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Many highly nonlinear devices have been invented over the past two
decades [l1-4] and are becoming increasingly important in the design of
modern electronlc systems. The behaviors of these systems can be extreme-
1y complex and any circuit theory for analyzing such exotic phenomena must
necessarily be nonlinear. In particular, some recent research on the
modeling of nonlinear devices [5-8] has demonstrated the dire need for
developing a foundation for nonlinear circuits. Our objective in this
short course is to provide a unified exposition of some recent develop-
ments in this area. DNue to limitation of both time and space, only some
aspects of this vast terrain can be covered with a certain degree of
depth. Even then, only main results will be presented and only some of
them will be proved. Although some of the unproved theorems can be easily
worked out by the reader, others are rather long and highly technical
(involving sophisticated mathematical machineries). Whenever applicable,
references where the proofs, or basic techniques for constructing the
proofs, can be found will be given. Some of these references are chosen
in view of their clarity of exposition and do not necessarily imply the
original source. We have chosen to present the eircuit-theoretic and
qualitative aspects of lumped nonlinear networks because no unified expo-
sition of this area is presently available. Some important aspects which
are not covered here include the "existence and uniqueness of solutions of
nonlinear dc networks'" and "computational methods for nonlinear networks."
Readers interested in the first area are referred to a collection of
relevant literature in [9], as well as to a comprehensive paper on piece-
wise-linear networks in [10]. Readers interested in the second area are
referred to [11].

The following materials are subdivided into 5 major sections. The
equations, theorems, and headings for the subsections are numbered consecu-
tively and independently in each section. The following table of contents
may be used to identify the various topics presented:
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I. Classification and Representation of Nonlinear n-Ports

1. Algebraic and Dynamic n-Ports

Let N denote either an (n+l)-terminal element (Fig. 1(a)) or an n-

port (Fig. 1(b)). The four basic network variables associated with each

terminal j, or each port j, of N are the voltage v (t), current wuanv,

h|
fluzx euﬁnv. and charge nuﬁnv“ where

t
$.(t.) +M v.(t)dt, j = 1,2,...,n . (1)
i~ 0 e
0
t

e

euAnv

e

puﬁnv

q.(t,) + % i.(t)dt, j 1,2,...,n (2)
30 ¢ d

0
Observe that whereas <uﬁnv and HuAnv can be uniquely measured at any finite
time t > -, say by a voltmeter and ammeter, euﬂnv and nuﬁnv can only be

t

>

0
measured to within a constant of integration 9uAnov = h <uAaVaa and
t

-0

0
AMAnov & % MuAaVaa respectively. These two constants must be assumed a
-0
priort because <uAnv and Muﬁnv can never be measured at t = -», Neither
can their values be extrapolated to t = -» since nonlinear n-ports can

have multiple equilibrium states (see Sec. II-2-G).

Hrmn£o<mHHmVHmm <u msa eu Anmmv.. Hu mum nuv mwmmmwanovm
dynamically dependent in the sense that they are related by (1) and (2) for
ary N. Hence, out of the 6 distinct pairwise combinations of 4 basic
network variables, only the 4 combinations A<ukuv. Awu.euv. A<u.auv. and
Aou“nuv are not related by an a priori relation independent of N. The 6
pairwise combinations are depicted by the branches of the complete graph

in www. 1(c), where the pairs connected by solid branches are dynamically

independent. - More generally, a pair of nxl vectors (£,n) is said to be a

vt
/
N
&

(a) (b) (c)

Fig. 1. (a) An As+Hv|nmm5H:mH element, (b) An n-port, (c) A complete
graph of 4 basic network variables.
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pair of dynamically independent terminal or port vectors if each component

(«Ej,nj).e {(vj,ij),(ij,¢j),(vj,qj),(¢j,qj)} (3)

To simplify our notation, we do not distinguish the "order" of the
variables 1in each pair so that (Ej,nj) could be defined for example, either
as (vj,ij) or (ij,vj). Of course, once the choice is made, the order must
be preserved consistently. Since virtually every definition and property
that apply for an (n+l)-terminal element also hold for an n-port, and vice-
versa, we will avoid unnecessary repetitions by stating all definitions

and results for n-ports in this lecture notes, unless otherwise stated.

A pair of dynamically independent port vector waveforms (g(t),n(tﬂ
measured from an n-port N over the time interval [to,w) 1s said to be an
admissible signal pair of N. The collection of all admissible signal
pairs (g(-),g(-)> of N measured with respect to the same initial time to
is said to be a constitutive relation of Nl where (£,n) is any pair of

dynamically independent port vectors.

Definition 1. Linear and nonlinear n-ports

An n-port N is said to be linear if for every two admissible signal
pairs (g'(-),g'(-)) and (g"(-),g"(-)), and any two scalars o and 8,
(g(-),ﬁ(-)) £ (ag'(-)+8§"(-),ag'(-)+Bg"(-)) is also an admissible signal

pair. Otherwise, N is said to be nonlinear.

Definition 2. Time-invariant and time—vérying n-ports

An n-port N is said to be time-invariant if for any admissible signal
pair (g(-),g(-)) and any T € [to,w), the translated pair (g(.),ﬁ(-))
defined by (g(t),ﬁ(t)) 4 (g(t—T),Q(t-T)) is also an admissible signal pair.
Otherwise, N is said to be time varying.

Definition 3. Algebraic and dynamic n-ports

An n-port N characterized by a constitutive relation between a pair of
dynamically independent port vectors (£,n) is said to be an algebraic
n-port if for any two admissible signal pairs (g'(t),g'(-)) and
(g"(-),g"(-)), and for any T € [to,w), the concaterated pair (g('),ﬁ('))
defined by

(80.5¢0)

ne-

(s'@.n'®) , c<rt 4)
(g"(t),g"(t)) , t>T

ne>

is also an admissible signal pair. Otherwise, N is said to be a
N

dynamic n-port.
4=

ty



In less formal terms, we say N is linear, time-invariant, or algebraic
if it is closed under superposition, translation, or concatenation of
admissible signal pairs, respectively. An n-port N is said to be
characterized by an algebraic constitutive relation between { and n, or a
dynamic constitutive relation between { and n depending on whether N is an
algebraic n-port, or a dynamic n-port. Roughly speaking, a constitutive
relation between £ and n is algebraic if it can be specified by algebraic
equations involving only £(t) and n(t) at any time t, and not their
derivatives or integrals. The following theorem is a direct consequence

of this property.

Theorem 1. Algebraic n-port characterization

Every time-invariant algebraic n-port can be characterized by a subset

of points in R x an, i.e., a relation
Rcr® xr® (5)

such that every admissible signal pair (g(-),g(-)) of N satisfies the

following inclusion property:

(50).0(0) €R, ¥t € [, 6)

Conversely, any pair of waveforms (g(-),g(')> satisfying (6) is an
admissible signal pair of N.

Proof. Lethe in (5) be defined by

<]2 = {(g(t),g(t)) : over all admissible signal pairs
‘(E(‘),g(')) of N and over all t € [to,wi} (7

Then (6) 1is satisfied by construction. Conversely, if (g(-),g(-))
satisfies (6), then at each time t = t € [tg»®), there exists an admissible
signal pair (g(-),ﬁ(-)) such that (g(f),ﬁ(ﬁ))\= (g(E),g(E)) in view of (7).
It follows from the concatenation and time invariance hypotheses that

(S(-),n(-)) is also an admissible signal pair. o

Corollary 1.
Theorem 1 also holds for time-varying algebraic n-ports provided the

relation(qg in (5) is replaced by a "time" parametrized relation
R.ER xR, ¢ € [y, (8)

Corollary 2. -
Every time-invariant algebraic n-port is rate independent in the



gense that if (E(-),n(-)) is an admissible signal pair of N, then for every
a € (-o,=), the pair (g(-),§(~)) defined by

(E;(t),rj(t)) 4 (g(at),g(at)) , ¥t € [tg,=) (9)

is also an admissible signal pair of N.

Observe that Def. 3 applies only to a subclass of n-ports whose
constitutive relations involve § and n where (gj,nj) is defined by (3).
One could enlarge the class of algebraic and dynamic n-ports of Def. 3 by
allowing Ej(t) and nj(t) to become the mth time derivature or integral of
vj(t) and ij(t), respectively. However, the class of n-ports encompassed
by Def. 3 seems to be more than adequate for developing a reasonably
general theory of nonlinear n-ports.

To avoid unnecessary repetitions, all n-ports are henceforth asswned

to be lumped and time-invariant, unless stated otherwise.

A. Four basic circuit elements

Let N be an algebraic n-port where all components of (£,n) are of the
same type. Then (g,g) can assume only one of the 4 combinations depicted

by the solid branches in Fig. 2; namely,

(g,n) € {(y,i), (i,9), (v,q), (Q,g)} (10)
n-port °"—' "
RESISTOR -
a o—|
o [
v
Np\\ /$~
\ / o_"'
n-port | AN v n-portS .
INDUCTOR /\< CAPACITOR -
o— N € o—
£ o e ~ —
n-port °——_ T
MEMRISTOR -
m o—
o—1

Fig. 2. Each solid branch of the complete graph defines a basic n-port

circuit element.
—6-



These 4 exhaustive combinations lead naturally to the following axiomatic

classifications of basic circuit elements:

Definition 4. n-port resistor, inductor, capacitor, memristor

An Algebraic n-port N is said to be an n-port resistor, inductor,
capacitor, memristor [12], respectively, if N can be characterized by an
algebraic constitutive relation between y and i, ¢ and i, g and v, and
¢ and q, respectively. )

The symbols proposed for the 4 basic n-port circuit elements are
shown in Fig. 2 corresponding to each pair of dynamically independent port
vectors. There are many examples of nonlinear devices which can be
realistically modeled by one of these 4 basic elements -~ at least over

some restricted range of operating frequencies.

Examples of nonlinear resistors:

(1) one-port: pn junction diodes, zener dicdes, tunnel diodes, ete.
(2) two-port: transistors (Fig. 3(a)) modeled by the following dc "pnp"
Ebers-Moll equation:

1 - Al[exp(Kvl)-l] - Bl[exp(sz)—l]

12 = —Az[exp(Kvl)-l] + Bz[exp(sz)—l]

i

(11)

B. =a.I _ =al. . =A,, B, =1, and K = q/kT,

where A, = Lo, By = 0pleog = @plpg = %20 %2 7 “¢s

where T is the temperature.
(3) three-port: a. OP AMP (Fig. 3(b)) modeled by i, = 0, 1, = 0,

vy = f(vz-vl) as in Fig. 3(b), where A + =,
b. Analog Multiplier (Fig. 3(c)) modeled by i, = 0,
i2 = 0, and vy = levz.
I o I
v
+ Ny [/ + | '
Vi V2 g0t
- - 2
-9 L
(a) |
I
V| o]
ip (Vs
Vo o
(c) l

Fig. 3. (a) pnp transistor (b) OP AMP (c) Analog multiplier
. -7-



¢. Conjunctors (Fig. 4(a)). There are 6 types
M=1,11,...,VI [13]:

I. vy = —KiziB, v, = Kili3, vy = 0 i""“ﬁ
v
II. v, = ~Ki,v., v, =Ki, v, 1, =0 _'|
1 2°3 2 1'3 3 p
III. vy = —Kv213, i, = KiliB’ v3 =0 i2
1v. vy =_—KV2V3, 12 = Kilv3, i3 =0 :r-*P—“
= o = i = V
V. i) = ~Kvyiq, 1, = Kvjig, vy =0 _¥2
o
VI. i, = =Kv, v i, = Kv,v i. =0
1 2°3> 72 K
1 3 Fig. 4. A type M Conjunctor.
(12)

Examples of nonlinear inductors:

(1) one-port: Josephson junction (4] modeled by

i=1,sinkyo (13) I
O—p

0 M
where I, and k., are constants. + .
(2) two-port: A pair of nonlinear o— a0
coupled coils. ) ( ) V3+
- . _ . 2 —
(3) three-port: A type V 3-port traditor 5
(Fig. 5) described by [14]: +V
_'2 )
o—

1) = -Adyig, 1, = -A¢y14,04 = A%y
(14)

Fig. 5. A type M traditor.
Examples of nonlinear capacitors

(1) one-port: varactor diode modeled by q = Qo[exp(Kv)—l].
(2) two-port: A pair of coupled ronlinear capacitors.

(3) three-port: A type II traditcr (Fig. 5) described by [14]:
V) = -AqyVy, v, = -AQpVy, 43 = AQ)a, (15)

Examples of nonlinear memristors

Consider a '"'coulomb cell' [12] consisting of a gold anode immersed in
an electrolyte in a silver can (cathode) as in Fig. 6(a). Assume an
initial amount of silver 1is previously depositeﬁ at the anode. When a
battery is connected across the port, silver ions will be transferred
from anode back to the cathode and a large current flows so that the
element is equivalent to a very small linear resistance R;. At some time
t = T. when most silver has been transferred, very few ions are left so

0 ;
that a very small current flows for t > T0 and the element is equivalent

-8-



‘zv—"’——‘l gold electrode cﬁ) Sloe

l R, (anode) + R,>>0
___silver can -q(T,)
== (cathode) b ‘ Ll [ R
== : 0| slope q(T,) 4
———=r—electrolyte Ry =0

(a) (b)

Fig. 6. (a) a coulomb cell (b) a memristor model

to a very large linear resistance RZ' This element can be realistically
modeled as a memristor described by the ¢-q curve ¢ = ¢(q) shown in

Fig. 6(b). Observe that since

v(t) = d¢(t)/dt = (d¢<q>/dq)cdq/dt> & M) 1t) (16)

is just a charge-dependent Ohm's law, a memristor is equivalent to a
charge-controlled linear resistor. In this case, M(q) = Ry ® 0 for
:qI < q(TO), and M(q) = R2 >> 0 for [ql > q(TO).

Other examples of memristors can be found in [15-17].

There exist a small class of ideal elements which may assume more than
one identities. For example, a dc {resp., ac} voltage source can be
classified either as a time-invariant {resp., time-varying} one-port
resistor or capacitor. Similarly, a dc {resp., ac} current source
can be classified either as a time-invariant { resp., time-varying} one-
port resistor or inductor. A nullator characterized v = 0 and i = 0 can
classified as a one-port resistor, inductor, capacitor, or memristor. A

(p+gq)-port transformer characterized by

—

e o B e - (17)
'l_n_w ¥ —_J ~b

(where g; and éa are pxl vectors,gb and v, are gxl vectors, and K is a

qxp real matrix) can also be classified as a (p+q)-port resistor,

inductor, capacitor, or memristor.

B. Algebraic n-ports

A simple example of an algebraic n-port involving a mixture of

distinct pairs of dynamically independent variables is the 4-port shown in



Fig. 7, where N is characterized + Vl
by a relation 1 I
r R !
R, ,vp) |
R, (15,6, '2 '3
Ree,p = = 0 o | <—o
R, (vyray) i

v
;@4(%,%)‘ 2

(18) o] —©

This example can be generalized

by allowing all variables in (18)

i4lu
o+ V2 -

to be coupled to each other in a
nonlinear way. The resulting
algebraic 4-port would then be Fig. 7. An algebraic 4-port.
characterized by a system of 4

implicit equations
R (11,v15155855v5543:0,59,) =0, 1=1,2,3,4 (19)

Observe that (19) defines an algebraic 4-port because all variables are
dynamically independent of each other. We will now consider two

interesting classes of algebraic n-ports.

(1) Mutators [18]

Mutators are generic names for a family of linear algebraic 2-ports.
A type 1 L-R mutater is characterized by the constitutive relation ¢, = vy
and il = -iz. Observe that if we terminate port 2 by a resistor having a
constitutive relation ip = g(vR) as shown in Figure 8(a), the resulting
one-port is equivalent to an inductor characterized by an identical
constitutive relation i = g(¢l). Conversely, if we terminate port 1 by
an inductor having a constitutive relation f(iL,¢L) = 0 as shown in
Fig. 8(b), the resulting one-port is equivalent to a resistor characterized
by an identical constitutive relation f(iZ’VZ)'= 0. These observations
follow immediately from the identities i1 = —12 = iR, ¢l =V, =V in

R
Fig. 8(a), and i,=-14 =1 = ¢l = ¢ in Fig. 8(b). Since this

v
L’ "2
2-port transforms one "elément specie" X into another 'element specie" Y,
it is indeed revealing to call it a mutator. A type 2 L-R rnutator is
characterized by the constitutive relation ¢ = —iz_and il = v,. The same

"mutation' property also holds in this case except that the two variables

-10-



Rbigzalve) i "1 i=g(¢)

iz iR " :
A [+ + ¥R
vy L R Vo VR =V L >
g E = 0 0 4

iL
@+ +
/’L VL Vi L R
0 ¢L - =1/

f (i, ¢ )=0  fligg) =0
(b)

i,s
I~ +
I
0
+
\\
X ]

\& =
Lm‘
O\
<<
N

Fig. 8. A type 1 L-R mutator with two possible terminationms.

in the resulting element are interchanged. For example, the constitutive
relations for the inductor L in Fig. 8(a) and the resistor R in Fig. 8(b)
are given respectively by ¢1 = g(il) and f(VZ’iZ) = 0, .
By permuting the two pairs of dynamically-independent variables, we
can define 6 mutually exclusive classes of X-Y mutators; namely, L-R,
C-R, L-C, M-R, M-L, and M-C. Just as in the case of L-R mutators, each
class of X-Y mutator may assume two different types.Table 1 contains a
list of all mutually exclusive types of mutators along with their con-
stitutive relations. The mutation property of each X-Y mutator is depicted
in Figs. 9(a) and (b), where k = 1 for a type 1 mutator and k = 2 for a
type 2 mutator. Observe that a type 1 L-C mutator is just a gyrator.
Observe that by using different mutators, it is possible to synthesize
any three of the four basic circuit elements R,L,C,M given the fourth
element. Moreover, since mutators are linear 2-ports, they can be realized
using only linear elements. For example, a type 1 L-R mutator and a typel

C-R mutator can be synthesized by the circuits shown in Figs. 10(a) and (b),

respectively.

-11-



Table 1. Twelve Types of Linear X-Y Mutators

Mutator z::iggizsi ¥2:1:2i232 Constitutive Relation
L-R Mutator (Type 1) 01 . 11 12 ' v, ¢1 =V, il - -12
L-R Mutator (Type 2) ¢1 , 11 Vy s 12 ¢1 - -12, 11 =V,
C-R Mutator (Type 1) vy 9 1L, .9 vyt vy 9 =i,
C-R Mutator (Type 2) Vi 9 vy 12 vy = -12, 9 =V,
L-C Mutator (Type 1) ¢ > 11 Vo s 9, - 01 = -, 11 -V,
L-C Mutator (Type 2) ¢ » 11 9, » vy ¢1 =V, 11 = -4,
M-R Mutator (Type 1) $; 2 9 1, , v, 4 " vy q =1,
M-R Mutator (Type 2) $; 91 v, ,'12 ¢ =1y =V,
M-L Mutator (Type 1) ¢1 » 9y 12 ’ 02 ¢l L PSR M ‘12
M-L Mutator (Type 2) 40 9 9, » i, 4 - -1,, 95 = 9,
M-C Mutator (Type 1) ¢1 » 9 9 v Yy, 91 =V, Q4 T 9
M-C Mutator (Type 2) ¢ 0 9 vy » 9y ¢1 =994 "V,
o— —o0
X= X Y Y X X Y =Y
o— k ' k —0

(a) (b)

Fig. 9. Mutation property of X-Y mutators, k = 1 or k = 2.

(a) (b)

Fig. 10. Linear active circuilt realization of a type 1 L-R mutator (a),
and a type 1 C-R mutator (b).

-12-



(2) Traditors [14].
Let (Ek,nk) denote either (ik,¢k) or (vk,qk). Let SQ (called the
Lagrangian) be defined by the multilinear form

A .
22 S AN, cee My oees Mo g0 (20)

where A is any constant real number. Traditors are generic names for a
family of nonlinear algebraic n-ports characterized by the following con-

stitutive relations:

2 -
g = -—=, k=1,2,...,n-1 (21)
k ank
£ =L (angn N2 (22)
n dt 12 *°°* 'n-1

At first sight, (21) and (22) do not seem to qualify as an algebraic
constitutive relation since the rate-independence condition (9) appears to
be violated. To show that this is not the case, let us substitute (20) for
SQ in (21) and obtain the explicit algebraic function

e T AN Mt Ml Ml Ta-l e (23)
Next, let us integrate both sides of (22) with respect to t to obtain
t
j—wgn(r)dr = Anln2 cee g | (24)
Now since n,o= i, if ﬁn = v and n, = vy if &n»= in, (23) and (24) may
assume two distinct forms.
= = = - '
Form 1 Ek Anl My voe M 1Mpegg 0" nn—lin’ k=1,2,...,n-1 (23"
= 1
¢ Anl Ny «+e Moy (24")
= - = _ "
Form 2 £k Anl Ny eor M 1My Mao1Vn? k=1,2,...,0-1 (23")
q, = Anl My eoe Mg (24™)

Since in either case, (gk,nk) € {(ik’¢k)’(vk’qk)}’ both (23'), (24') and
(23"), (24") define an algebraic n-port. In fact, it is easily seen that
the generalized traditor defined with

~

A, .
SN nE(nysngs «ees ) (25)

is also an algebraic n:port.

As a specific example, consider the class of 3-port traditors (n=3).

~13~



Depending on the choice of (Ek,nk), the following 6 mutually exclusive
types can be defined:

I. v, = -qui3 II. v, = -Aq'zv3 III. v, = —A¢213

v, = -Aq113 vy = —Aq1v3 iz = —Aqli3

¢3 = Aqyq, a3 = Aqqq, ¢3 = Aqy9, (26)
1v. vy = -A¢2v3 V. il = —A¢213 VI. i, = -A¢2v3

12 = —Aqlv3 12 = -A¢li3 12 = —A4>lv3

43 = Aqq ¢, 95 = Ad 90, a3 = Ad; ¢,

The symbol of a type M traditor is shown in Fig. 5, where M = I,II...VI..
Observe that a type V traditor has already been identified in (14) as a
3-port inductor, while a type II traditor has been identified in (15) as a
3-port capacitor. The remaining 4 types, however, can not be identified
from among the 4 basic circuit elements.

Arbitrary interconnections of algebraic n-ports will not necessarily
result in another algebraic n-port. However, the following theorem can be
proved which guarantees closure property under the condition that the port
interconnections (series or parallel) are compatible in the sense that all

_ports to be connected must be associated with the same type of dynamically
independent variables. For example, with reference to Table 1, port 2 of a
type 1 L-C mutator and port 1 of a type 1 C-R mutator are compatible since
they both involve "voltage" and "charge" as port variables. On the other
hand, port 1 of a type 1 L-C mutator and port 1 of a type 1 C-R mutator
are incompatible since the former involves (¢1,11) while the latter
involve (vl,ql)-

Theorem 2. Algebraic n-port interconnection closure property [28].

