satisfy or when only a

few tuples satisfy, for example the number of tuples which

fit on a single page of R.

The next case to consider is when many tuples qualify

for each set of values for domain.,... ,domain, . This can

happen if some of the clauses are inequalities or if one of

the domains is such that many tuples have the same value.

The costs of providing the two access paths will remain the

same but the cost of accessing the qualifying tuples will

change. Using a keyed structure, the data pages will be

"clustered" with respect to the values of

domain1,...,domaink. That is, in accessing the pages con

taining qualifying tuples, each page will only be accessed

once and a minimum number of pages, usually less than P(R),

will have to be retrieved. However, using an index, first

an access is made to the index resulting in the tid of a

tuple that qualifies, and then this tid is used to access

the relation R. When many tuples qualify, this results in
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random references to the pages of the data relation R. Usu

ally this will require a page fetch for R for each tuple

that qualifies.

To illustrate this difference, consider a single execu

tion of the one-variable subquery where m tuples satisfy.

Using the keyed structure, this will require approximately -

page accesses to R, where c is the tuple capacity of a sin

gle page. With an index, m page accesses to R will usually

be required, plus the additional accesses to the index. If

c is taken to be only about 20, it can be seen the consider

able effect that the clustering property has on performance.

When this effect is multiplied by n, the difference can be

very large.

For these reasons, when multiple tuples are to be

retrieved for most sets of key values, the advantage of the

clustering effect gained by reformatting the data relation

will usually outweigh the extra cost incurred to achieve it.

These observations illustrate though that the distribu

tion of the key values would be valuable in determining

whether to create an index or to reformat the data relation.

The decision depends upon each query and the key domains

involved.

6.6 Comparison of Available Statistics
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If it is decided that statistics should be available

for decision making there is a wide range of choices as to

exactly what information is used and how it is made avail

able. These choices fall into two categories. The first is

information which is gathered when each relation is created

and is then updated whenever the relation is updated, and

the second is information obtained by sampling the appropri

ate subset of the database dynamically.

Within the first category there are many choices as to

the exact information which is gathered and maintained.

Basically, there will be a trade-off between the cost of

updating the statistics and their accuracy in depicting the

behavior of the data. The statistics within this first

category will assume that each domain is independent of all

other domains even though this may not always be a reason

able assumption. But, if this assumption is not made, joint

distribution statistics would also have to be maintained for

all conceivable combinations of domains. Clearly, this would

be an unreasonable amount of information to maintain.

The simplest statistics to keep in terms of maintenance

costs are probably the maximum and minimum value for each

domain of each relation. When the relation is created and

the data entered, this would require a maximum of two com

parisons per domain per tuple. If the relation is updated,

to update the maximums and minimums would again require a
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maximum of two comparisons per updated tuple for every

domain affected by the update. It would be possible to add

this information to the system ATTRIBUTE relation which

already contains certain characteristics of each domain. If

character domains were encoded in some manner, it should be

possible to store this information using two words for each

value.

But now consider using the maximum and minimum as

statistics. If it is desired to know the percentage of

tuples from a relation R which have domain a equal to some

value p, the distribution of values between the maximum and

minimum must be assumed. If an even distribution is assumed,

* then this percentage is simply the number of tuples divided

by the number of possible values. First of all, this is

undefined if the domain under consideration is a floating

point domain (i.e., a real number) since the number of

values is infinite. Second, if the actual data does not fit

the assumed distribution, the information gained is more

than likely quite inaccurate. The conclusion is that even

though a maximum and minimum are very inexpensive to main

tain, the statistics provided by them alone are not accurate

enough for optimal decision making. But this points out the

fact that some basic knowledge of the distribution of values

for each domain would be helpful.

f Suppose that a count of the number of different values
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occurring within each domain was maintained. The storage

required by this information would be minimal (namely, two

words per domain) and this could also be stored with other

characteristics of the domain in the system ATTRIBUTE rela

tion.

However the updating costs would be quite high since

every time an update is performed, the entire relation would

have to be read to recount the number of different values.

This is because the values themselves are not being kept, so

when a tuple is added, deleted or changed, it is not known

if the values in that tuple are unique to that tuple or not.

However, this information alone is not much more useful

than the maximum/minimum values, since it still must be

assumed what the distribution of tuples among the possible

values is. So, if it is known that there are 10 different

values for domain a and that there are 100 tuples, first it

must be assumed that jB is one of those 10 values. This in

itself may not be true. Then, it must be assumed that, for

example, these 100 tuples are evenly distributed among the

10 values. Again, if the actual data does not fit the

assumed distribution, the indication of behavior used by the

decision-making process may be quite inaccurate.

Even if the maximum and minimum values together with a

count of different values were maintained, an assumption

would still have to be made as to the actual distribution of
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the tuples. So nothing much is gained by keeping both sets

of information.

The next logical step in information is keeping a type

of histogram associated with each domain. This would make

available the number of different values and the number of

occurrences of each value. Actually, this information is

easier to update than the count of different values because

it is not necessary to scan the whole relation to determine

the effect of an update. It is only necessary to adjust the

count of occurrences for the value appearing in each domain

of the updated tuple. However, there could be difficulties

when a new value is added or a value no longer occurs. This

depends on the type of histogram which is maintained. Basi

cally, there are two choices - a fixed interval histogram or

a variable-interval histogram.

For a fixed interval histogram, it is defined a priori

that there will be n equal-sized intervals and the values

falling within each interval are determined by the maximum

and minimum. For an example see Figure 6.1. This type of

histogram is easy to update unless it is the maximum or

minimum which is changed. This would require that the whole

histogram be recalculated if the limits for each interval

are affected. This type of histogram also requires a fixed

amount of storage, namely a maximum, minimum for the whole

domain and a count for each of the n intervals since the
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10 20 30 40 50 60 90 100

Figure 6.1. Fixed-interval histogram,

± -L

10 20 30 40 50 60 70 80 90 100

Figure 6.2. Variable-interval histogram.
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limits on each interval can be determined from the maximum

and minimum values. However, if the range between the max

imum and minimum is quite large, then certain information

can get lost, particularly if n is small. It may happen

that certain intervals have a very large number of

occurrences while others have none. And, if the range of a

given interval is large, then there is still the problem of

assuming a distribution for the number of occurrences within

the interval to the available values. True, by breaking the

entire range into intervals, the error should not be as

great as that using only a maximum, minimum and count for

the whole domain, but it is still possible there will be a

I large discrepancy between the estimated value and the actual

value. For this type of histogram, it is unreasonable to

make the number of intervals equivalent to the number of

possible values unless this number is quite small, mainly

because of the storage involved.

The second type of histogram proposed will be called a

variable-interval histogram. Basically, the limits for each

interval are variable but the number of occurrences within

each interval is fixed. Define nQ as the number of

occurrences for each interval; then a sequence k., i=1,...,m

defines the interval limits such that n(k.,k. .) = n0. Fig

ure 6.2 illustrates this type of histogram for the same

^ domain described in Figure 6.1. The main advantage of this
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technique is that in areas where the values are very dense,

the interval limits will be smaller so this histogram dep

icts the true distribution more accurately. The number nn

can be determined by some function of the total number of

tuples and this determines the number of intervals.

This histogram requires only slightly more storage than

the fixed interval histogram. Namely, the value nQ must be

stored, the maximum and minimum values must be stored and a

limit for each interval. Also, this type of histogram is

more difficult to update. When tuples are added or deleted,

this can affect the number of occurrences within one inter

val, namely for some j, n(k.,k. .) i nn, so that the limits

^ for every interval and possibly the nQ value must be recal

culated. There is an option to updating and possibly recal

culating the histogram every time an update is performed to

the domain. If a date is associated with the histogram,

then the system, during "free time", can compare this date

with the date when the relation was last updated and if

there is a large discrepancy, recalculate the histogram. In

this way, no extra cost or delay is added to the user's

updates, but the penalty is that the statistics available

are possibly inaccurate at times.

It should be mentioned that both types of histograms

are best used for determining tuples which fall within a

f specified range of values. To answer the question of the
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number of tuples equal to a specific value requires more

exact information than a histogram supplies, unless of

course each interval contains only a single value. But to

answer this question of equality really requires a list of

all values and the number of tuples containing that value,

which is infeasible in the general case. And, this would be

tantamount to maintaining an index for every domain.

If the cost of storing and maintaining the statistics

is to be avoided, then there must be a method of obtaining

the statistics dynamically when they are needed. This would

require either calculating the statistics discussed previ

ously "on-the-fly" or sampling the subset of the database

^ involved in the current query. Since calculating the

statistics on-the-fly would be equivalent to answering the

query, this does not seem like a logical choice.

Sampling the database is equivalent to answering the

query on a small subset of the data. If the amount of data

involved in the original query is quite large and sampling

determined the optimal processing strategy, the overhead

involved in the sampling might be quite insignificant com

pared to the cost of processing by a sub-optimal path. How

ever, if the amount of work involved in answering the

optimal query is not significant, clearly sampling should

not be used. There should be some type of threshold,

f defined perhaps by the size of the cross product involved or
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an estimate of total worst case processing time, which would

limit the cases where sampling could be considered.

The major problem associated with sampling is defining

what the sample should be. First of all, the size of the

sample must be determined considering storage cost vs. accu

racy. Second, the tuples which are included in the sample

should be "random" tuples. So, if the relation is sorted, it

is not sufficient to select the first n tuples to be

included in the sample. This implies that the organization

of the original relation (i.e. storage structure and keys)

must be considered. Obviously, if the sample selected is

not a good one, the information obtained from it could be

misleading in selecting a processing strategy. The cost of

sampling involves creating and filling a sample relation for

each relation involved in the current query, and then, pro

cessing the query for those sample relations. It should be

mentioned that in order to take full advantage of the sample

and make an "optimal" decision, it is possible to process

more than one query at each decision point. That is, the

same query may be run more than once in order to compare

options. For example, rather than deciding that variable X

is going to be substituted and then sampling to determine if

projecting and removing duplicates would be worthwhile, it

is possible to project and remove duplicates on all the sam

ple relations and then determine which one should be substi-



0^.

^

151

tuted (i.e., which one has the fewest tuples). If the sam

ple is going to be made anyway, full advantage should be

taken of the information contained in it.

Conclusions. If the exact distribution of all data is

known by the user when the relation is created and this dis

tribution will not change as the data is updated, then the

user could inform the system of this information. However,

relying on the user to know the distribution of all of his

data is not usually feasible. If it is determined that

statistics should be available to the system, then it seems

that either a variable-interval histogram should be main

tained or sampling should be used if the size of the data

base warrants it. This decision is based mainly on the fact

that the accuracy of the information made available by these

methods is much more than that of only slightly less expen

sive methods.
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CHAPTER 2

VARIABLE SELECTION

In the general decomposition algorithm presented in

Chapter 2, a variable is chosen for substitution on the

basis of the number of tuples in.its range relation. It has

yet to be shown if this is a good or even reasonable selec

tion criterion. The selection of a variable for substitu

tion is a very critical step in the processing of a query.

If a wrong choice is made, it can have catastrophic results

on the total processing cost. The purpose of this chapter

#n is to discuss the parameters involved in the cost of pro

cessing a query and how these parameters can be used to

develop a good selection criterion.

Within most other relational systems, an execution plan

for processing the entire query is determined before any

actual processing begins. System R [ASTR76] does this so

they can compile queries and thus avoid the optimization

overhead in a production environment. The policy opted for

in the INGRES system is to make the decision process a

dynamic one. Thus, at each phase of the processing a deci

sion is made only as to what the next step should be. In

this way, the current decision takes into account the effect

^ of the last decision on the query environment. It is felt
that this allows more flexibility and thus more possible
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optimization in the processing.

Using the dynamic decision policy, there are several

factors which will influence the decision made at each step.

These include the size of the relations involved, both

number of tuples and number of pages, the storage charac

teristics of the relations which determine the available

access paths, the structural characteristics of the query

itself, and any distributional information which is known

about the domains referenced in the query. All of these

factors except the last depend upon information which is

readily available and thus do not incur much cost to be

included in the decision process. The distributional infor

mation could involve a large cost for storage and mainte

nance but it also could provide a much more accurate predic

tion for the effect of a particular decision.

The following sections will consider the effect of

these factors on the choice of a variable for substitution.

