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Many highly nonlinear devices have been invented over the past two
decades [1-4] and are becoming increasingly important in the design of
modern electronic systems. The behaviors of these systems can be extreme
ly complex and any circuit theory for analyzing such exotic phenomena must
necessarily be nonlinear. In particular, some recent research on the
modeling of nonlinear devices [5-8] has demonstrated the dire need for
developing a foundation for nonlinear circuits. Our objective in this
short course is to provide a unified exposition of some recent develop
ments in this area. Due to limitation of both time and space, only some
aspects of this vast terrain can be covered with a certain degree of
depth. Even then, only main results will be presented and only some of
them will be proved. Although some of the unproved theorems can be easily
worked out by the reader, others are rather long and highly technical
(involving sophisticated mathematical machineries). Whenever applicable,
references where the proofs, or basic techniques for constructing the
proofs, can be found will be given. Some of these references are chosen
in view of their clarity of exposition and do not necessarily imply the
original source. We have chosen to present the circuit-theoretic and
qualitative aspects of lumped nonlinear networks because no unified expo
sition of this area is presently available. Some important aspects which
are not covered here include the "existence and uniqueness of solutions of
nonlinear dc networks" and "computational methods for nonlinear networks."
Readers interested in the first area are referred to a collection of
relevant literature in [9], as well as to a comprehensive paper on piece-
wise-linear networks in [10]. Readers interested in the second area are
referred to [11].

The following materials are subdivided into 5 major sections. The
equations, theorems, and headings for the subsections are numbered consecu
tively and independently in each section. The following table of contents
may be used to identify the various topics presented:

I. Classification and Representation of Nonlinear n-Ports 3
1. Algebraic and Dynamic n-Ports 3

A. Four basic circuit elements 6
B. Algebraic n-ports 9
C. Dynamic n-ports 16

2. Mathematical Representations of Algebraic n-Ports 19
A. Generalized coordinate representation 20
B. Hybrid representation 23

II. Structural and Circuit Theoretic Properties of Algebraic n-Ports 26
1. Structural Properties 26
2. Circuit-Theoretic Properties 33

A. Reciprocity and anti-reciprocity 34
B. Non-energicness 37
C. Losslessness 39
D. Passivity and activity 42
E. Local passivity and local activity 47
F. Local non-energicness and local losslessness 48
G. Relaxed algebraic n-ports 49



3. Invariance Properties Relative to Representation and Datum of 51
Multi-terminal Elements
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3. The Last Synthesis Hurdle 60
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pair of dynamically independent terminal or port vectors if each component

(3)(VVG{(vj'V'(W'(vrV'(VV}
To simplify our notation, we do not distinguish the "order" of the

variables in each pair so that (£.,n.) could be defined for example, either

as (v.,i ) or (i ,v ). Of course, once the choice is made, the order must
•J J J J

be preserved consistently. Since virtually every definition and property

that apply for an (n+l)-terminal element also hold for an n-port, and vice-

versa, we will avoid unnecessary repetitions by stating all definitions

and results for n-ports in this lecture notes, unless otherwise stated.

A pair of dynamically independent port vector waveforms (£(t),D(t)J
measured from an n-port N over the time interval [tn,°°) is said to be an

admissible signal pair of N. The collection of all admissible signal

pairs (§(•),n(O) of Nmeasured with respect to the same initial time tn
is said to be a constitutive relation of N. where (€,n) is any pair of

dynamically independent port vectors.

Definition 1. Linear and nonlinear n-ports

An n-port N is said to be linear if for every two admissible signal

pairs (§l(*),nl(-)J and (§"(•),n"(')) ,and any two scalars aand 8,
(§(•),ri(-)) =(o|,(O+0§,,(O,on,(.)+Bn,,(.)) is also an admissible signal
pair. Otherwise, N is said to be nonlinear.

Definition 2. Time-invariant and time-varying n-ports

An n-port N is said to be time-invariant if for any admissible signal

pair (§(•)»]!(•)) and any T€ [to*00)* the translated pair (§(•),n(*))
defined by (§(t),n(t)j =(§(t-T) ,rj(t-T)J is also an admissible signal pair.
Otherwise, N is said to be time varying.

Definition 3. Algebraic and dynamic n-ports

An n-port N characterized by a constitutive relation between a pair of

dynamically independent port vectors (£,n) is said to be an algebraic

n-port if for any two admissible signal pairs (£'(•),n'O)) and
(§"(•),n"(-)) ,and for any T€ ^n*00)* the concatenated pair K(*),n(*))
defined by

(|(t),n(.t)) £(§,(t),n'(t)) , t<T (4)
=(§"(t),n"(t)) , t>T

is also an admissible signal pair. Otherwise, N is said to be a

dynamic n-port.
-4-



In less formal terms, we say N is linear, time-invariant, or algebraic

if it is closed under superposition, translation, or concatenation of

admissible signal pairs, respectively. An n-port N is said to be

characterized by an algebraic constitutive relation between | and n, or a

dynamic constitutive relation between £ and r\ depending on whether N is an

algebraic n-port, or a dynamic n-port. Roughly speaking, a constitutive

relation between £ and n is algebraic if it can be specified by algebraic

equations involving only §(t) and n(t) at any time t, and not their

derivatives or integrals. The following theorem is a direct consequence

of this property.

Theorem 1. Algebraic n-port characterization

Every time-invariant algebraic n-port can be characterized by a subset

of points in]Rnx]R ,i.e.,a relation

Qc]Rn x*n (5)

such that every admissible signal pair (§(•),"(•)] of Nsatisfies the
following inclusion property.

(§(t),n(t)) eQ, vt g[tQ,«)
Conversely, any pair of waveforms (§(*),n(*)j satisfying (6) is an
admissible signal pair of N.

Proof. Let h2 in (5) be defined by

CjJ =<K(t) ,n(t)J : over all admissible signal pairs
(§(•),n(-)) of N and over all tG[to*09)}"

Then (6) is satisfied by construction. Conversely, if (|(*),n(*)J
satisfies (6), then at each time t = t £ [t0,«>), there exists an admissible

signal pair (§(•), n(")) such that U(i) Mt)\ =(§(t),n(t)j in view of (7).
It follows from the concatenation and time invariance hypotheses that

^(OjrK*)) is also an admissible signal pair. n

Corollary 1.

Theorem 1 also holds for time-varying algebraic n-ports provided the

relation S3 in (5) is replaced by a "time" parametrized relation

^ GH x]Rn, te [t(),~) (8)

Corollary 2.

Every time-invariant algebraic n-port is rate independent in the

-5-
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sense that if {^C-) 9TIC-)) is an admissible signal pair of N, then for every

a £ (-00,00) , the pair (§(*)»n(OJ defined by

(|(t),n(t)) =(§(at),n(at)) , Vt €[t0,») (9)

is also an admissible signal pair of N.

Observe that Def. 3 applies only to a subclass of n-ports whose

constitutive relations involve £ and n where (£,,n,) is defined by (3).

One could enlarge the class of algebraic and dynamic n-ports of Def. 3 by

allowing £.(t) and n.(t) to become the rath time derivature or integral of

v (t) and i.(t), respectively. However, the class of n-ports encompassed

by Def. 3 seems to be more than adequate for developing a reasonably

general theory of nonlinear n-ports.

To avoid unnecessary repetitions, all n-ports are henceforth assumed

to be lumped and time-invariant3 unless stated otherwise.

A. Four basic circuit elements

Let N be an algebraic n-port where all components of (£,n) are of the

same type. Then (£,n) can assume only one of the 4 combinations depicted

by the solid branches in Fig. 2; namely,

(§,n) Gj(y,i), (i,J), (y,g), ($,g)j

n~port °
RESISTOR

a

V

n-port °
MEMRISTOR

n-port

CAPACITOR

(10)

Fig. 2. Each solid branch of the complete graph defines a basic n-port
circuit element.

-6-



These 4 exhaustive combinations lead naturally to the following axiomatic

classifications of basic circuit elements:

Definition 4. n-port resistor, inductor, capacitor, memristor

An Algebraic n-port N is said to be an n-port resistor, inductor,
capacitor, memristor [12], respectively, if N can be characterized by an
algebraic constitutive relation between y and i, <j> and i, q and v, and

(j> and q, respectively.

The symbols proposed for the 4 basic n-port circuit elements are

shown in Fig. 2 corresponding to each pair of dynamically independent port
vectors. There are many examples of nonlinear devices which can be

realistically modeled by one of these 4 basic elements — at least over

some restricted range of operating frequencies.

Examples of nonlinear resistors:

(1)

(2)

one-port: pn junction diodes, zener diodes, tunnel diodes, etc.
two-port: transistors (Fig. 3(a)) modeled by the following dc "pnp"

Ebers-Moll equation:

±1 =A-JexpOCv^-ll -B1j^exp(Kv2)-lJ
i2 =-AjexpdCv^-lj +BJexp(Kv2)-lJ

where A± - I , B± - ccRIcs =cx^ = A, B2 = ^S' and K = q/kT>

where T is the temperature.

(3) three-port: a. OP AMP (Fig. 3(b)) modeled by ±1 = 0, ±2 = 0,
v3 = f(v2-vx) as in Fig. 3(b), where A •*• «.

b. Analog Multiplier (Fig. 3(c)) modeled by i1 = 0

i- = 0, and v-> = Mv^v^.

Fig. 3. (a) pnp transistor (b) OP AMP (c) Analog multiplier

(ID



c. Conjunctors (Fig. 4(a)). There are 6 types

M = I,II,...,VI [13]:

I. vl = -Ki2i3, V2
— "iv v3 = 0

II. vl = -Ki2v3, v2
=

K11V3> i3- 0

III. vl = "Kv2i3, h
=

KiiH> v3 = 0

IV. vl = ~Kv2v3, h = Ki1v3, i3 - 0

V. h " ^Vs' h = KviH' v3 = 0

VI. h = "Kv2v3, H
=

KV1V3' i3 = o

(12)

Fig. 4. A type M Conjunctor.

Examples of nonlinear inductors:

(1) one-port: Josephson junction [4] modeled by

i = IQ sin kQ<j> (13)

where In and k~ are constants.

(2) two-port: A pair of nonlinear

coupled coils.

(3) three-port: A type V 3-port traditor

(Fig. 5) described by [14]:

(14) Fig. 5. A type M traditor.

Examples of nonlinear capacitors

(1) one-port: varactor diode modeled by q = Q exp(Kv)-l .

(2) two-port: A pair of coupled nonlinear capacitors.

(3) three-port: A type II traditor (Fig. 5) described by [14]:

vl = ~Aq2V3' V2 = ~AqlV3' q3 = Aqlq2 (15)

Examples of nonlinear memristors

Consider a "coulomb cell" [12] consisting of a gold anode immersed in

an electrolyte in a silver can (cathode) as in Fig. 6(a). Assume an

initial amount of silver is previously deposited at the anode. When a

battery is connected across the port, silver ions will be transferred

from anode back to the cathode and a large current flows so that the

element is equivalent to a very small linear resistance R^. At some time

t = Tn when most silver has been transferred, very few ions are left so

that a very small current flows for t >_ TQ and the element is equivalent

-8-



L

] gold electrode
s* (anode)

silver can
(cathode)

—electrolyte

:.,• J

-q(T0)

slope q(TJ q
R 0

Fig. 6. (a) a coulomb cell (b) a memristor model

to a very large linear resistance R„. This element can be realistically

modeled as a memristor described by the $-q curve cj> = (J>(q) shown in

Fig. 6(b). Observe that since

v(t) =d*(t)/dt =(d*(q>/dq)(dq/dt) =M(q) i(t)
is just a charge-dependent Ohm's law, a memristor is equivalent to a

charge-controlled linear resistor. In this case, M(q) = R^ r0 for

;q| <q(TQ), and M(q) = R2 >> 0 for |q| >q(TQ).
Other examples of memristors can be found in [15-17].

There exist a small class of ideal elements which may assume more than

one identities. For example, a dc {resp., ac} voltage source can be

classified either as a time-invariant {resp., time-varying} one-port

resistor or capacitor. Similarly, a dc {resp., ac} current source

can be classified either as a time-invariant {resp., time-varying} one-

port resistor or inductor. A nullator characterized v = 0 and i = 0 can

classified as a one-port resistor, inductor, capacitor, or memristor. A

(p+q)-port transformer characterized by

.T
v
-a

h

o

-K

l
~a

V~b

(16)

(17)

(where v and i are pxl vectors,!, and v, are qxl vectors, and K is a
~a ~a ~b ~b

qxp real matrix) can also be classified as a (p+q)-port resistor,

inductor, capacitor, or memristor.