Compatible interconnections among a group of ports belonging to an
algebraic n-port, or to two or more algebraic m-ports, always results in
another algebraic n-port. Moreover, each port of the resulting n-port
inherits the same pair of dynamically-independent variables associated with
the original m-ports.

As an application of Theorem 2, recall that a type I traditor involves
the port variables (Vl’ql)’ (vz,qz), and (¢3,13). Hence the first two
ports are compatible with each other, whereas the third port is compatible

-14-



with a one-port inductor. Hence theorem 2 guarantees the interconnections
shown in Fig. 11(a) are compatible and that the result must be a one-port
capacitor. Similarly, theorem 2 guarantees the interconnection between a
type II traditor and a type I traditor as shown in Fig. 11(b) must result
in an algebraic 4-port. In fact, it is easily verified that the result is
a 4-port traditor as defined in (21)-(22). Finally, let us use theorem 2

to prove the following basic result.

TLPD \CI ;D \ y N
b -1

(a) | (b)

O]

—o0
—0

Fig. 11. Compatible algebraic n-port interconnections resulting in (a) one-
port capacitor, (b) 4-port traditor.

Theorem 3a. Algebraic n-port realizability theorem.

Every algebraic n-port can be synthesized using only "linear"

mutators and a '"nonlinear' n-port resistor.

Proof. We will give a constructive proof. LetCIQ be the prescribed con-
stitutive relation of an algebraic n-port N. Transform each pair of
variables (¢j,ij), (qj,vj), and (¢j,qj) into (vj,ij) using an L-R, C-R, and
M-R mutator as depicted in Fig. 12. All mutators are linear since they can
be realized by using only linear controlled sources and linear capacitors
(see Fig. 10 for example). Theorem 2 then guarantees that the two n-ports

shown in Fig. 12 are equivalent. B

It follows from theorem 3 that all types of traditors can be
synthesized using only linear elements and a nonlinear n-port resistor. It
also follows that in studying the qualitative behaviors of networks
containing algebraic n-ports, there is little loss of generality to assume
that the only nonlinear elements are resistors; i.e., all inductors and

capacitors are linear.
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Fig. 12. Realization of algebraic n-ports using only mutators and a
nonlinear n-port resistor.

C. Dynamic n-ports.

The class of dynamic n-ports is rather large and little is presently
known of its general properties. We will consider here an important
subclass of dynamic n-ports whose constitutive relations can be represented

by

x = £(x,n)
(27)

ey

= g(x,n)

<~

mM‘—»]Rm, g:]Rm+an, and

where x € R™ is any state variable, f: R
where each component of (§,g) satisfies (3). We can define 4 basic classes
of dynamic n-ports completely analogous to the 4 basic classes of

algebraic n-ports.

Definition 5. R, L, C, M-dynamic n-ports.

A dynamic n-port described by (27) is said to.be an R-dynamic n-port
{resp.; L-dynamic n-port, C-dynamic n-port, M-dynamic n-port} if each
co ent .,n.)in (27) involves only (v,,i,) {resp.; (i,,4¢.), (v.,q.),
mponr: (€J,TIJ 27 y ( i j) p.; ( J’¢J) ( i qJ)
(¢j’qj)1'

-16-



Consider the following simple examples:

(1) R-dynamic n-port (2) L-dynamic n-port
%= £(x,1) % = £(x,1)
(28-a) (28-b)
v = glx1) ¢ = gx1)
(3) C-dynamic n-port (4) M-dynamic n-port
x = £(x,V) x = £(x,9)
N (28-c) - (28-4d)
9= g(x:V) ¢ = g(x,9)

To show that (28-a)-(28-d) represent 4 distinct families of dynamic
n-ports, note that it is generally not possible to recast the equation
from one class into another. For example, to show that (28-b) cannot be
recast into the form of (28-a), note that if we differentiate ¢ = g(g,%)

with respect to t, the resulting expression

Y = gx(x,i)f(x,i) + gi(i{,g)i é l}(f)é’é) (29)

contains a new variable i which is not allowed in (28-a). On the other
hand, just as in the case of algebraic n-ports, some dynamic n-ports may
assume more than one identities.

For each n € R", let %(Q) be an equilibriwn point of (27), i.e.,

ﬁ(%(n),n) =0 (30-a)
£ = g(::c(g) ,‘Q) | | (30-b)

Observe that (30-b) can be interpreted as an algebraic constitutive
relation and hence an algebraic n-port can be considered as a limiting
case of a dynamic n-port when x(t) »~ 0. In particular, an n-port resistor,
inductor, capacitor, and memristor can be considered as a limiting case of
an R, L, C, M-dynamic n-port, respectively. Consequently, from the
modeling point of view, electronic devices can be modeled more
realistically usiné R. L, C, M-dynamic n-ports as building blocks. For
example, consider again the Ebers-Moll equation for a pnp transistor.

Under high power operations, the temperature T in the exponent of (11) is

actually a state variable obeying an appropriate heat balance equation

T = F(T,v (31)

1°V2)
Observe that (31) and (11) define an R-dynamic 2-port. Now if the
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temperature T does not change rapidly, then we can approximate T by the
ambient temperature and the transistor reduces to a 2-port resistor. Since
the characteristics of most electronic devices depend on temperature to a
greater or lesser extent, a truly realistic circuit model should make use
of R, L, C, M~dynamic n-ports as building blocks. For more complex
devices, additional state variables will be needed. We will close this

section with the following analog of Theorem 3.

Theorem 3b. Dynamic n-port realizability theorem.

Every dynamic n-port described by (27) can be synthesized using only
"linear" mutators, '"linear' 2-terminal capacitors, and a "nonlinear"

n-port resistor.

Proof. We will give a constructive proof for the case where N is described

by

]
[}

£(x,v)
(32)
i=g(x,v)

-~

The proof for the other cases follows by a similar procedure and by using
mutators whenever appropriate. To synthesize (32), consider the circuit

shown in Fig. 13, where the n-port resistor N_ is chosen to be

R
characterized by
N—__,
X lq by ey
O > O s
+ + + I
Vi VG| vl)l ’T\l
—° Nonlinear —o '
. . n-port
: . resistor
In la, NR Ibm  lcm

|
|
|

bm ’T\l

+
Vn VQn
o 5

o1

Fig. 13. Realization of R-dynamic n-ports using only linear
capacitors, and a nonlinear n-port resistor.
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BV,

(33)

Ly = Qv

where (ya,ga) and (yb,gb) are the port voltage and current vectors associ-

ated with the ports on the left and right hand side of NR, respectively.

Choosing x = y, and noting that vy =y, , 1 =1, 1 = -1, and vy = V¥, we
find the n-port N in TFig. 13 is precisely characterized by (31). n

2. Mathematical Representations of Algebraic n-Ports

Theorem 1 implies that the most general way for representing a time-
invariant algebraic n-port is to specify its associlated constitutive
relation between § and n as a subset of points in R x R". A large
class of such point set relations can be represented mathematically either

in the implicit form

£(g,m =0 (34)

~

or in the parametrie form:

£ =8(p), n=nlp) (35)

p €EPcr™ (36)

where 0 < m < 2n. The parametric representations (35) is sufficiently
general to allow most "singular" and "exotic'" elements to be represented
analytically. For example, the case m = 0, n = 1 corresponds to an

element characterized by an empty set; tbe casem =1, n =1, and

<])= {0} C I(l corresponds to a nullator (v=0,i=0), and the case m = 2,
n=1, CI)= Ilz corresponds to a norator (v=pl,i=pz). The parametric
representation also includes all conventional function representations as
special cases. For example, if g(*) in (35) is bijective, then N can be
characterized by an explicit function g = §°Q-1(g) s £(n), where "o"
denotes the composition operation. Similarly if g(-) in (35) is bijective,
then N can be characterized by n = gog-l(g) = g(£). In view of its greater
generality and flexibility, it is often desirable to choose the parametric
representation in formulating and manipulating circuit equations of general
nonlinear networks([19]. For the purpose of this short course, however, we
will find the generalized coordinate representation and the hybrid |
representation, both o£ which can be reduced from the parametric

representation, fo be more than adequate. To simplify our notation, these
-19-



representations will be formulated only for n-port resistors. The same

results apply cf course to any algebraic n-ports.

A. Generalized coordinate representation.

Let N be an n-port resistor with port voltage vector v and port

current vector i. Let § and n be nxl vectors which are related to v and i

-~

as follows:l

— =N M
éj a biigl, |&
= =0 (37)
i g df|n 0
)
§ a 8]fy] A -
= =S3 (38).
n Y §||1
. J o R

where @ is any 2nx2n non-singular constant real matrix which we will call
the coordinate transformation matrix. The vectors § and 1 are called the
generalized port coordinates.

If there exists an @ such that the constitutive relation of N can be

described explicitly by a function

E=t(m, n€ER" (39)

then we say N is globally characterized by @ and £(+). To show that (39)
can be transformed into a parametric representation, let us substitute (39)

into (37) to obtain

4

v = at(n) + bn = v(n) (40)

1= cg(m +dp &1 (41)
where n a QG]Rn is the parametric vector.

If £(-) is a cl function, then we define the assoclated linearized
representation about an operating point Q located at (§Q,QQ) by

2 - ~ o~ _n

£ = L(QQ)Q » 1 €R : (42)

where the nxn real constant Jacobian matrix

lWe deliberately choose the same notations £ and n here as in Sec. 1
because (g,n) can be considered as a "generalized" pair of dynamically

independent vectors.
-20-



(43)

270q

is called the incremental constitutive matrix associated with EC).

Observe that (42) defines a distinct linear n-port resistor NQ associated
with N at the operating point Q. It is important to remember that (g,ﬁ)
represents a distinct pair of dynamically independent port vectors in R"
and that their magnitudes need not be small. The usual restriction to an
"incremental' signal comes into play only when one tries to approximate the

nonlinear n-port N by N, in actual computation. From the circuit-theoretic

point of view, it is degirable to consider ﬁQ just like any other linear
n-port resistor having no restrictions on its domain of definition.
Geometrically, each component ék = ék(g) of ﬁQ can be interpreted as a
hyperplane tangent to an n-dimensional surface defined by Ek = gk(g),
n € R". We will henceforth call (39) the global representation of N and
(42) its associated linearized representation. Together they cover
virtually all nonlinear n-port representations reported in the literature.
Consequently, it is most desirable to formulate theorems in terms of these
generalized representations since the corresponding results for any
specific representation then falls out as a trivial special case. For ease
of future reference, Table 2 contains the coordinate transformation matrix
£ and its inverse in for the most common representations found in the
literature. Here, O denotes an mxm zero matrix, 1_ denotes an mxm unit
+1/2 | ™ o +1/2
matrix, and r— is a diagonal matrix whose kkth element is no— . Our
next theorem allows one to transform one generalized representation into

another.

Theorem 4. Generalized coordinate transformations.

Let (g,g) and (g',g’) denote two distinct sets of coordinates for an
n-port N, and let Q and Q' denote their respective coordinate transfor-
mation matrices. Then

(a) (&,n) and (£',n') are related by

« g\ fa 2|[e] [a 8|fe
= = , (44)
Y 8 le df|n LS Dji n

(b) If & = g(n) is the global constitutive relation of N ¥ n € R", then

AE(m + Bn £ €' () (45)

[
1
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Table 2.

Coord{nate transformation matrices for common rcprescntations

Coordinate Trans{ormation Matrix

-5 4]

Tranaformation Matrix

alafe 8
i Yy ¢

Inverse Coordinate

Voltage-Controlled Representation

Voltage-Controlled Representatlion

a=~9o b=l e=0, 8-l
e~ 1, d=0, 1= 1, § =0,
Current-Controlled Representation | Current-Controlled Represcntation
a=l, "% e-1,  8-0
e-9 d-1 Y- 8-l
Hybrid Represcatation I Hybrid Representation I
1, o (0, 0 1 o (0, 0 )
a-= SLI b- <k - a x|~ = g- = h
9 %) T (A oy CER LTS 0 I
o~ — —~ ~ ? =
o, 1 1, 0 o, 0 ) 1, 0
~k = “k - “k - k-
e =i du I- 9-
0 1 T ]lo O o 1 o o
S A S S SRS
Hybrid Representation II Hybrid Representation II
(o 0 fl 0 .1 . Fa 0 ’~L 0
0
a =" b - ol * g-| ¥
CREN D Y (EENS IR LR
- — —~
1, 01 (o ¢ i, o0 0, 0
g - 4 - I - é-
L? 9n-k L? n-k ° gn-k 9 ;n—k
St — - ————
Transmission Represcatation 1 Transmission Representation I
N, 00 (o, o) 1, 0. (o, o))
a - -nf2 n/2 b - -n/2 -n/2 .- n/2 =~n/2 8 “nf2 =n/2
L‘Pn/z %/2 (In/2 %nr2 Oz %r2)  Unr2 S’n/,z1
(0 ] 0, 0 (0 .. 1,100, ¢
¢ ={°nf2 *n/2|d - “nf2 =<n/2 y =|*n/2 =n/2}6= “nf2 *n/2
3:\/2 9n/2 L_gn/2 —}n/z‘ £n/2 90/?_, :-)n/Z -ln/_2_J
Transmission Represcntation II Transmission Representation 11
—~ — —~ - ~ -~
a2 gn/;1 Yar2 %72 a - %ar2 Yar2 g = %2 %72
a-=- b= - -
Yz %2 %ar2 /2 %2 %2 %2 lur2
Mt R (¢ a n 0 .T 53 5 )
c = 9n/2 9n/2 d - 9n/2 —}nIZ . }n/2 “n/2 p “n/2 <n/2
gn/Z !n/L £n/2 on/L gn/Z gn/Z__‘ [}n/l C-)n/g_‘
Scattering Repregentation (with Scattering Representation (with
port numbers rl.rz.....rn) port numbers rl.rz....,rn)
a-= 1:1/2 , b= 1:1/2 a=1/2 2-1/2. B = -1/2 51/2
c - T d - 12 Yy = 1/2 Y2, 6 = 1/2 51/2 :
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n' = ce(m) +Dn 2 n'() (46)

is the associated parametric representation in terms of €' and n'. In
particular, N admits the global representation g' = £'(p") 1f, and only if,
n'(): R™ + R™ from (46) is bijective (i.e., one-to-one and onto).

(c) The associated constitutive matrices Q(QQ) and Q'(QQ) of the

linearized representations are related by:

-1
1Y = [@'e'niy + a'prg'd|[(r'are () + (y'brs'd) (47)

~ e e o~~~ - e e e e~

where the inverse in the second matrix exists if, and only if,the con-
stitutive matrix Q'(gé) exists.

The single formula (47) is extremely useful and contains, among other
things, the familiar 2-port parameter conversion formulas listed in many
textbooks as special cases. For example, to derive the relationship
between the open-circuit resistance matrixz and the ABCD chain matrix
(transmission representation I), we simply substitute the appropriate

coordinate transformation matrices from Table 2 into (47) and obtain

Ry; Ry, A Bllc D -1 A/C (AD-BC)/C
= (48)

R21 R22 L} ojfo -1 1/c D/C

B. Hybrid Representation

The hybrid representations I and II in Table 2 are just 2 out of
2" distinct representations obtained by an arbitrary mixture of port
current and voltages. Rather than treating each case separétely, it is
convenient to define an arbitrary hybrid representation by choosing
a=d=A4Aand b = ¢ = B in (37) where A and B are diagonal nxn matrices

satisfying the property that either A4 =1, B =0, or A =0, B,, = 1:

3
v A BllE]| X
- by (49)
i B 4jln y
We will call (g,n) £ (x,y) a hybrid pair and the corresponding hybrid
constitutive relation for an n-port N will be denoted by
y = b(x) ) (50)

~
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Observe that the coordinate transformation matrix Q A M in this case
satisfies the property that M =t;iT =u"L. It follows from theorem 4(b)
that 1f N admits a hybrid representation y = P(§), then it also admits
another hybrid representation z' = b'(§')(corresponding to 4' and B")

if, and only if, the function

£(x) & (B'4+A'BYh(x) + (B'B+A'A)x (51)

~ o o N e

is bijective. Our next theorem gives the conditions on h(-) which

guarantee the existence of various hybrid matrices.

Theorem 5. Existence of hybrid representation

Let N be characterized by a Ck hybrid representation y = h(x),
h:R" > R". Then

-~

(a) b(-) is Ck—diffeomorphic (kz})z and hence N admits a Ck inverse

x= b, vy ER" (52)

if, and only if, [20,25]

1. det(sh(x)/ox) # 0, ¥x€R" . (53)
2. lim Ih@x)l = = (54)
lxll-seo

(b) N admits aCk diffeomorphic (k>0) hybrid representation y' = h'(x') if
h(x) in (53)-(54) is replaced by £(x) in (51). 1In particular, if the
components of x and y are rearranged into (ga,gb) and (ya,zb)

N b
= (ba(x 2 %p) ~b(x ,xb)), where XY, € R? and Xpa ¥y € R, such that
x' = (za,§b) and y' = (xa,yb), then y' = h'(x') exists 1if [21]

1. det(dn,Gx,.x)/0x,) #0, ¥ ERT (55)
2. 1 b (x,x)l == g €R° (56)
Il -2

2A function h: R” > I{ is said to be Ck if h( ) has continuous
derivatives of all orders up to k. It is said to be Ck diffeomorphic if
h(-) is Ck bijective and its inverse b (.) is also Ck. A C0 diffeo-
morphic function is said to be homeomorphic. 1In the more general case
where h(-) : D C R" -+ I{n, h(:) is said to be Ck diffeomorphic from D
onto h(D) if it is Ck bijective and @ul(-) is also Ck on h(D). Unless

otherwise stated, we always assume h(-:) : R + R

24—
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(c) All 2™ distinct hybrid representations of an n-port resistor N exist
if N has a Cl hybrid representation y = b(g) which satisfies the following
two conditions [22]:

1. H(x) & dh(x)/3x is a P—matrix,3 ¥x € rR" (57
2. lim |h ()| ==, 3 =1,2,...,n (58)
fxloeo 3

Theorem 5(a) is sometimes called the global diffeomorphism theorem.
It is one of the most often used tools in nonlinear circuit theory. To -
show that both conditions are necessary for theorem 5(a) to hold when

k > 1, consider the following counterexamples:

Counterexample 1.

*1 *1
y = h(x) : yp = e “cos x,, ¥y, = e sin Xy (59)

2x
Observe that (59) satisfies (53) (since det H(x) = e 1 £ 0 Vg) but

X
violates (54) (since lyll = e 1. 1w =[0 xz]T. Indeed h(:) is not
injective since both (0,0) and (0,27) map into the same point (1,0).

Counterexample 2.

2 2
y = h(x) : Y1 = X17Xys Yy < 2xlx2 (60)

Observe that (60) satisfies (54) (since “Z" = (xi+x§)2 + o ¥ lxh +-u9
but violates (53) (since det H(x) = 4(xi+x§) = 0 at the single point
X = (0,0)). Indeed, h(-) is not injective since both (1,1) and (-1,1)
map into the same point (0,2).

It is interesting to note that condition 1 is not necessary for a
function to be globally homeomorphic (k=0). For example, the function
i = h(v) = v3 is homeomorphic even though dh(v)/dv = 0 at v = 0. In this
case, h(+) is not C1 since h-l(-) has infinite slope at the origin. Since
on many occasion one is only interested in obtaining a global inverse

function, the following result is useful.

3An nxn matrix A 1s said to be a P-matrix if all its principal submatrices
of all orders obtained by deleting any k corresponding rows and columns of
A, k=0,1,...,n-1, have positive determinants (23]. It follows that if
A is symmetric, then A is a P-matrix if, and only if, it is positive

definite.
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Theorem 6. Global inversion theorem [24].

Let h: R" > R" be a C1 function, n # 2. Then h(-) is homeomorphic
and hence bijective 1if:

A
(1) det H(x) = dh(x)/3x > 0 ¥x € R" except possibly on a set of

isolated points.

(2) lim “b(}f)" = o

ll lo0

It is rather surprising to note that theorem 6 is valid for all n
except n = 2 [24]. Needless to say, this theorem also holds if the
inequality sign in (1) is reversed.

II. Structural and Circuit Theoretic Properties of Algebraic n-Ports

1. Structural Properties

Consider now the class of all algebraic n-ports which admit at least
one hybrid representation y = p(g), X € lln. Since the qualitative
behavior of dynamic nonlinear networks depend strongly on the mathematical
structures of h(.), our objective in this section is to classify and study
some of these basic structures. At the crudest level, a hybrid
representation h(+) can be classified as injective (i.e., one-to-one),
surjective (i.e., onto), or bijective (i.e., one-to-one and onto). If
h(:) is C0 (i.e., continuous) and bijective, then its inverse exists and
is also C0 [24]. Hence, every C0 bijective h(-) is homeomorphic. The
above classifications are not invariant properties of N in the sense that
another hybrid representation Z' = h'(x') may fail to be injective,
surjective, bijective, or homeomorphic even if the original function h(-)
have all these properties. For example, of the following two equivalent

hybrid representations,

e ~135]le A[-vl -3 ofy)
y = 12 =1 0 O vy | = h(x), z' = i2 =1-1 3 v, | = h'(x")
13 -1 2 1 Va L}3 1 -1 1 v3
(L)

h(-) is homeomorphic (and hence injective, surjective and C0 bijective)
but h'(:) is not injective, surjective,bijective, or homeomorphic since

the associated hybrid matrix is singular.

Definition 1. Strongly-uniformly, uniformly, strictly increasing

representations.

A hybrid representation y = h(x), x € R" is said to be
-26-



(a) increasing if

(h(x') - BGx™, x'-x") > 0, ¥x',x" € R 2)
(b) strictly inereasing if

(h(x')-h&x"), x'-x") > 0, ¥x'x"€ RY, x' # x" ¥
(¢) uniformly increasing if there exists a constant c > 0 such that

(h(x")-bx"), x'-x") > clg'—x"1%, wx',x" € RT (4)

(d) strongly uniformly increasing if there exist two constants

c1 > 0 and c2 > 0 such that

-~ ~

cl|!§|_§11“2 f_(b(}f‘)-b()fn)’ )5'-}5") < cznx'—x"“z, v}f"}f“ (= Rn (5)

where {(x,y) denotés the scalar product between x and y.

Theorem 1. Invariant structural property [22].

Every hybrid representation of an algebraic n-port N which exists is
increasing {resp.; strictly increasing} if N has a hybrid representation
b(-) which is increasing {resp.; strictly increasing}.