Results of experiments run on queries using various selec

tion criterion are presented in Chapter 8. In the first

section, a discussion of two-variable queries will be i

presented. This is included as a special case for two rea

sons. First, the initial decision in a two-variable query

essentially determines the execution plan for the entire

query thus allowing for a prediction of the entire cost.

Second, in the processing of any multivariable query, at
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some point a two-variable query will be involved. So, by

executing two-variable queries in an efficient manner there

is a better chance for processing three or more variable

queries with minimal cost.

When a query involves three or more variables, the

problem becomes more complex, n variables are available for

substitution and reduction becomes an available tactic. The

general problem of three or more variable queries and what

this step is attempting to do are discussed in Section 7.2.

Then, in the next sections, each of the factors will be con

sidered individually and its effect examined on queries

involving three or more variables.

The discussion to follow will assume that the decision

as to whether one-variable clauses should be preprocessed is

independent of the variable selection decision. Thus, if

one-variable restrictions are to be preprocessed, they will

have been done so prior to this step. But the existence of

one-variable clauses is not excluded as a possibility in the

proposed estimation procedures. Let Q be a query in vari

ables XrX2,...,Xn with ranges R1 ,R2, •••,Rn. The following i
notation will be used throughout the discussion.

ti the number of tuples in relation R..

c± tuple capacity of a page in R± - the number of

tuples in R± which can fit on a single page of

secondary storage (the integer portion of page



155

size divided by tuple size since INGRES does not

allow a tuple to be split between pages).

P.^ the number of pages required to store relation R. .

7.1 Two-Variable Queries

j There are several points to recognize concerning two-

variable queries before examining their processing. First,

the one-variable query was chosen as the basic unit of pro

cessing for the INGRES system. Thus the methods proposed in

the literature [GOTL75, BLAS75] for computing joins are not

directly applicable. They do, however, provide indications

as to what structures are most useful. Second, reduction is

* not an available tactic so tuple substitution is the only

alternative to reduce the number of variables. Third, it is

known that the relation whose tuples will not be substituted

will be accessed by OVQP. Because of this, the unit of its

access will be pages and a keyed structure can be used

advantageously.

Consider a two-variable query in variables X., X? with

j ranges E^ and R2. The criteria to select a variable for I
substitution will be considered in the order of simple to

more complex and then the applicability of each criterion

will be examined.

(1) Size Only. In this case, to make the decision, it is

assumed that there are no useful access paths for either
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relation. Using the cost function presented in Chapter

6, which from experiments performed is exact for this

situation,

Cost of substituting for X.

- fc1 + fc1P2
Cost of substituting for Xp

- *2 + fc2P1
Thus, the variable X^ should be selected which minimizes

t±
the ratio . p . This result is similar to Pecherer's

i

results [PECH76] for nested iteration. Both t. and P.

are known at the time the decision is to be made so it

is a simple matter to calculate the ratio for each i and

then select the minimum.

Some simple observations can be noted. If t~tp then

the relation with the largest number of pages will be

selected. If P-j-Pg, the relation with the fewest tuples

is selected. In general, the relation with the smallest

tuple capacity per page, or equivalently, the largest

tuple width, will be selected for substitution. These

results are not surprising.

(2) Size and Query Structure. The structural characteris

tics of the query which have an effect on a two-variable

query are limited and involve only a minor modification

to criterion (1). First, by simple examination, it can

be determined if the query is disjoint. That is, for
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example, the qualification involves only X. and the tar

get list only Xp. Obviously in this case, the query

should be split into two separate one-variable queries

with the one involving the qualification being executed

first. The modified decomposition algorithm proposed in

Chapter 5 includes recognition of this case as a

separate step prior to variable selection.

Execution of one-variable clauses appearing in the

qualification is considered as a separate decision from

variable selection and thus will not be included here.

The only other point which can be included is examin

ing the qualification to see if it contains any clauses

f*" which involve disjunctions. If so, since combination of

simple indices is not supported, no access path will be

of any help in limiting the scan. Therefore the vari

able selection can be made on size alone since that will

be the determining factor.

(3) Size, Query Structure and Available Access Paths. To

examine fully the effect storage structure has on the

variable selection process it is necessary to also have

statistics available. This case is considered in the

next criterion. But, if certain assumptions are made,

some general rules can be concluded.

t. tp
First, assume that Tr^TT#- so there is no strong

jPk 1 l+r2

preference as to which variable should be substituted
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considering only size. Obviously if one of the rela

tions has a keyed access path which can be used, then

the other relation should be selected for tuple substi

tution. This allows OVQP to take advantage of the

access path and limit the number of pages which must be

fetched.

If both relations have a useful access path, under

this assumption the only clear preference is for a keyed

structure on the primary relation rather than access via

a secondary index. Also, in the case of ISAM struc

tures, if one has an exact key (i.e. all key domains

specified) as compared to only a (leftmost) subset of

the keys being specified, the first access path will

limit the scan the most.

If the distribution of the linking domains is assumed

to be uniform, a cost estimating procedure can be used

to compare the effect of substituting for each variable.

If a query is to be executed once for each of m key

values and there are n tuples in the relation to be

examined, then - tuples will satisfy each execution

using the uniformity assumption. Thus the following

estimates can be used

Cost of substituting for X.

t

+ p• fc1 +t1(tf^> . t,
Cost of substituting for X

2 ' 2
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=fc2 +fc2(4 ^ - fc2 +P1
This formulation also implicitly assumes that each value

substituted in the key domains is unique. Using these

estimates implies that the quantity t. - P. should be

minimized when both relations have a keyed structure.

Note that the assumptions used to obtain these estimates

are in general not assumptions that fit the true data

very well.

(4) Criterion Using Statistics. Here all the previous

characteristics will be used and it will also be assumed

that complete distributional information is available

for the domains involved. If only limited statistics

are available, assumptions can be imposed to estimate

the required parameters. The interesting case to con

sider is when one or both of the relations has a useful

storage structure. If neither relation is keyed on the

linking domain(s), a full scan will have to be made for

either choice of substitution variable and statistics

will not be of any help.

Assume that X. is selected for substitution. Let a

be the expected number of tuples that will satisfy the

one-variable query in X. for each tuple value from R..
J i

If the access path is direct to the data relation, i.e.,

an index is not used, then the tuples will be clustered

with respect to the values of the key domains. So,
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approximately —1 pages of R. must be accessed to
j J

retrieve the q. qualifying tuples. Thus,

Cost of substituting for X.

q2=fc1 +t1 ^
Cost of substituting for Xp

q1=fc2 +z2 ^
If one of the relations has no useful access path, q.

can be set to t. and the comparisons can still be car-

ried out.

The quantities to be compared are t„/1+—i and t„/1+—
1 c1 2 °2

^ and the variable which minimizes this ratio will be

selected for substitution. Clearly, if one of the t.'s
1

is very large compared to the other quantities, this

will be the dominant factor and the other variable will

be selected for substitution. If one of the t.'s is

very small, then this will imply that the associated

variable should be substituted. But these are the

intuitively obvious conclusions.

Consider the case when one of the variables, say X.,

Would be selected if only size were considered. Thus,

1+P- < 1+P ' But» R1 also has an efficient access path

whereas R2 doesn't, so q2=t2. Compare the quantities

v t1/1+c~ and 1+p » which is asking the question - under
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what conditions is the access path more dominant than

size?

t2 Qi
If 1+p < ti/1+c then X2 wil1 be sele°ted for sub

stitution and the access path for R. will be the impor

tant factor. But this relationship is true if and only

if

(1+Pp)
q1 <c1(tr"Tf- "1) (7.1)

From this equation it can be seen that if tp >. (1+P )t.

then the right-hand-side becomes non-positive, thus

imposing an impossible condition on q.. So size will be

(* the dominant factor.

If fc2 < 2^1+P2^fc1 then wnenever Q^c-,, or at most a
single page of R1 will be accessed for each substitution

value, clearly equation 7.1 will be satisfied and X

should be selected for substitution. As tp gets smaller

and approaches t^, then the bound on q gets larger and

approaches PpC..

In the interval (1+P2)t1 >tg >|(1+P2)tl, the impli-
ti<1+p?>cation is that 0 < —l—r—*- < 1 and since this factor

z2
multiplies Cj, c1 becomes the critical parameter. For

small C.J, this could imply the condition q <1 which is

obviously impossible.
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This argument has illustrated the use of statistics

combined with a knowledge of size and access paths to deter

mine which variable should be tuple substituted in a two-

variable query. Note that criterions (3) and (4) can also

consider the possibility of reformatting one of the rela

tions in order to provide a more efficient processing plan

in making their selection.

7.2 n-Variable Queries (n > 2)

Up to this point, the purpose of this step in the algo

rithm has been to select a variable which will subsequently

be substituted for tuple-by-tuple. However, when consider

ing a query which involves three or more variables, there is

also a possiblity of reducing the query into components.

But, whether reduction should be used depends upon the role

of the variable selected by this step. So, the selection of

a variable "for substitution" in actuality determines which

processing option, reduction or substitution, will be used.

For these reasons, this decision should be made consid

ering the effects of both options if an attempt is to be

made to minimize the processing costs. And, the result of

this step will really be either (1) a variable which should

be substituted, or (2) the components into which the query

should be reduced.



f*"

0*\

163

When processing three or more variable queries there

are two major reasons why this decision process becomes more

complex. First, reduction is an available tactic thus

increasing the number of possible processing paths which

must be considered. Second, the query involves more vari

ables which means the query itself is generally more com

plex. For an n-variable query, considering only tuple sub

stitution, there are n! possible orderings for substitution.

So, the complexity of the problem can explode quite easily.

7.3 Size as a Selection Criterion

Using only the sizes of the relations involved in the

query forces the selection process to consider tuple substi

tution as the only alternative because whether reduction can

be used and what the components will be depends upon the

structure of the query. Thus it is possible to set up a

model comparing the costs of different substitution vari

ables in the following manner. Let C. be the cost of pro

cessing the query if variable i is substituted. Then

•ci = fci + A c^B'(xv-^i.1,xi+1,...,xn))
B4R
• 1

which is the cost of substituting for X. plus the cost of

processing the remaining query once for each tuple in R. .

Now C(Qg'(X1,...,Xi-1,Xi+1,...,Xn)) must be estimated. If

this cost is assumed independent of p, it can be
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approximated by t.tp...t. .t. ....t . This approximation

ignores the fact that the cost of the last step will be in

pages since it is not known which variable will be remaining

at the end. Using these assumptions,

c. = t± + tl(t1...ti-1tl+1...tn)

Thus the minimum C. will correspond to the minimum t..

Obviously this criterion does not consider the effect

of substituting for X. on the structure and complexity of

the remaining query. But,, there is no way, just using size

to take this into account. However it must be considered

that cardinality is a readily available quantity and the

decision process is simple. As a first step, this heuristic

is not bad and since size is an important factor in deter

mining the processing cost, it will certainly be used in

some way in any selection process. But, by itself, it can

not claim to be even near-optimal.

Note that this criterion makes the choice of using

reduction a separate decision. The variable is selected

considering only substitution with the premise that if

reduction can be used, it will do even better. This is not

always a valid premise.

7.4 Size and Query Structure Criterion
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The structure of the query obviously plays an important

role in determining the processing costs. It determines

what combinations of relations must be examined and thereby

dictates the minimum product terms in the cost function. By

using simply size and the structure of the query it should

be possible to make a decision which will result in a near-

minimal processing cost. Most of the observations concern

ing how the structure affects the cost are qualitative at

this point but are still useful in selecting a "good" vari

able.

Consider first that when trying to estimate the effect

of the current decision, the processing of the query can be

examined all the way to completion. But this means consid

ering a very large number of possible paths. Thus, the

estimates which will be used only take into account the

immediate effect of a decision and then use a perhaps crude

estimate of the cost of processing the remaining query, not

considering the many possible ways of answering that

remainder.

Let Q be a query in variables X.,...,X with ranges

R1>,,,>Rn> n>2. Let us examine the cost of processing Q if

X± is the variable selected "for substitution". First, if

Xi is actually substituted for, this will mean that every

clause which originally involved X± will now have one less

variable. If any of the original clauses were two-variable
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with X. , they are now one-variable clauses and can be exe

cuted to reduce the range size of one of the remaining vari

ables. Thus, the size of the cross product which is to be

examined will also be reduced. So, generally speaking, the

more one-variable clauses which are a result of the substi

tution, the more the restriction which is gained. This can

also be used in a negative sense. That is, when considering

the substitution of a particular variable, if no restric

tions are generated, it is usually not a good choice.