B. Algebraic n-ports

A simple example of an algebraic n-port involving a mixture of

distinct pairs of dynamically independent variables is the 4-port shown in



Fig. 7, where N is characterized

by a relation

Q(S,d) =
Q2(i2,^2)
Q3(v3,q3)

(18)

This example can be generalized

by allowing all variables in (18)

to be coupled to each other in a

nonlinear way. The resulting

algebraic 4-port would then be

characterized by a system of 4

implicit equations

?+ V, -?

Ii"

I -vw—I—'

+

v2
CES3S23

l4"
6 + V2 —A

Fig. 7. An algebraic 4-port.

a&itea

'3
*3—-o

+

<:Pi(i1,v1,i2,(|)2,v3,q3,(J>4,q4) =0, i=1,2,3,4 (19)

Observe that (19) defines an algebraic 4-port because all variables are

dynamically independent of each other. We will now consider two

interesting classes of algebraic n-ports.

(1) Mutators [18]

Mutators are generic names for a family of linear algebraic 2-ports.

A type 1 L-R mutator is characterized by the constitutive relation <{>.. = v2

and i, = -i„. Observe that if we terminate port 2 by a resistor having a

constitutive relation i
R

g(v„) as shown in Figure 8(a), the resulting
IV.

one-port is equivalent to an inductor characterized by an identical

constitutive relation i, = g(<J>..). Conversely, if we terminate port 1 by

an inductor having a constitutive relation f(i ,<j> ) = 0 as shown in

Fig. 8(b), the resulting one-port is equivalent to a resistor characterized

by an identical constitutive relation f(i2>v2) .= 0. These observations

follow immediately from the identities i- 12 XR! *1 = V2
vR in

Fig. 8(a), and i2 = -i-,^ = iL» v2 = $ = «J»L in Fig. 8(b). Since this
2-port transforms one "element specie" X into another "element specie" Y,

it is indeed revealing to call it a mutator. A type 2 L-R mutator is

characterized by the constitutive relation <j), = -i2 and i^. = v,,. The same

"mutation" property also holds in this case except that the two variables

-10-



iR=g(vR)

(a)

f (iL,<£L)=0
(b)

R

'2
« O

f{i2,v2) =0

Fig. 8. A type 1 L-R mutator with two possible terminations.

in the resulting element are interchanged. For example, the constitutive

relations for the inductor L in Fig. 8(a) and the resistor R in Fig. 8(b)

are given respectively by 4>, = g(i-.) and f(v2,i2) = 0.
By permuting the two pairs of dynamically-independent variables, we

can define 6 mutually exclusive classes of X-Y mutators; namely, L-R,

C-R, L-C, M-R, M-L, and M-C. Just as in the case of L-R mutators, each

class of X-Y mutator may assume two different types. Table 1 contains a

list of all mutually exclusive types of mutators along with their con

stitutive relations. The mutation property of each X-Y mutator is depicted

in Figs. 9(a) and (b), where k = 1 for a type 1 mutator and k = 2 for a

type 2 mutator. Observe that a type 1 L-C mutator is just a gyrator.

Observe that by using different mutators, it is possible to synthesize

any three of the four basic circuit elements R,L,C,M given the fourth

element. Moreover, since mutators are linear 2-ports, they can be realized

using only linear elements. For example, a type 1 L-R mutator and a type 1

C-R mutator can be synthesized by the circuits shown in Figs. 10(a) and (b),

respectively.
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Table 1. Twelve Types of Linear X-T Mutators

Mutator
Variables

for port 1

Variables

for port 2
Constitutive Relation

L-R Mutator (Type 1) *1 • h l2 •V2 ♦l • v2 ' h ' -*2

L-R Mutator (Type 2) *1 • h V2 ' *2 ♦l " "i2' *1 " v2

C-R Mutator (Type 1) V . qx *2 • V2 Tl " v2 ' "1" -H

C-R Mutator (Type 2) V » qL V2 • *2 vl " "l2- "l * V2

L-C Mutator (Type 1) *1 ' 1i V2 • q2 ♦l - -q2 ^-^

L-C Mutator (Type 2) *1 • ii q2 ' V2 ♦l " V2 • 1l_-<,2

M-R Mutator (Type 1) *1 • qi l2 •' V2 ♦l - V2 ' «1 " "'j

M-R Mutator (Type 2) *1 » <ix V2 •'^ ♦l * -h qx - v2

M-L Mutator (Type 1) ♦l * qi h -*2 \m*2 • *i" -H

M-L Mutator (Type 2) ♦l ' qi *2 •4 *l " -h •'l • *2

M-C Mutator (Type 1) *1 • qi q2 • V2. ♦l"V2 • ql * -"2

M-C Mutator (Type 2) *1 • qi V2 • q2 ♦l ' -«2 • 'l • V2

JT

Jf
x = = Y

T

(a) (b)

Fig. 9. Mutation property of X-Y mutators, k = 1 or k = 2.

(a) (b)
Fig. 10. Linear active circuit realization of a type 1 L-R mutator (a),

and a type 1 C-R mutator (b) .
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(2) Traditors [14].

Let (Ck,n.) denote either Uk,<l>k) or (vk,qk). Let 9- (called the
Lagrangian) be defined by the multilinear form

S£ -Anin2 ... \ ... nn_xnn (20)

where A is any constant real number. Traditors are generic names for a

family of nonlinear algebraic n-ports characterized by the following con

stitutive relations:

5n^(*V2-Vl' (22)
At first sight, (21) and (22) do not seem to qualify as an algebraic

constitutive relation since the rate-independence condition (9) appears to

be violated. To show that this is not the case, let us substitute (20) for

9l in (21) and obtain the explicit algebraic function

h = "Ani n2 •'• Vi Vi "• Vi \ (23)

Next, let us integrate both sides of (22) with respect to t to obtain

t

Cn(x)dT =An^ ... nn_x (24)i — 00

Now since r\ = in if Cn = vn and nn = vr if £n = in» (23) and (24) may
assume two distinct forms.

Form 1 £k = -An1 n2 ••• nk-lVl "* V^n' k " i*2*'"'*-1 (23^

♦n " Al»l n2 ' •• Vl (24>)

Form 2 *k ° "A\ n2 '•• VlVl *•• VlVn' k = 1>2-'-n"1 <23">

qn = AMl n2 ... Vl (24")

Since in either case, (Ck,nk) e{(V*^'̂k'^J'both (23l)» (24?) and
(23"), (24") define an algebraic n-port. In fact, it is easily seen that

the generalized traditor defined with

nnf(n1>n2> •••» nn_i) (25)

is also an algebraic n-port.

As a specific example, consider the class of 3-port traditors (n=3)
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Depending on the choice of ttk>\) , the following 6 mutually exclusive
types can be defined:

I. v1 «-Aq2i3 II. Vl =-Aq2v3 III. Vl =-A*^

v2 =-Aqii3 v2 =-Aqiv3 i2 =-Aqii3

*3 "A^2 q3 =Aqlq2 *3 =Aqi*2

IV. V;L =-A({>2v3 V. ±± =-A«2i3 VI. i;L =-A<J,2v3

*2 ="Aqlv3 *2 ="^iS *2 ="A*lv3

q3 =Aq^ ^ =A^2 q3 =A4>1<|,2

The symbol of a type M traditor is shown in Fig. 5, where M = I,II...VI.
Observe that a type V traditor has already been identified in (14) as a
3-port inductor, while a type II traditor has been identified in (15) as a
3-port capacitor. The remaining 4 types, however, can not be identified
from among the 4 basic circuit elements.

Arbitrary interconnections of algebraic n-ports will not necessarily
result in another algebraic n-port. However, the following theorem can be
proved which guarantees closure property under the condition that the port
interconnections (series or parallel) are compatible in the sense that all

ports to be connected must be associated with the same type of dynamically
independent variables. For example, with reference to Table 1, port 2 of a
type 1 L-C mutator and port 1 of a type 1 C-R mutator are compatible since
they both involve "voltage" and "charge" as port variables. On the other

hand, port 1 of a type 1 L-C mutator and port 1 of a type 1 C-R mutator

are incompatible since the former involves ($ ,i.) while the latter
involve (v^q.).

Theorem 2. Algebraic n-port interconnection closure property [28].
Compatible interconnections among a group of ports belonging to an

algebraic n-port, or to two or more algebraic m-ports, always results in

another algebraic n-port. Moreover, each port of the resulting n-port

inherits the same pair of dynamically-independent variables associated with
the original m-ports.

As an application of Theorem 2, recall that a type I traditor involves

the port variables (v^q^ , (v2,q2), and (<j>3,i3). Hence the first two
ports are compatible with each other, whereas the third port is compatible

-14-
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with a one-port inductor. Hence theorem 2 guarantees the interconnections

shown in Fig. 11(a) are compatible and that the result must be a one-port

capacitor. Similarly, theorem 2 guarantees the interconnection between a

type II traditor and a type I traditor as shown in Fig. 11(b) must result
in an algebraic 4-port. In fact, it is easily verified that the result is
a 4-port traditor as defined in (21)-(22). Finally, let us use theorem 2

to prove the following basic result.

(a)

o

o

^
o—• ) o

o—

(°
)

—o

(b)

Fig. 11. Compatible algebraic n-port interconnections resulting in (a) one-
port capacitor, (b) 4-port traditor.

Theorem 3a. Algebraic n-port realizability theorem.

Every algebraic n-port can be synthesized using only "linear"

mutators and a "nonlinear" n-port resistor.

Proof. We will give a constructive proof. Let ^ be the prescribed con
stitutive relation of an algebraic n-port N. Transform each pair of

variables (<♦>.,!.), (<Lj>vj>> and (*j»qj) int0 (vj,±j) USing an L"R» ^C-R» and
M-R mutator as depicted in Fig. 12. All mutators are linear since they can

be realized by using only linear controlled sources and linear capacitors

(see Fig. 10 for example). Theorem 2 then guarantees that the two n-ports

shown in Fig. 12 are equivalent.

It follows from theorem 3 that all types of traditors can be

synthesized using only linear elements and a nonlinear n-port resistor. It
also follows that in studying the qualitative behaviors of networks

containing algebraic n-ports, there is little loss of generality to assume

that the only nonlinear elements are resistors; i.e., all inductors and

capacitors are linear.
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R
r*j

Alg

n-

ebraic

•port

N

+

'L

+

ic
+

vc

>
+

Nonlinear

n-port

resistor

N R

Fig. 12. Realization of algebraic n-ports using only mutators and a
nonlinear n-port resistor.

C. Dynamic n-ports.

The class of dynamic n-ports is rather large and little is presently

known of its general properties. We will consider here an important

subclass of dynamic n-ports whose constitutive relations can be represented

by

x = f(x,n)

£ = g(x,n)

where x £ K is any state variable, f : ]R
•^ m _ m+n
m , g : 3R

(27)

IR , and

where each component of (C,n) satisfies (3). We can define 4 basic classes

of dynamic n-ports completely analogous to the 4 basic classes of

algebraic n-ports.

Definition 5. R, L, C, M-dynamic n-ports.

A dynamic n-port described by (27) is said to.be an R-dynamic n-port

{resp.; L-dynamic n-port, C-dynainic n-port, M-dynamic n-port} if each

component U. ,n. ~) in (27) involves only (v.,i,) {resp.; (i.,$.), (v.,q ),

-16-



Consider the following simple examples:

(1) R-dynamic n-port

* = £(?>i)

v = g(x,i)

(3) C-dynamic n-port

x = f(x,v)

q = g(x,v)

(28-a)

(28-c)

(2) L-dynamic n-port

x = f(x,i)

t = §(X>P

(4) M-dynamic n-port

x = f(x,q)

t = §(x»3^

(28-b)

(28-d)

To show that (28-a)-(28-d) represent 4 distinct families of dynamic

n-ports, note that it is generally not possible to recast the equation

from one class into another. For example, to show that (28-b) cannot be

recast into the form of (28-a), note that if we differentiate $ = |(x»i)

with respect to t, the resulting expression

v = |x(x,i)f(x,i) + g±(x,i)i = h(x,i,i) (29)

contains a new variable i which is not allowed in (28-a). On the other

hand, just as in the case of algebraic n-ports, some dynamic n-ports may

assume more than one identities.