It follows from Theorem 1 that there is no ambiguity in calling an
n-port increasing or strictly increasing since these two properties are
invariants of an n-port in the sense that they do not depend on a
particular choice of hybrid representation. In contrast to this, we will
give two counterexamples shortly showing uniformly and strongly uniformly
increasing properties are not invariant. But first we must present a set

of criteria for checking these properties.

Theorem 2. Strongly-uniformly, uniformly, strictly increasing
criteria [25].

Let N be characterized by a C1 hybrid representation y = h(x), x € y
and let @(g) 4 39(5)/35 denote its Jacobian matrix. Then4~
(a) N is increasing if, and only if, H(x) is positive-semidefinite
(psd) ¥x e r".
(b) N 1is strictly increasing if H(x) is positive definite (pd) ¥x € r".

QSee bottom of next page.
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(¢) h(:) is uniformly zncreaamng if, and only if, H(x) is unszrmZy
positive definite (upd) ¥x € R"

(d) h(-) is strongly unﬁfbrmly-zncreasing if, and only if, H(x) is
strongly uniformly positive definite (supd) ¥x € R™

Observe that unlike (a), (c¢), and (d) which provide both necessary
and sufficient conditions, (b) gives only a sufficient condition. To show
that H(x) need not beé pd for h(-) to be strictly increasing, consider the
one-port characterized by i = h(v) = v3. Observe that h(:) is strictly
increasing even though H(0) = dh(0)/dv = 0. It turns out that the
condition in (b) can be relaxed by requiring H(x) to be pd only ¥x € rR"
except for at most a set of isolated points where H(x) is psd [24].

Observe also that in the definition of psd and pd matrices in

footnote 4, we need to test only those z € R" having a unit magnitude;

i.e., "g“ = 1. This is clear since any z € R" can be written in the
form z = cz, where 2 4 z/lzll, and ¢ 4 Izl  Hence ngg = cnggg where
Izl = 1. oObserve next that if we decompose a matrix H into its symmetric
part H_ £ %(§+§T) and skew-symmetric part H_ a %{E-QT), then §T§g = ngsg.

Hence H is psd or pd if, and only if, its symmetric part Es is psd or pd.
This property allows us to apply the standard tests for psd or pd symmetric
matrices for determining whether h(:) is increasing, strictly increasing,
uniformly increasing, or strongly uniformly increasing. Now although every
strictly increasing function is injective, it need not be bijective (e.g.,
i = tanh v). Consequently, the inverse of a strictly increasing function
need not be defined in all‘of R™. Our next theorem guarantees that every

uniformly increasing hybrid representation is bijective in R"

Theorem 3. Existence of all 2" hybrid representations [26].

Let N be characterized by a C1 hybrid representation y = h(x),

€ R™. 1f h(.) is uniformly increasing, then N admits all 2" distinct

1 hybrid representations in R

&l 0 K%

An nxn, not necessarily symmetric, real matrix H is said to be

(a) positive semi-definite (psd) if ngg >0, ¥z € rR"

(b) positive definite (pd) if z'Hz > 0, ¥z # 0, z € R"

(¢) uniformly positive definite (upd) if there exists a positive constant
¢y such that B—cl} is pd.

(d) strongly uniformly positive definite (supd) if there exist two
positive constants ¢y and <,y such that both H-cll and czl-g are pd.
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We are now ready to present a counterexample showing that not all

hybrid representations in theorem 3 need be uniformly increasing.

Counterexample 1. Consider a one-port N characterized by

1]

1 = h(v) exp(v)-l, v >0

(6)

= v , v<20

Since the slope H(v) 4 dh(v)/dv > 1, ¥v, 1t follows from Theorem 2(c) that
h(v) is uniformly increasing. Now consider the inverse representation.
v =ht) = ta(i+fl), 1 >0
=1 ,1<0 o))
: A -1 -1
Since the slope H'(i) =dh "(i)/di = 1/i+l + 0 as 1 + =, h (1) is not
uniformly increasing. Our next theorem provides the additional condition

needed to guarantee this property.

Theorem 4. Uniform-increasing closure condition.

Let N be characterized by a C1 hybrid representation y=¥h(x), x € R™.
(a) If h(:) is uniformly increasing and if its associated hybrid matrix
H(x) s 3h(x)/9x 1is bounded in the sense that

)l < K <=, ¥ € R" (8)

where -l denotes any matrix norm® of H(+), then all 2" hybrid
representation of N are uniformly increasing [27].
(b) 1f both h(-) and b_l(-) are uniformly increasing, then its associated
hybrid matrix H(x) is bounded and all 2% hybrid representation of N are
uniformly increasing [28].

Since every strongly uniformly increasing h(:) is unformly increasing,
it follows from Theorem 3 that all 28 hybrid representations exist if h(-)
is strongly uniformly increasing. Again, our next counterexample shows

that not all such representations need be strongly uniformly increasing.

Counterexample 2. Consider a 2-port N characterized by

_ 3, .1 2, 2
i, = hl(vl,vz) 5 vy + 5V, 2n(v1+v2+1)
(9)
o 3.1 2.2
i, = h2(v1’V2) =5V, ~ 3V 2n(v1+v2+l)
SWe define the norm of an nxn matrix H by  lHl & max lmzl/lzl = max Inzl

Iz140 hzl=1
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It can be shown that the hybrid matrix H(y) associated with (9) satisfies
the inequality

=< zTH(v)z < %-, V“EH = 1 (10)
Hence, h(v) is strongly uniformly increasing in view of Theorem 2(d).
However, if we choose z = [1 017, then la(y)zl + » as vyl + =, Hence H(v)
is not bounded and b_l(-) is not uniformly increasing in view of Theorem

4(b). Our next theorem provides the additional condition needed to

guarantee this property.

Theorem 5. Strongly-uniformly increasing closure condition [28].

(a) If h(-) is strongly uniformly increasing, and if its associated
hybrid matrix H(x) is bounded, then all 2 hybrid representations of N are
strongly uniformly increasing.
(b) If both h(.) and }3-1(-) are strongly uniformly increasing, then all
2" hybrid representations of N are strongly uniformly increasing.

The relationships between various classes of functions we have

introduced so far are given in the next theorem.

Theorem 6. Relationship between structural properties [24,25].

Let h: R" » R" be a continuous function.
(a) If h(-) is strietly increasing, then h(.) is injective.
(b) If h(:) is bijective, then h(.) is homeomorphic.
(¢) 1f h(:) is uniformly increasing, then h(:) is homeomorphic.
(d) If h(:) is bijective, then h(-) satisfies
lim lh@x)l! = = ' ' : (11)
ligc o ‘
We will henceforth refer to (11) as the norm condition. A function
h: R"™ - R™ satisfying (11) need not be surjective (e.g., let y, = xi
and Y, = x%). Conversely, a surjective h(*) need not satisfy (11).

For example, the function

y = h(x): yp = e -e » Yy = e -e : (12)

can be shown to be surjective but lh(x)!l = 0 along the line X) = Xy,
Another structural property of an important subclass of algebraic

n-ports is the path independence of line integrals of the associated

constitutive relations. We will now define the relevant concepts for

characterizing this property.
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Definition 2. Line integral

Let y = g(g) be a C0 vector-valued function mapping an open set
X CR"™ into R" and let F[ga,gb] be a space curve from X, to.x,
represented parametrically by acontinuous and piecewise cl function6
(henceforth called a piecewise Cl path) Y : [a,b] » ]{n; namely, X, = I(a),
x

~b
of £(+) along P[§a,§b] is defined by the following sum of n Riemann

= y(b), and Xy = Yj(p), j=1,2,...,n, a < p < b. The line integral

integrals:

A b n .b
j £(x)-dx =s (£ y(p) ,y'(p)) dp = 2, s fj(x(p)) vj(p)do (13)
P[J_ca,:jb] a j=1Ja

Notice that we call (13) the line integral with respect to the space
curve T', and not with kespect to the parametric function y(.) even though
T have infinitely many distinct parametric representations. This is
because (13) gives the same value no matter which y(-) is chosen [30]. Imn
general, the line integral of g(-) along two distinct paths rl and Fz
having identical end points are different. Hence, we must specify both
the path I' and its endpoints as in (13). If the two endpoints coincide
with each other, then T is a closed path and we will sometimes denote the

line integral along T by § £ (x)-dx.
T
Definition 3. State function.

A ¢c° vector-valued function f mapping an open set X C R™ into R" is
said to be a state function if the associated line integral (13) is
independent of any piecewise C1 path T C X having identical endpoints.
Such line integrals will henceforth be denoted by:

T
I £ () - dx =f £ (x) - dx (14)
r N X

[?Saa}fb] %a

6A function is said to be piecewise ¢l 1f 1t is ct everywhere except for a
finite number of points. Since the parametric representation y(:) in

Def. 2 is both continuous and piecewise Cl, it must have finite left and
right-hand derivatives on [a,b]. Hence, each integrand fj(-) y&(-) in
(13) 1s bounded on [a,b] and is continuous except possibly for a finite
number of discontinuities. Therefore the line integral defined by (13)
always exists. Infact, (13) still exists even if y(*) 1s continuous on
[a,b] but only Cl aZmoét everywhere on [a,b]; 1.e., C1 except on a set of

measure zero [29,30].
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Definition 4. Gradient map

A vector-valued function £ mapping an opeﬁ set X CR" into R" 1s
said to be a gradient map (or exact function) if there exists a ct scalar

function F: X » Itl, henceforth called a potential function) ‘such that:

£(x) = VF(x), ¥x€X (15)

where VF(x) denotes the gradient of £(.)

Theorem 7. State function and graidnet map criteria [30] -

Let f be a C0 vector-valued function mapping an open set X C R" into

R®. Then

1) f is a state function if, and only if, f 1is gradient map.
2) fis a gradient map if, and only if, the associated line integral

§ £(x)-dx = 0 along any piecewise C1 closed path T C X,
r

To check whether a line integral is path independent using Theorem 7,
we must produce a Cl scalar function F(g) such that f(g) = vF(g). This
is far from a trivial task. Hence it would be advantageous to develop a
systematic method for finding F(-:). First of all, let us observe that if
F(.) is cz, then £(-) is ct

matrix of F(x). Now since mixed second partial derivatives of C2

and its Jacobian matrix 1s just the Hessian

functions are equal to each other, we have:

of . (x) Bfk(x)
33 == j,k=1,2, ..., n (16)
Kk i

for all x € X. Thus we obtain the useful property that the Jacobian matrix
7

of any C1 graident map is symmetric. It follows from Theorem 7 that a
necessary condition for the line integral of f(-) to be path independent is
that the Jacobian matrix of f(») must be symmetric. To show that this
condition is not sufficient to guarantee path independence, consider the
Cl function £:X C 1R2 > ‘.R2 defined by:

f(x) = [-—x2 xl]T/(xi+x§) . (17)

where X & ]{2 ~ {0} is just the '"punctured" R2 plane; i.e., without the

origin. It is easy to verify that the Jacobian matrix of £(+) is symmetric.

"In Vector Caleulus a C' function f:XC R™ > R" is said to be closed
if it has a symmetric Jacobian. Using this terminology, we have shown

that every C1 exact function is closed [30].
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Yet there does not exist a 02 scalar function F(x) such that (15) holds
(30]. Hence, the line integral of a Cl funetion £, having a symmetric
Jacobian matrix, need not be path 'independent.8 The problem with (17) is
that the domain X is not simply connected [30]. In Ilz, X is said to be
simply connected if every Cl closed path C X can be continuously shrunk
to a single point belonging to X. For example, any region with a "hole" in
it is not simply connected. Our next theorem is of fundamental importance

in nonlinear network theory.

Theorem 8. The symmetry principle [30].

A Cl function £: X C R™ + R" defined 1n a simply connected open set
X i1s a state function if and only if, its Jacobian matrix is symmetric.

Corollary. If f:XC R+ R" is a C0 state function, then:
A X
F(x) =s £(x) dx + Flx,) (18)
%o

is a Cl potential function of f£(:); where Xg is any convenient fixed>point
in X and F(go) is a scalar constant depending on X0 In particular, (18)

assumes the explicit form
1
F(x) =.§o<k§~§0)’ §(§0+ (§-§0»> dp + F(x,) (19)

for a straight-lire path from X, to x, or
X P

2
F@)=§
0

fl(pl,o,...,O)dp1 +:§0 fz(xl,pz,o,...,O)dp2

n :
+ ... go fn(xl,xz,...,xn_l,pn)dpn + F(xo) . (20)

for a polyonal path along the coordinate axes.

2. Circuit-Theoretic Properﬁies

The foundations of linear n-ports and linear network theory [13] are
built upon a few basic circuit-theoretic concepts; namely, reciprocity,
anti-reciprocity, non-energicness, losslessness, passivity, and activity.
Our objective in this section is to generalize these concepts for
algebraic n-ports and to derive their characteristic properties. To avoid

unnecessary repetitions, we make the standing asswmption that all

81n terms of Vector Calculus terminology, this example shows that not every

Cl closed function is exact.
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definitions are formulated for time-invariant lumped n-ports. These

definitions however, can be easily generalized for the time-varying case.

A. Reciprocity and Anti-reciprocity

Definition 5. Reciprocal and anti-reciprocal n-ports

An algebraic n-port N characterized by a C1 constitutive relation
£ = £(n) 1s sald to be reeciprocal (resp., anti-reciprocal) at an operating
point @ if its associated linearized n-port ﬁQ characterized by (42) of
Sec. I is reciprocal (resp., anti-reciprocal). N 1s said to be reciprocal
. (resp., anti-reciprocal) if it is reciprocal (resp., anti-reciprocal) at
all operating points of N. It is said to be non-reciprocal if there exists
an operating point Q where N is not reciprocal at Q. ‘

Recall that each admissible signal pair (g(t),ﬁ(t)) of N, must lie on

Q
the hyper plane tangent to Ej = Ej(g) at n = DQ’ j=1,2,...,n. Since

€
3 ]
voltage~-current pair. However, by differentiating either ?j(t)’ or

or n, could represent Vys ij’ ¢j’ or qj, Ej(t),nj(t) nead not be a
n;(t),_or,both,,j =1,2,...,n, each admissible signal pair g(t),ﬁ(t)) of
an algebraic n-port induces a corresponding voltage-current. signal pair -
(Q(t),i(t)) -- henceforth called a tangent v-i signal pair. It follows
from Def. 5 that an algebraic n-port N is reciprocal (resp., anti-
reciprocal) at an operating point Q if,and only if, for any two tangent

v-1i signal pairs (Q'(t),i'(t)) and (§"(t);i"(t)) associated with N

\

Q)
(01e), 1)) = (o), B ) @
{}esp.. (V'(8),1"(s)) = —<§"(s).i'(s)%’ | ) (22)

where ?(s) and i(s) denote the single-sided Laplace transforms of Q(t) and
i(t), respectively. Using this definition, the following necessary and

sufficient conditions can be easily derived.

Theorem 9. Reciprocity and antireciprocity criteria [28]9.

(a) An n-port resistor is reciprocal (resp., anti-reciprocal) if, and only

if, the incremental resistance matrix g(} ) or conductance matrix G(v,) 1s

Q Q

symmetric {resp.; skew-symmetric}.

9Let the linearized n-port resistor {resp., inductor, capacitor, memristor}

RUPE or = G(y))¥ {resp., § = L(i]

= §(q.)q, & = M(q.)q or q = W(¢_)b}.
5(qg)9> ¢ = M(gy)g or g = W(p)¢

be characterized by either v

Q

(X -$1

or 1= T(g)d: 4 = Cly¥ or
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(b) An n-port inductor 1is reciprocal {resp., anti-reciprocal} if, and

only if, the incremental inductance matriz g(;Q) or reciprocal inductance
matrix E(?Q) is symmetric {resp., skew-symmetric}.

(c) An n-port capacitor is reciprocal {resp., anti-reciprocal} if, and
only if, the incremental capacitance matrix Q(YQ) or reciproacl capacitance
matrix §(gQ) is symmetric {resp., skew-symmetric}.

(d) An n-port memristor is reciprocal {resp., anti-recirpocal} if, and
only if, the incremental memristance matrix @(gQ) or memductance matrix

U(Qq) is symmetric {resp., skew-symmetric}.

Theorem 9 is valid only for the choice of coordinates indicated in
footnote 9. The following theorem is coordinate independent and is
applicable to all n-port resistors characterized by’g generalized
coordinate representation as defined in (37)-(38) of Sec. I. The same
theorem also applies, mutatis mutandis, to n-port inductors, capacitors,
and memristors.

Theorem 10. Generalized reciprocity and anti-reciprocity criteria [28].

A Cl n-port resistor characterized by a linearized representation
g = Q(gd)ﬁabout.an operating point Q is reciprocal at @ if, and only if,
the characteristic matrix defined by

Ky & [ertng + d][arag) +2] (23)

(
~

is symmetrie. It is anti-reciprocal at @ if, and ohly if,?]((gq) is
skew-symmetric.

To illustrate the application of Theorem 10, let us derive the
reciprocity criteria for a 2-port resistor N characterized by an ABCD
chain matrix by substituting the a, b, ¢, d matrices (for transmission

representation I) from Table 2 into (23):

ao- (k- BRI b8 w

It follows from (24) and Theorem 10 that N is reciprocal if, and only if,
AD-BC = 1. Theorem 10 is extremely general and includes all known
reciprocity criteria as special cases. In particular, for the important
case where N is characterized by either hybrid representation I or II

with an incremental hybrid matrix g(QQ) defined by
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. §a I:}aa(!:'Q) l:-lab('JQ) la .
I P . | = Blng)n (25)
S| | Ba% T Q|| ™

we obtain the following useful corollary to Theorem 10.

Corollary. ,
(a) N is reczprocal at @ if, and only if, Haa(gQ) = H (n ),

Ebb(gQ) be(n ), and H Hba(nQ
(b) N is antz-reczprocal at Q if, and omnly if, Q(QQ) is skew-symmetric.

Observe that the (p+q)-port transformer defined in (17) of Sec. I 1is
both reciprocal and anti-reciprocal in view of the above corollary.
Conversely, it can be proved that the only n-port resistor which is both
reeiprocal and anti-reciprocal is a (p+q)-port transformer.

It follows from Theorem 8 and 9 that the potential functions listed
in Table 3 for an n-port resistor, inductor, capacitor, and memristor
are path-independent line integrals if, and only if, the associated n-port

is reciprocal (assuming the constitutive relation is defined in a simply-

connected open subset in Iln). Even if the domain is not simply connected,

these potential functions are still well defined so long as the associated

constitutive relation is a gradient map in view of Theorem 7.

Table 3. Potential functions associated with the 4 basic reciprocal

n-ports.
Reciprocal Potential Function
n-port
Resistor Content Co-content
: i v
R Ow 4 vt G [ sw-av
0 0
Inductor Inductor Energy Inductor Co—Energz
Ac?
L W 8f  1er-e W, @) =s 2(D)-d
0 0
Capacitor Capacitor Energy Capacitor Co-Energy
q v
Af(- - P A (-
c -W;:p —so v(q)-dq W =S0 q(v)-dv
Memristor Action Co-Action
4 ¢
‘ AL~ i A
M Mg = SO ¢(q)-dq M) =§ q(¢) -d¢
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I1f we let F(x) and ﬁ(z) denote the corresponding potential functions
in the left and right columns in Table 3, and if the comstitutive
relations y = g(g)'are bijective, then it follows from the integration-by-
parts formala for line integrals that the following identity holds:

FG) + F(y) = (x,y) (26)

B. Non-Energicness

Definition 6. Non-energic n-ports

An algebraic n-port N is said to be non-energic if for any admissible
signal pair (Y(t),g(t)), the total instantaneous power

n

(v(t),1(t)) = 2, v

L, w0150 =0, ¥ € [eg 27)

Otherwise, N is said to be energic.

The (p+q)-port transformer, gyrator, conjunctor and traditor defined
in Sec. I are all non-energic. The following theorems provide necessary
and sufficient conditions for various types of non-energic algebraic

n~ports.

Theorem 11. Non-energic linear n-port criteria [32]

A linear adebraiclon~portIiisnon-energic if, and only if, N is an
anti-reciprocal n-port resistor. Conversely, every anti-reciprocal n-port
resistor N characterized by a Cl hybrid representation h(:) is non-energic
if, and only if, h(.) is an affine function.

Theorem 12. Non-energic n-port resistor criteria [32]

(a) An n-port resistor characterized by a hybrid representation y = h(x)
is non-energic if, and only if, h(.) assumes the form

h(x) = H (x)x (28)

where H_(x) is a skew-symmetric matrix for all x.

(b) A reciprocal n-port resistor characterized by11 v = Y(;) ¥i in a cone
XC is non-energic 1f, and only if, its content E}(i) is 0-order homogeneous.
(c¢) A reciprocal n-port resistor characterized by i= %(Y) ¥v in a cone

Xc is non-energic if, and only if,its co-content gz(y) is

10Def. 6 and Theorem ll are also applicable for dynamic n-ports.

lSee bottom of next page.
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0-order homogeneous.

Observe that even though a cone may not be simply connected, the
content and co-content are still well defined so long as the associated
constitutive relation are gradient maps in view of Theorem 7. Observe also
that (28) implies N is anti-reciprocal only if h(:) is a linear function
since ga(-) is not the assoclated Jacobian matrix if b(-) is nonlinear.
Hence a non-energic n-port resistor characterized by a hybrid
representation must be nonlinear if it is not anti-reciprocal and linear
if it is anti-reciprocal. Our next theorem is expressed in terms of the

generalized coordinate representation and is therefore completely general.

Theorem 13. Generalized non-energic n-port resistor criteria [28].

An n-port resistor characterized by (39) of Sec. I is non-energic

if, and only if, the characteristic function

<() 2 (oE(n) + dn, aE(n) + bn) (29)

vanishes identically.
The non-energic criteria for n-port inductors and capacitors are dual

of each other. Hence, we will consider only the capacitor case:

Theorem 14. Non-energic n-port capacitor criteria [32].

(a) A charge-controlled n-port capacitor characterized by v = Y(q),
q€XC R™ is non-energic if, and only if, v(q) = 0 (i.e., each ;ort is
equivalent to a short circuit).
(b) A voltage-controlled n-port capacitor N characterized by q q(v), W
in a cone X cr® 'y 1s non- energic if, and only if, N is reczprocal and
q(v) is 0-order homogeneous.
(c) A voltage-controlled n-port capacitor N defined in a cone x cr”
is non-energic 1if, and only if, its co- energyw (v) 1s (to within an
additive constant) a C lst order homogeneous function.