There is a particular class of one-variable restric

tions which are beneficial to recognize. These are disjoint

one-variable clauses. If such a clause appears, it is only

necessary to verify the existence of a tuple which satisfies

the condition and that range will not have to be included in

any further processing. It can be shown that if substitu

tion for a variable results in the query breaking apart into

a series of disjoint one-variable subqueries, substitution

for that variable will result in a cost less than substitu

tion for any other variable, regardless of the respective

range sizes. Thus, for a query such as

RETRIEVE (X..a)

WHERE Xrb=X2.b AND Xrc=X3.c

X1 should be selected considering only substitution. And

since X^ is a joining variable in such a situation, substi-
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tution for X1 does better than reduction on X.. Thus, this

substitution will result in the minimum cost.

Note also that substitution for a joining variable is

guaranteed to split the remaining query into disjoint

pieces. Even though they may not all be one-variable

pieces, this will break the cost into a sum of smaller pro

ducts rather than one large product. Thus it is frequently

more efficient to substitute for a joining variable instead

of a non-joining one.

It is possible to compare the costs using reduction by

determining what the joining variables are. Then reducing

on each joining variable results in a set of components for

each one. The cost for each reduction can be estimated as

the sum of the product of the set of variables in each com

ponent. Then the reduction and its associated joining vari

able with the minimum cost can be selected. Now compare

this result using only reduction with the selection made

considering only substitution. Let {QR} designate the set

of components which result in the minimum reduction cost and

let XR be the associated joining variable. Let X. be the

variable selected when considering only substitution. The

query can be reduced into a set of components {Q„} given X.
o 1

using the rules presented in Chapter 5.

If {Qg} and {QR} are the same set of components, there

is no problem. By using the conclusions of Chapter 5 it can
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be determined whether reduction or substitution should be

performed.

When {Qs} and {QR} are different, first examine X. and

{Qs}. If the conclusions of Chapter 5 designate that reduc

tion to {Qg} should be performed given X., then, since {QR}

results in the minimum reduction cost, reduction to {QD}
n

should be performed.

The only case remaining is when {Q„} and {QR} are dif

ferent and Xi should be substituted rather than reducing to

{Qs>. This implies, from Chapter 5, that either X. is a

joining variable or Xi is in the target list component of

{QR}. Consider, first when X± is joining. It is known that

substitution for XR is better than reducing to {QR>. And

since substitution for X. is less expensive than substitu

tion for XR, substitution for Xi is more efficient than

reducing to {QR}. When X^ is in the target list component

of (QR}> to accurately compare the two under all conditions,

statistics are required. However it is felt that reduction

should be chosen for the following reasons. The effect of

substitution for Xi is isolated to one component and thus

can be realized all at once just as if substitution were

performed now. But the remainder of the query which is not

effected by Xi is split off and thus its cost will not be

multiplied by the cost of substituting for X..
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It is felt that by using these intuitive guidelines

concerning the query's structure, tempered by the relative

range sizes, a near-optimal choice can be made for the

current decision. Obviously when there is a variable whose

range size is oustandingly small or large this will influ

ence the selections suggested. But whenever there is not a

large discrepancy among the range sizes, the structure of

the query will be dominant and the above observations will

hold.

7.5 Size. Query Structure and Storage Structure Criterion

When trying to decide what the next processing action

should be for a query which involves three or more vari

ables, the storage characteristics of the relations will not

play as important a role as it does for two-variable

queries. Since the effect of an action is only considered

for one level, the remaining query will involve at least two

variables and the storage structure is only useful at the

one variable level. However there are certain intuitive

observations which can be stated.

If one is trying to decide between two substitution

variables with similar costs, if one of their ranges has an

advantageous structure, the other variable should be

selected for substitution purposes. This will allow the

(^' structured relation to remain available at the next level,
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which is perhaps a two-variable query where it can be used

beneficially.

This points out that generally substitution over rela

tions with useful storage characteristics should be delayed

for as long as possible. But, this consideration should not

be a dominant factor in the selection criterion above the

two-variable level because the savings gained by using the

access path at the bottom level may not be enough to over

come the extra cost incurred by using another more expensive

choice at a higher level.

7.6 Selection Criterion Using Statistics

When statistics are available it is possible to combine

the observations made previously in a qualitative sense into

a more accurate quantitative cost estimating procedure.

Define Ci as the cost of processing

Then

Q if Xi is selected.

C± = t. + 2 C(Q.(jB))
1 1 p<Ri 1

if X. is substituted tuple-by-tuple. Or

C, = 2 C(q)
q<S.

if Q is reduced given X. , where S. !is the sequence of

subqueries Q is reduced to. Which of the costs will be used

I
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for each Xi will be governed by the conclusions of Chapter

5. Then we can define

*

C = min{C.}
i x

The following discussion will develop means of estimating C.

so that C can be determined.

The first approach to estimating C. is to consider only

the cost if X^ is substituted. This assumes that the best

variable for substitution is also the best variable for

reduction. With this assumption, C(Q.(jB)) can then be taken

as independent of jB and i. This will result in selecting X.

with minimum range size. This policy was discussed in Sec

tion 7.3. However, since this does not take advantage of

the statistics which are available, there seems no reason to

keep the estimation this simple.

The next approach attempts to go one step further.

First, determine if Q is reducible. If not, substitution is

the only alternative. But, if Q is. reducible, determine for

each Xi if Q should be reduced by the rules outlined in

Chapter 5. If so, this will reduce Q to ,a sequence S. of

subqueries. So we have

C, = 2 C(q).
q<S.

Now since this reflects the structure of Q, a rela-
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tively crude estimate could be used for C(q). For example,

we might take

C(q) = 00 t.
j<q J

Now it is necessary to estimate the cost of substitu

tion for X^ assuming Q should not be reduced for X.. We

have

C, = t + 2 C(Q,(B))
1 x p4R± 1

A very crude estimate would be

C± = t. + out.

where j = 1,2,...,n. This obviously does not consider the

structure of Q at all and it seems fairly clear that if

there was some Xi for which Q should be reduced, it would be

selected over all X. which should be substituted. Also,

this method still does not take advantage of the statistics.

It is possible to consider if Q.(j3) is reducible. But

to make use of this fact, it would have to be assumed that

for some X. in Q±(jB), reducing Q^p) would be optimal. Even

assuming that much, it is not clear exactly what the

sequence of subqueries would be since this depends on the

Xy To carry the process further, that is estimating

C(Q±(p)) for each X^ in Q^p), would quickly result in a



^
173

combinatorial estimation problem. So, it does not seem rea

sonable to consider the reducibility of Q.(p). But there

are certain structural characteristics which can be used.

First, substituting for Xi could have generated one-

variable clauses. Using these results in

C± = t. + 2 ( 2 PJ + 00t ' (
1 p<R± j<J J k* (7'2)

where J is the set of indices for the ranges involved in the

one-variable clauses and tk' = tk if k* J. This equation is

more accurate and since statistics are available, t. ' can be

estimated.

Equation 7.2 can easily be made slightly more accurate

by differentiating between the variables X±, i 4 J which are

now disjoint, i.e. those variables which appear only in

one-variable clauses.

C± = t + 2 ( 2 P.. + 2 P.P.) + 00 t 'p<R. j<J1 J j<j2 JJ k*j2 k

where J, = CjrX^Q.Cp) - Q.CXj)] and
J2 = CJ:Qi(p)nQi(XJ) = rf] (disjoint).

The p.'s used in the equation are meant to represent

the average percentage of R. which will have to be examined

to determine the existence of a qualifying tuple (0<.p.<.1).

The equation can be simplified by simply setting p. = 1.
w

However, if the statistics are available to estimate what
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tk' would De» an estimate of p. would also be possible.

It is also possible that substitution of X. will cause

Q to be split into several disjoint pieces. Since it is

known that each piece will be processed separately,

C± = t + t 2 00 t
1 1q<Dik<q K

where D^ is the sequence of disjoint components. Obviously,

the one-variable clause formulas can also be included in

this cost if applicable.

By using the statistics to estimate the reduced range

sizes involved in the remaining product, it is possible to

obtain a reasonable estimate as to what the effect of sub

stitution for a particular variable will be. In the esti

mate suggested above for the reduction cost, the statistics

were not really used. Again, it is possible to estimate the

effect of a restriction appearing in one of the components.

But, if all one-variable clauses are preprocessed, no new

ones will be generated through reduction. Statistics could

be used to estimate the range size of the joining variable

for each component. However, this means examining possibly

several domains' distributions and determining their joint

effect on the joining variable's range. This would also

have to assume that each domain is independent and that a

sort operation is included between consecutive components to

remove duplicates.
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It is felt that by just considering the separate combi

nations of variables achieved by reduction enough of the

query's structure is reflected to obtain a reasonable esti

mate. And adding the calculations conerning the range size
»

of the joining variable would greatly complicate the deci

sion process. Thus, the main usage of the statistics would

be in estimating the reduced range sizes after a restriction

is generated. They could also be used, as was mentioned in

the previous section, to determine the effectiveness of a

useful storage structure.

Another option available is to use sampling to obtain a

cost estimate. If the number of variables in Q is small it

f might even be possible to push the estimation all the way

down to one-variable queries, using a small sample for the

relations in Q. Certain options at each level can be elim

inated as contenders since it is probable the costs of dif

ferent paths will vary greatly. By being very selective at

each level about which paths to continue, the n! possible

paths could be reduced to a manageable number.

However, even if sampling is used in this manner, it

would in general not be wise to use the path selected as a

fixed order of processing. The final path selected should

be dependent upon p and the one obtained by sampling would

either be for an "average" p or it would be a set of paths

f* parameterized by p. The conclusion is that if sampling is
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used, no matter how far down the decision tree the estima

tion is pushed, the final result should only affect the

selection made at the top of the current decision tree.

Certain final comments should be made regarding sam

pling. First, if the database being used is not very large,

sampling would be quite expensive. Either the sample would

be too small to accurately reflect the characteristics of

the data or it would be almost the same size as the database

itself. Neither option is acceptable.

Second, if sampling is to be an option, the only feasi

ble way of using it cost effectively would be if the sample

was always available. It is not reasonable to create a sam

ple every time it is to be used. So, the sample would be

created along with the database, but would only be updated

occasionally. In this way, the cost of creating and main

taining the sample would be associated with many uses of it,

not just a single usage.
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CHAPTER 8

EXPERIMENTAL RESULTS

The INGRES database system is an implemented, working

relational database system. Due to this fact, it was possi

ble to perform experiments to evaluate the hypotheses pro

posed in the previous chapters. The basic system used for

this evaluation was version 6.0 of INGRES.

In evaluating these hypotheses we have taken as the

cost function the number of data pages accessed. It is true

that there are other costs involved in processing a query.

However, many of these other costs, such as computing the

target list function, will remain the same no matter what

techniques are used for intermediate processing. Thus such

costs can be ignored. In general, if the number of data

page accesses is minimized, the overall processing cost for

the query will also be minimized.

Using this criterion of evaluation, probes were

inserted in the utilities process, the decomposition process

and the one-variable-query-processor. These probes simply

consisted of counters for measuring the number of pages

accessed in the source and result relations for various

types of queries. As such, the probes themselves have no

effect on the measurements.
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The decomposition process also was modified in the fol

lowing respects to allow testing of all hypotheses:

1) a new substitution-variable selection routine was

inserted to allow tuple substitution in a predeter

mined order.

2) a version was compiled which did not preprocess

one-variable restrictions.

3) a version was compiled which allowed reformatting to

be either always performed or never performed.

All of these changes caused only minor modifications in the

standard decomposition process.

The results of the measurements will be presented in

three sections. In the first section, the hypotheses con

cerning the usage of statistics in processing will be

evaluated. Included here are topics such as preprocessing

one-variable clauses and dynamically modifying the structure

of relations. Even though statistics can play a very impor

tant role in variable selection it was felt that this step

involves many other factors too and that the different

selection criteria available should be presented together

allowing for easier comparisons. So, variable selection

criteria is the topic of the second section. Since the

analysis of reduction was not able to reach any absolute

conclusions for all cases, a number of experiments were per

formed to explore the many facets of reduction and to
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attempt to determine the real value of reduction as a pro

cessing tactic. The evaluation of reduction is presented in

Section 3.