For each n G H n, let x(n) be an equilibrium point of (27), i.e.,

f(?(n).o) "9 (30-a)

(30-b)

Observe that (30-b) can be interpreted as an algebraic constitutive

relation and hence an algebraic n-port can be considered as a limiting

case of a dynamic n-port when x(t) -»• 0. In particular, an n-port resistor,

inductor, capacitor, and memristor can be considered as a limiting case of

an R, L, C, M-dynamic n-port, respectively. Consequently, from the

modeling point of view, electronic devices can be modeled more

realistically using R. L, C, M-dynamic n-ports as building blocks. For

example, consider again the Ebers-Moll equation for a pnp transistor.

Under high power operations, the temperature T in the exponent of (11) is

actually a state variable obeying an appropriate heat balance equation

f = f(T,vrv2) - (31)

Observe that (31) and (11) define an R-dynamic 2-port. Now if the
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temperature T does not change rapidly, then we can approximate T by the

ambient temperature and the transistor reduces to a 2-port resistor. Since

the characteristics of most electronic devices depend on temperature to a

greater or lesser extent, a truly realistic circuit model should make use

of R, L, C, M-dynamic n-ports as building blocks. For more complex

devices, additional state variables will be needed. We will close this

section with the following analog of Theorem 3.

Theorem 3b. Dynamic n-port realizability theorem.

Every dynamic n-port described by (27) can be synthesized using only

"linear" mutators, "linear" 2-terminal capacitors, and a "nonlinear"

n-port resistor.

Proof. We will give a constructive proof for the case where N is described

by

x = f(x,v)

i. = §(x,y)
(32)

The proof for the other cases follows by a similar procedure and by using

mutators whenever appropriate. To synthesize (32), consider the circuit

shown in Fig. 13, where the n-port resistor N is chosen to be
R

characterized by

N-

+

Vi

+

va

+

Van
-o

a

•an
-*>—

Nonlinear

n-port

resistor

N R

b|
+

Vb

C|

<b m Cm
-*«-

-O

Fig. 13. Realization of R-dynamic n-ports using only linear
capacitors, and a nonlinear n-port resistor.
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ia = §<Yb'Ya>

i = -f(v ,v )
-b ~ ~b ~a

(33)

where (v ,i ) and (y, ,i, ) are the port voltage and current vectors associ

ated with the ports on the left and right hand side of N_, respectively.

Choosing x = v, and noting that v = v . i = i , i = -i, and v, = v we
~ ~q -. ~a «. ~q ~c ~D ~D ~C

find the n-port N in Fig. 13 is precisely characterized by (31). n

2. 'Mathematical Representations of Algebraic n-Ports

Theorem 1 implies that the most general way for representing a time-

invariant algebraic n-port is to specify its associated constitutive

relation between § and n as a subset of points in 1 x R . A large

class of such point set relations can be represented mathematically either

in the implicit form

f(§,n) = 0 (34)

or in the parametric form

§ = §(?)> n = n(p) (35)

pe9CEm (36)

where 0 £ m <_ 2n. The parametric representations (35) is sufficiently

general to allow most "singular" and "exotic" elements to be represented

analytically. For example, the case m = 0, n = 1 corresponds to an

element characterized by an empty set; the case m = 1, n = 1, and

r= {0} C B corresponds to a nullator (v=0,i=0), and the case m = 2,

n= 1, "-P = ]R corresponds to a norator (v=p1,i=p<?). The parametric
representation also includes all conventional function representations as

special cases. For example, if n(') in (35) is bijective, then N can be

characterized by an explicit function £ = S°n (n) = f(n), where "°"

denotes the composition operation. Similarly if £(') in (35) is bijective,
-1then N can be characterized by n = n°j; (§) = g(£). In view of its greater

generality and flexibility, it is often desirable to choose the parametric

representation in formulating and manipulating circuit equations of general

nonlinear networks [19]. For the purpose of this short course, however, we

will find the generalized coordinate representation and the hybrid

representation, both of which can be reduced from the parametric

representation, to be more than adequate. To simplify our notation, these
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representations will be formulated only for n-port resistors. The same

results apply cf course to any algebraic n-ports.

A. Generalized coordinate representation.

Let N be an n-port resistor with port voltage vector v and port

current vector 1. Let £ and n be nxl vectors which are related to v and i

as follows:

V

—

a b §
a0

— —

i /t d n n
. , __ L_ -J I 1 l

i ^ —j rn r~—\

t
—

a tt ! V

^Q"1
V

n V
I <S i i

, LT _J \ i '.-_

(37)

(38)

where ft is any 2nx2n non-singular constant real matrix which we will call

the coordinate transformation matrix. The vectors g and n are called the

generalized port coordinates.

If there exists an ft such that the constitutive relation of N can be

described explicitly by a function

K = C(n), n 6 a (39)

then we say N is globally characterized by ft and £(•). To show that (39)

can be transformed into a parametric representation, let us substitute (39)

into (37) to obtain

v = a£(n) + br\ = v(n)

where n = pGl is the parametric vector.

If £(•) is a C function, then we define the associated linearized

representation about an operating point Q located at (£0>nn) by

§ = MDq^D »Q m

where the nxn real constant Jacobian matrix

we deliberately choose the same notations § and r\ here as in Sec. 1

because (£>n) can be considered as a "generalized" pair of dynamically

independent vectors.
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35(n)

4<3q> " 3n
(43)

D=D
Q

is called the incremental constitutive matrix associated with £(•).

Observe that (42) defines a distinct linear n-port resistor N associated

with N at the operating point Q. It is important to remember that (£,ri)

represents a distinct pair of dynamically independent port vectors in IR

and that their magnitudes need not be small. The usual restriction to an

"incremental" signal comes into play only when one tries to approximate the

nonlinear n-port N by Nfi in actual computation. From the circuit-theoretic

point of view, it is desirable to consider N0 just like any other linear

n-port resistor having no restrictions on its domain of definition.

Geometrically, each component L = £k(n) of NQ can be interpreted as a
hyperplane tangent to an n-dimensional surface defined by £, = Su(n)»

n k k -
n € 3R . We will henceforth call (39) the global representation of N and

(42) its associated linearized representation. Together they cover

virtually all nonlinear n-port representations reported in the literature.

Consequently, it is most desirable to formulate theorems in terms of these

generalized representations since the corresponding results for any

specific representation then falls out as a trivial special case. For ease

of future reference, Table 2 contains the coordinate transformation matrix

ft and its inverse ft for the most common representations found in the

literature. Here, 0 denotes an mxm zero matrix, 1 denotes an mxm unit
+1/2 m +r/2

matrix, and r— is a diagonal matrix whose kkth element is r, — . Our
— k

next theorem allows one to transform one generalized representation into

another.

Theorem 4. Generalized coordinate transformations.

Let (§,n) and (§',n') denote two distinct sets of coordinates for an

n-port N, and let ft and ft1 denote their respective coordinate transfor

mation matrices. Then

(a) (S,n) and (C',n') are related by

V a' g»

Y' 6'

r— —

a b

a d n

=

— —

A B

C D n

(44)

(b) If i = §(n) is the global constitutive relation of N Vn G TRn, then

5' - A?(n) + Bn = 5f(n) (45)
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Tabic 2. Coordlnnte transformation matrices for comreon representations

Coordinate Transformation Matrix

-ca
Voltage-Controlled Representation

a - 0 fc - 1

<?- in *"?»

Current-Controlled Representation

Transmission Representation I

b -a -

in/2 °n/2

-n/2 -n/2
—• y;

\ll in/2
?,»/2 ?n/2

-n/2 -n/2

in/2 ?«/*

?n/2 ?n/2

?n/2 "in/2

Transmission Representation II

b -

c -

?n/2 ?n/2

in/2 9„/2j
""I

-n/2 -n/2

9n/2 in/2j
d -

in/2 9n/2

L?n/2 9n/2J

?n/2 'in/2

9n/2 °n/2j

Scattering Representation (with
port numbers r.tr_,..., rft)

1/2
a m r

1/2
• r

Inverse Coordinate Transformation Matrix

"-GO
Voltage-Controlled Representation

e-?n

I " in 6-0

Current-Controlled Representation

Transmission Representation I

0
-n/2 -n/2

?n/2 ?n/2

?n/2 ln/2

?n/2 ?n/2

?n/2 ?n/2

-1n/2 °n/2

?n/2 ?n/2

?n/2 "in/2

Transmission Representation H

B

I "

9n/2 in/2

9n/2 9n/2
- s
in/2 9n/2

[?n/2 9n/2J
6.

9n/2 9n/2

-n/2 iu/2,
0 i-y ° /T-n/2 -n/2

-n/2 -n/2

Scattering Representation (vlth
port numbers r.,r_ r )

a-1/2 f1'2, P--1/2 r1/2
Y-1/2 r-l/2. *-1/2 r1'2
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n1 = cc(n) + Dn = nf(n) (46)

is the associated parametric representation in terms of §' and n1. In

particular, N admits the global representation £' = §'(n') if, and only if,
n'(-) :]Rn + lRn from (46) is bijective (i.e., one-to-one and onto).

(c) The associated constitutive matrices A(n ) and Af(n ) of the

linearized representations are related by:

A'(o') =[(«'?+?'?>4(Dq) +«^+§,^][(X,?+?,?)MDq)+(y,^,^)1 (47)

where the inverse in the second matrix exists if, and only if,the con

stitutive matrix A'(rj') exists.

The single formula (47) is extremely useful and contains, among other

things, the familiar 2-port parameter conversion formulas listed in many

textbooks as special cases. For example, to derive the relationship

between the open-circuit resistance matrix and the ABCD chain matrix
(transmission representation I), we simply substitute the appropriate

coordinate transformation matrices from Table 2 into (47) and obtain

Rll R12

R21 R22

A B

1 0

C D

0 -1

-1 r A/C (AD-BC)/C

1/C D/C

(48)

B. Hybrid Representation

The hybrid representations I and II in Table 2 are just 2 out of

2n distinct representations obtained by an arbitrary mixture of port

current and voltages. Rather than treating each case separately, it is

convenient to define an arbitrary hybrid representation by choosing

a = d = A and b = c = B in (37) where A and B are diagonal nxn matrices

satisfying the property that either A » 1, B . = 0, or A = 0, B = 1:

V

.

A B
r— —\

£m
X

i. B A n y

We will call (§,n) = (x,y) a hybrid pair and the corresponding hybrid

constitutive relation for an n-port N will be denoted by

t}(?)

-23-
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Observe that the coordinate transformation matrix ft = M in this case

T -1
satisfies the property that M =M =M . It follows from theorem 4(b)

that if N admits a hybrid representation y = h(x), then it also admits

another hybrid representation y1 = h'(x') (corresponding to A' and b')

if, and only if, the function

f(x) = (SM+A'B)h(x) + (B'B+A!A)x (51)

is bijective. Our next theorem gives the conditions on h(') which

guarantee the existence of various hybrid matrices.

Theorem 5. Existence of hybrid representation

Let N be characterized by a C hybrid representation y - h(x),

h :]Rn •+ Hn. Then

k 2 k
(a) h(*) is C -diffeomorphic (k>l) and hence N admits a C inverse

x= h_1(y), Vv € ]Rn (52)

if, and only if, [20,25]

1. det(3h(x)/8x) $ 0, Vx SHn (53)
2. lira llh(x)H = - (54)

(b) N admits aC diffeomorphic (k>0) hybrid representation y1 = h'(x') if

h(x) in (53)-(54) is replaced by f(x) in (51). In particular, if the

components of x and y are rearranged into (x ,x, ) and (ya»Yb)

=(h (x ,xb), hb(x fX.)), where x ,y GRa and xb>yb G ]R ,such that
x1 = (y ,x.) and y' = (x ,y,), then y* = hf(x') exists if [21]
*" ~a *• d ~ ~a "d " " "

1. detfah (x ,x, )/3x Wo, Vx e Kn (55)
y ~a ~a ~D ^a/ ~

2. 11m Uh (x ,x.)U - », Vx. 6 Rb (56)
Ilx I*. -a -a "b -b
-a

A function h :Rn -»• Rn is said to be C if h(0 has continuous

derivatives of all orders up to k. It is said to be u diffeomorphic if

h(-) is C bijective and its inverse h" (•) is also C . AC diffeo-

morphic function is said to be homeomorphic. In the more general case

where h( •) :D C ]Rn ->• Jtn, h(«) is said to be C diffeomorphic from D
k *" -1 k

onto h(D) if it is C bijective and h (•) is also C on h(D). Unless

otherwise stated, we always assume h(-) : E. •+ ]R .
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(c) All 2n distinct hybrid representations of an n-port resistor N exist

if N has a C1 hybrid representation y = h(x) which satisfies the following
two conditions [22]:

1. H(x) = 3h(x)/8x is aP-matrix,3 Vx G Stn (57)

2. lim |h.(x)| = », j = 1,2,...,n (58)
llxll-x» 3 ~

Theorem 5(a) is sometimes called the global diffeomorphism theorem.