Since an n-port can not store energy if it is non-energic, Theorem
14(a) is intuitively reasonable. What is surprising is Theorem 14(b) which

shows there exists a large class of non-trivial n-port capacitors which are

llA subset X C R™ is said to be a cone if x € X, implies Ax € Xc ¥A > 0.

A scalar function ¢: X, cr" 1(1 is said to be k-order homogeneous 1if
¢(Ax) = X ¢(g) ¥A > 0, x # 0. A vector-valued function f: X, Cr™ > r"
is said to be k-order Fomogeneous if all components of f are k-order

homogeneous.
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incapable ov energy storage. For

example, the 2-port shown in Fig. 14 i i + Vg - i

is non-energic since its o I' C 2

constitutive relation + iO ib +
= - ) +

93 ln[(vl V2>/V1] and y + ,
= / ]1 0-ord l Va b 2

q, = zn{vz (vl—v2 s O-order B *

homogeneous. Since the energy ° s

’ILL(q) = 0 for a non-energic

capacitor, it can be shown that

Fig. 14. A non-energic 2-port
capacitor, where

controlled non-energic capacitor v, = exp(—qa), vy = exp(qb),

the co-energy of every voltage-

%f'given explicitly by and q. = Qn(vc).

lLL(Y) = <Y’S(Y))' This follows

immediately from (26) 1f q(-) is bijective. For the above example, it is
easily verified thatflié(y) is a C2 1lst order homogeneous function, as it
should be in view of Theorem 1l4(c).

Theorem 15. Non-energic n-port memristor criteria [28].

A Cl charge-controlled or flux-controlled n-port memristor is non-

energic if, and only if, it is anti-reciprocal.

C. Losslessness

Roughly speaking, an n-port is lossless if whatever energy that
enters it is stored and can be recovered later. This intuitive definition
is adequate for linear n-ports but needs to be refined for algebraic

n-ports. Let Ql(gql,ng) and Qz(gQ ,QQZ)vdenote any two not necessarily
2

distinct operating points in the £-n space associated with an algebraic
n-port N. An admissible signal pair (g(t),g(t)) is said to be an
admissible piecewise Cl path between ¢, and QZ’ henceforth denoted by
rQ;,Q,) if:

1. g(t) and n(t) are continuous and ptecewise 01 ¥t € [tl’tZ]’ where t;
and t, are finite numbers. _
2. (sCeponcep) = (6, *T,) *n¢ (e¢e25ne) = (5, 10"
3. The associated admissible signal pair (Y(t),g(t)) (obtained by
differentiating either gj(t) or nj(t), or both) are continuous and
piecewise Cl on [tl,tZ].

Observe that if N-is an n-port resistor, then condition 3 is

redundant. However, if N is an inductor {resp., capacitor}, then
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g(t) = ¢(t) {resp., §(t) = q(t)} must be c? in view of condition 3.

Definition 7. Lossless n-ports

An algebraic n-port N is said to be lossless 1f, for any two
admissible piecewise Cz paths F'(Ql,QZ) and F"(Ql,Qz) between two
operating points Q1 and Q2, the energy E(Ql,QZ) entering N while the
signal traverses from Ql to Q2 is the same in each case. Otherwise, N is
said to be not lossless.

Stated mathematically, Def. 7 implies that if

FOSENC )

g“(t|’ ),'ﬂ"(t" )) = Q and
1 Q ( 1

T

(g ORB. (cQ2>) - (g CRE. (cQ2>) - q,, then
tl t"
) Q
E(Q;,Q,) = S Cy(e),1(e) e = S (v'"(t),1"(t)de (30)
q N

Notice that Def. 7 only requires the two admissible signal pairs to go
through the same end points Ql and Q2. The times where this occur are

completely arbitrary. For example, the first admissible signal pair may

start at Ql at t 0 and arrives at Q2 at t = 1, while the second may
start at Q1 at t = 0.5 and arrives at Q2 at t = 2. Observe also that (30)
must hold over all possible admissible signal pairs from Ql to Q2.

Our reason for defining losslessness via admissible paths between two
points, rather than around closed paths was to allow its generalization
for dynamic n-ports where a return path may not exist. For example,
consider a dynamic 2-port capacitor with two ideal diodes in series with
each port such that the port currents i,(t) > 0 and 1,(t) > 0 for all

t>t It is clear that any admissible path I in the 9,74, plane for

this g-port must be a monotone increasing curve and hence T can never be
a closed path.

Our reason for requiring the admissible signal pairs in Def. 7 to be
continuous and piecewise ¢! is rather subtle. 'To show that relaxing this
to allow discontinuous signals would lead to a contradictory
classification, consider a capacitor C characterized by the non-monotonic
charge-controlled g-v curve shown in Fig. 15(a). It follows from Def. 7
that C is lossless. Observe that any continuous and piecewise C1 signal
which traverses betwcen Ql and QZ’ such as the signal shown in Fig. 15(b),

‘must follow the gq-v curve continuously. Now suppose we drive this
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Fig. 15. Two distinct paths in the q-v plane due to two signals having
identical end points.

capacitor with the discontinuous signal shown in Fig. 15(c). The resulting
path is shown by the dotted lines in Fig. 15(a), where the horizontal path
represents an instantaneous jump. It is easy to verify that the energy
E(QI’QZ) corresponding to the 2 waveforms shown in Figs. 15(b) and (c) are
different and hence C is not lossless if we enlarge the class of

admissible signals to include discontinuous waveforms.

Theorem 16. Implications of losslessness [28].

Let N be a lossless algebraic n-port. Then
(a) For any admissible piecewise C1 elosed path P(Ql,Ql), the energy
E(Ql’Ql) = 0,
(b) If rlZ(Ql’QZ) is any admissible piecewise C1 path from Q to Q,, and
P21(Q2,Q1) is any admissible piecewise Cl path from Q2 to Ql’ then
E(Ql’QZ) = -E(QZsQl)-

Theorem 17. n-port resistor losslessness criteria [28].

(a) Every non-energic algebraic n-port is lossless.

(b) An n-port resistor N is lossless if, and only 1if, it is non-energic.

Theorem 18. n-port inductor and capacitor losslessness criteria [28].

(a) A Cl flux~controlled or current-controlled n-port inductor is
lossless 1f, and only if, it 1is reeiprocal.
(b) A C1 charge-controlled or voltage-controlled n-port capacitor is

lossless if, and only if, it is reciprocal.

Theorem 19. n-port memristor losslessness criteria [28].

A C1 charge-controlled or flux-controlled n-port memristor is
lossless if, and only if, it is non-energic.
Our next theorem provides a relationship between losslessness and the

average power
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8., 1("
P, = %ﬁﬂ ?.so (y(t),1(t))dt (31)

dissipated corresponding to each admissible signal pair (Y(t),i(t)).

Theorem 20. Implications of losslessness on average power [28].

Let N be a lossless n-port capacitor and let (v(t),i(t)) be any

1

continuous and pilecewise C~ admissible signal pair.

(a) If N is C0 charge-controlled and q(t) is bounded ¥t € [0,»), then

P =0.
av

(b) If N is C1 voltage-controlled and v(t) 1is bounded ¥t € [0,»), then

P = O'
av

To show that the boundedness hypothesis is necessary for Theorem 20
to hold, consider the dc voltage source v, = E as a charge-controlled
capacitor. If we connect this capacitor across a 1 ohm resistor at t = 0,
then ic(t) =-E, t > 0 and qc(t) +> —= as t + », Hence Pav # 0. Similarly,
if we apply a unit step current source is(t) = u(t) across alF capacitor
at t = 0, then again q (t) + = and hence Py # 0. On the other hand,
boundedness is not a necessary condition for average power to vanish. For
example, if we apply the unit step current source across a capacitor
characterized by v = sin q, then q(t) + «» and yet Pav = (,

The dual of Theorem 20 obviously applies for n-port inductors. Using
some rather delicate mathematical analysis, the following converse of

Theorem 20 can be proved to hold for all algebraic n-ports.

Theorem 21. Implications of zero average power on losslessness [28].

Let N be analgebraic n-port characterized by a continuous constitutive
relation £ = §(5)° If the average power Pav = 0 for every admissible
continuous and pilecewise C1 signal pairs (Y(t)’é(t)) associated with a
bounded Q(t), then N is lossless.

D. Passivity and Activity
Although the classical definition of passivity [31] is adequate for

linear n-ports, it is flawed with serious conceptual difficulties and
inconsistencies for nonlinear n-ports. The difficulty stems from the
standard assumption of the zero state x = 0 as the unique relaxed state
where the energy storage is zero [31.33]. For example, a linear capacitor
or inductor 1s said to be relaxed at t = to if qc(to) = 0 or ¢L(t0) = 0,

respectively. 1In particular, one usually assumes qc(—w) = 0 and ¢L(—m) =0
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without questioning their physical significance. It turns out that for
nonlinear n-ports, this assumption is untenable because it is possible for
a nonlinear n-port to have either no equilibrium point, or multiple
equilibrium points. In the former there exists no state of zero initial
storage while in the latter there is no justification to prefer one state
over several other equally valid states of zero energy storage.
Consequently, any general definition of passivity for nonlinear n-ports
must not involve the concept of an initial state of zero energy storage.

Although the passivity definition for algebraic n-ports to be proposed
in this section is unconventional, it is entirely self-consistent and, when
generalized to dynamic nonlinear n-ports having a state representation
[34-36], it can be shown to be equivalent to the definition proposed by
Rohrer [35] and Willems [36].

Let Q(gQ
admissible signal pair (g(t),n(t)) is sadd to be an admissible piecewise Cl
path through @, henceforth denoted by FQ if:

’DQ) be an operating point of an algebraic n-port N. An

1. g(t) and Q(t) are continuous and piecewise C1 functions of t
¥t € [0,T], 0 < T < o,

2. g(0) = g, and n(0) = n,

3. The assoclated admissible signal pair (Y(t),g(t)) is continuous
and piecewise C1 ¥t € [0,T].

Definition 8. Available energy at Q.

We define the available energy EA(Q) at an operating point Q of an
algebraic n-port N by

T
B, (@ & supg ~y(),i(t)) dt (32)
0

where the "supremum" is taken over all admissible piecewise Cl paths
through Q, and over all T > O.

Observe thatin view of our associated reference convention, energy
enters N whenever (y(t),g(t)) > 0. Conversely, energy is being extracted
from N whenever (y(t),g(t)) < 0. Observe that EA(Q) > 0 since we can
choose T = 0 in (32) if necessary. Physically, EA(Q) is the maximum
energy that can be extracted over all time t > O, when the n-port is
initially operating at Q at t = 0. Observe that we use "sup'" instead of

"max" in (32) since the latter may not exist while the former does.
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Definition 9. Passive and active n-ports.

An algebraic n-port N is saild to be passive if the available energy
EA(Q) at each operating point of N 1s bounded. N is said to be active if
it is not passive.

It is important to distinguish between the value EA(Q) of the avail-
able energy function at Q, and the function EA(-) itself in Def. 9.
Passivity requires only the former to be bounded. For example, the avail-
able energy of a 1 Farad capacitor at the operating point v = vQ is given
by EA(Q) =-% 3. It follows from Def. 9 that this capacitor is passive
since E,(Q) < = VIQ € R even though E, + = as IVQI + « (remember « is
not a point in R~). For complicated n-ports, it is far from a trivial
task to calculate EA(')‘ Consequently, ghe following theorems for testing

passivity are extremely useful.

Theorem 22. n-port resistor passivity criteria [28].

An n-port reststor N characterized by a generalized coordinate
representation is passive if, and only if, x(n) > 0 ¥n € I(n, where «(n)
is the characteristic function defined in (29). 1In particular, N is
passive if, and only if, (v,1) > 0 ¥ (v,1) satisfying the constitutive

relation of N.

Corollary.
1. A one-pdrt resistor is passive if, and only if, its v-i curve lies in

the first and third quadrants only.
2. An n-port resistor N characterized by a continuous hybrid representa-
tion y = b({) is passive if, and only if, Q(Q) = 0.

3. Every non-energic n-port resistor is passive.

Theorem 23. n-port resistor activity criteria [28].

An n-port resistor characterized by a hybrid representation y = h(x)

-~ ~ o~

is aetive if h(.) does not depend on some port variable X3 i.e.,
yj = hj(xl’x2’°"’Xk—l’xk+l”"’xn)’ j=1,2,...,n (33)

Corollary.
Every linear or nonlinear controlled source (which is not controlled

by its associated port current or voltage) is active.

Theorem 24. n-port inductor passivity criteria [28].

(a) A reciprocal ct flux-controlled n-port inductor is passive 1f, and

only if,

.



¢

inf S i(¢)+dq > -= (34)
¢E}Rn 0

(b) A reciprocal C1 current-controlled n-port inductor is passive if, and

only if,
4
inf S $(1)-diL > = (35)
S

Theorem 25. n-port capacitor passivity criteria [28].

(a) A reciprocal Cl charge-controlled n-port capacitor is passive if, and

only if,
9
inf S y(q)-dq > - (36)
qer ™" ¢

(b) A reciprocal Cl voltage-controlled n-port capacitor is passive 1if, and
only if,

v
inf 'S~q(Y)-dy > - (37)

ver ™" 2

Corollary.
(a) A C1 flux-controlled or current-controlled one-port inductor is

passive if the area under the i-¢ curve in the 2nd and 4th quadrants is
bounded.
(b) A C1 charge-controlled or voltage-controlled one-port capacitor 1is
passive if the area under the v-q curve in the 2nd and 4th quadrants is
bounded.

To illustrate the application of this corollary, consider the 4 v-q
curves shown in Fig. 16. Since the area under the 2nd and 4th quadrants
(shown shaded) is bounded in Figs. 16(a), (b), and (c), it follows that
the associated one-port capacitors are passive in view of the above
corollary. Since this corollary provides only a sufficient condition for
passivity, it is not applicable in Fig. 16(d) since the area is infinite.
However, we can use Theorem 25 to conclude that this capacitor is active.
It is interesting to observe that the classical definition of passivity
would have classified all 4 capacitors as active [37]. Our definition
classifies the first 3 capacitors as passive since only a finite amount of
energy can be extracted in each case. To show that our classification is

more reasonable, observe that the v-q curve in Fig. 16(a) is
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(a) (b) (c) (d)

Fig. 16. The v-q curves associated with 4 one-port capacitors.

indistinguishable from that of a l1l-~Farad capacitor having an initial
charge of 1 coulomb. Such a capacitor is clearly passive since passivity
should be defined as an inherent property of an element, and should not
depend upon initial conditions. Moreover, since linear circuit theory
implies that every "active" one-port is '"potentially' unstable under
passive embeddings, the capacitor in Fig. 16(a) can never be unstable (in

the sense of Lyapunov) when connected to a passive network and therefore
should be classified as passive.

The passivity criteria in Theorems 24 and 25 require that the n-port
inductors and capacitors be reciprocal. Our next theorem shows that this

condition is necessary for passivity.

Theorem 26. n-port inductor and capacitor activity criteria [28].

(a) Every non-reciprocal Cl flux-controlled or current-controlled n-port
inductor is active.
(b) Every non-reciprocal C1 charge-controlled or voltage-controlled n-port

capacitor is active.

Theorem 27. n-port memristor passivity criteria [28].

A Cl charge-controlled or flux-controlled n-port memristor is passive
if, and only if, its incremental memristance matrix M(q) or memductance
matrix W(¢) is positive-semi-definite,

Finally, since a '"lossless" or "not lossless'" n-port may be either
passive or active, we propose the following definition to distinguish the

various possibilities.

Definition 10. Lossy and Generative n-ports.

An algebraic n-port is said to be lossy if it is passive and not

lossless. It is said to be generative if it is active and lossless.
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E. Local Passivity and Local Activity

All physically realizable n-ports having no internal power supplies
must be passive since at most only a finite amount of energy can be
extracted. Therefore, any realistic algebraic n-port circuit model of a
multi-terminal or multiport device must be passive. From the applications
point of view, it is important to knbw whether a given device is capable
of power amplification or oscillation when operating over some 'dynamic
range." An important characterization of a device's dynamic range is

given by the next definitionm.

Definition 11. Locally passive and locally active n-ports.

Let N be an algebraic n-port characterized by a global representation
g = E(n). Let Q(EQ,nQ) be an operating point and let E(n) be

differentiable at n = so that its associated linearized n-port NQ is

n
defined by (42) of Sec.QI. We say N is locally passive at @ if NQ is
passive. Otherwise, N is said to be locally active at §. N is said to be
locally passive if it is locally passive at all operating points of N. It
is said to be locally active if there exists at least one operating point

where N is locally active.

Theorem 28. Local passivity criteria [28],

(a) An n-port resistor is locally passive if, and only if, its incremental

resistance or conductance matrix is positive semi-definite.

(b) An n-port inductor is locally passive if, and only if, its incremental

inductance or reciprocal inductance matrix is positive semi-definite.

(c¢) An n-port capactitor is locally passive if, and only if, its

incremental capacitance or reciprocal capacitance matrix is positive semi-

definite.

(d) An n-port memristor is locally passive if, and only if, its

incremental memristance or memductance matrix is positive semi-definite.
The following corollary provides a relationship between locally

passive and increasing n-ports (Theorem 2).

Corollary.
An n-port resistor, inductor, capactitor, or memristor is locally

passive if, and only 1f, its constitutive relation (associated with the
representations in Theorem 28) is an increasing function.
Theorem 28 can be generalized to a coordinate independent form. We

will state the result for n-port resistors.
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Theorem 29. Generalized local passivity criteria for n-port resistors[28].

An n-port resistor characterized by a generalized coordinate
representation is locally passive if, and only if, it characteristic
matrix;l((g) as defined by (23) is positive semi-definite.

The following corollary is useful in the synthesis of 2-port resistors
[18,38-39].

Corollary. Local passivity criteria via the chain matrix.

(a) A 2-port resistor N characterized by hybrid representation I (A B C D
chain matrix) is Zocally passive if, and only if, AC > 0 and 4ABCD
3_(AD+BC--1)2 at each operating point,
(b) If N is reciprocal, then N is locally passive if, and only if, AC > 0.
(¢) If N is anti-reciprocal, then N is locally passive.
(d) I1f N is locally passive, then all 4 parameters A, B, C, and D must be
either all non-negative, or all non-positive. Moreover, if N is also
reciprocal, then A and D can not be zero. '

An n-port may be passive but not loca11y passive, or vice-versa. Our

next theorem provides a relationship between these two properties,

Theorem 30. Passivity and local passivity criteria[28].

A locally passive n-port resistor characterized by a Cl hybrid
representation y = h(x) is passive if, and only if, h(0) = 0.

F. Local Non-energicness and Local Losslessness

Definition 12. Locally non-energic and locally lossless n-ports

An algebraic n-port N is said to be locally non-energic at Q (resp.,
locally lossless at Q) if its linearized n-port ﬁQ is non-energic (resp.,
lossless). N is locally non-energic (resp., locally lossless) if it is
locally non-energic (resp., locally lossless) at all operating points of N.

Theorem 31. Local non-energicness criteria [28].

(a) An n-port resistor is locally non-energic if, and only if, it is
anti-reciprocal.

(b) An n-port inductor is locally non-energic 1f, and only if, its
incremental inductance or reciprocal inductance matrix is a zero matrix
(i.e., ?(%) = ?0 or %(?) = %O)'

(¢) An n-port capacitor is locally non-energic if, and only 1if, its
incremental capacitance or reciprocal capacitance matrix is a zero matrix
(1.e., g(g) = qqg or Y(g) = YO)'

(d) An n-port memristor is locally non-energic if, and only 1f, it is
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anti-reciprocal.

Theorem 32. Local losslessness criteria [28].

(a) An n-port resistor is locally lossless 1f, and only 1f, it is
anti-reciprocal.

(b) An n-port inductor is locally lossless if, and only if, it is
reciprocal.

(c) An n-port capacitor is locally lossless if, and only if, it is
reciprocal.

(d) An n-port memristor is locally lossless if, and only if, it is

anti-reciprocal.

Corollary.
(a) An n-port resistor or memristor is locally lossless if, and only if,

it is locally non-energic.
(b) An n-port inductor or capacitor is locally lossless if, and only if,

it is lossless.

G. Relaxed Algebraic n-ports

Roughly speaking, an operating point on an n-port capacitor or
inductor is said to be relaxed if it does not discharge energy when
connected to an external resistor. For linear n-ports, the origin is the
relaxed point and there is no ambiguity when we say N has zero initial
condition or N is initially relaxed. To show that this notion is too crude
for nonlinear n-ports, consider the v-q curve shown in Fig. 16 (b). There are
5 operating points (QO’Ql’QZ’QS’Q4) which can be said to have a zero
initial condition. A careful analysis will reveal that no net energy can
be extracted from this capacitor if, and only if, its initial operating
point is at Q4 and hence only Q4 qualifies as a relaxed point. This

observation justifies our next definition.

Definition 13. Relaxed operating point.

An algebraic n-port is said to be relaxed at an operating point Q if
its available energy 1s zero at Q; i.e., EA(Q) = 0,

A careful analysis of the v-q curves in Fig. 16 shows that the first
two capacitors have exactly one relaxed operating point at Q1 and Q4,
respectively, whereas the last two capacitors do not have any. For the
Josephson junction iductor i-¢ curve shown in Fig. 17(a), there are
infinitely many relaxed operating points; namely, ¢ = + 2n(n/k), n
=1,2,... . Observe that if we displace this i-¢ curve vertically as

shown in Fig. 17(b) (this is equivalent to connecting a current-source
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s
inductor), the resulting

i = I1 across the .

?I
inductor does not have
any relaxed operating
points. Since it is 0 ¢

far from a trivial task (0)

to determine whether an
operating point 1s relaxed éi .
or not, the following |=Iosink4> +I|
theorems can be used for

this purpose.

Theorem 33. Relaxed O ¢

operating (b)

point
criteria(28]). Fig. 17. Two nonlinear omne~port inductors.

(a) Every operating point of a passive n-port resistor is relaxed.
(b) An operating point Q of a reciprocal C0 flux-controlled n-port
inductor is relaxed if, and only if,

¢ n
5‘ 1()-dp >0, V¥ ER (38)

~

(c) An operating point Q of a reeiprocal C0 charge-controlled n-port

ecapacitor 1is relarxed if, and only if,

q

S v(¢)-dq > 0, ¥gER" (39)
&

(d) Every operating point of a passive n-port memristor is relaxed.

Corollary.
A reciprocal Co flux-controlled n-port inductor or charge-controlled

n-port capacitor is passive if it has at least one relaxed operating

point.

Theorem 34. Relaxed n-port implies passivity [28].

Every active algebraic n-port characterized by a continuous
constitutive relation has no relared operating points.