8.1 Hypotheses Concerning the Usage of Statistics

There are many areas within the processing algorithm

where statistics can be used. In Chapter 6 several options

which could take advantage of statistics were proposed and

the effect upon the decisions made was analyzed assuming

that full statistical knowledge of the domains was avail

able. These steps included: 1) preprocessing one-variable

restrictions, 2) projection prior to tuple substitution, 3)

\ reformatting a relation to provide an efficient access path,

and 4) dynamically creating a secondary index rather than

modifying the data relation. Experiments were performed

considering each of these options separately in an attempt

to verify the theoretical analysis in practical application.

8.1.1 One-Variable Restrictions

One of the ways statistics on the data can be used is

to determine, for each restriction, its effectiveness ratio

(# tuples satisfying/total # tuples). The value of this

ratio is then used to decide whether the restriction would

be preprocessed. In Section 6.2 our analysis concluded that

f unless the ratio was very close to 1, the restriction should



.180

be performed. Thus, the knowledge of the distribution would

not have an effect in the majority of cases.

To verify this conclusion, we processed several queries

which called for a restricted product of two or more rela

tions. A variety of restrictions were used in the queries

in order to get a range of values for the effectiveness

ratio. The sizes of the relations in the queries were also

varied. In Tables 8.1 and 8.2 the measurements for two-

variable and three-variable queries respectively are

presented. C^ denotes the cost (in pages accessed) for the

query when i of the available restrictions were prepro-

cessed; this number includes the cost of processing the i

restrictions. p. denotes the effectiveness ratio for the

restriction in variable j; p. is the bound proposed by our

earlier analysis. Thus, p. must be less than p. for execut-
J j

ing the restriction to be cost-beneficial, according to the

theoretical analysis. In all queries, variable 1 was

selected for substitution first, then variable 2, etc.

In both tables, CQ is by far the largest cost, even

when p± is very close to 1. In Table 8.1, there are three

queries for which Cj is the minimum cost rather than Cp -

queries 2, 4 and 11. For query 2, this is because p = 1.0

so that even if the number of tuples was reduced by the res

triction, they still occupy the same number of pages.

f Queries 4 and 11 both have a very small p., thus the benefit
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TABLE 8.1. Performing one-variable restrictions in
two-variable queries.

1 .957 .9995 .041 .9886 36432 34867 1910
2 .957 .9991 1.0 .9886 4140 3965 4009
3 .80 .9978 .226 .9967 20520 16464 4053
4 .426 .9978 .226 .9938 20520 8796 2207
5 .207 .9971 .944 .9474 1748 366 365
6 .10 .9979 .934 .9737 23560 2404 2313
7 .048 .9998 .207 .9891 1464870 70041 15507
8 .0096 .9998 .0047 .50 44726 436 226
9 .006 .9958 .583 .50 4290 44 46

10 .006 .9989 .4375 .50 16170 116 110

TABLE 8.2. Performing one-variable restrictions in
three-variable queries. CQ = 13,735,860 for all queries.

query

-'"*%

1 .982 .999997 .9897 .999996 .262 .999995 13482879 13344176 3659292
2 .426 .999997 .551 .99994 .262 .99998 5855862 3224387 884358
3 .10 .999997 .106 .99996 .262 .99958 1373634 146211 40252
4 .011 .999997 .106 .99963 .262 .99597 144636 15481 4382
5 .003 .999997 .106 .9985 .262 .98387 36195 3946 1171
6 .003 .999997 .091 .9985 .262 .9811 36195 3388 1064 _,

00



182

gained from the first restriction is very dominant. But

note that for all these queries, C2 and C, are very close;

the extra cost of C2 is not more than about 11 %. And, if

Table 8.2 is examined, the bounds p. get even closer to 1

than in the two-variable case. For query 6, even though p

and p2 both are less than .1, p3 = .9811 which is reasonably
large.

These queries were run on relations varying from 92 to

3330 tuples and 5 to 758 pages. If these sizes get larger

or when the number of variables is three or more, the advan

tages of preprocessing the restrictions will be even

greater.

All of these measurements were performed on relations

which had non-keyed structures. Thus every tuple had to be

examined. Clearly if the relation is keyed on the domain(s)

in the one-variable clause, the cost of performing that res

triction would decrease. If that relation is later selected

for tuple substitution, this will be the only effect on the

results. However if that relation is not selected for sub

stitution, then OVQP will be accessing it at some later

point. If the restriction is not preprocessed, then that

relation will only have to be accessed once to perform both

the restriction and the final query. And this access can

made using the keyed structure. When the restriction is

preprocessed though, the result relation defaults to a non-
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keyed structure. So we have the option of leaving it non-

keyed and thus having to access all pages or modifying the

structure to one which can be used by the remaining query.

But, this is a completely different issue than the one being

examined here and the option of delaying the preprocessing

of restrictions was not considered.

8.1.2 Projection Prior to Substitution

The intuitive reasoning behind this option is quite

obvious. Tuple substitution is the most costly step in the

decomposition algorithm. If the number of tuples which must

be substituted can be reduced by removing duplicates, it

would appear a profitable operation. The analysis supports

this. Again, a bound was obtained on the percentage of

non-duplicate tuples which must be found for the operation

to be advantageous. This bound is very close to 1.

The queries run for measurement were all two-variable

queries since it can easily be seen how the results general

ize. The parameters varied were the percentage of non-

duplicate tuples which must be substituted and the pages in

the relation remaining after substitution. The results are

separated into two cases. First, in Table 8.3, the case

when a complete projection must be performed, i.e. the

referenced columns selected and a sort done to remove dupli

cates. And, second, in Table 8.4, when the selection of
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TABLE 8.4. Removal of duplicates prior

to substitution.

q q P2 C cp

.19108 = 60/314 .99459 18 5966 1162

.99342 = 302/304 .99630 53 16416 16390

.26316 = 5/19 .99751 53 1026 275

.99013 = 301/304 .99048 20 6384 6370

.26316 = 5/19 .98965 12 247 70

.18421 = 7/38 .99286 27 1064 202

.71591 = 63/88 .99303 16 1496 519

185

The interesting thing to note here is the high values asso

ciated with q. In all of the test queries, the number of

original tuples and particularly P2 were fairly small and

j^ yet the values of q are quite high. When these values of P

and original tuples are larger, the bound q will become

quite close to 1.

8.1.3 Reformatting

This option was a very controversial one within the

INGRES project. Intuitively, it appears that the cost of

modifying a whole relation might be too high a price for the

benefits obtained. However the analysis concluded that

whenever the query on the reformatted relation is to be exe

cuted many times (at least 100 times), reformatting can be

advantageous.

f* No experiment was done for the first case studied in
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the analysis of reformatting where a modify is not performed

but only the referenced domains are selected from the origi

nal relation. The conclusions reached for that case are

straightforward and present no questions in understanding or

implementing.

Several queries were run where reformatting was used.

The parameters varied include the number of substitutions to

be performed, the distribution of the key domains and thus

the percentage of pages which must be accessed using the

keyed structure, and the reduction in width. In Table 8.5

the measurements for reformatting to a hashed structure are

presented and Table 8.6 contains the results for modifying

to an ISAM structure. For these tables, t. is the number of

substitutions to be performed (and thus the number of times

the one-variable subquery will be executed), c '/cp is the

ratio of new page capacity to the original, p2 is the

expected percentage of pages which must be accessed for each

substituted value to answer the one-variable subquery. p

must be less than p2 for the reformatting to be affordable

according to the analysis. Another measure developed in the

case of modify to hash is t^ which is the lower bound on the

number of substitutions to be performed. C is the cost of
r

processing the whole query using reformatting, including the

cost of the copy and modify operations, and C is the cost if

reformatting is not performed; both costs are in units of
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pages accessed.

The interesting thing to note in the first table is the

correlation between t1, p2 and c2'/c2. As the ratio of page

capacity increases, both of the bounds t1 and pp are

relaxed. In other words, pp increases and t* decreases.

Specifically note that whenever t. > 100, if c '/cp > 1,

then p2 > 1, and thus the constraint is always satisfied.

For smaller values of t^ as would be expected, the cases

must be examined more closely. If the actual values of pp

are examined, in most cases using a bound of pp : .2 to cal

culate t.j is quite conservative. The main cases for which

statistics would be helpful would be to predict when pp will

be large, or equivalently, when there are only a small

number of unique key values.
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TABLE 8.6. Reformatting to an ISAM structure.

query fc1 c2'/c2 p2 p2 C Cr

1 330 1.091 .05517 1.0611 17820 1955
2 330 4.375 .062375 4.3367 16170 1486
3 162 1.0 .05217 .9398 8748 1356
4 100 2.636 .19194 2.5259 5400 916
5 92 1.0 .452 .8982 1196 972
6 92 1.689 .24908 1.5854 1196 404
7 92 1.689 .824 1.5854 552 504
8 87 1.0 .31417 .8923 1191 500
9 38 1.727 .16327 .7415 1710 937

For every query run, reformatting to an ISAM structure was

less expensive than no reformatting, even when there was no

reduction in tuple width. The same observation also holds

here about the correlation between c '/cp and pp, only more

so. That is, even when the page capacity ratio is 1, the

values of p2 are quite high. Since a majority of the

queries run for testing in the ISAM* case involved only

equalities, it might seem that reformatting to ISAM would be

more useful than reformatting to a hashed structure.

8.1.4 Dynamic Index Creation

The analysis of this option was not as successful as

the other cases in that no definite conclusions were

reached. The only result was that distributional informa

tion would be very helpful in determining the effect of not

clustering the values. It was hoped that performing some
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experiments would give a better indication of the costs.

The current INGRES system only supports using indices

in a limited way. That is, when an index is available, an

access is made to the index to retrieve the identifier of a

qualifying data tuple. That data tuple is retrieved and

then the index is examined again to find the next qualifying

tuple. Also, the way that the tuple identifier is stored in

the index does not allow ordering by data page number. If

all identifiers of qualifying tuples are retrieved and then

sorted by page number or even if the index is also ordered

by page number, the use of indices would be more efficient.

Table 8.7 presents the results of the measurements in a

comparative fashion. That is, the costs of modifying to

hash, ISAM or creating an index are all included to gain

some insight into their relationships. The first column in

the table references the graphs following for the distribu

tion of the key domains (Figure 8.1a-h). The next three

columns are the costs involved in making the access path

available - i.e., modifying the.relation to hash (H) or ISAM

(I), or creating the index (SI), which includes building it

and modifying it to an ISAM structure. Then the following

three cqlurans are the costs of processing the query using

the three options. These costs include the cost of provid

ing the access path. All costs are in terms of data pages

^ accessed. The last two columns give the ratio of page capa-
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city for the modified relation to the original or the index

to the original relation. Note that each index tuple con

tains the key domains and a 4 byte tuple identifier.

It can be seen from Table 8.7 that whenever reformat

ting includes a reduction in tuple width (c'/c > 1), creat

ing an index is not a winning policy. Obviously if the

tuple width of the index is the same or larger than the ori

ginal relation, reformatting should be performed rather than

indexing. In general however, the cost of creating the

index and modifying it to an ISAM structure is less than

modifying the structure of the original relation as was

expected.

The following observations can be made from examining

the distributions of the key domains:

1) hashing seems to do better when there are a small

number of distinct key values and only a few of

these key values account for most of the

occurrences.

2) an ISAM structure, either for the primary relation

or used for an index, is to be preferred when there

is a fairly uniform distribution of occurrences vs.

key values.

These conclusions are not unexpected. Notice however that

the domains which are favorable to indexing have a distribu-

f^ tion very similar to those for which reformatting to an ISAM
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structure is preferable. However in the queries where

indexing was better, for over half of the substituted

values, no tuples in the accessed range satisfied. Whereas

the queries favoring the ISAM structure had less than one-

fourth of the substituted values without qualifying tuples.