It is one of the most often used tools in nonlinear circuit theory. To

show that both conditions are necessary for theorem 5(a) to hold when

k > 1, consider the following counterexamples:

Counterexample 1.

xl Xly = h(x) : y-, = e cos x«, y2 = e sin x2

/ 2xl \
Observe that (59) satisfies (53) (since det H(x) = e ^ 0 Vx) but

x1 Tviolates (54) (since ByII = e = 1 Vx = [0 x2] . Indeed h(-) is not
injective since both (0,0) and (0,2tt) map into the same point (1,0).

Counterexample 2.

9 o

y= h(x) :y1 = x^-x,,, y2 = 2xxx2 (60)

/ 9 9 \

Observe that (60) satisfies (54) (since ByII = (X--HO -> « V HxB -*- ooj
/ 2 ~2 'but violates (53) (since det H(x) = 4(x1-rx2) = 0 at the single point

x=(0,0)). Indeed, h(-) is not injective since both (1,1) and (-1,1)
map into the same point (0,2).

It is interesting to note that condition 1 is not necessary for a

function to be globally homeomorphic (k=0). For example, the function

i = h(v) = v is homeomorphic even though dh(v)/dv = 0 at v = 0. In this

case, h(-) is not C1 since h"1(0 has infinite slope at the origin. Since
on many occasion one is only interested in obtaining a global inverse

function, the following result is useful.

(59)

3An nxn matrix A is said to be a P-matrix if all its principal submatrices

of all orders obtained by deleting any k corresponding rows and columns of

A, k = 0,1 n-1, have positive determinants [23]. It follows that if

A is symmetric, then A "is a P-matrix if, and only if, it is positive

definite.
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Theorem 6. Global inversion theorem [24].
n n 1

Let h :R -»- R be a C function, n ^ 2. Then h(«) is homeomorphic

and hence bijective if:

(1) det H(x) = 8h(x)/3x > 0 Vx 6 E except possibly on a set of

isolated points.

(2) lim llh(x)U = «
llxll-x» ~ "

It is rather surprising to note that theorem 6 is valid for all n

except n = 2 [24]. Needless to say, this theorem also holds if the

inequality sign in (1) is reversed.

II. Structural and Circuit Theoretic Properties of Algebraic n-Ports

1. Structural Properties

Consider now the class of all algebraic n-ports which admit at least

one hybrid representation y = h(x), x S R . Since the qualitative

behavior of dynamic nonlinear networks depend strongly on the mathematical

structures of h(»)> our objective in this section is to classify and study

some of these basic structures. At the crudest level, a hybrid

representation h(0 can be classified as injective (i.e., one-to-one),

surjective (i.e., onto), or bijective (i.e., one-to-one and onto). If

h(») is C (i.e., continuous) and bijective, then its inverse exists and

is also C [24]. Hence, every C bijective h(0 is homeomorphic. The

above classifications are not invariant properties of N in the sense that

another hybrid representation y1 = hf(x') may fail to be injective,

surjective, bijective, or homeomorphic even if the original function h(*)

have all these properties. For example, of the following two equivalent

hybrid representations,

H =

*3

-i

i

-i

3 0 vi
0 0 v?
2 1 hJ

* h(x), r &
vi

h =

-1 3 0

-1 3 0

1 -1 1

= h'(x')

(1)

h(*) is homeomorphic (and hence injective, surjective and C bijective)

but h'(«) is not injective, surjective, bijective, or homeomorphic since

the associated hybrid matrix is singular.

Definition 1. Strongly-uniformly, uniformly, strictly increasing

representations.

A hybrid representation y = h(x), x £ R is said to be
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(a) increasing if

(h(x') -h(x"), x'-x"> >0, Vx\x" e Rn

(b) strictly increasing if

(h(x')-h(x"), x'-x"> >0, Vx',x" e Rn, x' ^ x"

(c) uniformly increasing if there exists a constant c > 0 such that

<h(x')-h(x"), x'-x"> 1 cllx'-x"ll2, Vx'.x" e Rn

(d) strongly uniformly increasing if there exist two constants

c. > 0 and c2 > 0 such that

cJIx'-x'MI2 <<h(x')-h(x"), x'-x"> <cjlx'-x"ll2, Vx«,x" e Rn (5)
± ~ - — «..„.«.- ^ ~ ~

where <x,y> denotes the scalar product between x and y.

Theorem 1. Invariant structural property [22],

Every hybrid representation of an algebraic n-port N which exists is

increasing {resp.; strictly increasing) if N has a hybrid representation

h(.) which is increasing {resp.; strictly increasing}.
It follows from Theorem 1 that there is no ambiguity in calling an

n-port increasing or strictly increasing since these two properties are

invariants of an n-port in the sense that they do not depend on a

particular choice of hybrid representation. In contrast to this, we will
give two counterexamples shortly showing uniformly and strongly uniformly
increasing properties are not invariant. But first we must present a set

of criteria for checking these properties.

Theorem 2. Strongly-uniformly, uniformly, strictly increasing

criteria [25].

Let N be characterized by a C hybrid representation y = h(x), x G R
a 4"and let H(x) ^ 3h(x)/3x denote its Jacobian matrix. Then

(a) N is iyicreasing if, and only if, H(x) is positive-semidefinite

(psd) Vx € Rn.
(b) N is strictly increasing if H(x) is positive definite (pd) Vx G r .

A
See bottom of next page.

-27-

(2)

(3)

(4)



(c) h(.) is uniformly increasing if, and only if, H(x) is uniformly
positive definite (upd) Vx£En.

(d) h(-) is strongly uniformly •increasing if, and only if, H(x) is
strongly uniformly positive definite (supd) Vx e Rn.

Observe that unlike (a), (c), and (d) which provide both necessary
and sufficient conditions, (b) gives only a sufficient condition. To show

that H(x) need not be pd for h(-) to be strictly increasing, consider the

one-port characterized by i = h(v) = v . Observe that h(.) is strictly

increasing even though H(0) = dh(0)/dv =0. It turns out that the

condition in (b) can be relaxed by requiring H(x) to be pd only Vx^E11

except for at most a set of isolated points where H(x) is psd [24].

Observe also that in the definition of psd and pd matrices in

footnote 4, we need to test only those z £ Rn having a unit magnitude;

i.e., llzB = 1. This is clear since any z £ R can be written in the
a A A TOT*

form z = cz, where z = z/HzH, and c « HzII. Hence z Hz = c z Hz where

BzB = 1. Observe next that if we decompose a matrix H into its symmetric

part H =:r(H+HT) and skew-symmetric part H =-z-(H-HT), then zTHz = zTH z.
Hence H is psd or pd if, and only if, its symmetric part H is psd or pd.

This property allows us to apply the standard tests for psd or pd symmetric

matrices for determining whether h(«) is increasing, strictly increasing,

uniformly increasing, or strongly uniformly increasing. Now although every

strictly increasing function is injective, it need not be bijective (e.g.,

i = tanh v). Consequently, the inverse of a strictly increasing function

need not be defined in all of R . Our next theorem guarantees that every

uniformly increasing hybrid representation is bijective in IR
n

Theorem 3. Existence of all 2 hybrid representations [26].

Let N be characterized by a C hybrid representation y = h(x),

x £ R . If h(>) is uniformly increasing, then N admits all 2 distinct

C hybrid representations in R .

A

An nxn, not necessarily symmetric, real matrix H is said to be

(a) positive semi-definite (psd) if z Hz > 0, Vz G H .

(b) positive definite (pd) if zTHz >0, Vz^O, z^Rn.
(c) uniformly positive definite (upd) if there exists a positive constant

c, such that H-c.l is pd.

(d) strongly uniformly positive definite (supd) if there exist two

positive constants c, and c« such that both H-c,l and c2l-H are pd.
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We are now ready to present a counterexample showing that not all

hybrid representations in theorem 3need be uniformly increasing.

Counterexample 1. Consider a one-port N characterized by

i = h(v) = exp(v)-l, v >_ 0
(6)

= v , v < 0

Since the slope H(v) = dh(v)/dv > 1, Vv, it follows from Theorem 2(c) that
h(v) is uniformly increasing. Now consider the inverse representation.

v = h^U) = £n(i+l), i1 0
(7)

= i , i < 0

Since the slope H'(i) -dh_1(i)/di =1/i+l -0as i+«, h_1(i) is not
uniformly increasing. Our next theorem provides the additional condition
needed to guarantee this property.

Theorem 4. Uniform-increasing closure condition.

Let N be characterized by a C1 hybrid representation y«=h(x), x€ R .
(a) If h(-) is uniformly increasing and if its associated hybrid matrix
H(x) = 3h(x)/3x is bounded in the sense that

llH(x)ll <K < «, Vx e Rn (8)

where B-B denotes any matrix norm5 of H(-), then all 2n hybrid
representation of N are uniformly increasing [27].
(b) If both h(0 and h_1(-) are uniformly increasing, then its associated
hybrid matrix H(x) is bounded and all 2n hybrid representation of N are
uniformly increasing [28].

Since every strongly uniformly increasing h(-) is unformly increasing,

it follows from Theorem 3 that all 2n hybrid representations exist if h(-)

is strongly uniformly increasing. Again, our next counterexample shows
that not all such representations need be strongly uniformly increasing.

Counterexample 2. Consider a 2-port N characterized by

±1 =h1(v1,v2) =fvx +\ v2 *n(v2+v2+l)

i2 =h2(vx,v2) =f v2-|vx *n(v2+v2+l)
(9)

5We define the norm of "an nxn matrix Hby M & max HHzH/HzII = max «Hz!
lIzil^O liz 11=1
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It can be shown that the hybrid matrix H(v) associated with (9) satisfies

the inequality

|<zTH(v)z <|, VHzH =1 (10)

Hence, h(v) is strongly uniformly increasing in view of Theorem 2(d).

However, if we choose z = [1 0] ,then Bh(v)zII ->- « as ByII -*• ». Hence H(v)

is not bounded and h (•) is not uniformly increasing in view of Theorem

4(b). Our next theorem provides the additional condition needed to

guarantee this property.

Theorem 5. Strongly-uniformly increasing closure condition [28].

(a) If h(«) is strongly uniformly increasing, and if its associated

hybrid matrix H(x) is bounded, then all 2 hybrid representations of N are

strongly uniformly increasing.

(b) If both h(«) and h~ (•) are strongly uniformly increasing, then all

2n hybrid representations of N are strongly uniformly increasing.
The relationships between various classes of functions we have

introduced so far are given in the next theorem.

Theorem 6. Relationship between structural properties [24,25].

Let h:Rn-*Rnbea continuous function.

(a) If h(«) is strictly increasing, then h(») is injective.

(b) If h(-) is bijective, then h(.) is homeomorphic.

(c) If h(«) is uniformly increasing, then h(«) is homeomorphic.