It follows from Theorems 33 and 34 that the inductor in Fig. 17(a) is
passive while that in Fig. 17(b) is active.
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Theorem 35. Necessary conditions for relaxed operating point [28].

(a) 1f a reciprocal C0 flux-controlled or current-controlled n-port
inductor N has a relaxed operating point Q, then gL(Q) = 0 and N is

locally passive at Q.
(b) If a reciprocal C0 charge~controlled or voltage-controlled n-port

capacitor N has a relared operating point Q, then YC(Q) = 0 and N is

locally passive at Q.

Theorem 36. Necessary conditions for multiple relaxed operating pointsj28].

(a) Let Q0 be a relarxed operating point of a reciprocal C0 flux-controlled

n-port inductor. Then Q; is also a relaxed operating point only <if

1
S 1(¢)-dg = 0 (40)

(b) Let Q0 be a relaxed operating poinﬁ of a reciprocal C0 charge-
controlled n-port capacitor. Then Q1 is also a relaxed operating point

only if

§ v(g)-dg = 0 | (41)
4
0

‘
It follows from Theorem 36 that the existence of more than one relaxed
operating points for inductors and capacitors is somewhat rare since (40)

and (41) are rather stringent conditionms.

3. Invariance Properties Relative to Representation and Datum of

Multi-terminal Elements.

Since the circuit-theoretic properties defined in Sec. 2 are
independent of the choice of representation of the n-port's constitutive
relation, it is clear that they are invariant properties of an algebraic
n-port or an (n+l)-terminal element with respect to some datum terminal.
Our objective in this section 1is to investigaté what happens if a
different datum terminal is chosen. First of all, observe that an
(n+l)-terminal element N (other than R, L, C, M) may be an algebraic
n-port with respect to one datum terminal but becomes a dynamic n-port
with respect to another datum terminal. For example, the 3-terminal
element N characterized by il = fl(vl,iz) and ¢2 = fz(vl,iz) with

terminal 3 chosen as datum is an algebraic 2-port. However, N is not an
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algebraic 2-port if terminal 1 or 3 is chosen as datum. The following
theorems show what properties are truly invariant in the sense that they

do not depend on the choice of representation or the choice of datum.

Theorem 37. Power invariance theorem [28].

The total instantaneous power p(t) = (y(t),i(t) entering an
(n+l)-terminal resistor, induector, capacitor, or memristor is independent

of the choice of the datum terminal.

Theorem 38. Invariant structural and circuit-theoretic properties [28].

The following properties are ¢nvariants of an (n+l)-terminal algebraic
element N:
(a) Structural properties: increasing, strictly increasing, uniformly
increasing, and strongly uniformly increasing.
(b) Circuit theoretic properties: reciprocal, anti-reciprocal, non-
energic, lossless, passive, locally non-energic, locally lossless, and

locally passive.

It follows from Theorem 38 that the properties listed under (a) and
(b) are truly inherent attributes of an algebraic n-port or (n+l)-terminal

element.

III. Synthesis of Nonlinear Resistive n-ports

Theorems 3a and 3b of Sec. I assert that any nonlinear algebraic or
dynamic n-port can be realized using only linear elements and one nonlinear
n-port resistor. Consequently, the basic nonlinear n-port synthesis
problem reduces to that of realizing a prescribed constitutive relation
f(v,1) = 0 using a minimal set of practical bullding blocks. Since only
2-terminal resistors characterized by monotone increasing v-i curves can
be accurately realized in practice without running into instability
problems [18,39,40], only such elements qualify as basic nonlinear building
blocks. Our objective in this section is to investigate the state-of-the-
art of the following yet unsolved problem:

Basie n-port resistor synthesis problem. Given a constitutive relation
f(v,1) = 0, synthesize an n-port using only independent gources, linear
controlled sources, and 2-terminal resistors (characterized by monotone
increasing v-1 curves passing through the origin) as the basic building
blocks.

Any n-port realization N can be decomposed as shown in Fig. 18 where
N, is an (n+m)-port containing only linear resistors and linear controlled

1
sources, and Nj is an m-port containing only nonlinear resistors and
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Fig. 18. N can be decomposed into a linear (n+m) -port Nl and a nonlinear

m-port NZ'

independent sources. Since N2 contains only 2-terminal monotone increasing
resistors and independent sources, it is easy to show that N,y is a
reciprocal and locally passive (increasing) m-port [24,41]. It follows
from this observation that the linear elements alone must be responsible
for any nom-reciprocity or non-monotonicity in the resulting realization.
Henée, the difficult problem of synthesizing an arbitrary constitutive
relation would be greatly simplified if we can decompose it into reciprocal
and locally passive components. Methods for accomplishing these
decompositions will be presented in the next two subsections. For
simplicity, we will consider only the case where the constitutive relation
is voltage-controlled; i.e., 1 = g(v). The dual results clearly hold also
for the current-controlled case. ~In fact, the methods can also be

generalized for hybrid representations.

1. Decomposition into Reciprocal and Linear n-ports

Given a Cl constitutive relation
{=g(, 1,y ER" (1)

with an incremental conductance matrix
G(y) = ag(v)/3v (2)
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one might be tempted to decompose G(v) into a symmetric and a skew-symme-—

tric part as in linear synthesis [31,33]; namely,

1 T A
G(y) = 3 [g(@ +G (y):, +: [Q(y) - QT(y)] 26,0 + G (v) (3)
Unfortunately, such a direct generalization is not valid for nonlinear
n-ports because not every nxn matrix function is the Jacobian of some
vector-valued function., In fact, our next theorem identifies the class of

realizable skew-symmetric matrices.

Theorem 1. Anti-reciprocal n-port realizability criterion [22].

Every anti-reciprocal n-port resistor characterized by a C2 hybrid

representation is qffine in the sense that

<
]
oy
7~
»
g
]
o]
]
+
e}

(4)

where H is an nxn constant skew-symmetric matrix and ¢ 1s an nxl constant
vector. A
It follows from Theorem 1 that a necessary (but not sufficient)

condition for (3) to be realizable is for G,(¥) to be a constant matrix.
This observation dealt a severe blow to any hope of synthesizing nonlinear
n-ports using only reciprocal and anti-reciprocal elements. To overcome

this problem, we must identify some more general classes of realizable
| non-reciprocal n-ports which include anti-reciprocal n-ports as a proper

subclass. Two useful generalizations have been identified [42-43]:

Definition 1. Quasi-antireciprocal n-ports

A Cl voltage-controlled n-port resistor is said to be quasi-
antireciprocal if its incremental conductance matrix G(v) can be decomposed

into a skew-symmetric matrix G,(v) and a diagonal matrix Gy(¥); 1.e.,

G(¥) = G, (¥) + G4(¥) | (5)

Definition 2. Solenoidal n-ports

act voltage-controlled n-port resistor is said to be solenoidal if

g(v) has zero divergence; i.e.,

Il
div g(v) 2 2 ¢4 (¥
i=1

0 (6)

Every anti-reciprocal n-port is quasi-antireciprocal and solenoidal.
The converse is of course not true. Moreover, unlike anti-reciprocity
(which is an invariant proeprty), it is easy to find examples of quasi-

antireciprocal or solenoidal n-ports whose inverse representations fail to
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possess elther property. Observe that a quasi-antireciprocal n-port need
not be solenoidal, or vice-versa. However, since condition (6) is much

weaker than condition (5), the class of solenoidal n-ports is, roughly
speaking, much larger than the class of quasi-antireciprocal n-ports.
Our motivation for introducing these two classes of n-ports is given by

the following theorems.

Theorem 1. Reciprocal-quasi-antireciprocal decomposition [42]

(a) Every Cl voltage-controlled 2-port resistor can be decomposed into a
parallel connection of a reciprocal and a quasi-antireciprocal voltage-
controlled 2-port resistor.

(b) Every Cl voltage-controlled n-port resistor characterized by a

pairwise-coupled constitutive relation
' n
1= 8y(vyavpseeesvy) = 2::1 28, (V5>v)s 1= L,2,..00m %))

can be decomposed into a parallel connection of a reciprocal and a quasi-

antireciprocal voltage-controlled n-port resistor.

Theorem 2. Synthesis of quasi-antireciprocal n-ports [42] -

(a) Every Cl voltage-controlled quasi-antireciprocal 2-port resistor can
be synthesized by cascading a rectprocal voltage-controlled 2-port resistor

with a gyrator (see Fig. 19).

. G=1 .

Ul . —~ 12
o Reciprocal F—° —1——=
Vi e-port D ( V2
o resistor }—o o— 5

Fig. 19. Decomposition of a quasi-~
antireciprocal 2-port resistor.

(b) Every c? voltage-controlled quasi-antireciprocal n-port resistor can
be synthesized using at most %-n(n-l) voltage-controlled quast-
antireciprocal 2-port resistors, and at most n 2-terminal voltage-

controlled resistors. (See Fig. 20 for the case n=4).

Corollary.
Every ct voltage-controlled quasi-antireciprocal n-port resistor can

-55-



[ 20— 1(2) h
+
N2| Nl V-!
30— 1) | N
N3,
o__i,4 — 4(1) 1 (4)
+
Vg | Ng Na
o
| 3@ 2(3)] 2
' +
N32 . N2 Vo
— .8
)| a(2) 2(4)
Ng2
4 | .
4(3) 3(4) '3_0
Na3 N3 Vg
—&

Fig. 20. Decomposition of a quasi-antireciprocal n-port resistor.

be synthesized ﬁsing only 2-terminal voltage-controlled resistors,
reciprocal voltage-controlled 2-port resistors, and gyrators.

Since Theorem 1(a) holds for all C1 voltage-controlled 2-port
resistors, we have obtained a complete generalization of (3) for n=2.
However, Theorem 1(b) gives only a partial generalization since it is
valid only for “"pairwise-coupled" constitutive relations. In both cases,
explicit formulas are given in (42] for specifying the constitutive
relations of the component n-ports. A complete generalization for

arbitrary n-ports is given by our next theorem.

Theorem 3. Reciprocal-solenoidal decomposition [43].

Every C1 voltage-controlled n-port resistor can be decomposed into a

parallel connection of a reciprocal and a gsolenoidal voltage-controlled
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n-port resistor.

Since this theorem is valid for all C1 voltage-controlled n-port
resistors, it can be considered as a nonlinear generalization of the well-
known decomposition of a linear n-port into a reciprocal and an anti-
reciprocal n-port. Unlike theorem 1, however, the constitutive relations
of the reciprocal and the solenoidal n-ports cannot usually be expressed
in explicit form because the above decomposition requires solving a
nonlinear Poisson's equation whose solution, though always exists, may not
be obtained in closed form except in special cases. Our next result shows
how solenoidal n-ports may be further decomposed into simpler building
blocks.

Theorem 4. Synthesis of solenoidal n-ports [43]

Every Cl solenoidal voltage-controlled n-port resistor can be
synthesized using at most %-n(n-l) reciprocal voltage-controlled n-port
resistors, and at most %-n(n—l) linear 2n-port resistors. (see Fig. 21

for the 2-port case).

Corollary.
Every Cl voltage-controlled n-port resistor can be synthesized using

only reciprocal voltage-controlled n-port resistors and linear elements.

2. Decomposition into Locally Passive and Linear n-ports.

Our objective in this section is to show that under rather mild
assumptions, every reciprocal n-port resistor can be synthesized by
terminating a linear 2n-port -- called a linear transformation converter

(LTC) -- by a reciprocal and locally passive n-port.

Definition 3. Linear transformation converter (LTC) [44]

A linear 2n-port is called an LTC if it is characterized by a non-

singular transmission matrix; namely,

NES N

There are three basic types of LTIC buildiﬁg blocks which we define

next.

Definition 4. 2n-port rotator, reflector, scalar
(1) An LTC is said to be a 2n-port rotator if it is characterized by a
2nx2n orthogonal transmission matrix having a positive determinant.

(2) An LTC is said to be a 2n-port reflector if it 1s characterized by a
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2n-Port

(n)

(b)
The symbol and terminal characterization for a 2n-port LTC,

Fig. 22,

2n -Port Reflector

(5] [m) (2]

det Tp =-I

2n - Port Scalor

i) [2]

TR is o diagonal matrix

rotator, reflector, and scalor.

O

K

88

Fig. 23. Four

where det IR >
case where det IR
Theorem 5

building blocks.

<. 0.

R g —~ P
oy el > el
(c)
| KO e e I
)

basic cascade configurations for realizing a 2n-port LTC.

0, whereas configurations (c¢) and (d) correspond to the

shows that every LTC can be realized using only 3 basic

The significance of the LTC lies in its capability of

transforming a lZocally active n-port resistor into a locally passive

n-port resistor.

Theorem 6.

LTC-locally passive n-port resistor decomposition [28].

Every C1

and reciprocal voltage-controlled n-port resistor charac-

terized by a constitutive relation i = i(y) satisfying
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ai!(y)
ka

<M<owo, ¥y, ¥,k=1,2,...,n (9)

can be synthesized by connecting a reciprocal and locally passive n-port
(See Fig. 24).
the LTC can be synthesized using n identical negative resistors with a

resistor across a reciprocal 2n-port LIC. In particular,

conductance G = —(nM+e), where € is any positive number.

2n-port
LTC

.I N\ Il
lo o~ - -O O
+ +
V) ~-(nM+€) mho -V
o e
i) 1, Reciprocal
o— o o— o and
+ +
V2 "'("M"'e) th V2 IOCO'!Y
- - passive
- n-port
. . resistor
) in In
(o - O o
+ ' : o : +
Vp -(nM+€) mho Vn
Pt : o
-
Fig. 24. Synthesis of reciprocal n-port resistor.

Observe that since the constitutive relation i(y) is Cl, (9) is
always satisfied on a compact domain. Since all physical n-ports must
have a bounded dynamic range, it is clear that (9) represents very little

loss of generality.

3. The Last Synthesis Hurdle

The last two sections show that the basic n-port resistor synthesis
problem reduces to that of realizing a reeiprocal and locally passive
n-port resistor. If we allow only locally passive 2-terminal resistors

as building blocks, then this problem includes the classic "linear
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. resistor n-port synthesis problem' [45] as a special case.l Consequently,
wé must allow at least negative resistors, or ideal transformers as
additional building blocks. We therefore close this section with the
question: "can any reciprocal and locally passive n-port resistor be
realized using only locally passive 2-terminal resistors and ideal

transformers, or negative resistors?"

IV. Qualitative Properties of Dynamic Nonlinear Networks.

The dynamic behaviors of linear networks are simple and a complete
theory has been developed. In contrast to this, the dynamic behaviors of
nonlinear networks can be extremely complex and unpredictable, even for
simple networks. For autonomous networks, i.e., networks containing only
time-invariant lumped elements and dc sources, there may be several
equilibrium points, such as those associated with a flip-flop circuit
having different stability properties [39]. For "completely stable"
circuits each solution must ténd to an equilibrium point determined by the
initial condition. A non-completely stable circuit, on the other hand,
could display a great variety of exotic qualitative phenomena [46]. The
simplest behavior consists of periodic oscillations. Even then, depending
on the initial condition, a circuit may support'several distinct periodic
oscillations having distinct frequencies. Much more complicated behaviors
are possible, however. For example, an autonomous network could support
one or more almost periodic oscillations [47]. 1In fact, even more bizarre
behaviors resembling stochastic processes have been observed [48].

For non-autonomous networks, i.e., networks containing time-varying
elements, or ac sources, a periodic input may give a periodic or non-
periodic output [46-47]. 1In the former case, the period of the output
waveform need not coincide with that of the input signal. Moreover,
various modes of ferroresonance and jump phenomena could occur. In the
latter case, subharmonic oscillations and various synchronization
phenomena have been widely observed.

Both autonomous and non-autonomous networks may also exhibit finite

escape time solutions [49], i.e., solutions tending to « in a finite time.

1For linear n-ports [45], a necessary condition for a symmetric conduct-
ance matrix @ to be realizable using only linear positive resistors is
for G to be a paramount matriz. A sufficient realizability condition is
for G to be a dominant matrix. However, if negative resistors or ideal
transformers are also allowed as building blocks, then any symmetric G

can always be realized.
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Even if a solution is bounded in finite time, it could still become

unbounded as t + =,

The qualitative theory of nonlinear networks is concerned with the
analysis of the various nonlinear behaviors described in the preceding
paragraphs. The objective is to derive conditions under which certain
nonlinear phenomenon may, or may not occur,without actually solving the
differential equations describing the network. In particular, the theory
is aimed at identifying various subclasses of nonlinear networks displaying
similar qualitative behaviors.

Although a large body of mathematical results relevant to this study
is available, a direct application of these results often lead to circuit
conditions which are either too restrictive or artificial. The goal of
"qualitative theory of nonlinear networks" is to derive useful theorems
involving physically meaningful conditions. In particular, it would be
most desirable that the conditions be expressed in terms of the network
topology and -the elements' constitutive relations. Any additional
conditions of a mathematical nature should be readily verifiable,
preferably by engineers having only rﬁdimentary mathematical trainings.
Although many more years of regearch will be needed to develop such a
qualitative theory of dynamic nonlinear networks, research in this area
over the past three decades have provided a firm foundation for building
such a theory [50-78]. Our objective in this lecture is to focus on some

of the recent developmentsin this area.

1. Formulation of State Equations.

Let\/U be an RLC network containing multi-terminal and multiport
resistors, inductors, capacitors and independent voltage and current
sources. Linear and nonlinear controlled sources are also included since
they can be considered as multiport resistors. Without loss of generality,
each (n+l)-terminal element or n-port can be modeled by "n" "coupled"
2-terminal elements. The reason for doing this is to allow an (n+l)-
terminal element or an n-port to be represented by an element graph so that
topological results from graph theory may be brought to bear. For example,
the graphs corresponding to the elements in Figs. 1(a) and (b) are shown
in Figs. 25(a) and (b), respectively.

Our goal in this section is to show how the state equations for L}U
may be formulated. To do this, it is convenient to regard all multi-
terminal and multiport ‘capacitors and inductors,as "coupled" 2-terminal

(
capacitors and "coupled' 2-terminal inductors, and to comnect them across
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(a) (b)

Fig. 25. (a) Graph of an (n+l)-terminal
element. (b) Graph of an n-port.
an n-port resistor N as shown in Fig. 26, where n = nc+nL, n, being the
number of capacitor-terminated ports, and n being the number of inductor
terminated ports. Without loss of generality, we can always choose the
polarity as shown in Fig. 26 so that the capacitor voltage is equal to the
port voltage, and the inductor current is equal to the port current. We

assume that the n-port resistor N admits the following hybrid

representation:l

1 = h, (vhi5u0) | (1)

vy = by (v,.1p5ug) | (2)
where

ug 2 [Eg 1) 3
denotes the source veector with ES and IS representing the voltages and

currents of all voltage and current sources in N, respectively. Now assume
the constitutive relations of the capacitors and inductors cam be

represented either in the 'voltage and current-controlled" form
9 = 9 : o (4)
¢ = o (dy) | (5)

or in the "charge and flux-controlled" form

) ] | (6)

Ve = Ye(9c

1This corresponds to the hybrid representation 2 in Sec. I.
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Fig. 26. Any RLC nonlinear network LA‘can be represented by an
n-port resistor N terminated by coupled 2-terminal
capacitors and inductors.

= 4.0 | )

C C
state equations of N corresponding to (4) and (5) are therefore given by:

From Fig. 26, we obtain i = —ga, Vo = Voo }L = %b and 12 Tl The

<s
i

1 A .

oo
I
>

= —l ) . .

~
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. A
where Yo and %L are the state variables, and where g(YC) = agC(YC)/aYC de

notes the ncxncincremental capacitance matrix of the capacitor, and where

L(gL) 4 a@L(gL)/agL denotes the n, xn incremental inductance matrix of the

L

of the inductors. If we choose 9c and ?I instead as state variables, then

the state equations of N corresponding to (6) and (7) are given by:

. A .
Now if we define

}5 = = , YV B = - . g = (12)

i, i, b YL 9,

then (1)-(2) describing the n-port resistor N may be recast into the
compact form

y = h(x3u) (13)
where

A T

h = [Ea bb] (14)
The state equations (8)-(9) now assume the form

. -1 _

x=-D (Dh(xsug) = £(x5y4) (15)
where

cx®! 0
A i
D(x) £ T (16)
0 ) L(®

Similarly, (10)-(11) may be recast into the compact form2

2 2 Cnlgz)sul) = £(z3ul) (17)

z 2\8lz)slg =lZilg

2The reader is cautioned that our notations here differ from those in
[69-72]. Specifically, the vectors X, ¥y, 2, h(x), and g(z) in this

section correspond to %p’ —Zp’ Ep’ gp(gp), and bp(gp) in [69-72].
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Wwhere

82 ° [ya L]t (18)

If all sources in N are dc, then u is a constant vector and the network

gAjis sald to be autonomous. Othegwise, ug = gs(t) and LAfis said to be
non-autonomous.

The preceding state equation formulation is deceptively simple
because it assumes that the hybrid representation of N is given explicitly
by (1)-(2), and that the capacitors and inductors are characterized by
either (4)-(5), or (6)-(7). While the latter assumption is usually
satisfied by most nonlinear networks, the former is not. It is easy to
find examples where N cannot be described by (1)-(2) [11,57]. Indeed,
this hybrid representation is defined if, and only if, ga and v, are
uniquely determined by any port voltage v, and any port current ib’ and

for any value of the source vector u Hence the basic issue here 1is to

determine the existence and uniquenezs of the solution of the resistive
network obtained by replacing all capacitors by voltage sources and all
inductors by current sources, and then letting all external and internal
sources assume all possible values. This subject has been studied
extensively over the past decade and a large collection of results are now
available in the literature [9,57-68,74-76].

It is clear from Fig. 26 that the hybrid representation (1)-(2)
cannot be defined if there exists at least one loop formed exclusively by
capacitors and voltage .,sources (C-E loop), or a cut set formed exclusively
by inductors and current sources (L-J cut set). This is because the
voltage v, cannét be arbitrarily prescribed if;jU contains a C-E loop,
while the current ;b cannot be arbitrarily prescribed ifg}U contains an
L-J cut set. This is the reason why many papers on dynamic nonlinear
networks assume apriori that N contains neither C-E loops nor L-J cut
sets since realistic models of many semiconductor devices contain
capacitor loops (representing stray capacitances) and inductor cut sets
(representing ﬁarasitic.inductance)[ll], specially for high-frequency
operations, this restriction appears to be overly stringent. Fortunately,
our next theorem shows how this condition can always be satisfied by an

appropriate transformation.

Theorem 1. C-E loop and L-J cut set elimination theorem [11,70,78]

(a) Every C-E loop in})” may be eliminated by open-circuiting any one
capacitor in the loop, and by modifying the constitutive relations of the
-66- '



remaining elements in the loop, without altering the solutions ofL)“.