So the conclusions seem to indicate that there are four

characteristics which must be present in order for creating

an index to be the preferred policy: 1) tuple width of the

index must be less than that of the original relation, 2)

reformatting the relation causes no reduction in tuple

width, 3) there is a fairly uniform distribution of

occurrences vs. key values, preferably only one or two

occurrences per value, and 4) there is a relatively high

percentage of substituted values for which there are no

qualifying tuples.
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8.2 Variable Selection

This section will present the results of experiments

run to test the hypotheses proposed in Chapter 7 on select

ing a variable for tuple substitution. The experiments were

broken down into two major groups - those for two-variable

queries and measurements for queries involving three or more

variables. Within each group, the query characteristics

mentioned in Chapter 7 were varied and their effect on the

processing cost considered. The first subsection contains

the results of these experiments for two-variable queries

and then, in the second subsection, three or more variable

queries are discussed.

8.2.1 Two-Variable Queries

The following hypotheses were tested:

1) If size alone is considered, the variable which

minimizes the ratio j^ should be selected, where t

is the cardinality and P is the number of pages for

a relation.

2) The only useful query structure characteristic is

the number of variables in the target list. In gen

eral, if there is only one, that variable should be

selected for substitution.

3) If only one of the relations has a keyed structure

which can be used, the other variable should be
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selected for substitution to allow OVQP to take

advantage of the access path.

4) If statistics are available, a cost estimate should

be made considering all of the above characteristics

of the query environment and the distribution of the

linking domains.

Not only were each of these criterion tested separately to

evaluate their credibility, but their effect was considered

to determine their overall importance. This type of evalua

tion will help to define the order in which the criteria

should be applied to a query to result in a minimum process

ing path.

In order to evaluate the first hypothesis, several

queries were run varying the number of tuples and pages in

each relation. The queries all essentially performed a join

between the two relations and thus were of the form:

RETRIEVE (Xra, X2-a)

WHERE Xrb = Xp.b

Both relations had non-keyed structures for this phase of

the testing.

The costs are in units of pages accessed by decomposi

tion for substitution purposes and OVQP for answering the

set of one-variable queries. C1 0 is the cost of substitut-

ing for variable 1, while C2 1 is the cost when variable 2

f is substituted.
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As can be seen from Table 8.8, the criterion of minim

izing the ratio p^-y accurately selects the variable with the

minimum processing cost. Notice that using only the number

of tuples or only pages does not work as well. Thus the

first hypothesis for the case when size alone is used

appears true from the experimental results. Note that as

the two ratios approach equality, the costs become more

similar.

For testing the second hypothesis concerning query

structure, several queries of the form

RETRIEVE (Xra)

WHERE Xrb = X2.b

were run, varying the sizes and domain distributions

involved. Again for this phase, non-keyed structures were

used. In the following table (Table 8.9), the results of

the experiments are presented. C1 Q and C0 are as

described for Table 8.8. Variable 1 is always the variable

which appeared in the target list.

For all queries except 2 and 8, the hypothesis is shown

to be valid even though variable 2 would be selected using

the size criterion. The reason this happens is that there

is an implied existential quantifier on the variable not

appearing in the target list. Once substitution is made for

the target-list variable, the range relation of the remain

ing variable only needs to be examined until the first qual-
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ifying tuple is found. In most cases, the resulting savings

will be the dominant factor in variable selection. The rea-

son that queries 2 and 8 do not follow this pattern is due

to the distribution of the linking domain. For a large

number of values of that domain in relation 1 there are no

matching occurrences in relation 2, so the whole relation

must be examined. When this happens, the savings made pos

sible by the query structure are diminished due to the dis

tribution. This detrimental effect can only be predicted if

the distributions are known.

The results in Table 8.9 strongly suggest that when

there is only one target-list variable it should be selected

for substitution, especially when no statistical information

is available. The potential savings are large and the occa

sional losses are limited. There is another advantage to

this policy. Since OVQP simply retrieves all tuples that

satisfy and appends them to the result relation without

checking for duplicates, the potential size of the result

relation is the product of the number of tuples of each

relation. When the target-list variable is substituted

first however, the result relation is bounded by the size of

its range instead of the product of the two range sizes.

This will have a beneficial effect on the cost if the result

relation is subsequently modified to remove duplicates or if

the result of this query is the first in a series.
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The third hypothesis is very important for two-variable

queries because this allows OVQP to take full advantage of

the storage structure of the relations. This criterion

should be used in combination with the size and query struc

ture policies discussed above. Clearly, if variable 1 is

selected for substitution using, for example the size cri

terion, and variable 2 has a keyed range relation, consider

ing the storage structure will have no effect on the selec

tion because the preferred ordering has already been chosen.

However if variable 1's range has the keyed structure then

there could be some effect. For this reason, the experi

ments run only considered the effect of a keyed structure

for the range of a variable which would be selected for sub

stitution using either (a) the size criterion, or (b) the

query structure criterion. The following table will include

the minimum cost for each query from either Table 8.8 or 8.9

so that a comparison can be made to the cost using the deci

sion policy of hypothesis 3. C will denote the minimum cost

using non-keyed structures and K the costs measured consid

ering the available keyed structure.
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TABLE 8.10. Two-variable queries using a
keyed storage structure.

query , C K
a1 2104 3511
a2 2355 143
a3 3709 3764
a4 1950 2728
a5 1135 773
a6 1329 1105

a7 595 86
a8 2014 524
a9 1329 205

b1 145 1631
b2 3922 196
b3 1759 2785
b4 733 1501

b5 441 783
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From these results it can be seen that hypothesis 3 is not

in general true. For queries where the variable selection

is made using the query structure (b1-5) in fact, the policy

suggested by this hypothesis is almost always the wrong one.

The only exception is query b2 which was a query where the

selection using the query structure alone resulted in the

greater cost. So its savings using a keyed structure is

understandable.

For queries a1-9 where the selection was made on a

basis of size, the results are varied and the benefit of the

keyed structure depends on the distribution of the key. In

approximately two-thirds of the cases, though, a substantial

savings was achieved by deciding in favor of the keyed

structure.
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v The fourth hypothesis is a fairly obvious one and

clearly whenever statistics are available, an estimation

procedure will predict the better path. From the previous

discussions, the knowledge of the distribution would solve

many questionable decisions. Unfortunately, INGRES does not

support the capability of either maintaining or using sta

tistical information currently so it was not possible to

actually perform experiments to test this procedure. How

ever, for several of the queries, the estimating procedure

was carried out by hand. In all cases, the order selected

was the one with the minimum processing cost when the query

was run.

f The results of the experiments and the analysis for

selection of a substitution variable can be summarized as

follows. Given a two-variable query, these factors should

be considered in this order:

1) If distributional information is available, a cost

estimate function should be applied to determine the

processing path which accesses a minimum number of

data pages.

When statistics are not available,

2) If the target list contains only a single variable,

that variable should be selected for substitution

regardless of size or storage structure.

I 3) When the target list contains two-variables, if one
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of those variable has a keyed structure on the

domain(s) in the qualification, select the other

variable for tuple substitution.

4) If none of the above criteria applies, select the

variable for substitution which minimizes the ratio

t

p+r

Note that these conclusions hold for all of the queries

measured and will hold true in general. However, it is

tacitly assumed that none of the relations are predominantly

small (< 10) or large. In these cases, size will undoubt

edly be the dominant factor but, according to the previous

jpn conclusions, size is the last factor considered.' What would

be useful is some general measure which would reflect all of

these considerations simultaneously.

One technique which can be used is to always consider

the ratio t/(P+1) but to have P represent the "effective"

pages of the relation. Using the actual number of pages the

relation occupies is essentially assuming that every page

will be accessed. When there is only a single target-list

variable or a relation has a keyed structure, this assump

tion is not valid. Thus P can be modified to indicate the

expected number of pages which will be accessed under these

conditions. Clearly when statistics are available, it is a

simple matter to estimate the effective P. When statistics

are not available, it is still possible to use this
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technique.

When there is only a single target-list variable, it is

always possible to create an index on the other relation and

thus guarantee a single access per substituted value. Thus,

Peff for tne Qualification variable can be taken as 1.

Another option is to assume that for 50$ of the substituted

values, all pages must be examined and for the remaining

half, only a single page must be retrieved. Thus,

.5t P + .5t

Peff =—*-t * = '5(P + 1)
s

where t is the number of tuples in the range of the

0* target-list variable and P is the actual number of pages

occupied by the other relation.

There has been considerable study done on determining

the average number of page accesses required using a keyed

structure [SEVE74, LUM71, HELD75c]. For a hashed structure,

it is approximately one page access but this depends on the

number of tuples per page. For a directory structure

(ISAM), it depends on the range of values being retrieved.

But, using these type of estimates for P ff, the effect of

the storage structure can be reflected.

Thus, for two-variable queries, the ratio =—-—7 should
Peff+1

be used as the selection criterion.

jp*\
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8.2.2 Multi-Variable Queries

For these experiments, a variety of three and four-

variable queries were run. The structure of the queries,

the sizes of the relations and the domains appearing in the

qualifications (and thus the distributions) were all varied.

Since Section 8.3 contains the evaluation of reduction as a

processing alternative, this section will present the

results considering only substitution as a processing tac

tic. As in the two-variable case, it was not possible to

actually perform experiments to evaluate using statistics in

a cost function as a prediction method. However, this pro

cedure was carried out by hand and the measurements for the

processing order selected by this method are included.

The following criteria for selecting a variable for

substitution were compared:

a) select the variable whose range relation has the

fewest tuples.

b) select the variable whose range characteristics

minimize the ratio ttt.
P+1

c) select the variable which will have the greatest

immediate effect on the remaining variables; that

is, the variable which appears in the most two-

variable clauses.

Although it is not a selection criterion as such, experi

ments were also performed to test the hypothesis that



#^N

213

storage structure does not play a dominant role for queries

involving three or more variables. To illustrate this, the

queries were also run with keyed structures available in an

attempt to see if the same order was the best whether or not

the storage structure was considered.

The results of the experiments will be presented in the

following manner. First, a graph, as described in Chapter

5, for each query will be presented. Then the resulting

costs in data pages accessed will be tabulated by query by

criterion being evaluated and the variable selected for sub

stitution will be indicated. Since there are several possi

ble orderings for substitution starting with the same first

variable, the cost tabulated is the minimum cost associated

when the indicated variable is the first one selected for

substitution. Also included in the last columns of Table

8.11 is the decision which would be made using complete

statistics to estimate the various costs and the measured

cost for that decision. The cost estimates using the

statistics were calculated by hand.

Query 1

t =66 P = 15
t£ =56 p£ = 13
fcC = 51 PC = ^



Query 2

B

Query 3

Query 4

©

Query 5

Query 6

'B

= 66
= 56
= 51

'B

66
56

3

t" = 150 P
B

tA =
t -
:b -

t. =

'B

66
56
150

62

= 62

= 56

'B

= 66

= 51
= 56

,B

pA :
~B

>B

15

13
14

15

13
39

15

13
39

32
17

29

15
14

13
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Query 7

®

Query 8

Query 9

Query 10

j^\

B

= 98
= 79

= 62
= 40

B

'B

'A

'B

B

=56 PA =
= 62

B

= 112 P,
= 97 P

=62 P. =
= 51

= 56 Pr =
=62 pr =

= 62
= 62

B

B

tP = ,138 P,

'D =51 P" =

50

17

17

3

29
17

57
26

32
14

29
17

32
17

70
14
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Query 11

B-

T
Query 12

B ©

\*>

Query 13

'B

= 62 P

= 51

= 62 P,

B

t" =56 PiT =

17
14

32

29

B

B

B

= 51 P
= 56 P

= 62 P
= 62 P

14

29

17
32

=51 P. = 14
=56 p£ = 29

=62 Pp = 32
=62 P^ = 17
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First, a few comments about Table 8.11. Query 1 has no

interesting query structure - all three variables appear in

the target list and each variable appears in two two-

variable clauses. Thus, the query structure criterion is

not applicable. For queries 9 and 12, there are two entries

in the criterion (c) column. This is because there are two

variables which possess the same query structure charac-
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teristics. So some other criterion must be.used to decide

between the two, but both are available.

The results presented in Table 8.11 seem to point to

several conclusions:

1) Size in terms of number of tuples alone is generally

not an adequate criterion to minimize the processing

cost.

2) The structure of the query, specifically the number

of two-variable clauses each variable appears in, is

a dominant factor in determining the processing

cost.

3) Using the ratio p^r is a more successful criterion

than using only t to select a substitution variable.

The only result which is perhaps unexpected is that the

ratio of tuples to pages is better than tuples alone when

considering only size to select a substitution variable.

This implies that the assumption made in Chapter 7 that the

last step of a multi-variable query being in pages could be

ignored was not a valid assumption.