(d) If h(*) is bijective, then h(«) satisfies

lim Hh(x)H = « (11)
• Ilxll-x- ~ "

We will henceforth refer to (11) as the norm condition. A function
2

h:Rn -* Rn satisfying (11) need not be surjective (e.g., let y1 « x1
2

:2
For example, the function

Xly = h(x) :y± = e -e , y2 = e -e

and y = x?) . Conversely, a surjective h(') need not satisfy (11).

xl ~X2 Xl X2

can be shown to be surjective but Bh(x)ll - 0 along the line x^ = -x2>
Another structural property of an important subclass of algebraic

n-ports is the path independence of line integrals of the associated

constitutive relations.. We will now define the relevant concepts for

characterizing this property.
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Definition 2. Line integral

Let y =» f(x) be a C vector-valued function mapping an open set

X C Rn into Rn and let r[xa,xb] be a space curve from x& to o^,
represented parametrically by acontinuous and piecewise C* function
(henceforth called a piecewise C path) y:[a,b] -*• R ; namely, x& = y(a),
x = Y(b), and x, = y.(p), j - l,2,...,n, a <_ p <. b. The line integral
-b ~ j J
of f(«) along T[x ,x, ] is defined by the following sum of n Riemann

~v ' ° ~a ~b

integrals:

f f(x)-dx -f <f Y(P) ,Y'(p)>dp= £.f f,(Y(p))7!(p)dp (13)
Jr[x ,xj~ ~ - Ja " " " j=lJa JV ' J

-a ~D

Notice that we call (13) the line integral with respect to the space

curve T, and not with Kespect to the parametric function y(.) even though

T have infinitely many distinct parametric representations. This is

because (13) gives the same value no matter which ^(0 is chosen [30]. In

general, the line integral of f(-) along two distinct paths 1^ and ?2
having identical end points are different. Hence, we must specify both

the path r and its endpoints as in (13). If the two endpoints coincide

with each other, then T is a closed path and we will sometimes denote the

line integral along r by A f(x)-dx.

Definition 3. State function.

A C vector-valued function f mapping an open set X C R into R is

said to be a state function if the associated line integral (13) is

independent of any piecewise C path r C x having identical endpoints.

Such line integrals will henceforth be denoted by:

*bj f(x)-dx =f £(x)-dx (14)

6 1 1A function is said to be piecewise C if it is C everywhere except for a

finite number of points. Since the parametric representation y(') in

Def. 2 is both continuous and piecewise C , it must have finite left and

right-hand derivatives on [a,b]. Hence, each integrand fj(') YJ(#) in
(13) is bounded on [a,b] and is continuous except possibly for a finite

number of discontinuities. Therefore the line integral defined by (13)

always exists. Infact, (13) still exists even if j(-) is continuous on

[a,b] but only C almost everywhere on [a,b]; i.e., C except on a set of

measure zero [29,30].
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Definition 4. Gradient map

A vector-valued function f mapping an open set X C R into R " is

said to be a gradient map (or exact function) if there exists a C scalar

function F :X -»• R , henceforth called a potential function', *such that:

f(x) = VF(x), Vx e X (15)

where VF(x) denotes the gradient of f(«)

Theorem 7. State function and graidnet map criteria [30] •

Let f be a C vector-valued function mapping an open set X C R into

Rn. Then

1) f is a state function if, and only if, f is gradient map.

2) f is a gradient map if, and only if, the associated line integral

O) f(x)-dx = 0 along any piecewise C closed path r c X.

To check whether a line integral is path independent using Theorem 7,

we must produce a C scalar function F(x) such that f(x) = vF(x). This

is far from a trivial task. Hence it would be advantageous to develop a

systematic method for finding F(-). First of all, let us observe that if
9 1F(«) is C , then f(«) is C and its Jacobian matrix is just the Hessian

2
matrix of F(x). Now since mixed second partial derivatives of C

functions are equal to each other, we have:

3f (x) 3f,(x)
_J = —± j,k = 1,2, ..., n (16)
3xk 9xj

for all x £ X. Thus we obtain the useful property that the Jacobian matrix

of any C1 graident map is symmetric. It follows from Theorem 7 that a
necessary condition for the line integral of f(.) to be path independent is

that the Jacobian matrix of f(«) must be symmetric. To show that this

condition is not sufficient to guarantee path independence, consider the
1 2 2

C function f : X C R ->- R defined by:

f(x) =[-x2 x1]T/(x2-bc2) (17)

where X = R2 - {0} is just the "punctured" R plane; i.e., without the
origin. It is easy to verify that the Jacobian matrix of f(») is symmetric.

7In Vector Calculus a C1 function f:XCRn-»-Rnis said to be closed
if it has a symmetric Jacobian. Using this terminology, we have shown

that every C exact function is closed [30],
-32-
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2
Yet there does not exist a C scalar function F(x) such that (15) holds

[30]. Hence, the line integral of a C function f, having a symmetric
Q

Jacobian matrix, need not be path independent. The problem with (17) is
2

that the domain X is not simply connected [30]. In R , X is said to be

simply connected if every C closed path C X can be continuously shrunk

to a single point belonging to X. For example, any region with a "hole" in

it is not simply connected. Our next theorem is of fundamental importance

in nonlinear network theory.

Theorem 8. The symmetry principle [30].

A C function f :X C R -* r defined in a simply connected open set

X is a state function if and only if, its Jacobian matrix is symmetric.

Corollary. If f:XCRn + Rn is a C state function, then:

A rxF(x) =f f(x)-dx +F(xQ) (18)
Jx0

is a C potential function of f(«)» where xQ is any convenient fixed point

in X and F(xQ) is a scalar constant depending on x~. In particular, (18)
assumes the explicit form

F(x) =f((x-xQ), f(xQ+ (x-xQ)))dp +F(xQ) (19)

for a straight-line path from xn to x, or

rxl x2
F(x) =j f1(p1,0,...,0)dp1 +1 f2(x1,p2,0,...t0)dp2

x

+... j^ fn(x1(x2,...,xn_1(pn)dpn +F(xQ)

for a polyonal path along the coordinate axes.

(20)

2. Circuit-Theoretic Properties

The foundations of linear n-ports and linear network theory [13] are

built upon a few basic circuit-theoretic concepts; namely, reciprocity,

anti-reciprocity, non-energicness, losslessness, passivity, and activity.

Our objective in this section is to generalize these concepts for

algebraic n-ports and to derive their characteristic properties. To avoid

unnecessary repetitions, we make the standing assumption that all

8
In terms of Vector Calculus terminology, this example shows that not every
1

C closed function is exact.
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definitions are formulated for time-invariant lumped n-ports. These

definitions however, can be easily generalized for the time-varying case.

A. Reciprocity and Anti-reciprocity

Definition 5. Reciprocal and anti-reciprocal n-ports

An algebraic n-port N characterized by a C constitutive relation

§ = £(n) is said to be reciprocal (resp., anti-reciprocal) at an operating
point Q if its associated linearized n-port N characterized by (42) of

Sec. I is reciprocal (resp., anti-reciprocal). N is said to be reciprocal

(resp., anti-reciprocal) if it is reciprocal (resp., anti-reciprocal) at

all operating points of N. It is said to be non-reciprocal if there exists

an operating point Q where N is not reciprocal at Q.

Recall that each admissible signal pair (|(t),n(t)l of N~ must lie on
the hyper plane tangent to £. = €-i(n) at n = i"U» j = l,2,...,'n. Since

£ or n could represent v., i., <f>., or q., C.(t),n.(t) need not be a

voltage-current pair. However, by differentiating either £.t(t), or

n.'(t), or both, .j = 1,2,...,n, each admissible signal pair(§(t),n(t)J of
an algebraic n-port induces a corresponding voltage-current signal pair

(y(t),i(t)l — henceforth called a tangent v-i signal pair. It follows

from Def. 5 that an algebraic n-port N is reciprocal (resp., anti-

reciprocal) at an operating point Q if,and only if, for any two tangent

v-i signal pairs (v1(t),i'(t)j and (v"(t),i"(t)j associated with N,

<V,(s),I"(s)> « <V"(8),I,(s)> (21)

/resp., <V,(s),I"(s)> =-<V"(s),I'(s)>| (22)

where V(s) and i(s) denote the single-sided Laplace transforms of y(t) and
i(t), respectively. Using this definition, the following necessary and

sufficient conditions can be easily derived.

o

Theorem 9. Reciprocity and antireciprocity criteria [28] .

(a) An n-port resistor is reciprocal (resp., anti-reciprocal) if, and only

if, the incremental resistance matrix R(in) or conductance matrix G(v_) is

symmetric {resp.; skew-symmetric).

9
Let the linearized n-port resistor {resp., inductor, capacitor, memristor)

be characterized by either v = R(iQ)i or i = G(v0)y {resp., $ = L(i )i

or i= r((|> )$, q = C(v )v or v° S(q )q, \ =^(OS or §" W(0***
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(b) An n-port inductor is reciprocal {resp., anti-reciprocal} if, and

only if, the incremental inductance matrix L(i ) or reciprocal inductance
matrix r(<|> ) is symmetric {resp., skew-symmetric).

(c) An n-port capacitor is reciprocal {resp., anti-reciprocal) if, and

only if, the incremental capacitance matrix C(v ) or reciproacl capacitance
matrix S(qn) is symmetric {resp., skew-symmetric).
(d) An n-port memristor is reciprocal {resp., anti-recirpocal) if, and

only if, the incremental memristance matrix M(q ) or memductance matrix
W(<|> ) is symmetric {resp., skew-symmetric).

Theorem 9 is valid only for the choice of coordinates indicated in

footnote 9. The following theorem is coordinate independent and is

applicable to all n-port resistors characterized by a generalized

coordinate representation as defined in (37)-(38) of Sec. I. The same

theorem also applies, mutatis mutandis, to n-port inductors, capacitors,

and memristors.

Theorem 10. Generalized reciprocity and anti-reciprocity criteria [28].

A C n-port resistor characterized by a linearized representation

l(n)n about an operating point Q

the characteristic matrix defined by

l = A(n)fi about an operating point Q is reciprocal at Q if, and only if,

^(Dg) =[?A(DQ) +̂ T[<?MQQ) +fc]

is symmetric. It is anti-reciprocal at Qif, and only if,JK(n ) is
skew-symmetrie.

To illustrate the application of Theorem 10, let us derive the .

reciprocity criteria for a 2-port resistor N characterized by an ABCD

chain matrix by substituting the a, b, c, d matrices (for transmission

representation I) from Table 2 into (23):

SK<d> -
A B

C D

A B

CD

AC BC

_AD-1 BDJ

(23)

(24)

It follows from (24) and Theorem 10 that N is reciprocal if, and only if,

AD-BC = 1. Theorem 10 is extremely general and includes all known

reciprocity criteria as special cases. In particular, for the important

case where N is characterized by either hybrid representation I or II

with an incremental hybrid matrix H(n ) defined by
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§a
5 =

5b

?aa<V 5.b(DQ)

5ba(V ?bb(V

3a

Db

= H(nn)n (25)

we obtain the following useful corollary to Theorem 10.

Corollary.
T(a) N is reciprocal at Qif, and only if, Haa(nQ) = Saa^-O^*

Sbb(V =&(Dq>* and Bab(V "-«S.(Dq)-
(b) N is anti-reciprocal at Qif, and only if, H(nQ) is skew-symmetric.

Observe that the (p+q)-port transformer defined in (17) of Sec. I is

both reciprocal and anti-reciprocal in view of the above corollary.

Conversely, it can be proved that the only n-port resistor which is both

reciprocal and anti-reciprocal is a (p-hq)-port transformer.
It follows from Theorem 8 and 9 that the potential functions listed

in Table 3 for an n-port resistor, inductor, capacitor, and memristor

are path-independent line integrals if, and only if, the associated n-port

is reciprocal (assuming the constitutive relation is defined in a simply-
connected open subset in Rn). Even if the domain is not simply connected,

these potential functions are still well defined so long as the associated

constitutive relation is a gradient map in view of Theorem 7.

Table 3. Potential functions associated with the 4 basic reciprocal

n-ports.

Reciprocal
n-port

Potential Function

Resistor

R

Content

Q(i) =(~ Y<i).di
Jo

Co-content

§(v) =f~ i(y).dy

Inductor Inductor Energy

C I

Inductor Co-Energy

WL(i) =p J(i)-diL

Capacitor Capacitor Energy

WrW =[~ V(q)-dq ~
Capacitor Co-Energy

UUV> =f~ q(v)-dv
Jo " ~ "

C

Memristor Action Co-Action

J\W " Jo S(*),d4M
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If we let F(x) and F(y) denote the corresponding potential functions

in the left arid right columns in Table 3, and if the constitutive

relations y = f(x) are bijective, then it follows from the integration-by-

parts formula for line integrals that the following identity holds:

F(x) + F(y) = <x,y) (26)

B. Non-Energicness

Definition 6. Non-energic n-ports

An algebraic n-port N is said to be non-energic if for any admissible

signal pair (v(t),i(t)j, the total instantaneous power

n

(v(t),i(t)> = E v,(t)i4(t) =0, Vt G [tn,~) (27)v(t),i(t)> = £ v,(t)i.(t) =0, Vt G [t »)
j=l J J

Otherwise, N is said to be energic.