(b) Every L-J cut set in<,Afmay be eliminated by short-circuiting any one
inductor in the cut set, and by modifying the constitutive relations of
the remaining elements in the cut set,without altering the solutions of
N

(¢) The modified comstitutive relations of the capacitors and the
inductors can be derived explicitly from the original constitutive
relations [11,70,78]. Moreover, if the original elements are reciprocal,
increasing, strictly-increasing, or uniformly inereasing, then these
properties are preserved and therefore remain invariant in the trans-

formed constitutive relations.

Theorem 1 shows that in so far as the qualitative properties of
dynamic RLC networks are concerned, there is little loss of generality by
assuming apriori that;,“ contains neither C-E loops nor L-J cut sets.

This fact greatly simplifies many research problems on nonlinear RLC
networks. For example, the procedures for formulating state equations are
drastically simplified when there are no C-E loops and L-J cut sets [59-67]
Under this assumption, the associated state equations can usually be
handled easily even if it may not be possible to express the equations in
explicit analytical form. By introducing additional assumptions, it is
possible to derive the state equations explicitly for various subclasses of
nonlinear networks. One important subclass studied extensively by Brayton
and Moser is often referred to as the class of complete networks]54].
Another subclass that also admits an explicit formulation corresponds to

those networks having an explicit Lagrangian or Hamiltonian function [79].

A. State Equations of Complete Networks

Definition 1. Topologically complete n-ports

An n-port N is said to be topologically complete 1f either the
voltage, or the current, of each internal branch3 is determined
topologically by the port voltages across the voltage-driven ports
(capacitor-terminated ports in Fig. 26) via KVL, and by the port currents
in the current—driven ports (inductor-terminated ports in Fig. 26) via

KCL, without invoking the constitutive relations of the internal elements.

3As always, multiterminal and multiport elements inside N are represented
by "coupled" 2-terminal elements, so that topologically, each terminal

pair, or each port, is represented by a branch of the element graph.
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Definition 2. Complete n-ports

A topologically complete n-port N is said to be a complete n-port if
each multiterminal or multiport element R of N is characterized by a hybrid
representation YR = QR(ER) such that the independent variable x_ is
determined topologically by the external port variables (YC and { in
Fig. 26) via KVL and KCL alone.

Definition 3. Complete RLC networks

An RLC network:VA]is sald to be complete if its associated n-port
resistor N is complete.

It follows from Def. 3 that given the values of the external port
variables (YC and gL in Fig. 26), all branch currents and voltages
associated with the internal elements of a complete network can be uniquely
determined by using merely KVL, KCL, and direct substitution into the
element's constitutive relations. In other words, no equations need be
solved at all. Clearly, the "completeness" requirement is a very strong
condition and the class of complete networks is rather small. However, by
augmenting a non-complete network with parasitic capacitors and inductors,
it is always possible to derive a complete network from it. We will now
show how the state equations of such networks can be formulated explicitly.

Let;JM be a complete and connected network containing '"coupled"
2-terminal capacitors, 2-terminal inductors, 2-terminal resistors, and dc
voltage and current sources. Assume that N contains neither C-E loops nor
L-J cut sets. For simplicity, let us first assume that the resistors are
uncoupled. Let %]; be a subtree made up of "composite'" branches each of
which consists of a capacitor and all voltage-controlled resistors
(possibly none) connected in parallel with it, and let 292 be a subcctree
made up of "composite' branches, each of which consists of an induétor and
all current-controlled resistors (possibly hone) connected in series with
it. The composite branches are shown in Figs. 27(a) and (b), respectively.
If we extract all elemgnts in<ET1 and 222 and consider them as loads
connected across an n-port N, then it is easy to show that N is complete
iff there is a subtree QJ; made up of current-controlled resistors such
that €3-= %j; U Q]; form a tree ofL)U, and if all remaining elements are
voltage-controlled resistors forming closed loops exclusively with branches
in %];. If we denote these voltage-controlled resistors by the subcotree
221’ then EQ = %21 L’EQZ is the cotree assoclated with QJi It follows in
this case that the fundamental loops associated with branches in 221
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(a) (b)
Fig. 27. (a) A typical'capacitor composite branch" in ?]1. The
resistor Rt represents the parallel combination of all
voltage-controlled resistors (including dc current
sources) connected across the capacitor. Note the
current into R _1is denoted by ié; (b) A typical
"inductor composite branch" in 222. The resistor Rz
represents the series combination of all current-
controlled resistors (including dc voltage sources)

connected in series with the inductor. Note the

voltage across R, is denoted by vé.
contain branches from %)’ only, i.e., v, + B v. =0, where v. and
1 ~xl ~:(13’1 M <

V_ denote the branch voltage of the elements in %fl and 1> respectively,
i
1 : )
and @i 3 denotes an appropriate submatrix of the following fundamental
171
loop matrix B:

g ge 2 C&]"1 gZ

~ ~
Yer s iBiy %s %91
171 172, 101 172
;- E
) ~L L li x.: éx J Ei ) gf2
21 22: 271 22_J

where the upper right-hand corner submatrix is always a zero matrix. If we



let ;{ . Yt , %U » and V_ denote the current and voltage vectors for
] k| h| h|

elements in Efj and Qg}s respectively, then the voltage-controlled
can be ted b
p can represented by :Laf. (Y:( ) and :j_.:7 (YU)’
1 1 1 1
respectively. Similarly, the current-controlled resistors in 222 and %};

resistors in g{& and

can be represented by Y£ (éi ) and Yd (%g')’ respectively. Hence, we can
2 2 2 2

write:

L ~gy )ﬁz =-B 1, A AREN(: )—@Z 1 a9
9 9 191 L9 SN 2 %

i Lt )ded, Tv ()t 2 Y (Begte) *Bg Yy GO
iZ 2 2 2 2 2 32 22 2 2 1 1

where C(v ) and L(}
~d ~£
1 2
matrix, respectively, and where the symbol "°'" denotes the "composition"

) denote the incremental capacitance and inductance

operation. It follows from (19)-(20) that the state equations of any
complete network can be written explicitly with Y3 and ;t as the state

variables; namely,

. -1 T T
V. = ¢ (y ){-B i °(-1§ v )+; (y )-@ 1 (21)
31 dl lel zl 137 Jl Jl L T zz

L= ){v (b )* By ¥ " (Bot )t 2 Y} (22)
1, A AN Y LT ) 2% ¥ 2,3, 9%

An examination of (21)-(22) shows that elements belonging to the same
group may be coupled to each other. For example, all capacitors (resp.,
inductors) may be coupled to each other, and all resistors belonging to
Efl resp., EBZ’ QJ., QJ; may be coupled to each other. Moreover, the
couplings need not even be reciprocal in the sense that the associated
multi-terminal element or multiport resistors inside N need not be
reciprocal. However, if all resistors inside N are reciprocal, then it is
possible to express the state equations in terms of a scalar potential
function. To derive this, let us observe that if we extract all
capacitors inductors from the complete networkx)U, the resulting n-port
resistor N has the following explicit hybrid representation in view of
(1), (2), (8), (9), (21), and (22):
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T - A i
i, =-B, 1 o (-B ) t1 (w)B i) S bo(v,,i) (23)
= = ~ ~a S a 13 a
8 ildl 1& 1131 1 2Y1
oY ) +B, v (] L)+, v, ) (24)

) 1,9, 7% e L0

A A A A
where we have defined i =1 , v =v ,41 =1 andv, Ev . The
R T % P e

incremental hybrid matrix associated with N is the Jacobian matrix of
(23)-(24):

— -
o1 o1,
v F Bz 3 W, S B E’i
=A 171 . 19 27
E(Ya:ib) = v v (25)
~ ~7
B —2+B —2 ~T
o 31z £ 9lJ L,9,
L 2 2 J

Notice that ﬂ(ya,gb) is not symmetric since the off-diagonal blocks are
negative transpose of each other, as expected in view of the Corollary of
Theorem 10 in Sec. II-2. Hence, the hybrid representation h(:) of N 1is
not a state function and we cannot define a potential function via its

line integral. However, since the only thing that prevents H(v_,1i ) in

(25) from being symmetric is the "negative sign" attached to B , we
. 231

can introduce a new variable gb = —}b s0 that-(23)-(24) becomes

T ST k%
1,=B , i - (-Bi ; ya) 1) +B 4= b(v 1) (26)

11 1 171 1 21
=Y (L) +B v o(a 1)+B =%( (27)
p T Y - %2 3.°b Ya ~b
Zy 292 9, £33, £,9

Observe that (26)-(27) now defines a state funetion h (v i ) and we can
now define a potential function via its line integral. To derive the
explicit form of this potential function, let us consider first the
simpler case where all elements in N are 2-terminal uncoupled resistors

and define the following 4 scalar functions:4

v
~ jA. .
(] (Y ) 4 ): f ijgx)dx ' . (28)
L\ 70
4Recall the definitions of content and co-content in Table 3 of sec. II-2.
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i
* * A j
i = . (~x)d
6L 5)* B e
g 8 g i x)d
*
4
* % R _
g (:1. )é Ej v, (-x)dx (31)
I\ I, 970 J

~

Observe that (31'(yi ) and (}3 (Yd ) are just the sum of all co-contents
1 1 1

1
of the resistors in %2 and %]l respectively. Similarly, except for the
%,k % , %
negative sign in (29) and (31), g} i and g} i
L,\"L I \"J
2 2 2
of all "conjugate' contents of the resistors in gfz and Y 9 reSpectively;

) are just the sum

where

i*

h|
%y A
G(ij) s

v, (-x)dx (32
0 J

is defined as the conjugate content associated with the constitutive
relation vj = Gj(ij) of the jth resistor:hx%fz or QJ;. We are now
ready to define the potential function associated with (26)-(27):

Definition 4. Hybrid content of N
We define the hybrid content of a complete n-port resigtor N by

% o ~ ‘ ¥
H(r ,;1)29 - (-2 y)+9(y)+9*(z)
3 4 | L9 9 INT, L\ %
* * *
+QF e B 1 )+4Tf§ v (33)
7, L,9 %, z, "33 9

Theorem 2. State Equations Via the Hybrid Content [64],5
)
The hybrid contentg;ﬁ(yg ’%i ) is a potential function associated

1 2
* *
with the state function h (V ,11 ) defined in (26)-(27).6 Moreover, the
~g % A

5Comparing (34)-(35) with the state equation derived by Brayton and Moser
[54], we can identify the hybrid content to be their mixed potential.

6 - * *
Recall that v =v_and i =141
J ~a ~L

1 2



state equations of any complete RLC network containing uncoupled 2-terminal
resistors can be formulated explicitly via the hybrid content as follow:

§ =-§"1(Y ) (34)
Jl 31 av

*
B}J(V:r ii)
_1/.% ~g, ”
i =I:1(i ) L 2 (35)
Z, Zy *
9i
~2
2
*
Proof. Taking the gradient onEd(v ’%h)’ we obtain
95
*
a‘ZH(g i )
dl £2 T . T %
% =B, 1 (B L (Y )*E o L (36)
"3, 919,74 4LH975 I\ 2N %
*
a‘&‘(y )1 )
31 xz * T *
7 =y (—i )+B v o(—a 1 )+5 v (37)
oL, £\ 4, 4,7, 79, £9, %, L7 9
2

*
Substituting (36) and (37) into (34) and (35) and replacing ;z' with
2

—;i ,» we obtain the state equations derived earlier in (21)-(22). &
2

Now consider the general case where the resistors are coupled to each
other. Observe that so long as the couplings are reciprocal; i.e., all
multi-terminal elements and multiports inside N are reciprocal, then the
scalar functions defined in (28)-(31) can be generalized via line integrals
of the respective constitutive relations.

It is interesting to observe that although the first 4 terms in the

*
hybrid content%}é(y ,}x ) are defined via the ‘elements' constitutive
1 2

relations, the last term is strictly a topological quantity determined only
by the submatrix B . This peculiar term has the following physical

231
interpretation: partitioning the network'ij=Q)U1 LKJUZ whereg)“l
contains all branches in %fl L’%]l andg}Uz contains all branches in
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*
Ef U , then the term 1 T B v 18 equal to the instantaneous
2 2 £, &3 "9
2 271 "1
power delivered fromg)Ul toLjuz [77,81,82].
Finally, observe that (34)-(35) implies that the stationary points

#
of the hybrid content§35<y ) are equilibrium points of the associated

1 2
complete network(JM. The significance of the hybrid content is that it

plays a crucial role in determining whether all solutions of LAjwill
eventually settle at some equilibrium points [54,77].

B. State Equations Via the Lagrangian and Hamiltonian

Consider a connected network pAIcontaining uncoupled 2-terminal
resistors, inductors, capacitors, dc voltage and current sources, and two
types of controlled sources;7namely, voltage-controlled current sources
(VCCS) and current-controlled voltage sources (CCVS). Assume thatL)U
contains no C-E loops and no L-J cut sets. Assume that there exists a

true (J= ch V) ch and an associated cotree C:‘,e = S,Ql ugfz having the
following properties:

1. All branches in gj.'are voltage-controlled capacitors and all branches
in gfz are current-controlled inductors.
2, Each branch in SQ forms a loop exclusively with branches in %T
Moreover, branches in Sf are restricted to voltage-controlled resistors,
flux-controlled znductors, de current sources, and voltage-controlled
current sources whose controlling voltages are associated with elements in
g, v,
3. Branches in QJ; are restricted to current-controlled resistors, charge-
controlled capacitors, de voltage sources, and current-controlled voltage
sources whose controlling currents are associated with elements in
g, vd,.

Let us label the branches in<,A‘consecutively as follow:
1. Label the elements in af first. Start with the resistors (Rgi;),
followed by the inductors (Lgf ) dc current sources (JS£ ), and voltage-
controlled current sources (J %2 ).
2. Label the elements in %ﬁ next. By assumption, all these elements are
inductors (LEQ ).

3. Label the elements in %]’ next. By assumption, all these elements are

7The other two types of controlled sources can also be included by modeling
them with VCCS and CCVS.
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energy of all inductors in gfl and the sum of the capacitor energy of all

capacitors in CJ and where W i and W
2 L L;C2 C,
sum of the inductor co-energy of all inductors in 222 and the sum of the

eapacitor co-energy of all capacitors in‘Erl.

Using the special structure of the fundamental loop matrix B, it can

g denote respectively the
CO’2

be shown that the energy function 2315 a function of QCC! and 9.z only,

A 1
and that the co-energy function 23 is a function of YCX and %Ldl
1 2

2
only [79].

Definition 5. Lagrangian and General Force

We define the Lagrangian Ef associated with(¢A’as follow:

A A T
ge.(i’ca LWRLE¥; 'Yca) - g(hx ’ch) - 8(%3 ’9L;c) *he Buc
1 2 2 1 2 1 1 2 2 21

1
~ ~ T
=W (ELL)-'-wCl(YCJ)—wL ° (_?LC ‘EC:I) - We oo (E’chw,)
2 1 1 171 0 2 272 2

T T
+152 Bye %cg - %z B e Ves
1 1 1 2 2

+Lhs Bic %3 (43)
2 2 21 1

We define the generalized force F associated with N as follow:

r 7 ~ B .
T ] T ]
B 0 'B 0 i
"R C - iR,f,l =3y - Jcotl‘
A
F = + ) (44)
" 0 B ||Yro 0 BLZEC B 3,
L 22| 2] L2

Again, in view of the special structure of the fundamental loop matrix B,
it can be shown that the generalized force F is also a function of Ve

J
1

and 1Lt only [79]. Hence, we can write F = E(YCJI,}LJE)‘ We are now
2

ready to formulate the Lagrangian equation associated witthU.

Theorem 3. Lagrangian Equations of Motion [79]
The solution of the nonlinear RLC network.LAJsatisfying the

assumptions stipulated earlier is identical to the solution of the

following Lagrangian equations of motion associated withg}U:

a <a%?<>5,>;c) agfo_z,g))

F (%) (45)

dt 9% “ax
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where

>

- 4
x [?ca 9L¢] (46)
1 2

A 4
= [YCJ j:L.t] (47)
1 2

Under various simplifying assumptions, the Lagrangian and the gener-

and

1%

alized force take on particularly simple forms. Some of these special

cases are:

1. LAJcontains no controlled sources. In this case, we have

3P (%)
.= (48)
~ 35
where
V3 4
P(x) = 2, j 1,(v,)dvy + Zj v, (1))dd, (49)
RL, 70 3 RT,”0 3

represents the sum of the co-contents of all resistors in %fl, and the sum

of the contents of all resistors in CJ Substituting (48) into (45), we

2.
obtain the following Lagrangian equation:

. <a§£<§,g)> ' Pex, ) 9P (%)

dt ax BT

% (50)

2. Lossless networks: gA‘contains no controlled sources and no resistors.

In this case, the right side of (50) is identically zero.Moreover.ifL)U has
a tree‘ET made up of voltage-controlled capacitors and an associated cotree

%Q made up of flux-controlled inductors, then (50) can be written explicitly

by
—‘3—< a&E)_ o . 0 (51)
1

dt \¥cg ) 9 o

where the Lagrangian Sf is defined by

%Q(‘l’c:t ’ch) = W (Yc:;) - W, e (“}?‘L c ?cj) (52)
1 1 1 1 1 11 1

On the other hand, if&)U has a tree %).made up of charge-controlled
capacitors and an associated cotree SQ made up of current-controlled
inductors, then (50) assumes the form

_<_1_<3%Q>_ & _ (53)

de N\, | 291
2 2
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where the Lagrangian Sf is defined by

%e(flmc ’%L;L) =W (%) - ¥ °(BE c 91..6) (54)
2 2 2 2 2 2 2 2
The Lagrangian equations of motion consist of a system of second order
nonlinear differential equations. They can be transformed into state
equations by a number of well-known methods. If the network is lossless,
then by defining the generalized moments y by

A aSQ(g x)
y & —— (55)

L]

and assuming that (55) can be solved for % uniquely as a function of x and

ys we can define the following useful scalar function:

Definition 6. Hamiltonian function

We define the Hamiltonian function H(x,y) assoclated with a lossless
network LN by

Ay & vk - L0 (56)

It can be shown that if all constitutive relations are bijective, then %
in (56) can always be expressed as a unique function of x and y. Imn this

case, we can write

-
?c:rl ‘3c:r1 R
x = s Y = = (57)
| %e |7 | %z T BLc %o Y2
2 2 21 1
Hence _\
Yc:?l—l A fl(gcal) £,Gp)
x = = = _ (58)
1z £20re | | fz"(l'z BL ¢ ’51)
2 2 L 21
We are now ready to formulate the Hamiltonian equations of motion.
Theorem 4. Hamiltanian Equations of Motion [79]

The solution of a lossless network(JM satisfying the preceding
assumptions is identical to the solution of the following Hamiltonian
equations of motion associated withL)U:

3H(x,y)

X = ———m— (59)

3H(x,y) -

y =..__75;_- (60)
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where the Hamiltonian function is defined explicitly by:
H(x,y) = v £ (yy) + yof.soly,~B - W o (£ (y.-B. . x
(y) = y1E1 () + DHfplys- LC )" *2(%275 ¢ M1

2
B _x )+W. oBY  «x
~LC1 C ~L C =2
1 2 .2 2

;T T
’ (2’2’51, c ’51)]?’L c ™1 (61)
21 21

Rt I3’Jc nty

The above expression can be further simplified under additional
assumptions. In particular, if LAjcontains no dc sources and if all
constitutive relations are bijective, then applying the integration-by-

parts-formula, we obtain the following simplified expression:

HGey) = Wo (y) + Wy e (151'5 c ’52) W, ( B c 1) W, (Yz'E’L c ’51)
1 2 2 2 1 2 2 1
(62)
Observe that the Hamiltonian in this case is just the sum of the energy of
all inductors and capacitors inLjV. The significance of the Hamiltonian
is that it plays a crucial role in determining the qualitative‘properties
of nonlinear lossless networks.

We close this section with the remark that the expression for the
Lagrangian in (43) and the Hamiltonian in (61) are derived for the case
where there are no loop of inductors in IAtl and no cut set of capacitors
in Cﬂé. In the general case, the expressions will involve also initial

conditions as in [79].

2, Qualitative Properties of Autonomous Networks.

Our objective in this section, as well as in the next section on non-
autonomous networks, is to ildentify various classes of nonlinear RLC net-
words which shared certain common qualitative properties. Two types of
results will be presented: the first involves gnly the two functiomns
defining the state equations zD‘l(x) and h(x; US$ in (15), or h(x;u.) and
g(z), in (17) whereas the second involves only the constitutive rélations
of the internal elements and thelr interconnections. The first type of
results are more general but requires the state equations be formulated
first before the hypotheses could be checked. The second type of results
are slightly less general but they are explicit in the sense that they
usually involve only graph and circuit-theoretic conditions which can often
be checked by inspection. Due to limitation of space, only the more basic
results will be presented. The reader is referred to a series of recent
papers [69-68,77] for the proofs of most of these results, as well as for
many additional theorems on qualitative properties.

Since only autonomous networks are considered in this section, the
state equations that concerned us here are given by (8)-(9) and (10)-(11),
or more compactly, by (15) and (17), where the source vector u,. is a
constant vector. For simplicity, we will henceforth suppress Ug and simply
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write (15) and (17) as follows:?

. -1 A )

x = -D "(x)h(x) = £(x) (63

. A

i = -b(z@) 2 £(2) | (64)
where x = g(g) denotes the capacitor — inductor constitutive relation,

X g (v 1 ]T = [v i ]T and z 4 [qC ¢L]T, y = h(x) denotes the constitutive

relation of the n—port resistor N in Fig. 26, y = [i b]

A. Local Asymptotic Stability at Equilibrium Points

Let (v i ) be an equilibrium point of the autonomous system (63).

~C_’~L
Q Q 10
- The Jacobian matrix of f evaluated at this point is given by:
M b ) - ‘P_I(YC E L ) (65)
Q Q Q Q Q Q
where Dfv. ,i is defined by (16), and H(V, ,i is the ineremental
Y g R

hybrid matrix associated with h(-). To investigate the local stability
property of this equilibrium point we make use of the following lemma:

Lemma [83]

If D is a real symmetric positive definite matrix and if H is a real
positive definite matrix, then the real parts of all eigenvalues of DH are
positive.

Observe that H in this lemma need not be symmetric. Even if H is
symmetric, DH may still not be symmetric. Observe also that DH need not be
positive definite if H is not symmetric. We are now ready to state our
next theorem.

Theorem 5. Local Asymptotic Stability Criteriom [83].