When the storage structures of the relations were modi

fied so they were keyed on a useful domain, obviously, the

total costs went down but the relationship between the costs

using the three criteria was unaffected. This would seem to

indicate that storage structure does not play an important
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role in the selection procedure when more than two variables

are involved.

The conclusions of this criterion evaluation for

selecting a variable for substitution in a query involving

three or more variables can be stated as:

1) Obviously, if statistics are available, a cost func

tion should be used to estimate the order of substi

tution with minimum cost.

2) For each variable, count the number of two-variable

clauses in which it appears. Also, if the target

list is one or two variable, this should be included

in the count for the appropriate variables. Select

the variable for substitution whose associated count

is the largest. If there is a tie between two or

more variables, use the next criterion as the decid

ing factor.

3) Select the variable whose range relation charac

teristics minimize the ratio ttt.
P+1

It should be noted at this point that in obtaining these

results we did not consider reduction as a possible process

ing alternative. The effect of reduction on variable selec

tion for tuple substitution will be considered in the next

section.
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8.3 Reduction

The idea of reducing a query into components which have

only a single variable in common is an important part of

this work and it is a new technique in the context of data

base processing. As such, there are many questions which

arise concerning it. In Chapter 5, an attempt was made to

answer one of the major questions. Namely, how useful is

this technique as opposed to tuple substitution. But no

definite conclusions were reached for all cases and it has

yet to be shown how valid those results are in practice.

The ideal case for reduction is when the resulting

sequence of components contains only two-variable queries

because generally two-variable queries are less expensive to

process than three or more variable queries. What can be

learned by examining such cases? First of all, note that

all components except the last, which contains the original

target list, are guaranteed to have only a single variable

in the target list, namely the joining variable. This fact

will surely have an effect on the cost of processing. Since

the cost will be a sum of costs for two-variable queries, is

there a single component which will dominate the cost? This

fact could be useful in predicting the total cost of pro

cessing and comparing this method to others.

When reduction is used, it is known that the result of

an intermediate component will be used as a source relation
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for a subsequent component. One of the points in favor of a

single-overlapping variable reduction is the fact that this

result relation will usually be smaller than the original.

Once can guarantee that it will be no larger by performing a

sort operation to remove duplicates between intermediate

components. But obviously this operation will have a cost

associated with it. So the question to be answered is how

beneficial is it to remove the duplicates between intermedi

ate components.

One final question concerns the effect of keyed storage

structures on reduction. The analysis performed in Chapter

5 considered that all relations possessed non-keyed struc

tures so that all tuples had to be examined. This implied

the assumption that a keyed structure would have no effect

on the conclusions of reduction vs. tuple substitution.

However, it was not shown that this was a valid assumption.

These are the basic questions which were considered

when performing the evaluation of reduction. The case of

reducing to all two-variable components and performing a

sort between components is presented in the first subsec

tion. Then the measurements concerning the hypotheses pro

posed in Chapter 5 for reduction vs. substitution are dis

cussed in the second subsection. Also the effect of keyed

structures is considered.
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8.3-1 Reduction to Two-Variable Components

A series of three to five-variable queries were run to

test the following hypotheses:

1) In every component except the last, which contains

the original target list, the joining variable

should be selected for substitution.

2) Either the first component executed or the last one

will have the dominant cost compared to all other

components. If the rule in hypothesis (1) is fol

lowed, it will generally be the last component which

is dominant.

3) If the rule in hypothesis (1) is followed, the sort

ing cost will be minimal and the total cost of pro

cessing including the sort will be better than the

cost without the sort.

The second hypothesis is based on the following reasoning.

The first component executed will generally have a large

cost compared to the other components because there is no

effect of the reduction yet. All subsequent components will

involve a joining variable whose range has hopefully been

reduced. The last component will usually involve examining

a cross product whereas all previous components were

guaranteed to have only a single target-list variable.

Thus, its cost can conceivably be larger than the other com

ponents. This fact, if true, could be of use in predicting
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the cost of the entire query or in determining which com

ponent deserves the most attention for possible optimiza

tion.

Since the queries tested all reduce to two-variable

components, the possible query structures are limited. The

structures considered were of the following form:

(a)

(b) (c)

For queries of the form of (a) there are obviously different

orderings for executing the components, i.e. 1 - A,C; 2 -

A,D; 3 - A,B or 1 - A,D; 2 - A,C; 3 - A,B. It would be

useful to be able to predict which ordering results in the

minimum cost. Unfortunately the measurements did not pro

vide any definitive answer to this question since in
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reality, it depends on the distribution of the domains

involved. However, in general, it appears that performing

the component which involves the relation with the smallest

number of pages first is a good policy when statistics are

not available. Thus, the measurements presented will be for

the minimum cost ordering of components only.

For the other structures, little choice is available in

the order of processing components. For form (b), the only

order is 1 - C,D; 2 - B,D; 3 - A,B. For (c), there are two

orderings: 1 - A,B; 2 - C,D; 3 - A,D or 1 - C,D; 2 - A,B;

3 - A,D. Since components 1 and 2 are not connected, the

ordering will make no difference on the cost.

The sizes of the relations involved vary from 15

tuples, 2 pages to 138 tuples, 70 pages. All relations have

non-keyed structures. Table 8.12 contains the results of

the experiment. The letter in the structure column refers

to the structures shown graphically above. Order 1 refers

to the order of substitution within a component as described

in the first hypothesis; that is, always substituting for

the joining variable in the intermediate components. Order

2 is when the non-joining variable is chosen for substitu

tion in the first component and then the joining variable in

all remaining intermediate components. Tests were run where

the order was also varied in other components, but the first

component seems to be the critical one. Under the columns,
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TABLE 8.12. Reduction to two-variable components.

Query Order 1 Order 2
No. Graph ! w/sort w/o sort Size ! w/sort w/o sort Size

1 a 1044+25 3698 55/24 !3710+1157 314102 4785/24
2 a 765+30 2505 55/24 2253+270 40145 1430/24
3
1,

a 732+25 2359 55/24 2072+723 56052 2750/24
4 a 775+20 1169 62/38 2440+669 58625 3472/38
5 a 395+20 1226 55/13 1403+262 29228 1430/13
6 a 1021+25 3724 55/24 1305+25 4008 55/24
7 a 1037+57 3367 138/67 4274+1704 246798 6900/67
8 b I 673+25 2573 51/4 1355+591 109086 2856/4
9 b i 777+11 3558 50/1 i 1298+11 4078 50/1

10 b ! 724+20 7985 51/4 I 978+47 9899 204/4
11 b I 865+25 5155 51/4 ! 1547+591 108988 2856/4
12 C i 1105+15 1159 15/3 I 2076+124 3585 750/3
13
4 li

C i
1
1016+30 2709 15/3 | 1987+139 3680 750/3

14 c I 1016+30 2709 55/23 I 2504+239 15311 1430/23

ro
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order w/sort, the numbers are of the form x + y. y refers

to the cost of the sort operations while x is the cost of

processing the query excluding the sort cost. The numbers

in the size columns are the number of tuples before the

sort/after the sort for the result of the first component.

In all cases, the total cost of processing the query is

less when the sort operation is performed than when the

duplicates are not removed, and the difference is usually

large. Order 1, where the intermediate target list vari

ables are chosen for substitution, is always preferable to

order 2 whether the sort operation is included or not. This

supports the conclusions of the two-variable selection cri

terion for structured queries.

One must realize that most of these queries reduce to

three or four components, so the sort cost indicated is the

sum of the sort costs after each component except the last.

When the individual components are examined, it turns out

that only the sort operation after the first component exe

cuted results in much reduction in the range size, except

for queries with structure (c). For structure (c), there

are essentially two "first" components since they have no

variable in" common.

Table 8.13 presents the individual component costs for

each query and the size of the result relation before and

after the sort operation. The costs used are those when



TABLE 8.13. Reduction to two-variable components,
individual component costs.

Component
Query 1 i 2
No. Graph ! Cost Size Cost

1 a 162 55/24 198
2 a 149 55/24 195
3 a 150 55/24 198
4 a 154 62/38 621
5 a 140 55/13 157
6 a 139 55/24 198
7 a 344 138/67 277
8 b 114 51/4 . 38
9 b 364 50/1 1 29

10 b 165 51/4 i 38
11 b J 114 51/4 i 38
12 c ! 429 56/12 i 672
13 c ! 149 55/23 I 191

>
3 I 4

Size ! Cost Size Cost

24/12 1 684 _

24/13 1 37 12/12 384
24/12 384 -

13/13 62 12/12 36
24/12 684 —

33/13 416 —

3/1 29 55/12 384
56/12 384 —

3/1 1 29 55/12 384
3/1 . 29 55/12 I 684

15/3 i 4 —

23/12 I 672 15/3 I 4

ro
ro
--3
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order 1 of substitution is used. Component n always con

tains the original target list and the order of execution

was component 1,2,...,n. The sort costs are not included.

One can see from this table that usually the most reduction

in size from the sort is gained after the first component.

However since the relation monotonically decreases in size,

the sorting cost of the subsequent components also

decreases.

Note that for queries with structures (a) or (b), the

dominant component in terms of cost is usually the last com

ponent. For query 5, this is not true but the size of the

variable which appeared in the target list with the joining

variable was approximately 1/10th of the largest variable.

Thus, one would expect the cost of the last component to be

small. For queries with structure (c), one would expect the

last component to be the smallest also. This component con

tains two joining variables which have already been reduced

in size. So hypothesis (2) appears to be true for queries

of structures (a) or (b) when the size of the remaining tar

get list variable is not very small compared to the other

relations. However it is felt that this observation is not

really that helpful since it really does not give a good

indication of the total cost of processing. Also, the last

component may have the largest cost but there could be oth

ers which are quite close.
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8.3.2 Reduction vs. Tuple Substitution

In Chapter 5, reduction was proposed as a processing

technique and an analysis was performed in an attempt to

determine exactly when reduction should be used prior to

tuple substitution. The results of that analysis can be

summarized as follows:

1. When the variable selected is a joining variable,

substitution for that variable will require less

total page accesses than reduction on that variable

followed by substitution for it first in each com

ponent.

2. When the variable selected (X.) is not in the target

list but is involved in a two-variable clause with a

variable in the target list, substitution for the

selected variable will be better than reduction

assuming that X± is selected for substitution first

in the component in which it appears.

3- When the variable selected (X.) is in the target

list and appears only in a clause involving three or

more variables or not at all in the qualification,

and, if substitution results in a connected

subquery, reduction will be less expensive than sub

stitution for X^^ when X± is substituted first in the

reduction component containing the target list.

/- 4- When the variable selected (X^ is not in the target
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list and does not appear in any two-variable clauses

with a variable in the target list and substitution

for X^ results in a subquery whose graph is expli

citly disconnected, reduction does better than sub

stitution for Xi when Xi is substituted first in the

first reduction component.

In all other cases, no definite conclusion could be stated

but it was felt that reduction would perform better in gen

eral. The assumptions made for the purpose of the analysis

were that none of the relations had a keyed structure, no

sort operation to remove duplicates was performed between

intermediate reduction components, and that the same vari

able would be selected for substitution after a reduction as

before.

Obviously the results of this analysis depend upon

which variable is selected for substitution. In order to

test all cases, measurements were taken for each variable

that would be selected using any of the criteria discussed

in Section 8.2. Also, since is was not known if the assump

tions made for the analysis were valid, experiments were

performed where the assumptions were relaxed.

The analysis of Chapter 5 used the guidelines presented

there for how far a query should be reduced given the role

of the variable selected for substitution. Since the exper

iments can fully reveal the effect of only the first deci-
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sion, all levels of reduction were run to get an idea of the

total processing costs.

The purpose of the measurements in this section is,

first, to evaluate the results of the theoretical analysis

of Chapter 5. Second, it is felt that the assumption that

the same variable will be selected before and after reduc

tion is too strict. So, this assumption will be relaxed and

the results presented. Third, the hypothesis that storage

structure has no effect on the decision as to whether to use

reduction or substitution will be tested.

The following graphs depict the structure and charac

teristics of the queries used in the experiments.