The (p+q)-port transformer, gyrator, conjunctor and traditor defined

in Sec. I are all non-energic. The following theorems provide necessary

and sufficient conditions for various types of non-energic algebraic

n-ports.

Theorem 11. Non-energic linear n-port criteria [32]

A linear algebraic n-portN is non-energic if, and only if, N is an

anti-reciprocal n-port resistor. Conversely, every anti-reciprocal n-port

resistor N characterized by a C hybrid representation h(«) is non-energic

if, and only if, h(») is an affine function.

Theorem 12. Non-energic n-port resistor criteria [32]

(a) An n-port resistor characterized by a hybrid representation y = h(x)

is non-energic if, and only if, h(«) assumes the form

h(x) = H (x)x (28)

where H (x) is a skew-symmetric matrix for all x.

(b) A reciprocal n-port resistor characterized by v = v(i) Vi in a cone

X is non-energic if, and only if, its content Q(±) is 0-order homogeneous.
(c) A reciprocal n-port resistor characterized by i = i(v) Vv in a cone

X is non-energic if, and only if, its co-content Q(v) is

Def. 6 and Theorem 1L are also applicable for dynamic n-ports.

See bottom of next page.
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O-order homogeneous.

Observe that even though a cone may not be simply connected, the

content and co-content are still well defined so long as the associated

constitutive relation are gradient maps in view of Theorem 7. Observe also

that (28) implies N is anti-reciprocal only if h(«) is a linear function

since H (•) is not the associated Jacobian matrix if h(«) is nonlinear.

Hence a non-energic n-port resistor characterized by a hybrid

representation must be nonlinear if it is not anti-reciprocal and linear

if it is anti-reciprocal. Our next theorem is expressed in terms of the

generalized coordinate representation and is therefore completely general.

Theorem 13. Generalized non-energic n-port resistor criteria [28).

An n-port resistor characterized by (39) of Sec. I is non-energic

if, and only if, the characteristic function

<(n) = (cKM + dr\, a£(n) + 2>n> (29)

vanishes identically.

The non-energic criteria for n-port inductors and capacitors are dual

of each other. Hence, we will consider only the capacitor case:

Theorem 14. Non-energic n-port capacitor criteria [32].

(a) A charge-controlled n-port capacitor characterized by y = y(q),

qGxC Rn is non-energic if, and only if, y(q) = 0 (i.e., each port is

equivalent to a short circuit).

(b) A voltage-controlled n-port capacitor N characterized by q = q(y)» VY

in a cone X C Rn, is non-energic if, and only if, N is reciprocal and

q(v) is O-order homogeneous.

(c) A voltage-controlled n-port capacitor N defined in a cone X C R

is non-energic if, and only if, its co-energy•'W) W is (to within an
2 •

additive constant) a C 1st order homogeneous function.

Since an n-port can not store energy if it is non-energic, Theorem

14(a) is intuitively reasonable. What is surprising is Theorem 14(b) which

shows there exists a large class of non-trivial n-port capacitors which are

nA subset X C Rn is said to be a cone if x G x implies Xx G X VX > 0.
C n 1 ~

A scalar function <f> :X Cr+R is said to be k-order homogeneous if

4>(Xx) = Xk<J)(x) VX > 0, x^ 0. A vector-valued function f:X£ C m ->- R
is said to be k-order Homogeneous if all components of f are k-order

homogeneous.
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incapable ov energy storage. For

example, the 2-port shown in Fig. 14

is non-energic since its

constitutive relation

In

q2 = *n

(v1-v2)/v1

v2/(vrv2)

and

is O-order

homogeneous. Since the energy

1U (q) = 0 for a non-energic
capacitor, it can be shown that

the co-energy of every voltage-

controlled non-energic capacitor

is given explicitly by

Ml (v) « <v,q(v)>. This follows

immediately from (26) if q(«) is bijective. For the above example, it is

easily verified that^ti/ (v) is a C 1st order homogeneous function, as it

should be in view of Theorem 14(c).

Theorem 15. Non-energic n-port memristor criteria [28].

A C charge-controlled or flux-controlled n-port memristor is non-

energic if, and only if, it is anti-reciprocal.

C. Losslessness

Roughly speaking, an n-port is lossless if whatever energy that

enters it is stored and can be recovered later. This intuitive definition

is adequate for linear n-ports but needs to be refined for algebraic

n-ports. Let 0. (£n ,n ) and Q9Un ,nn ) denote any two not necessarily
1 ~^1 ~gl ~^2 ~^2

distinct operating points in the £-n space associated with an algebraic

n-port N. An admissible signal pair (§(t),n(t)J is said to be an
admissible piecewise C path between Q~ and Q^, henceforth denoted by

T(Q1,Q2) if:
2

1. £(t) and n(t) are continuous and piecewise C Vt G [tpt2], where t^

and t« are finite numbers.

2. (§(t1),n(t1)) =(§Q ,nQ )and (§(t2),n(t2)) =UQ ,nQ ).
3. The associated admissible signal pair (v(t),i(t)j (obtained by
differentiating either £.(t) or n.,(t), or both) are continuous and

piecewise C on [t-,t«]»

Observe that if N-is an n-port resistor, then condition 3 is

redundant. However, if N is an inductor {resp., capacitor), then

+

V,

. + vc -

•c
9 *-

<na
+

vb
M'l'fflfln

12
-<—o

+

Fig. 14. A non-energic 2-port
capacitor, where
v = exp(-q ), vb = exp(qb),

a

and q £n(v ).
c
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2
£(t) = <KO {resp., §(t) = g(t)) must be C in view of condition 3.

Definition 7. Lossless n-ports

An algebraic n-port N is said to be lossless if, for any two
2

admissible piecewise C paths rl(Q1,Q2) and r"(Q.,Q2) between two
operating points Q- and Q2, the energy E(Q1,Q2) entering N while the

signal traverses from Q, to Q„ is the same in each case. Otherwise, N is

said to be not lossless.

Stated mathematically, Def. 7 implies that if

(§'(tQ M'^Q >) =(§"(tQ M'^Q >) =Ql Snd
(§'(tQ ).D'(^ )) -(§"(tJJ ),nM(t^ )J -Q2, then

(% r%
•ECQ^.Qo) ~\ <v'(t),i(t)>dt - 1 <v"(t),i"(t)>dt (30)
12 Jft " "* J rii ~

\ \

Notice that Def. 7 only requires the two admissible signal pairs to go

through the same end points 0- and Q2. The times where this occur are

completely arbitrary. For example, the first admissible signal pair may

start at Q. at t = 0 and arrives at Q2 at t = 1, while the second may

start at Q, at t = 0.5 and arrives at Q2 at t = 2. Observe also that (30)
must hold over all possible admissible signal pairs from Q1 to Q2.

Our reason for defining losslessness via admissible paths between two

points, rather than around closed paths was to allow its generalization

for dynamic n-ports where a return path may not exist. For example,

consider a dynamic 2-port capacitor with two ideal diodes in series with

each port such that the port currents i^t) _> 0 and 12(0 L° for a11
t > t . It is clear that any admissible path T in the q1~q2 plane ror
this 2-port must be a monotone increasing curve and hence T can never be

a closed path.

Our reason for requiring the admissible signal pairs in Def. 7 to be

continuous and piecewise C1 is rather subtle. To show that relaxing this
to allow discontinuous signals would lead to a contradictory

classification, consider a capacitor C characterized by the non-monotonic

charge-controlled q-v curve shown in Fig. 15(a). It follows from Def. 7
that C is lossless. Observe that any continuous and piecewise C signal

which traverses between 0- and Q2> such as the signal shown in Fig. 15(b),
must follow the q-v curve continuously. Now suppose we drive this
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Fig. 15. Two distinct paths in the q-v plane due to two signals having
identical end points.

capacitor with the discontinuous signal shown in Fig. 15(c). The resulting

path is shown by the dotted lines in Fig. 15(a), where the horizontal path

represents an instantaneous jump. It is easy to verify that the energy

E(Q,,Q2) corresponding to the 2 waveforms shown in Figs. 15(b) and (c) are
different and hence C is not lossless if we enlarge the class of

admissible signals to include discontinuous waveforms.

Theorem 16. Implications of losslessness [28].

Let N be a lossless algebraic n-port. Then

(a) For any admissible piecewise C closed path r(Q.,Q1), the energy

E(Q1,Q1) - 0.
1(b) If r,2(Qi»Q2) is any admissible piecewise C path from Q, to Q„, and

T21(Q2,Q1) is any admissible piecewise C path from Q2 to Q., then

E(Q1,Q2) " -E(Q2,Q1).

Theorem 17. n-port resistor losslessness criteria [28],

(a) Every non-energic algebraic n-port is lossless.

(b) An n-port resistor N is lossless if, and only if, it is non-energic.

Theorem 18. n-port inductor and capacitor losslessness criteria [28].

(a) A C flux-controlled or current-controlled n-port inductor is

lossless if, and only if, it is reciprocal.

(b) AC charge-controlled or voltage-controlled n-port capacitor is

lossless if, and only if, it is reciprocal.

Theorem 19. n-port memristor losslessness criteria [28].

A C charge-controlled or flux-controlled n-port memristor is

lossless if, and only if, it is non-energic.

Our next theorem provides a relationship between losslessness and the

average power
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T

Pav =limif <y(t),i(t))dt (31)
av T+« l Jo

dissipated corresponding to each admissible signal pair (v(t),i(t)).

Theorem 20. Implications of losslessness on average power [28].

Let N be a lossless n-port capacitor and let (v(t),i(t)) be any
continuous and piecewise C admissible signal pair.

(a) If N is C charge-controlled and q(t) is bounded Vt G [0,»), then

P =0.
av

(b) If N is C voltage-controlled and v(t) is bounded Vt G [0,«), then

P =0.
av

To show that the boundedness hypothesis is necessary for Theorem 20

to hold, consider the dc voltage source v = E as a charge-controlled

capacitor. If we connect this capacitor across a 1 ohm resistor at t = 0,

then i (t) = -E, t ^ 0 and q (t) -j- -« as t -*• «. Hence P ^0. Similarly,
c c av

if we apply a unit step current source i (t) = u(t) across alF capacitor

at t - 0, then again q (t) -*• « and hence P 4 0. On the other hand,

boundedness is not a necessary condition for average power to vanish. For

example, if we apply the unit step current source across a capacitor

characterized by v - sin q, then q(t) -*• « and yet P =0.

The dual of Theorem 20 obviously applies for n-port inductors. Using

some rather delicate mathematical analysis, the following converse of

Theorem 20 can be proved to hold for all algebraic n-ports.

Theorem 21. Implications of zero average power on losslessness [28].

Let N be analgebraic n-port characterized by a continuous constitutive

relation £ = £(n). If the average power P =0 for every admissible
" " 1 /aV \continuous and piecewise C signal pairs (v(t),i(t)j associated with a

bounded n(t), then N is lossless.

D. Passivity and Activity

Although the classical definition of passivity [31] is adequate for

linear n-ports, it is flawed with serious conceptual difficulties and

inconsistencies for nonlinear n-ports. The difficulty stems from the

standard assumption of the zero state x •» 0 as the unique relaxed state

where the energy storage is zero [31.33]. For example, a linear capacitor

or inductor is said to be relaxed at t • tfl if q (tn) a 0 or f.(t0) = 0,

respectively. In particular, one usually assumes q (-») = 0 and <J> (-») = 0
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without questioning their physical significance. It turns out that for

nonlinear n-ports, this assumption is untenable because it is possible for

a nonlinear n-port to have either no equilibrium point, or multiple

equilibrium points. In the former there exists no state of zero initial
storage while in the latter there is no justification to prefer one state

over several other equally valid states of zero energy storage.

Consequently, any general definition of passivity for nonlinear n-ports

must not involve the concept of an initial state of zero energy storage.

Although the passivity definition for algebraic n-ports to be proposed

in this section is unconventional, it is entirely self-consistent and, when

generalized to dynamic nonlinear n-ports having a state representation

[34-36], it can be shown to be equivalent to the definition proposed by

Rohrer [35] and Willems [36].