Assuming all partial derivatives of the autonomous system (63) are
continuous in a neighborhood of an equilibrium point Q: YC ’EL , then Q

is locally asymptotzcally stable if D( Vo s

i ) is symmetric and positive

Q Q
definite and if H( c ,i is positive definite.
Q Q
Proof. Since D( Ve ,iL is symmetric positive definite, its inverse
Q Q '

exists and is also positive definite. The theorem then follows immediately
from the above lemma and a standard result on local asymptptic stability [841]

9For simplicity, we use g(-) in both (63) and (64) for two different _
functions. No confusion should arise, however, since only one euation will
be used in any given context.

ONote that the Jacobian matrix of £(+) has a second term which vanishes at

Ve »1
( € LQ)
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Corollary 1.

Assuming all partial derivatives of the autonomous system (63) are
continuous -in a neighborhood of an equilibrium point Q, then Q is locally
asymptotically stable if the inductors and capacitors are reciprocal and
strictly locally passive at Q, and if the n-port resistor N is Fig. 26
is strictly locally passive at Q.

Corollary 2 [64].

If the n-port resistor N in . ¢
Fig. 26 is reciprocal then N is
strietly locally passive at @ if, -°
and only if, the associated n.- . .
port resistor N, and the n -port :
resistor N, in Fig. 28 are °
strictly locally passive at @Q. You, Vo, *0

To apply Corollary 2, omne 5
must first solve for the loca-~ ip,*0
tion of the equilibrium points e
and then test whether the fol- Vb, Vb,

A

lowing two matrices are positive
definite:

ibnz ibn

1. nxn, ineremental conductance :—i— °
. Vb Yb

matrix of NC oL _

P — -3

(<%
th

A "~a
Gy, oV, (66) (o) (b)

Y;\zaq: 15,

Q Fig. 28. (a) An n.-port resistor N
obtained by open-circuiting all
" inductor ports in Fig. 26.
matrix of N (b) An n_-port resistor N
' obtained by short-circuit&ng all
capacitor ports in Fig. 26.

2. n xn incremental resistance

R(LY) =57 (67)
v =v_ i =1
a aQ ib bQ

In the special case where all elements inside N are strictly locally
passive, one could obviate the above test if the overall n-port N 1is also
strictly locally passive. Unfortunately, it is easy to find counter-
examples showing that N need not be strictly locally passive even if all
elements inside N are strictly locally passive [70]; i.e., strict local
passivity does not possess the closure property. However, by introducing
a simple topological condition, we can prove the following result.

Theorem 6. Explicit Local Asymptotic Stability Criterion [28]

Assuming all partial derivatives of the autonomous system (63) are
continuous in a neighborhood of an equilibrium point Q: (YC ’%L ), then Q
Q

Q
is locally asymptotically stable if the following hold:

(1) Fundamental topological hypothesis: There is no loop (resp. no cut
set) formed exclusively by capacitors, tinductors, and/or dc voltage sources
(resp., current sources).
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(2) All multi-terminal and multi-port capacitors and inductors are
reetiprocal and strictly locally passive at Q.

(3) All multi-terminal and multi-port resistors are strictly locally
passive at Q.

B. Global Asymptotic Stability at Equilibrium Point

The preceding asymptotic stability criteria are local results and the
circuit could still oscillate or display other complex motions even if all
equilibrium points are locally asymptotically stable. Our next theorem is
a global result which guarantees that all trajectories must eventually tend
to a unique equilibrium point.

Theorem 7a. Global Asymptotic Stability Criterion [71]

Let an RLC networkth’be described by the autonomous state equation
(64) and assume that the capacitor-inductor constitutive relation g(:) is a

Cl strictly increasing state function mapping R™ onto R™. Then we have
the following properties:

1. If the constitutive relation h(.) of the n-port resistor N is strictly
passive with respect to some z* € R" in the sense that

(n_c—:_s*)Tb(zc) > 0, vk €ERT, x # x¥ (68)
then(JA'has a unique equilibrium point z* A g-l(g*). Moreover, z* is
globally asymptotically stable.

2. If the constitutive relation h(-) of the n-port resistor N is a
strictly incrgasing homeomorphism mapping X{nuonto R, then there exists a
unique x € R such that h(x*) = 0 and z* = g'l(f*) is a globally

~

asymptotically stable equilibrium point.
Our next theorem provides some more explicit criteria.

Theorem 7b. Explicit Global Asymptotic Stability Criterion {71].

Let an RLC network(JA‘be described by the autonomous state equation
(64), and assume that the capacitor-inductor constitutive relation g(-)
is a ¢l strictly increasing state function mapping R™ onto R®. Assume
thathU contains no CE cut sets, no LJ loops, and no loops and cut sets
made up of both capacitors and inductors and/or de sources.ll Then we

have the following properties:

1. IfL}U contains no de sources and if each multi-terminal or multiport
resistor in is strictly passive, then has a unique equilibrium point
z% = g=1(0). Moreover, z* is globally asymptotically stable.

2. If each multi-terminal or multi-port resistor R in(JU is strictly

passive, and if every. loop of containing a dc voTtage source also
contains a capacitor, and every cut set of containing a dc current
source also contains an inductor, then has a unique equilibrium point

z* € R™. Moreover, z* is globally asymptotically stable.

11@Ajmay contain CE loobs and LJ cut sets.
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‘o

3. If each multi-terminal or multi-port resistor R in LAjis characterized

n n
by a strictly increasing homeomorphic function h (+) mapping R ¢ onto R
then (N has a unique equilibrium point z* € R™.” Moreover, z* is globally
asymptotically stable.12

The hypotheses in Theorems 6 and 7 are sufficient but not necessary
for global asymptotic stability. For example, the linear circuit shown
in Fig. 29(a) has a globally asymptotically stable equilibrium point;
namely, the origin. Yet, it is easy to verify that the hypotheses of
Theorem 6 are violated because the constitutive relation h(:) of the
associated 2-port resistor N is passive, but not strictly passive with
respect to the origin. Moreover, N is increasing, but not strictly
increasing. Similarly, the hypotheses of Theorem 7 are violated because

contains a loop made up of a capacitor and an inductor. Hence neither
theorem can be used to show that the origin is globally asymptotically
stable in this case. Thils example clearly demonstrates that loops and
cut sets made up of both capacitors and inductors may be allowed in certain
cases. On the other hand, the linear circuit shown in Fig. 29(b) can

I Ve
- + - 3
CHv 3R, - 3R
d f I v L + )

+ L C v
| -
(a) (b) '

Fig. 29. (a) The origin is a globally asymptotically
stable equilibrium point for this network.
(b) The origin is an unstable equilibrium
point for this oscillatory network.

support a non-trivial periodic solution in view of the presence of the
capacitor-inductor loops and cut set. To distinguish these two
"qualitatively" distinct networks requires additional topological
conditions of a rather subtle nature:

Theorem 8. Explicit Global Asymptotic Stability Criterion [71]

Let an RLC network.gA]be described by the autonomous state equation
(64), and assume that the capacitor-inductor constitutive relation g(-)
is a ¢l strietly increasing diffeomorphic state function mapping R" onto
RD, Assume that contains no CE loops and no LJ cut sets. Assume
further that the following inductor-capacitor loop-cut set hypothesis
(LC Hypothesis) is satilsfiled:

Let S; be any subset of capacitors and inductors in LAJsuch that any
capacitor or inductor in forms a loop and/or cut set exclusively with
any combination of dc voltage and current sources, and other capacitors and

1%J&fmay contain dc sources in this case. The internal resistors may have
any number of terminals and ports. We let R, denote an ny-terminal or an
ng-port resistor.
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inductors of S}. For each and every such set S;, assume that at least one
of the following conditions is satisfied:

a) There is a capacitor C; in 53 which is not in a cut set formed
exclusively with any combigation of current sources and elements of S;.
Moreover, this capacitor is not coupled to any other capacitor of

b) There is an inductor Li in S; which is not in a loop formed
exclusively with any combination of voltage sources and elements of S;.
Moreover, this inductor is not coupled to any other inductor of

Under the above condition, we have the following properties:

1. 1If LA’cont ins no sources and if each multi-terminal or multi-port
resistor of is strietly passive, then (A has unique equilibrium point
z* = g-1(0) which is globally asymptptically stable, provided all voltage
and current solution waveforms of are Cl functions of t.

2. If the capacitor-inductor constitutive relation g(.) is a C3—function,
and if each multi-terminal or multiport resistor in (A} is characterized

n
by a c3 strictly increasing diffeomorphism mapping R a’ then(JA]has a
unique equilibrium point z*¥ € RB. Moreover, z* is globally
asymptotically stable.

Observe that the preceding LC Hypothesis requires that all possible
subsets of capacitors and inductors which qualify as must be tested.
The circuit shown in Fig. 29(a) is easily seen to satisfy this hypothesis
since in this case consists of the single capacitor C and inductor L,
and since the capacitor C does not form a cut set with L. It follows from
Theorem 8 that the origin is globally asymptotically stable. On the other
hand, the "LC Hypothesis" is clearly violated by the circuit in Fig. 29(b).
Indeed, if we choose to consist of the two capacitors and the two
inductors, then both a) and b) of this hypothesis are violated.

C. Exponential Decay of Transients to the Globally Asymptotically Stable

Equilibrium Point.

The class of globally asymptotically stable networks studied in the
preceding section behaves qualitatively like a linear network in many
respects. In particular, it has a unique equilibrium point and all
trajectories approach it regardless of the initial condition. Our next
theorem shows that it is even possible to bound each trajectory by two
exponential waveforms with a time constant T_ and T . , respectively.

Theorem 9. Exponential Transient Decay Property [71]

Let an RLC network LAJbe described by the autonomous state equation
(64) and assume that the capacitor-inductor constitutive relation g(+)
is a ¢l strictly increasing diffeomorphic state function mapping N
R™ onto RD. Let the constitutive relation h(-) of the n-port resistor
N be ¢! and strictly passive with respect to some x* € R"™ in the sense of
(68), and assume that N is strictly locally passive at 5*.13 Then we have
the following properties.

13That is, 8h(x*)/3x 1is positive definite.
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1. All solutions z(t) tend to the unique equilibrium point z* = g'l(g*).

2. Let DC R" be any convex and compact set such that z(t) €D ¥t > 0.
Then one can find constants Yg > lg > 0 and Yh Yy 2 0 such that for

all z' and z" belonging to D, the following basic inequalities hold:l4

“ 1 n“2 < r_, 0 T 1y _ " < - “zl_ "“2 69
X, '2'-2 < (z g)g(g)g(g)_vg~§ (69)
lg(z')—x*l2 yext ) Mgz < 7. 0g(z")-x*l? (70)
1le(z)-x” < [sGD-x] h(a(N)] < Tylelzhx
3. If we define the two time constants
3
O S g (71)
min -2 - max 2 ‘
Yg¥n lglh
where ?g, Ig’ ?h and are the constants obtained from (69) and (70),
then each trajectory z(t) with initial condition z(O) tends to z*
exponentially in the sense that
-(t/1_, ) -(t/t__ )
Kle min f_"é(t)—g*u E.Kze max ' (72)
where
A _ 1/2 A - 1/2
Ky 2 (/) M2@@-z¢b, k) = Go/y) 12(0)-g4d (73)

D. Complete Stability

The results in Sections C and D are valid only for circuits having a
unique equilibrium state. For circuits having multiple equilibrium states,
such as flip flops, one must settle for a weaker form of stability which
we define next.

Definition 7. Completely stable networks

An autonomous RLC network,gAJis said to be completely stable if each
trajectory tends to an equilibrium point of the associated state equation.

Theorem 10. Completely stable RC networks ([71]

An autonomous RC network characterized by the state equation

A | .

Ve = C (vh(yy) (74)
is completely stable if:
1. The incremental capacitance matrix g(yc) is positive definite.

2. The associated n-port resistor N is reciprocal, voltage-controlled,

14The inequality (69) is equivalent to requiring that g(-) be a strongly
uniformly increasing function.
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and its co-content

A ALY
Q(Y) =5 l_}(Y)'dY + as Ilyll + o (75)
0 :

Theorem 11. Completely Stable RL network [71].

An autonomous RL network characterized by the state equation

: -1
i= 1 apnE) (76)

is completely stable if:

1. The incremental inductance matrix g(;L) is positive definite.

2. The associated n-port resistor N is reciprocal, current-controlled,
and its content

a (3 \ '
Gw & [ nwrag v as Iyl + | 77
0

Theorem 12. Complete Stability Criterion 1 for Complete RLC Networks [54].

A complete RLC network described by the state equations (34)-(35) is
completely stable if the following conditions are satisfied:l3

1. The incremental capacitance matrix C Yj and the incremental

1
inductance matrix L l; are symmetric and positive definite.

2
2. All resistors in 1 and Sfl are voltage-controlled.

3. All elements in %I; are linear positive resistors, i.e., Yy = R i,

where Ry is a positive definite diagonal matrix.
2 .

4. Any element in series with an inductor in each "inductive" composite
branch in 222 is a dc voltage source.

5. The topological submatrix Qx.y has maximal row rank.

| ; A% 2, (B v | 78
o [ - > ® ©
6. h?xzy Y31[|+Q,1(Y71)+Qz1 (~zlle,71) yas v boe  (78)

1 1
2 A y.-1/2 T -1.1/2,.
. = -8, 0
7. Ikl Ig (Y] )B.zy R L (11) < 1-6, 6§ > (79)
! 1 21 2 ’
A T -1/2 -1/2 I |
where 8—131713.7}?;‘.7’9 (-)C () C "(+) and
L ()L (.) = L(+), and where "g“ denotes any convenient induced norm

of the matrix K.

15Definitions 3 and 7 are unrelated even though the word "complete' appears

in both. All symbols in this theorem have been defined earlier in
Sec. IV-1-A.
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The matrix R in (79) may be singular for some complete network.
Moreover (78) miy not be easy to verify if the voltage-controlled
resistors in and 1 are coupled to each other. Our next theorem
overcomes these two objections:

Theorem 13. Complete Stability Criterion 2 for Complete RLC Networks[77].

A complete RLC network described by the state equations (34)-(35) is
completely stable if the following conditions are satisfied:

1. The incremental capacitance matrix C !7 and the incremental
inductance matrix y(}; are symmetric and positive definite.

2. All resistors in and gf are voltage-controlled which may be
coupled to each other so long aS the couplings are reciprocal.

3. All elements in E] are linear, reciprocal and strictly passive
resistors; i.e., V_ = R 1 where R_ 1s a positive definite symmetric
~J ~J, ~7 7
2 2 T2 2
matrix.

4., Any element in series with an inductor in each "inductive' composite

branch in g£2 is a dec voltage source.

 Rlees) “Ps)

when<12(A) denotes the range space of A.

6. Let R 4 B ‘7 7, ﬁz 7 and let BI denote the generalized inverse of R

[77], then
1 21
2

248 0.2
Ighe = *
K “L (i,zz)!‘ BN ¢ (Yyl)

where UKl denotes any convenient induced norm of the matrix K.

<1-§ , §>0 (81)

7. The network has at least one equilibrium point.
8. All solutions of (34)-(35) are bounded.

It is easy to see that Theorem 13 is a generalization of Theorem 12.
In particular, if BzﬂY has maximal row rank, then (80) is satisfied so

that R is non~singular and gl = R~1.

-~

Interchanging the roles of capacitors and inductors, the following
"dual" of Theorem 13 is easily obtained.

Theorem 1l4. Complete Stability Criterion 3 for Complete RLC Networks {77].

A complete RLC network described by the state equations (34)-(35) 1is
completely stable if the following conditions are satisfied:

1. The incremental capacitance matrix g(y ) and the incremental

1
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inductance matrix L }; are symmetric'and positive definite.

2. All resistors in and ££ are current-controlled which may be

coupled to each other so long as the couplings are reciprocal.

3. All elements in gf are linear, reciprocal and strictly passive

resistors, i.c., %Z @ QX' YJ: where GZ is a positive definite symmetric
1 1 1 1

matrix.

4. Any element in parallel with a capacitor in each "capacitive"
composite branch in gj. is a dc current source.

T T
5. CQ<1~31271> c@(gxlj) (82)

A T

6. Let G=1DB G, B and let G~ denote the generalized inverse of
G, then 94 AT
L R
Ish? 2 j¢? I 2% -

7. The network has at least one equilibrium point.
8. All solutions of (34)-(35) are bounded.

Most of the conditions in theorems 12, 13, and 14 are either graph or
circuit-theoretic in nature and are therefore easily checked. For example,
condition 1 in these theorems is equivalent to the condition that all
multi-terminal and multiport capacitors and inductors are reciprocal and
strietly locally passive. Conditions 2, 3, and 4 in these theorems can be
checked by inspection. Condition 5 of Theorems 13 and 14 can be tested
either by numerical methods, or by a simple explicit topological test
given in [77]. Only condition 7 in Theorem 12 and condition 6 in Theorems
13 and 14 require numerical computation. This condition can be used to
derive an upper bound on “g(~)“ in terms of Hg(-)", or vice-versa. To
show that this upper bound is rather sharp, an example 1s given in [77]
which shows that a completely stable circuit becomes oscillatory when this
bound is violated at its boundary!

The most serious drawback of Theorems 12, 13, and 14 is the completeness
hypothesis since many RLC networks are not complete. However, if one is
willing to introduce "parasitic" inductances and capacitances at
appropriate locations, any network may be transformed into a complete
network. Such parasitic elements would tend to make the circuit model
more realistic anyway. On the other hand, the completeness hypothesis is
needed only if we insist on writing the state equation explicitly via the
hybrid content as in (34)-(35). Thereis no fundamental reason why this
hypothesis is needed. In fact, by defining a pseudo hybrid content,
theorems 12, 13, and 14 have been generalized for non-complete networks in
{771.

Finally, note that condition 6 in Theorem 12 has been replaced by the
condition that "all solutions of (34)-(35) are bounded." We will show in
the next section that this boundedness hypothesis (condition 8) as well as
the existence of an equilibrium point (condition 7) are satisfied by
almost all practical networks. Since the basic hypotheses which guarantee
boundedness are identical for both autonomous and non-autonomous networks,
let us now turn to the latter.
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3. Qualitative Properties of Non-Autonomous Networks

Consider now the case where gA]contains ac sources so that Ug =y (t)
in the state equations (15) and (17). For the results to be presenteﬁ in
this section, it is more convenient to work with (17) which we reproduce

as follow:

2 = -b(g(2)ug(t) ' (84)

A. Boundedness and Eventual Uniform Boundedness

Definition 8. Boundedness

The solutions z(.) of the non-autonomous system (84) are said to be
bounded if given any bounded gs(-), the solution z(-) is bounded in the
sense that there exists a constant K such that

fz(e)l < K, for all t > t (85)

0

where K may depend on both the initial state g(to) and the initial time tor
Definition 9. Eventual Uniform Boundedness.

The solutions z(-) of the non-autonomous system (84) are said to be
eventually uniformly bounded if given any bounded u.(-), there exists a
compact setl C IR™ such that for any solution z(.) of (84), there is a
time T € R~ Such that

"g(t)ﬂe %;, for all t > T (86)

where T may depend on both the initial state and on the initial time.
Observe that there is a subtle difference between Definitions 8 and

9. TFor example, the periodic solutions of a linear passive autonomous

Lossless LC network are all bounded but not eventually uniformly bounded.

Theorem 15. Boundedness and Eventual Uniform Boundedness Criterion [72].

Let an RLC non-autonomous network(,Ajbe described by the state
equation (84). Assume the capacitor-inductir constitutive relation g(-)
is a I state function and let :R™ > R~ denote its associated scalar
"energy" function, i.e., Vég(g) = g(z). Assume that g(.) and 23(-)
satisfy

lim lg(z) + 4 (87) n £(z) + += (88)

“§H+® Z i
Assume further that the source vector gs(-) is bounded; 1i.e.,

ly ()] <k, forall t €R™ (89)
Then we have the following:

1. The solutions z(:) of (84) are bounded if the associated n-port
resistor N is eventually passive in the sense that there exists a finite
constant ko > 0 such that

be (x5u

X g) 20, for all xll > ko (90)

and for all gS(~) satisfying (89)
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2. The solutions z(-) of (84) are eventually uniformly bounded if the
associated n-port resistor N is eventually strictly passive; i.e., (90)
is satisfied with a strict inequality. Moreover, if u.(.) is periodic
with period T, then (84) has a periodic solution with Ehe same period T.
In particular, in the autonomous case where gs(.) is a constant vector,
the associated autonomous equation has at least one equilibrium point.

To derive an explicit version of Theorem 15, we note first that it is
easy to find examples showing that eventual passivity does not obey the
closure property [71]. Consequently, an additional condition must be
imposed in our next theorem.

Theorem 16. Explicit Eventual Uniform Boundedness Criterion [72].

Let an RLC non-autonomous network(dkfbe described by the state
equation (84). Assume the capacitor—induct?r constitutive relation g(.)
is a C° state function and let t: R -+ R~ denote its associated scalar
"energy'" function; i.e., Vg(g) = g(z). Assume that g(-) and 8(-)
satisfy ) T

lim lg(z) ] » +e (91) lim £(z) + 4w (92)

zllo Z 1l <0

Assume that (N satisfies the following: Fundamental Topological
Hypothesis: there is no loop (resp., no cut set) formed exclusively, by
capacitors, inductors, and/or dc voltage sources (resp., current sources).

Moreover, let the constitutive relation ha(-) of each internal
multi-terminal or multi-port resistor R, satisfy the following conditions:

Eventual strict passivity condition:

T
xh (x)) >0, for all Ix I >k, (93)

Growth condition:

1 T
lim =T X h (x ) =+ (94)
"§QU+w L

Then all voltage and current waveforms of(,A[are eventually uniformly
bounded. Moreover, if the source vector ug(-) is periodic with period T,
then (84) has a periodic solution with the same period T.In particular,in
the autonomous case where u (*) is a constant vector, the associated
autonomous equation has at §east one equilibrium point.

Remark.