Query 1

Query 2

JS) h =6A Ia =\it" =56 Pg = 13
t\ =51 P* = 14

B

t. =66 P. = 15
t£ =56 p£ = 13
fcC = 15° PC = 39
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Query 3

©

Query 4

Query 5

Query 6

Query 7

#**N

66

56
'B B
t" = 150 P

62
62

'B B
=56 P" =

tA:
t! =

66

51
56

'B

D

B

= 98
= 79

= 62
= 40

= 56
= 62

= 112 P(
= 97 P

,B

B

B

15

13
39

32

17

29

15
14

13
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29
17

57
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B

D

Query 9

B

Query 10

B

Query 11

B I ©
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D
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= 62
= 62

B

D

B
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= 62

= 51

= 62

= 56

= 51
= 56

= 62
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D
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29
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32

29

14
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The first measurements to be presented are those concerning
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the hypotheses of Chapter 5. The results will be broken

down into categories. Table 8.14 presents the measurements

when a variable selected for substitution is a joining vari

able (hypothesis 1). The second table contains the results

when the variable selected is in the target list (hypothesis

3), and the third is when the variable selected is not in

the target list (hypotheses 2 & 4). Note that there will be

some queries irt.the second and third tables which do not fit

the criterion of the hypotheses, thus which hypothesis is

applicable, if any, will be indicated.

Each table will include the query number, the variable

selected for substitution, the cost if that variable is sub

stituted, and the cost if that query is reduced using the

guidelines for how much to reduce presented in Chapter 5.

Since there are various orders of substitution possible even

after the first variable is selected, the cost included will

be the minimum one. The reduction cost is the cost assuming

the selected variable is substituted first in whichever com

ponents it may appear. Also included are each of these

costs when keyed structures are used.
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TABLE 8.14. Substitution variable is a-joining variable

Query
No. Var

1 B

2 C

3 C

4 A

5 B

6 A

6 C

7 A

8 Av

8 C

9 C

10 B

10 C

11 D

Substitution Cost
non-keyed

Cost Reduction Cost

ceyed non-keyed keyed

255 794 257

479 2346 482

636 2351 726

157 1169 210

469 1120 485

1637 3176 1798

1783 3399 713

3357 3698 3386

2230 4257 2230

6048 11349 6182

3145 1677 261

1951 3414 2013

357 942 372

14751 2091 762

793
2343
2261

1083
1015

3015
4516
3670
4257
11266

4329
3367
927

14751

From Table 8.14, it can be seen that generally when the

variable selected for substitution is a joining variable,

substitution for that variable is better than reduction fol

lowed by substitution for it first in each component. How

ever, there are exceptions even to this. But note that the

existence of keyed structures does not affect the relative

costs.

Hypothesis 3 proposes that reduction does better than

substitution under its conditions. From Table 8.15, it can

be seen that whether the hypothesis is true or not, reduc

tion should be the technique selected to achieve a minimum

processing cost. This result makes sense because generally

when a variable appears in the target list and is not a

joining variable, it will not be very dominant in the
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qualification. Thus substituting for it gains essentially

nothing and reduction can gain quite a lot. Again, the

storage structure did not change the relative costs.

The results of Table 8.16 indicate that reduction does

better than substitution in almost all cases where the sub

stitution variable is not in the target list. The main rea

son that reduction loses in query 4 is that the result of

the first reduction component contains |R(A)i|R(C)! tuples,

since all tuples are retrieved for each substituted value.

If either the operation to remove duplicates is included or

the order of substitution for the first component is

changed, the reduction cost drops dramatically. However,

^ these results refute hypothesis 2 and verify hypothesis 4.

Examining hypothesis 2 and the queries where it is

applicable, there is a possible explanation for why it is

false. Since X1 is not in the target list, it does not

appear in the last component, only in the first. Thus,

reduction is free to select any variable for substitution in

all components except the first. This flexibility allows

for more optimization. Also, in Conjecture 2, the cost com

parisons are made using tuples only. The joining variable

will likely have a larger reduction in pages than in tuples

since the tuple width will be restricted. These two factors

could easily outweigh the advantage that suggested Conjec-
^«k ture 2.



TABLE 8.15. Substitution variable is in the target list

Cuery Hypo. 3 Substituti on Cost Reduction Cost
No. Var Applicable non-keyed keyed non-keyed keyed

1 A no 980 892 744 208
2 B no 2265 1450 1888 263
3 B yes 144760 12713 1944 319
4 B no 1986 540 364 364
5 A no 2458 2054 578 323
6 D yes 128083 51420 2508 1130
9 A no 113296 88470 2114 698

11 C yes i 112716 34038 1914 645

f\3
U)

•-3



TABLE 8.16. Substitution variable is not in the target list.

Query Applicable ! Substitut ion Cost ! Reduction Cost
No.* Var Hypothesis !non-keyed keyed !non-keyed keyed

1 C - i 3942 2526 I 820 316
2 A - 9840 7530 2708 351
3
i.

A 2 7970 5660 4052 1695
4 C 2 13496 13496 58625 4921
5 C 2 3260 2732 1753 1189
7 B 2 168516 154143 5034 3372
8 B 2 28681 4483 5042 1110
9 D 2 ~72569991 — ~209270 _

10 A - 1335 633 902 198
10 D 2 I ~43486 — 8780 3291
11 A 4 ! 15778 11086 I 1597 1570
11 B 4 I 15829 14424 | 3074 1769

OO
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From the results in the last three tables, and under

the assumptions made in Chapter 5, substitution is the pre

ferred method only when the variable selected is a joining

variable. In all other cases, reduction usually performs

better and there are even cases when the variable selected

is a joining variable and reduction is better. Due to these

conclusions, it appears that the analysis performed in

Chapter 5 forces too many assumptions on the environment to

be practically applicable.

This result enforces even more the desire to examine

reduction when certain of the assumptions are relaxed,

specifically the assumption concerning the continuity of the

selection criterion after reduction. The evaluation of

queries which reduce to all two-variable components provide

a hint to the fact that the role of a variable before and

after reduction can; change. And, the results of the vari

able selection critjeria evaluation show that the structure

of a query plays a dominant role in selecting a minimum pro

cessing path. So these factors should be considered for the

processing of each component individually.

The following table (Table 8.17) thus presents for each

query, the variable selected for substitution on the basis

of the query structure criterion as stated in Section 8.2.2.

Then, the cost of substituting for that variable is compared

to the cost of reduction, the selection criteria of Section
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8.2 being applied to each component individually. The

resulting sequence of components is also included. Finally,

the minimum attainable reduction cost and the corresponding

sequence of components are given. The costs for both keyed

and non-keyed structures are included.

The substitution costs using the query structure cri

terion are generally the minimum substitution cost. In the

cases where it's not, there is little difference between it

and the minimum. Thus the results of this table show that

reduction on the variable selected results in a lower pro

cessing cost than substitution for that variable. These

reductions were performed without any operation to remove

duplicates. If this is included, the reduction costs should

decrease because the intermediate result ranges are bounded

by the size of the joining variable's range, so the sort

costs should be small generally. In the cases where the

reduction cost for the selected variable and the minimum

reduction cost do not match, the difference is usually due

to the order in which the components were executed. So the

heuristic of performing, the component involving the relation

with the smallest number of pages first may not be a good

one. For query 10, where the minimum reduction cost

corresponds to reducing on a different variable, notice from

its graph that variable B is also a plausible selection

using the query structure criterion.



TABLE 8.17. Reduction vs. substitution.

Query
No.

1

2

3
1

5

6

7
8

9
10

11

12

i Substitution
Var !non-keyed keyed

B ! 806 257
C ! 2313 179
C 2261 636
A 1083 157
B 10151 169
A 3015 1637
A 3670 3357
C 11266 6018
c J 6219 1920
C ! 927 357
D 1 11751 11751
B I 19815 19815

Reduction
non-keyed keyed components

711
1888

1911
351
578

519
957
1302
1158
655
1911
1992

208

263
319
351
323
519
613
171

3012
119
615
1128

B,C;A,B
C,A;B,C
C,A;BfC
A,C;B,A
B,C;A,B
,B;C,D,A
B;A,D;C,A
1 n.« r d

A,B;A,D;C,/
C,D;A,C,B

C,D;C,B;C,/
C,D;B,C,A
D,A,B;C,D
B,D;A,B,C

A

A

C I

Minimum Reduction
non-keyed keyed components

711 208
1888 263
1911 319
351 351
578 323
519 519
953 611

1159 302
1677 261
111 159

1911 615
1992 1128

B,C;a,
C, A; B,l
C,A;B,C
A,C;B,A
B,C;A

A,B
~ C

B,C jA,B
A,B;C,D,A

A,D;A,B;C,A
C,B;C,D;C,A
C,B;CfD;CtA
B,A;C,B,D
D,A,B;C,D
B,D:A,B,C

to
4S
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We can summarize these conclusions as follows: Whenever

a query is reducible and the query structure criterion is

applicable, the query should be reduced using the guidelines

of Chapter 5 to determine how far to reduce it. Then each

component should be evaluated by applying the variable

selection criteria to it individually. In general, when an

intermediate component involves only two variables, the

variable in the target list, which is the joining variable,

should be selected for substitution. If this policy is used

even for three or more variable components, the cost of per

forming a sort to remove duplicate tuples will be small and

usually affordable. Note that if the option of removing

^ duplicates prior to substitution as proposed in Chapter 6 is

used, the sort operation between intermediate components

will generally not be needed.

This conclusion is for the general case. Obviously,

one can generate queries where reduction will lose due to

the distribution of the data. However the analysis came up

with only two cases where substitution would definitely win.

The first one, hypothesis 2, was disputed by the measure

ments. The second one, when the substitution variable is a

joining variable, was supported by the measurements under

the assumptions of the analysis. But when the continuity of

a selection criterion assumption was relaxed, this result

0^ was no longer valid. The relaxation of this assumption
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allows reduction more flexibility to take advantage of the

effect of one component on the next. Thus in a query such

as

RETRIEVE (X.a, Y.a)

WHERE X.b = Z.b

the order: 1 - X,Z, 2 - Y,X could result in a lower cost

due to the effect of the first component. Substitution can

not take advantage of this while reduction can. So even

though the measurements are for a limited number of queries

and data, the reasoning behind their results is sound and

the results can therefore be stated as general conclusions.

In Figure 8.2 a graphical representation of the results

I of this section is presented. This figure contains a plot
*» cost -

ot - vs. no. of variables on semi-log paper. Included in
avg

this graph is the minimum measured processing cost (•), in

data pages accessed, for the test queries (assuming non-

keyed structures) and certain bounds on these processing

costs. Obviously, for any query with any number of vari

ables, 2?± (°) is a lower bound. There are two upper bounds

which were compared. Since the test queries did not all
i

reference the same relations, these upper bounds appear on

the graph as a range of values. The first is Dflt. (4).

Clearly, this is a greatest upper bound and this bound will

generally not be attained due to the fact that OVQP accesses

^ pages. The graph supports this observation. The second
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upper bound considered is OflPi (A). Because of preprocessing

of one-variable restrictions and reduction, this can be used

as an upper bound.

If we examine Figure 8.2, it can be seen that for two-

variable queries, 01]Pi is actually a lower bound rather than

an upper bound. This is to be expected in this case because

reduction is not an available processing alternative. The

only queries whose measured processing costs fall below QflP.

are those with a single target-list variable.

However, whenever the number of variables is more than

two, the actual cost falls below OOP. and a large distance

below 00t.. In fact, the measured costs are generally much

closer to the lower bound of £P. than to either of the upper

bounds. Since the minimum processing costs usually

correspond to some reduction for the queries involving three

or more variables, this attests to the fact that the use of

reduction leads to more efficient processing.
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CHAPTER £

CONCLUSIONS

In this dissertation we have examined the topic of

efficient processing of queries in a relational database

management system. Techniques which can be used at dif

ferent stages of the' processing and which depend on various

characteristics of the query environment have been proposed

in an attempt to achieve a minimum processing cost for a

query. In this chapter, the highlights of this work will be

briefly summarized and directions for future research will

be indicated.

9.1 Query Transformations

In Chapter 4, queries were examined to determine what

characteristics a query should ideally possess, independent

of the data being referenced, to lead to more efficient pro

cessing. Then using these characteristics as goals, a set

of transformations which can be applied to any query to

acquire these characteristics were stated. The idea behind

this technique is similar to that used in compiler optimiza

tion. Some work on developing and testing these techniques

has been done in a relational algebra environment [HALL75,

SMIT75]. However, no work has been done specifically to

evaluate its usefulness in a relational-calculus based
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environment.