Let Q(£n>nn) be an operating point of an algebraic n-port N. An
admissible signal pair U(t),n(t)j is said to be an admissible piecewise C
path through Q, henceforth denoted by TQ if:

1. £(t) and n(t) are continuous and piecewise C functions of t

Vt G [0,T], 0 _< T < eo.

2. §(0) = |Q and n(0) = nQ
3. The associated admissible signal pair fy(t),i(t)j is continuous

and piecewise C1 Vt G [0,T].

Definition 8. Available energy at Q.

We define the available energy EA(Q) at an operating point Q of an

algebraic n-port N by

T

EA(Q) =sup f -<y(t),i(t)> dt (32)

where the "supremum" is taken over all admissible piecewise C paths

through Q, and over all T ^ 0.

Observe thatin view of our associated reference convention, energy

enters N whenever <v(t),i(t)> > 0. Conversely, energy is being extracted

from N whenever <y(t),i(t)> < 0. Observe that EA(Q) >_ 0 since we can
choose T = 0 in (32) if necessary. Physically, EA(Q) is the maximum

energy that can be extracted over all time t _> 0, when the n-port is

initially operating at Q at t = 0. Observe that we use "sup" instead of

"max" in (32) since the latter may not exist while the former does.
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Definition 9. Passive and active n-ports.

An algebraic n-port N is said to be passive if the available, energy

E.(Q) at each operating point of N is bounded. N is said to be active if

it is not passive.

It is important to distinguish between the value E (Q) of the avail

able energy function at Q, and the function E.(.) itself in Def. 9.

Passivity requires only the former to be bounded. For example, the avail

able energy of a 1 Farad capacitor at the operating point v = vn is given
12

by E.(Q) = ~r v.. It follows from Def. 9 that this capacitor is passive

since EA(Q) < » Vvn G R even though E. -*- » as |vn| •> » (remember » is

not a point in R ). For complicated n-ports, it is far from a trivial

task to calculate E.(.)» Consequently, the following theorems for testing

passivity are extremely useful.

Theorem 22. n-port resistor passivity criteria [28].

An n-port resistor N characterized by a generalized coordinate

representation is passive if, and only if, k(5) > 0 V5 £ 1 ', where <(n)

is the characteristic function defined in (29). In particular, N is

passive if, and only if, (y,i> >_ 0 V (y,i) satisfying the constitutive

relation of N.

Corollary.

1. A one-port resistor is passive if, and only if, its v-i curve lies in

the first and third quadrants only.

2. An n-port resistor N characterized by a continuous hybrid representa

tion y = h(x) is passive if, and only if, h(0) = 0.

3. Every non-energic n-port resistor is passive.

Theorem 23. n-port resistor activity criteria [28].

An n-port resistor characterized by a hybrid representation y = h(x)

is active if h(0 does not depend on some port variable x, ; i.e.,

Yj - hj(x1,x2,...,xk_1,xk+1,...,xn), j=l,2,...,n (33)

Corollary.

Every linear or nonlinear controlled source (which is not controlled

by its associated port current or voltage) is active.

Theorem 24. n-port inductor passivity criteria [28].

(a) A reciprocal C flux-controlled n-port inductor is passive if, and

only if,
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inf I i($)"dq > -~ (34>
,,-_ n J 0~4>Gr

(b) A reciprocal C current-controlled n-port inductor is passive if, and

only if,

5q
>(i)-di > -« (35)

«»• 5~ "

Theorem 25. n-port capacitor passivity criteria L28].

(a) A reciprocal C charge-controlled n-port capacitor is passive if, and

only if,

,9
inf 1 v(q)»dq > -« (36): I v(q)»dq

(b) A reciprocal C voltage-controlled n-port capacitor is passive if, and

only if,

yGR

Corollary.

(a) A C flux-controlled or current-controlled one-port inductor is

passive if the area under the i-<J> curve in the 2nd and 4th quadrants is

bounded.

(b) AC charge-controlled or voltage-controlled one-port capacitor is

passive if the area under the v-q curve in the 2nd and 4th quadrants is

bounded.

To illustrate the application of this corollary, consider the 4 v-q

curves shown in Fig. 16. Since the area under the 2nd and 4th quadrants

(shown shaded) is bounded in Figs. 16(a), (b), and (c), it follows that

the associated one-port capacitors are passive in view of the above

corollary. Since this corollary provides only a sufficient condition for

passivity, it is not applicable in Fig. 16(d) since the area is infinite.

However, we can use Theorem 25 to conclude that this capacitor is active.

It is interesting to observe that the classical definition of passivity

would have classified all 4 capacitors as active [37]. Our definition

classifies the first 3 capacitors as passive since only a finite amount of

energy can be extracted in each case. To show that our classification is

more reasonable, observe that the v-q curve in Fig. 16(a) is

-45-

,v

inf \ ~q(v)-dv > -« (37)l~q(v)«dv >
nJ0"



v=l+q

(a) (b) (c) (d)

Fig. 16. The v-q curves associated with 4 one-port capacitors.

indistinguishable from that of a 1-Farad capacitor having an initial

charge of 1 coulomb. Such a capacitor is clearly passive since passivity

should be defined as an inherent property of an element, and should not

depend upon initial conditions. Moreover, since linear circuit theory

implies that every "active" one-port is "potentially" unstable under

passive embeddings, the capacitor in Fig. 16(a) can never be unstable (in

the sense of Lyapunov) when connected to a passive network and therefore

should be classified as passive.

The passivity criteria in Theorems 24 and 25 require that the n-port

inductors and capacitors be reciprocal. Our next theorem shows that this

condition is necessary for passivity.

Theorem 26. n-port inductor and capacitor activity criteria [28].

(a) Every non-reciprocal C flux-controlled or current-controlled n-port

inductor is active.

(b) Every non-reciprocal C charge-controlled or voltage-controlled n-port

capacitor is active.

Theorem 27. n-port memristor passivity criteria [28].

A C charge-controlled or flux-controlled n-port memristor is passive

if, and only if, its incremental memristance matrix M(q) or meraductance

matrix W(<j>) is positive-semi-definite.

Finally, since a "lossless" or "not lossless" n-port may be either

passive or active, we propose the following definition to distinguish the

various possibilities.

Definition 10. Lossy and Generative n-ports.

An algebraic n-port is said to be lossy if it is passive and not
lossless. It is said to be generative if it is active and lossless.
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E. Local Passivity and Local Activity

All physically realizable n-ports having no internal power supplies
must be passive since at most only a finite amount of energy can be
extracted. Therefore, any realistic algebraic n-port circuit model of a

multi-terminal or multiport device must be passive. From the applications

point of view, it is important to know whether a given device is capable
of power amplification or oscillation when operating over some "dynamic
range." An important characterization of a device's dynamic range is

given by the next definition.

Definition 11. Locally passive and locally active n-ports.

Let N be an algebraic n-port characterized by a global representation

£= £(n). Let QU0»nQ) be an operating point and let g(n) be
differentiable at n = n so that its associated linearized n-port N is

defined by (42) of Sec. I. We say N is locally passive at Q if N is

passive. Otherwise, N is said to be locally active at Q. N is said to be
locally passive if it is locally passive at all operating points of N. It

is said to be locally active if there exists at least one operating point

where N is locally active.

Theorem 28. Local passivity criteria [28].

(a) An n-port resistor is locally passive if, and only if, its incremental

resistance or conductance matrix is positive semi-definite.

(b) An n-port inductor is locally passive if, and only if, its incremental

inductance or reciprocal inductance matrix is positive semi-definite.

(c) An n-port capacitor is locally passive if, and only if, its

incremental capacitance or reciprocal capacitance matrix is positive semi-

definite.

(d) An n-port memristor is locally passive if, and only if, its

incremental memristance or memductance matrix is positive semi-definite.

The following corollary provides a relationship between locally

passive and increasing n-ports (Theorem 2).

Corollary.

An n-port resistor, inductor, capacitor, or memristor is locally
passive if, and only if, its constitutive relation (associated with the
representations in Theorem 28) is an increasing function.

Theorem 28 can be generalized to a coordinate independent form. We

will state the result for n-port resistors.
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The°rem 29< ^neralized local passivity criteria for n-oorr r.„,^,r2R1.
An n-port resistor characterized by ageneralized coordinate

representation is locally passive if, and only if, it characteristic
matrixr]v(D) as defined by (23) is positive semi-definite.

The following corollary is useful in the synthesis of 2-port resistors
[18,38-39].

Corollary. Local passivity criteria via the chain matHv.

(a) A2-port resistor Ncharacterized by hybrid representation I(A BCD
chain matrix) is locally passive if, and only if, AC >0 and 4ABCD
j^ (AD+BC-l) at each operating point.

(b) If Nis reciprocal, then Nis locally passive if, and only if, AC >0.
(c) If N is anti-reciprocal, then N is locally passive.
(d) If N is locally passive, then all 4parameters A, B, C, and Dmust be
either all non-negative, or all non-positive. Moreover, if N is also
reciprocal, then A and D can not be zero.

An n-port may be passive but not locally passive, or vice-versa. Our
next theorem provides a relationship between these two properties.

Theorem 30. Passivity and local passivity criteriar281.
A locally passive n-port resistor characterized by aC1 hybrid

representation y=h(x) is passive if, and only if, h(g) = g.

F- Local Non-energicness and Local Losslessness

Definition 12. Locally non-energic and locally lossless n-ports
An algebraic n-port Nis said to be locally non-energic at Q(resp.,

locally lossless at Q) if its linearized n-port NQ is non-energic (resp.]
lossless). Nis locally non-energic (resp., locally lossless) if it is '
locally non-energic (resp., locally lossless) at all operating points of N.

Theorem 31. Local non-energicness criteria [28].

(a) An n-port resistor is locally non-energic if, and only if, it is
anti-reciprocal.

(b) An n-port inductor is locally non-energic if, and only if, its
incremental inductance or reciprocal inductance matrix is a zero matrix
(i.e., $(i) =^ or i(^) =iQ).
(c) An n-port capacitor is locally non-energic if, and only if, its
incremental capacitance or reciprocal capacitance matrix is a zero matrix
(i.e., q(y) = qQ or y(q-) = yQ) .
(d) An n-port memristor is locally non-energic if, and only if, it is
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anti-reciprocal.

Theorem 32. Local losslessness criteria [28].

(a) An n-port resistor is locally lossless if, and only if, it is

anti-reciprocal.

(b) An n-port inductor is locally lossless if, and only if, it is

reciprocal.
(c) An n-port capacitor is locally lossless if, and only if, it is

reciprocal.
(d) An n-port memristor is locally lossless if, and only if, it is

anti-reciprocal.

Corollary.

(a) An n-port resistor or memristor is locally lossless if, and only if,

it is locally non-energic.
(b) An n-port inductor or capacitor is locally lossless if, and only if,

it is lossless.

G. Relaxed Algebraic n-ports

Roughly speaking, an operating point on an n-port capacitor or

inductor is said to be relaxed if it does not discharge energy when

connected to an external resistor. For linear n-ports, the origin is the

relaxed point and there is no ambiguity when we say N has zero initial
condition or N is initially relaxed. To show that this notion is too crude

for nonlinear n-ports, consider the v-q curve shown in Fig. 16(b). There are

5 operating points (Q0,Q1,Q2»Q3»Q4) wh±ch can be 8aid t0 have a zero
initial condition. A careful analysis will reveal that no net energy can

be extracted from this capacitor if, and only if, its initial operating

point is at Q, and hence only Q4 qualifies as a relaxed point. This
observation justifies our next definition.

Definition 13. Relaxed operating point.

An algebraic n-port is said to be relaxed at an operating point Q if

its available energy is zero at Q; i.e., EA(Q) = 0.
A careful analysis of the v-q curves in Fig. 16 shows that the first

two capacitors have exactly one relaxed operating point at Q1 and Q^,

respectively, whereas the last two capacitors do not have any. For the
Josephson junction iductor i-<{> curve shown in Fig. 17(a), there are

infinitely many relaxed operating points; namely, <J> « + 2ir(n/k), n
= 1,2,... . Observe that if we displace this i-«J> curve vertically as

shown in Fig. 17(b) (this is equivalent to connecting a current-source
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i = I- across the
s 1

inductor), the resulting

inductor does not have

any relaxed operating

points. Since it is

far from a trivial task

to determine whether an

operating point is relaxed

or not, the following

theorems can be used for

this purpose.