If(,A]contains only voltage-controlled resistors (resp., current-
constrolled resistors) and only de voltage sources (resp., de current
sources), then (94) in Theorem 16 can be replaced by the following
condition:

lin x' h (x) = 4o (95)

Since most physical multi-terminal and multi-port resistors satisfy
(93) and (94), it follows from Theorem 16 that hypotheses 7 and 8 of
Theorem 13 and 14 are satisfied by most practical networks.
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B. No Finite Escape~Time Solutions

To motivate the materials in this section, consider first the circuit
shown in Fig. 30, whose state equation is given by:

I [v Ay ] |
. S c'T
1 - 96 i
Ve o Le 1 (96) & lR
+ +
This equation has the following __L 1
explicit solution: VC ~ VR
ef(t) VT/VC(O)
v.(t) = v.(0)2&n
¢ c ef(t)-sgn vC(O)
Fig. 30. A simple diode
(97) :
h circuit having a
where finite escape-time
solution at t = tl
(IS ) sgn v (0) < 0. The pn junction
f(t) ={ — )t + &n — (98) diode is character-
CVT l-e vC(o)/VT : ized by

iR = IS[exp(vR/VT)—lL
and sgn v.(0) = v.(0)/]|v.(0)],

v.(0) # 0. Observe that for any initial condition vC(O) > 0, the solutiom
ténds to infinity at a finite time

cv
A T 1
= - —— L2 <
1 <1 ) = o, “° (99)
s oo €

This "non-physical” phenomenon is called a finite escape-time solution
and 1s clearly an undesirable property. One could impose conditions on
the state equation so that no finite escape-time solutions are possible
[85]. Unfortunately, these conditions are much too restrictive that they
would exclude most practical networks of interest. However, it is
possible to relax these conditions considerably if we wish to exclude only
"forward" finite escape~time solutions, i.e., no solution tends to 16
infinity in a finite forward time §5> tO,Wheret is the initial time.

After all, engineers are usually only interested in solutions after the
"switch" is thrown. The following theorems have been derived for this

purpose.

Theorem 16. No Finite Forward Escape-Time Solution Criterionl [71]

Let an RLC non-autonomous network LAJbe described by the state
equation (84). Let the capacitor-inductor constitutive relation g(.)
be a ¢l state function and assume that g(-) is eventually strongly
uniformly increasing in the sense that there exist constants k, > 0 and
Y >y > 0 such that

gz < (z"E")T<5(§')-s(§")) < Flz'-gm? (100)

16Observe that (96) has this property even though it has a "backward"
finite escape-time solution.
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for all lz'l > k_ and lz"l > k_.
~ D = D n
Moreover, for every compact set Du CR 8, assume that there exist
constants y > 0 and k > 0 such that for all u, €D o’ the constitutive

relation of the n-port resistor N satisfies tRe cohdition

~

T bissug) 2 ~ylxl? |, for a11 Nl > k (101)

Then the state equation (84) has no finite forward escape-time solutions.
That is, for any bounded and continuous source function uq(t) and for any
initial time tgs each solution z(t) of (84) exists for all t >ty

Observe that (101) is an extremely weak condition satisfied by all
practical networks. Intuitively speaking, (101) can be interpreted as
requiring that the n-port resistor N be eventually no more active than
some active linear n-port resistor. In the next theorem, we relax the
"eventually strongly uniform increasing'" condition (100) and in turn place
a stropger condition than(lOl)on h(+)

>

<

Theorem 17. No Finite Forward Escape-Time Solution Crlterion 2 [71]

Let an RLC non-autonomous network(vklbe described by the state
e9uation (84). Let the capacitor-induitor constitutive relation g(-) be a
state function and let é}: RT » R~ denote its associated scalar
"energy" function, i.e., Vég(g) = g(z). Assume that

lim £(z) = +» (102)

Z r®

Let the constitutive relation h(:) of the associated n-port resistor
N satisfy the inequality

x hlxsug) 2 & ' (103)
n
for all source vector u, € R ® and x € R", where k > 0. Then (84) has
no finite forward escape-time solutions.

Our next theorem gives explicit conditions in terms of the internal
elements directly. We assume, without loss of generality, that each
voltage sources is in series with a resistor and each current sources is
in parallel with a resistor. These resistors with sources attached will
be combined as composite resistors where each constitutive relation ﬁ ()
is given by ¢

; A
Yo = Da(5) = B 4R) * gy (104)

-~

where the components of the vectors ya and Cy represent the original
dc sources in

Theorem 18. Explicit No Finite Forward Escape-Time Solution Criterion [71]

Let an RLC non-autonomous network.LAJbe described by the state
equation (84). Let the capacitor-inductor constitutive relation g(—) be a

¢l state function and let :R" > Ill'denote its associated scalar
“energy'" function; i.e., VE(z) = g(z). Assume that

lim £(z) = - (105)

Izl
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]

Assume further that there is no voltage source (resp., current
source) forming a loop (resp., cut set) exclusively with capacitors,
inductors and other voltage sources (resp., current sources) of .

Moreover, if the constitutive relation ba(°) of each '"composite'
internal multi-terminal or multi-port resistor satisfies the inequality

I h () > -k | (106)

for all x, € R ® and ku > 0. Then (84) has no finite forward escape-
time solutionms.

C. Small-Input Gives Small-Output Property.

All "small-signal” analysis of electronic circuits are based on the
implicit assumption that a small "ac" signal applied about a dc operating
point will give rise to a small "ac" output signal. It is easy to find
example where this assumption is not satisfied. Our objective in this
section is to present sufficient conditions which guarantee this property.
For complete generality, we will allow any ac signal. Since such signals
need not be periodic, or even almost periodic, the following
"characteristic" of ac signals will be used.

Definition 10. Eventual Range of a signal s(-) [72]

Let §(-) : IR]' > R™ pe a continuous function of time. We define
the eventual range CQS of s(+) to be:

CQS & [\ {é € R™: there exists t > T such that s(t) = é} (107)
Ter

It can be shown that when s(-) is bounded, then the eventual rangecp
m S
is compact and connected in R™.

Theorem 19. Small-Input Small-Output Criterion [72].

Let an RLC non—autonomous networkLN be described by the state
equation (84). Let the capacitor-inductor constitutive relation g(-) be
a ¢l strictly inereasing diffeomorphic state function mapping R onto
RN, Let the constitutive relation b(-;gs) of the associated n-port
resistor N be a strictly increasing eventually strigtly passive Cl
diffeomorphism mapping R™ onto R™ for all us € R 5. Then (A has the

following properties: n

1. For any "dc bias" source vector ug € R °, there exists a unique
z* € R" such that

h(g<g*);gg) =0 (108)

2. Given any € > 0, there exists a § > 0 such that for any continuous
and bounded "ac" source vector function gs(o) .sat:Lsfying-17

—u*
fQu uk (109)
S
“the corresponding solution z(.) satisfies
—zk
HCQZ | <e (110)

1gee bottom of next page.
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regardless of the initial conditions.

3. Given any continuous "ac' source vector gs(-) satisfying

lim ug(t) = u¥ (111)
o0

the corresponding solution z(*) satisfies

lim z(t) = z* (112)

(el

regardless of the initial conditioms.
Remarks:

1. It can benshown that a C1 strictly increasing diffeomorphism
h(-;u,) mapping R onto R™ is eventually strictly passive if it is a
state function, or if it is a uniformly increasing function.

2. The preceding property 3 is an extension of Theorem 6 where the same
conclusion is found assuming u.(t) = u¥, and without assuming that
h(-;u,) is eventually strictly passive for all y, € RD, There is a
subtle difference here in that z* %s not an equiﬁibrium point of (84)
unless gs(t) = uX, That is, z(t) = z* is not a solution of (84) if(,&[is

driven by a time-varying input uc(t):
Theorem 20. Explicit Small-Input Small-Output Criterion [72]

Let an RLC non-autonomous network(jU be described by the state
equation (84). Let the capacitor-inductor constitutive relation g(+) be
a ¢l strictly increasing diffeomorphic state function mapping R%onto R™.

Assume that gAIsatisfies the following:
Fundamental Topological Hypothesis: There is no loop (resp., no cut set)
formed exclusively by capacitors, inductors, and/or dc voltage sources
(resp., current sources).

Moreover, let the constitutive relation h_(:) of each internal
multi-terminal or multi-port resistor be a"¢l strictly increasing
homeomorphism mapping R S onto R S and let ba(v) satisfy the growth
condition

1 T _
I o %G T {*a ba(’fa)} - ‘ 2
~Q

Then(JAlhas the three properties listed in Theorem 19.

17We have abused our notation slightly in (109) and (110) by using the
"eventual range" symbochQ defined earlier in (107) to mean

l‘\_gs-—gg“ < § for all ES ECQ‘SI , and “Z-—g*“ < € for all z ECQZ,
respectively.. Herecléu andsqgz denote the eventual range of the "ac"

source vector ug(-) andsthe solution z(-) respectively. Roughly speaking,
5109) defines a class of source waveforms u.(-) with the property that

iy (t)—g*“ <8 as t +*«, Similarly, (110) gefines a class of solution
waVeforms z(.) such that g(t)-z*l <€ as t **®, Here, the constant
vector u* can be interpreted as the "dc" bias' used in Electronic Circuits
to estabtish a suitable "operating point" z*.
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D. Unique Steady State Property.

It is well-known that autonomous networks containing locally active
resistors could have several distinct "dc' steady state solutions
corresponding to locally asymptotically stable equilibrium points. For
non-autonomous networks, multiple "ac' steady-state solutions could occur
even if all elements are strictly locally passive. For example, consider
the netwoerjU shown in Fig. 31. Observe that all elements (except the
source) are passive and strictly locally passive. It follows from

iL= (460(¢)°+5¢)10°

L

+vy, -
L
107 Q5R,
c L? iR
2004F TV T
pF T 0.00037

sin 106t Es(t)

<

Fig. 31.- A non-autonomous RLC network.gAjcontaining strictly locally
passive elements having more than one steady-state
solutions.

Theorem 16 that all solutions of this network are eventually uniformly
bounded. Moreover, if we replace the voltage source in Fig. 31 by one
having a terminal voltage E(t) = § sin 106t, where § << 1, then it
follows from Theorem 19 that has a unique steady-state solution z(:)
in the sense that all solutions tend toward z(-) as t - =, regardless of
initial conditions. However, for § = 1 as in Fig. 31, we have found by
computer stmulation that M has at least two distinct steady-state
solutions [72]. Our objective in this section is to present some
sufficient conditions which guarantee a unique steady-state solution.
Since the steady-state solution need not be periodic, we will define
first the following more general classes of signals.

Definition 11. Almost Periodic Signals [84]

A continuous function s: R1 » R™ is said to be almost periodic
if for any € > 0, there exists an %£(eg) > 0 such that every time interval
of length 2(e) in R1 contains a time Tt such that

ls(t+r)-s(t)l < ¢ , for all t € RY (114)

Definition 12. Asymptotically Almost Periodic Signals [52,86].

A continuous function s: RY > R™ is said to be asymptotically

periodic if s(-) can be uniquely decomposed into

s(t) = so(t) + sy(s), for all c €R' (115)
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where s,(t) is continuous and almost periodic, and s,.(:) is continuous
~T
and lim §T(t) = Q.
to .
It is well-known that a continuous function s(.) : Rl 4+ R™ is almost
periodic if, and only if, s(.) can be uniformly approximated by a
multiple Fourier Series [86]

Jw, t
s(t) « Lge (116)
h

where {w, } is a countable set of real numbers called Fourier exponents,
or base }?equencies, and the corresponding countable set of vectors {sk]is
called the associated Fourier coefficients.

Definition 13. Spectrum Combinations (G-module) [52,84]

Let an almost periodic function be represented by (116). Let S;S
denote the countable set of preal numbers which are integer combinations
of the Wy« That is, S;S = du MWy for all possible integers n . The set

S;S is called the spectrum combinations (or o-module) of s(.).

It follows from (116) that an almost periodic function s(+) 1is
periodic 1if, and only if, for any integers k and £, w, /w, is a rational
number. In this case, the spectrum combinations S; is just the set of
harmonics generated by the base frequencies w,. FoY almost periodic
signals, the spectrum combinations would contain all harmonics and
modulation products of the base frequencies. The following theorems
provide sufficient conditions which guarantee that a network has a
unique steady-state solution and that the spectrum combinations S; of
the solution z(:) is a subset of the spectrum combinations of the input
signal S;u °f93(')' Hence, no unusual frequency components, such as

S
subharmonics, will be generated. Since the simple RLC network shown
earlier in Fig. 31 fails to have a unique steady-state solution, it is
clear that rather strong hypotheses will be required in the following
theorems. .

Theorem 20. Unique Steady-State Criterion for Linear LC Networks [72]

Let an RLC non-autonomous network<¢A[be described by the state
equation (84), where the capacitor-inductor comstitutive relation g(-)
is linear; i.e., ‘ -

g(z) =T z (117)

where I is an nxn symmetric and positive definite matrix. Assume further
that the constitutive relation h(-;u.) of the n-port resistor N is a

¢l strictly increasing eventually stiictly passive funtion for all

ug € R"S.” Then LAJhas the following properties:

1. There is a unique steady-state solution for any continuousand bounded
source vector gs(o).

2. If ug(+) is asymptotically almost periodic and satisfies a local
Lipschitz condition, then each solution z(:) of (84) is asymptotically
almost periodic, and in the steady state, the spectrum combinations

of z(.) is a subset of the spectrum combination of gs(-); i.e.,

g,c Q“s | (118)
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3. If in addition, the constitutive relation h(-;uc) of the n-port

resistor N is a C1 diffeomorphism mapping R into i{n for all y, € R &,

then for any continuous and bounded gs(.) and for any pair of so?ution

z'(-) and 2"(.) of (84), there exist a constant Yy satisfying 1 > y > 0

and time constants T hax and Tin satisfying T hax > Toin > 0 such that
-t/ -t/t

kle min _<_ “%'(t)_gu(t)“ ikze max (119)

for all t > 0, where

1
1 —_
a2 1,2
ky = Iz (@)-z" (01, k, = @ z' (0)-2"(0)! (120)
Moreover,
Y = A/X (121)

where X and ) denote the maximumand minimun eigenvalue of T, respectively.

Theorem 21. Explicit Unique Steady-State Criterion for Linear LC Networks
(72]

Let an RLC non-autonomous network,gA!be described by the state
equation (84), where the capacitor-inductor constitutive relation g(-) is
linear; i.e., it satisfies (117). Assume(JAIsatisfies the following
Fundamental Topological Hypothesis: There 1s no loop (resp., no cut set)
formed exclusively by capacitors, inductors, and/or dc voltage sources
(resp., current sources). Moreover, assume the constitutive relation
ba(-) of each internal multi-terminal or multi-port registor R is a
strictly increasing homeomorphism mapping R * onto R %, and

1 T :
lim =T % ba(ga) +oo (122)

Then LAjhas the three properties listed in Theorem 20.

Theorem 22. Unique Steady-State Criterion for RC and RL Networks with

Linear Resistors [72].

Let an RLC non-autonomous network<,A]be described by state equation
(84). Let the capacitor-inductor constitutive relation g(:) be a

¢l strictly increasing diffeomorphic state function mapping R~ onto RT.
Let the constitutive relation b(~;gs) of the n-port resistor N be a linear

function of x and Ugs il.e.,

h(xsug) = Hx + Houg (123)

where H  is an nxn symmetric and positive definite constant matrix, and
Bu is an nxn constant matrix. Then.LAJhas the following properties:

1. Thee exists a unique steady-state solution for any continuous and
bounded input gs(-). -

2. Given any palr of solutions g'(O) and g"(.), there exist a constant
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y satisfying 1 > v > 0 and time constants T . and Tnin satisfying

T > T > 0 such that
max — min
-t/1 1 -t/
kle min :_"g'(t)—g"(t)" :.kze max (124)
for all t > 0, where
1 i
A 2 A 1
k, 27 127 0-z" 0!, &, = ) Iz (0)-z"(0) 1! (125)

3. If u.(-) is asymptotically almost periodic, and satisfies a local
Lipschit3 condition, then each solution z(:) of (84) is asymptotically
almost periodic, and in the steady state, the spectrum combinations
Qz of z(.) is a subset of the spectrum combinations gu of gs(-).

Observe that the symmetry condition on the matrix H_ in (123) cannot
be satisfied in general if the n-port resistor is terminated by both
capacitors and inductors in view of the corollary to Theorem 10
(Sec. II-2). Consequently, the following version of Theorem 22 is stated
for either RC or RL networks.

Theorem 23. Explicit Steady-State Criterion for RC and RL Network with

Linear Resistors [72]

Let an RC (resp., RL) non~autonomous network(,Albe described by
state equation (84). Let _the constitutive relation g(.) of the capacitors
(resp., inductors) be a ¢l strietly increasing diffeomorphic state
function mapping R™ onto R™. Assume that LNsatisfies the following
Fundamental Topological Hypothesis: There is no loop (resp., cut set)
formed exclusively by capacitors (resp., inductors) and/or dc voltage
sources (resp., dc current sources). Moreover, assume the constitutive
relation @a(-) of each internal multi-terminal or multi-port restistor
Ra is linear, passive, and reciprocal; i.e.

ia = HaYa (resp., Vo © Ea%a) (125)

where H 1is an nyxn, symmetric and positive definite constant matrix.
ThenL)dahas the three properties listed in Theorem 22.

Theorem 24. Unique Steady-State Criterion under Small-Signal Inputs [72]

Let an RLC non-autonomous network LAIbe described by state equation
(84). Let the capacitor-inductor constitutive relation g(.) bena
cl strictly increasing diffeomorphmic state function mapping R onto
I{n, and let the Jacobian matrix of g(.) satisfy the following local
Lipschitz condition:

ag(g') a§(§")" | ¥ il
Pt P IR (126)

~

for all

z" € E{n,-"g'—g"“ < 6, and & > O where both § and ¢ nmay
depend o .

z',
ing ]
n 2
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Let the constitutive relation h(*;u_.) of the n-port resistor N be a
¢! strictly inereasing, eventually stric%ly pasgive diffeomorphism
mapping R™ onto R" for all Yg €R"s, ThenLN has the following
properties:

1. For every "dc bias" ux € R ~, there exists § > 0 such that (84)
has a unique steady-state”solution due to any continuous and bounded
"ac'" signal gs(-) satisfying

[Rog ™8

2. If in addition u,(+) is asymptotically almost periodic and satisfies
a local Lipschitz condition, then every solution z(+) is asymptotically
almost periodic, and, in the steady state, the spectrum combinations

S;z of §(‘) is a subset of the spectrum combinations S;u of gs(.).

n
S

< § (127)

Theorem 25. Explicit Unique Steady-State Criterion under Small-Signal

Inputs [72]

Let an RLC non-autonomous network(,A’be described by state equation
(84). Let the capacitor-inductor constitutive relation g(:) be a
¢l strietly increasing diffeomorphic state function mapping R ™ onto
R1, and let the Jacobilan matrix of g(:) satisfy a local Lipschitz
condition in the sense of (126). Assume that(vK’satisfies the following
Fundamental Topological Hypothesis: There is no loop (resp., cut set)
formed exclusively by capacitors, inductors, and/or dc voltage sources
(resp., current sources). Moreover, let the constitutive relation hy (+)
of each internal multi-terminal or multi-port resistor R, be a ¢l strictly
increasing diffeomorphism mapping RT onto RT, and satisfying the growth
condition

1 T
lim T=T1%, b (x )} = 4o (128)
ﬂx "+w xa ~0 ~a ~Q

Thenc,&'has the two properties listed in Theorem 24,

Our final theorem is addressed to the class gA]of diode-transistor
networks shown in Fig. 32. If we model the pn junction diodes and the
pnp and npn transistors by the standard "ac" Ebers-Moll Model (with
junction capacitances) [11], and if we define the following port variables

-7 r ) rooN
It Yy I
v i q,
8P,y BITP L 28 - (129)
Ic N I
L L%L L
. - J - -

where the subscripts T, D, C, L correspond to transistors, diodes,
capacitors, and inductors, respectively, then the state equations of(JU
assumes the following form:

= -The(s(2)) < H g(2) + ug(e) | (130)

-~

-99-



leim 'by
+ ¢+ +
Ve, I=| VYo, Vb,
L] [ )
L] [ ]
[} . '}
'Cﬂc 'Onc lan
R -——0—1?—4—-‘ °
Vo [=] vV Vb
Cnc_’_': Ul‘lc N 0
- -
i % i LK I i % i
Fig. 32. A diode-transistor dynamic network.

The m-port N contains

only linear 2-terminal resistors and independent sources.
The only nonlinear resistors are diodes and transistors.

where H denotes the hybrid matrix associated with N; i.e., y = Hx-ug (t)

and
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)

is an mxm block diagonal matrix. The vectors h(:) and g(*) are defined
as follow:

r ) r n
gT(YT) gT((.lT)
£ (v.) gn(q,)
W a| 8p'd
neo) & | 7P , glz) 2 D (132)
e gc(ac)
i g(¢p)
- J - J

Each component of £.(*) and £.(+) of the transistor-diodelconstltutive
relation is defined by ij = f (v ), where f (.): 1+Rr" is a (!

strictly increasing function nd?£4(0) = 0.9 Each component of the
capacztar-znductor constitutive relation g(.)_is defined by q g (v )
or ¢ g.(i.), where g.(*): R+ R1 isac! uniformly zncrgaszné

func ion.J Wg are now réady to state a slightly generalized version of
a theorem due to Sandberg [62].

Theorem 26. Unique Steady-State Criterion for Diode-Transistor Networks

Let gA]be a diode-transistor network described by the state equation
(130). Assume that there exists a diagonal matrix D with positive
diagonal elements such that DT is weakly colwm-swn dominant and DH is
strongly colwm-sun dominant. 8 Assume further that £3(.) : 1, Rl 4g
¢l strietly increasing, £5(0) = 0, and g > B 1s C* uniformly
inereasing. Then has the following p%operties'

1. For any two bounded source vectors ul(t) and u"(t), t > 0, which

tend toward each other in the sense thats

lin [ us(t)—u"(t)] =0 (133)

the corresponding solutions z'(t) and z'"(t) also tend toward each other;
ioe- 9

1im [z (t)-z"(t)] =0 (134)

>0

2. L)U has a unique steady state response z(-) corresponding to each
bounded source vector ug ().

3. 1If LA’contains only dc independent sources (i.e., ug (t) = u"(t) = u*),
then all solutions z(:) tend to a unzque and globally asymptotzgaZZy
stable equilibrium point.

18An nxn matrix M is said to be weakly (resp., strongly) coluwmn-sum
dominant 1if

n

min M., - 2: M, |

k=1,2,...n kle ik
_J#k

for some € > 0 (resp., € > 0).
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V. Recent Tools for Nonlinear Network Analysis

Several powerful and potentially useful tools have found important
applications in the qualitative theory of nonlinear networks. Due to
limitation of space, we will only list them here along with some
references on where applications have been found:

1. The colored branch theorem [28,70,91].
2. Degree theory [25,68,75].

3. The Hopf Bifurcation theorem [87-88].
4. Transversality theory [89-91].

These basic tools are likely to find many new applications in future
research on nonlinear network theory.

Research sponsored in part by the National Science Foundation under
Grant ENG77-22745, by the Office of Naval Research under Contract
N00014-76-C-0572, and by the Joint Services Electronics Program Contract
F44620-76-C-0100.
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