9.2 Query Processing

In Chapter 5, the concept of tuple substitution, or

nested iteration, was defined and shown to be a sufficient

tool for processing any query. However this tactic is

equivalent to creating the entire cross product specified by

the query on a tuple-by-tuple basis. A second concept

called reduction, which exploits the structural characteris

tics of the query, was then introduced. Since reduction can

result at best in only a sequence of two-variable

subqueries, it is necessary to use a combination of reduc

tion and tuple substitution to process a query to comple

tion. From the theoretical analysis of Chapter 5, it

appeared that there were only a limited number of cases

where reduction should be applied to a query prior to sub

stitution. However several assumptions were forced on the

query environment in order to perform this analysis, and it

turned out that some of these assumptions were too restric

tive. The measurements performed for Chapter 8 to compare

the usage of reduction and substitution have shown that

reduction should always be applied if possible. This result

is true when each component resulting from the reduction is

examined as an individual query and techniques for efficient

processing applied to it without any assumptions related to

0
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decisions made for the original query.

All of the ideas discussed thus far are independent of

the specific data and its structure that the query refer

ences. Certain steps which could be taken to tailor the

processing algorithm to this information were detailed in

Chapter 6. These steps included preprocessing of one-

variable restrictive clauses, performing a projection to

reduce the number of tuples prior to tuple substituting for

a relation, and dynamically modifying the storage structure

of a relation to allow more efficient access. Obviously the

degree of effectiveness of these options depends on the

value distribution of the domains involved. However both

the analysis in Chapter 6 and the measurements in Chapter 8

have shown that knowledge of the distributions would have

little effect on the basic decision as to whether these

options should be exercised.

However in the case of dynamic storage modification, it

was shown that this information would be useful in deciding

between modifying the primary structure or building a secon

dary index. Whenever the expected number of tuples

retrieved per substitution is one or less or whenever there

is a high percentage of substitution values for which no

tuples will qualify, the decision should be made in favor of

indexing. If statistics are not available to make this

choice and the wrong decision is made, the results can be
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catastrophic.

9.3 Variable Selection

Selecting the variable whose range is to be tuple sub

stituted is clearly a critical step in the processing of any

query. There are several factors which should influence

this decision. These include the size in tuples and pages

of each relation involved, the storage characteristics of

those relations, the structure of the query and the distri

bution of the domains referenced by the query. All informa

tion except the distributions is readily available and a

reasonable selection strategy using those factors was

developed. For two-variable queries, the variable which

minimizes the ratio -z — should be selected for substitu-
reff+ '

tion. peff is tne number of data pages to be accessed con

sidering the effect of the query structure and storage

structure.

For queries involving three or more variables there is

a more specific ordering:

1. query structure, specifically the number of two

variable clauses in which a variable appears,

2. size, specifically the ratio tuples/(pages + 1),

3. in the case of a close decision on the basis of

another criterion, storage structure characteristics
?

should be used as the determining factor. '
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If information depicting the distribution of the

domains is available to make this decision, it is necessary

to develop a cost estimate function to consider the effect

of all of these factors. This cost function must be reason

ably accurate but it is also necessary to limit it in a cer

tain way. For an n-variable query, there are n! possible

orderings for tuple substitution and perhaps more than one

available reduction. To estimate and compare all of these

when n is large would be quite expensive. Thus some way of

limiting the number of candidate paths must be developed.

In conclusion, this work has presented several tech

niques which will lead to more efficient processing of

queries in a relational database environment. As such, it

is an attempt to demonstrate that a database system based on

the concept of relations is a plausible organization. The

main area for future research is in the usage and mainte

nance of statistical information to reflect .the database

environment. This includes determining what information

would be valuable, and efficient means for gathering and

maintaining it. Since the areas discussed here are not the

only ones which could benefit from such information,

developments in this direction would be advantageous to the

entire database system.
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Let R be a relation and D.j, D2,.-.,D the domains of R.

Then R is a subset of the cartesian product of its domains,

R = D.xD0x.•»xD .
12 n

Project: a unary operator which acts on a relation R by

eliminating some of its columns and then deleting any dupli

cate tuples which might result in the subset of original

columns. Let i = (i^,i2,...,i ) be a subset of the integers

1 through n. Then the projection of R on {D., j<i}, denoted

R[D^], is defined by
i

RED ] = {(r. ,r. ,...,r. ): (r ,rp,...,r) 4 R}
i 1 x2 xm 1 d n

Let R have domains D1f...,D and S have domains D' ,...,D' .
in i m

If r < R and s < S, we shall denote by (r,s) the concatena

tion of r and s, i.e.,

((^1,...,rn),(sl,...,sm)) = <rlf...frnfslf...fsn)

The expanded cartesian product R x S is defined by

R x S = {(r,s): r<R and s<S}

A distinction can be made between the cartesian product R x

S which is a collection of pairs r and s and• R x S which is
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a collection of the concatenations of r and s, but it is

hardly worth making.

Restrict or Select: Let P(x) be a truth function defined on

the cartesian product DjXDgX-.-xD . That is, for each x in

D.jXD2x — xDR, P(x) has a unique value which is either 1

(true) or 0 (false). Then the subset R[P] of R for which P

is true is called the restriction of R relative to P.

R[P] = {r: r 4 R and P(r) = 1}

Let x stand for any of the comparison operators: =, ^, <, >,

<, >, and let the predicates PP (not P), P A Q (P and Q) , P

v Q (P or Q), and P ==> Q (P implies Q) be defined as in

standard logic.

Then let 0q be the set of predicates on UflD. defined by

the properties:

(a) Di x k 4 0O for each i and every constant k in D..
• *

(b) D^ x Dj 4 fl0 for 1<i<j<n.

(c) P 4 dQ ==> pp 4 dQ.

(d) P, Q 4 0Q ==> PA Q 4 fl0 and P v Q 4 4Q.

(e) 0Q is minimal with respect to (a) through (d).

Then for each P 4 0Q, the restriction R[P] is well-defined.

Join: Let R and S be two relations with domains D„,...fD
1 n

and Dn+1,"*»Dn+m resPectively. Let P be a predicate on
»
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Dr"*,Dn+m belonSing to 0O' Then tne Join of R wifcn s
relative to P is defined by

R[P]S = (R x S)[P]

If the condition P in the join is an equality between two

domains, one from each of the two relations participating in

the join, then the join is said to be an equi-join. An

equi-join clearly always has two identical columns, and if

one of them is eliminated by projection, then the result is

known as the natural join.
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APPENDIX B

ANALYSIS OF MODIFYING TO HASH STRUCTURE vs. SORTED STRUCTURE

This analysis attempts to model these modify operations

according to the way they are performed in the current

implementation of INGRES. It is felt that the cost associ

ated with reading and writing the pages of the relation

being modified will, in general, be larger than the cost of

computing the hash function or comparing tuple values. For

this reason, the costs will be estimated assuming that the

I/O is the dominant factor. That is, the costs of computing

the hash function or comparing tuple values will be ignored.

There are certain system defined constants and some

notation which will be used throughout the discussion which

will be explained first. A page is the basic unit of access

between memory and secondary storage devices. For UNIX, a

page is 512 bytes (UPAGE). A page storing tuples of a rela

tion also contains certain system information so that all

512 bytes are not available for data. Currently,

IPAGE = 498 bytes are useable for data within INGRES. How

ever, tuples cannot be split between pages. So, if a tuple

contains 250 bytes, only a single tuple will fit on one

page. This is true for all pages containing data from rela

tions in INGRES. However, the sorting routine uses UNIX

size pages and does not force a page to contain only com-
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plete tuples.

The sorting routine reads as many tuples as possible

into a core buffer and then sorts them. The size of this

core buffer (BUF) determines the size and number of the

intermediate merge files required. Currently, max(BUF) = 63

pages.

It will be assumed in the following discussion that a

relation R is being modified. t is the number of tuples in

R, wis the width (in bytes) of a tuple of R, P is the

number of INGRES pages in secondary storage that R occupies,

and S is the number of UNIX pages that R occupies.

First, for hashing, all original, pages of R must be

read. Then, for each tuple, the hash address is computed

and the tuple written to the appropriate output page. If

the tuples are input in a random order, it cannot be assumed

that two consecutive tuples will hash to the same output

page. So, for each tuple, the output page on which the last

tuple was inserted must be written and the page on which the

current tuple belongs must be read. This results in a write

and a read of the output file for each tuple in R. Even if

a duplicate tuple is encountered, the page it hashes to must

be read to determine that it is a duplicate. This results

in a cost for hashing of P + 2t. However, this function

does not include the cost of examining overflow pages which

might occur in the resulting relation. The following table
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from[SEVE74]liststheexpectednumberofoverflowtuples

asapercentageofthenumberofstoredtuplesusinga

chainedtechniqueinaseparateoverflowarea.Theonly

loadfactorincludedis1sincethecostsarebeingcon

sideredformodifyingtemporaryrelations.

»bucketI•loadfactor

!size!!1.0

|1;!36.79
|2;j27.07
!3»•22.40

!4!!19.54
!5j!17.55
j6;J16.06
!7j]14.90
!8|13.96
!9'|13.18
|10||12.51
!12!J11.44
!14!|10.60
!16;|9.92
!18!!9-36
!20!|8.88
!25!|7.95
!30;!7.26j
|35!6-73|
'40»|6.29|
!45|!5.94|
»50;!5.63|
!6o!!5.14|
!70|!4-76•
!8o:]4.46J
j90;!4.20;
I100II3.99I

TABLEA.1.OverflowRecordsperRecordStored(percent)

Sincethispercentagedependsuponthebucketsize(no.of

tuplesperpage),foraccuratecalculationsthebucketsize

mustbedeterminedandtheappropriatepercentageused.For
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purposes of comparison here, an average bucket size of 20

will be used. Thus, approximately 9% of the tuples will

reside on overflow pages and an additional read will be

required for those tuples. This results in a final cost for

hashing of:

C(hash) = P + 2.888t

Note that the percentages presented in Table A.1 assume a

random distribution for the key domain.

For sorting, the first thing done is that the original

relation R is copied to a UNIX file (with UPAGE bytes per

page). This file is then read in blocks of BUF pages. Each

block of BUF pages is sorted and written to an intermediate

merge file. Then a 7-way merge is performed as many times

as necessary. If F is defined as the number of original

intermediate merge files, then no matter what F is, each

page must be read and written at least once. If F= 1, then

once is enough to complete the sort. Otherwise additional

reads as defined by the following table must be done.



i F f 1
bymimilTTi' •lyirTHmTTI 1,

| 2-7 (7°+1 -71)
i •"— 1

1

i 8-49 (71 +1 -I2) 2

j 50-343 (72+1 -73) 3

1344-2401 (73+1 -T*) 4 |

• •

• •

•

• • *

Thus, we can define

f(x) =
log„x

if x < 1

if x > 1
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Finally, once the sort/merge is complete, the UNIX file

is copied back into the relation R and the directories are

built to complete the ISAM structure. The cost associated

with building the directories is approximately 2056 of the

number of pages for the first level, 20$ of that number for

the second level, etc. The cost used will be 2555 of the

number of pages. It should be noted that if this method is

used strictly to remove duplicates and the tuples will not

be accessed using the ISAM structure, the process of build

ing the directories can be eliminated.

This results in a cost for ISAM of
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C(ISAM) =P+S+ 2S|f(g|p) + 1! +S+ 2.5P

t twNote that since P s IpAGE and S = tjPAGE the costs

of modifying to ISAM and hash can be compared as a function

of t and w. The following table presents the results of

such comparisons using IPAGE = 498, UPAGE = 512, BUF = 63,

and the percentages of Table A.1.

The letter in each box indicates the operation with the

least cost for the associated (t, w) pair.

It can be seen that whenever the tuple width is greater

than 164 bytes, hashing is the less expensive operation

regardless of the cardinality of the relation. Notice that

a width of 165 bytes corresponds to two tuples per page

while 164 corresponds to 3 tuples per page. In actuality,

this boundary between hashing and ISAM is determined by the

page capacity for a given relation.

However since the cases where comparison is of impor

tance are all dealing with temporary relations whose domains

are only the subset of the original domains referenced by

the query, usually the tuple width will be small. If this

is true, modifying to an ISAM structure will be the least

expensive of the two operations.
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