Theorem 33. Relaxed

operating

point

criteria[28]. Fig. 17. Two nonlinear one-port inductors.

(a) Every operating point of a passive n-port resistor is relaxed.

(b) An operating point Q of a reciprocal C flux-controlled n-port

inductor is relaxed if, and only if,

Jk
i(<J>).d<|> > 0, V<J» G R

i=I0sink<£

i=I0sink<£ +1

,0
(c) An operating point Q of a reciprocal C charge-controlled n-port

capacitor is relaxed if, and only if,

V y(q)-dq >. 0, Vq G R
Jq„

(d) Every operating point of a passive n-port memristor is relaxed.

Corollary.

A reciprocal C flux-controlled n-port inductor or charge-controlled

n-port capacitor is passive if it has at least one relaxed operating

point.

Theorem 34. Relaxed n-port implies passivity [28].

Every active algebraic n-port characterized by a continuous

constitutive relation has no relaxed operating points.

It follows from Theorems 33 and 34 that the inductor in Fig. 17(a) is

passive while that in Fig. 17(b) is active.

n
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Theorem 35. Necessary conditions for relaxed operating point [28].

(a) If a reciprocal C° flux-controlled or current-controlled n-port
inductor N has a relaxed operating point Q, then iL(Q) = 0 and N is

locally passive at Q.

(b) If a reciprocal C charge-controlled or voltage-controlled n-port

capacitor N has a relaxed operating point Q, then yc(Q) = 0 and N is

locally passive at Q.

Theorem 36. Necessary conditions for multiple relaxed operating points[28].

(a) Let Qn be a relaxed operating point of a reciprocal C flux-controlled
n-port inductor. Then 0- is also a relaxed operating point only if

\
i(<J)).d<J. = 0 (40)J

J

'0

(b) Let Qn be a relaxed operating point of a reciprocal C charge-

controlled n-port capacitor. Then 0- is also a relaxed operating point

only if

\
v(q).dq = 0 (41)

".
It follows from Theorem 36 that the existence of more than one relaxed

operating points for inductors and capacitors is somewhat rare since (40)

and (41) are rather stringent conditions.

3. Invariance Properties Relative to Representation and Datum of

Multi-terminal Elements.

Since the circuit-theoretic properties defined in Sec. 2 are

independent of the choice of representation of the n-port's constitutive

relation, it is clear that they are invariant properties of an algebraic

n-port or an (n+l)-terminal element with respect to some datum terminal.

Our objective in this section is to investigate what happens if a

different datum terminal is chosen. First of all, observe that an

(n+l)-terminal element N (other than R, L, C, M) may be an algebraic

n-port with respect to one datum terminal but becomes a dynamic n-port

with respect to another datum terminal. For example, the 3-terminal

element N characterized by i, = f,(v..,i2) and <f>_ = f2(v,,i2) with

terminal 3 chosen as datum is an algebraic 2-port. However, N is not an
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algebraic 2-port if terminal 1 or 3 is chosen as datum. The following
theorems show what properties are truly invariant in the sense that they
do not depend on the choice of representation or the choice of datum.

Theorem 37. Power invariance theorem [28].

The total instantaneous power p(t) = (y(t),i(t)> entering an

(n+l)-terminal resistor, inductor, capacitor, or memristor is independent

of the choice of the datum terminal.

Theorem 38. Invariant structural and circuit-theoretic properties [28].

The following properties are invariants of an (n+l)-terminal algebraic

element N:

(a) Structural properties: increasing, strictly increasing, uniformly

increasing, and strongly uniformly increasing.

(b) Circuit theoretic properties: reciprocal, anti-reciprocal, non-

energic, lossless, passive, locally non-energic, locally lossless, and

locally passive.

It follows from Theorem 38 that the properties listed under (a) and

(b) are truly inherent attributes of an algebraic n-port or (n+l)-terminal

element.

III. Synthesis of Nonlinear Resistive n-ports

Theorems 3a and 3b of Sec. I assert that any nonlinear algebraic or

dynamic n-port can be realized using only linear elements and one nonlinear

n-port resistor. Consequently, the basic nonlinear n-port synthesis

problem reduces to that of realizing a prescribed constitutive relation

f(y,i) = 0 using a minimal set of practical building blocks. Since only

2-terminal resistors characterized by monotone increasing v-i curves can

be accurately realized in practice without running into instability

problems [18,39,40], only such elements qualify as basic nonlinear building

blocks. Our objective in this section is to investigate the state-of-the-

art of the following yet unsolved problem:

Basic n-port resistor synthesis problem. Given a constitutive relation

f(v,i) =0, synthesize an n-port using only independent sources, linear

controlled sources, and 2-terminal resistors (characterized by monotone

increasing v-i curves passing through the origin) as the basic building

blocks.

Any n-port realization N can be decomposed as shown in Fig. 18 where

N, is an (n+m)-port containing only linear resistors and linear controlled

sources, and N2 is an m-port containing only nonlinear resistors and
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Fig. 18. N can be decomposed into a linear (n+m)-port N^^ and a nonlinear

m-port N«.

independent sources. Since N2 contains only 2-terminal monotone increasing
resistors and independent sources, it is easy to show that N2 is a

reciprocal and locally passive (increasing) m-port [24,41]. It follows
from this observation that the linear elements alone must be responsible

for any non-reciprocity or non-monotonicity in the resulting realization.

Hence, the difficult problem of synthesizing an arbitrary constitutive

relation would be greatly simplified if we can decompose it into reciprocal

and locally passive components. Methods for accomplishing these

decompositions will be presented in the next two subsections. For

simplicity, we will consider only the case where the constitutive relation

is voltage-controlled; i.e., i = g(y). The dual results clearly hold also

for the current-controlled case. In fact, the methods can also be

generalized for hybrid representations.

1. Decomposition into Reciprocal and Linear n-ports

Given a C constitutive relation

i= g(y), i»Y G *n

with an incremental conductance matrix

Q(y) = 3g(y)/3y
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one might be tempted to decompose G(y) into a symmetric and a skew-symme
tric part as in linear synthesis [31,33]; namely,

G(y) -\ [c(y) +GT(y)] +\ [g(v) -GT(y)] =Gg(y) +G(y) (3)
Unfortunately, such a direct generalization is not valid for nonlinear
n-ports because not every nxn matrix function is the Jacobian of some

vector-valued function. In fact, our next theorem identifies the class of

realizable skew-symmetric matrices.

Theorem 1. Anti-reciprocal n-port realizability criterion [221.

Every anti-reciprocal n-port resistor characterized by a C2 hybrid
representation is affine in the sense that

y = h(x) = Hx + c (4)

where H is an nxn constant skew-symmetric matrix and c is an nxl constant
vector.

It follows from Theorem 1 that a necessary (but not sufficient)

condition for (3) to be realizable is for Ga(y) to be a constant matrix.
This observation dealt a severe blow to any hope of synthesizing nonlinear

n-ports using only reciprocal and anti-reciprocal elements. To overcome

this problem, we must identify some more general classes of realizable

non-reciprocal n-ports which include anti-reciprocal n-ports as a proper

subclass. Two useful generalizations have been identified [42-43]:

Definition 1. Quasi-antireciprocal n-ports

A C voltage-controlled n-port resistor is said to be quasi-

antireciprocal if its incremental conductance matrix G(y) can be decomposed
into a skew-symmetric matrix G (v) and a diagonal matrix G,(v); i.e.,

~a ~ —q — '

9(y) " ?a(Y> + 9-d(Y> (5)

Definition 2. Solenoidal n-ports

A C voltage-controlled n-port resistor is said to be solenoidal if

g(y) has zero divergence; i.e.,
A n

div g(y) = £ G±1(y) =0 (6)
i=l

Every anti-reciprocal n-port is quasi-antireciprocal and solenoidal.

The converse is of course not true. Moreover, unlike anti-reciprocity

(which is an invariant proeprty), it is easy to find examples of quasi-

antireciprocal or solenoidal n-ports whose inverse representations fail to
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possess either property. Observe that a quasi-antireciprocal n-port need

not be solenoidal, or vice-versa. However, since condition (6) is much

weaker than condition (5), the class of solenoidal n-ports is, roughly

speaking, much larger than the class of quasi-antireciprocal n-ports.

Our motivation for introducing these two classes of n-ports is given by

the following theorems.

Theorem 1. Reciprocal-quasi-antireciprocal decomposition [42]

(a) Every C voltage-controlled 2-port resistor can be decomposed into a

parallel connection of a reciprocal and a quasi-antireciprocal voltage-

controlled 2-port resistor.

(b) Every C voltage-controlled n-port resistor characterized by a

pairwise-coupled constitutive relation

n

±3 =8j(vi»v2,,,,,vn) =? ^k^j'V' j=1»2»---»n (7)

can be decomposed into a parallel connection of a reciprocal and a quasi-

antireciprocal voltage-controlled n-port resistor.

Theorem 2. Synthesis of quasi-antireciprocal n-ports [42]

(a) Every C voltage-controlled quasi-antireciprocal 2-port resistor can

be synthesized by cascading a reciprocal voltage-controlled 2-port resistor

with a gyrator (see Fig. 19).

O 1

o

G=l

)(

•I
Reciprocal

2-port

resistor

'2

+

v2

Fig. 19. Decomposition of a quasi-
antireciprocal 2-port resistor.

2
(b) Every C voltage-controlled quasi-antireciprocal n-port resistor can

be synthesized using at most y n(n-l) voltage-controlled quasi-

antireciprocal 2-port resistors, and at most n 2-terminal voltage-

controlled resistors. (See Fig. 20 for the case n=4).

Corollary.

Every C voltage-controlled quasi-antireciprocal n-port resistor can
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Fig. 20. Decomposition of a quasi-antireciprocal n-port resistor.

be synthesized using only 2-terminal voltage-controlled resistors,

reciprocal voltage-controlled 2-port resistors, and gyrators.
Since Theorem 1(a) holds for all C voltage-controlled 2-port

resistors, we have obtained a complete generalization of (3) for n=2.

However, Theorem 1(b) gives only a partial generalization since it is
valid only for "pairwise-coupled" constitutive relations. In both cases,

explicit formulas are given in [42] for specifying the constitutive
relations of the component n-ports. A complete generalization for

arbitrary n-ports is given by our next theorem.

Theorem 3. Reciprocal-solenoidal decomposition [43].

Every C1 voltage-controlled n-port resistor can be decomposed into a
parallel connection of a reciprocal and a solenoidal voltage-controlled
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n-port resistor.
1

Since this theorem is valid for all C voltage-controlled n-port

resistors, it can be considered as a nonlinear generalization of the well-

known decomposition of a linear n-port into a reciprocal and an anti-

reciprocal n-port. Unlike theorem 1, however, the constitutive relations

of the reciprocal and the solenoidal n-ports cannot usually be expressed

in explicit form because the above decomposition requires solving a

nonlinear Poisson's equation whose solution, though always exists, may not

be obtained in closed form except in special cases. Our next result shows

how solenoidal n-ports may be further decomposed into simpler building

blocks.

Theorem 4. Synthesis of solenoidal n-ports [43]

Every C solenoidal voltage-controlled n-por«t resistor can be

synthesized using at most j n(n-l) reciprocal voltage-controlled n-port

resistors, and at most j n(n-l) linear 2n-port resistors. (see Fig. 21

for the 2-port case).

Corollary.

Every C1 voltage-controlled n-port resistor can be synthesized using
only reciprocal voltage-controlled n-port resistors and linear elements.

2. Decomposition into Locally Passive and Linear n-ports.

Our objective in this section is to show that under rather mild

assumptions, every reciprocal n-port resistor can be synthesized by

terminating a linear 2n-port — called a linear transformation converter

(LTC) — by a reciprocal and locally passive n-port.

Definition 3. Linear transformation converter (LTC) [44]

A linear 2n-port is called an LTC if it is characterized by a non-

singular transmission matrix; namely,

v
a

i
aJ

next.

A B

C D

Vb

.-v

(8)

There are three basic types of LTC building blocks which we define

Definition 4. 2n-port rotator, reflector, scalar

(1) An LTC is said to be a 2n-port rotator if it is characterized by a

2nx2n orthogonal transmission matrix having a positive determinant.

(2) An LTC is said to be a 2n-port reflector if it is characterized by a
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Fig. 22.

2n-Port

(n)

'n*l

V.
n*l

'n*2
—• •♦

*n*2

'2n

*2n *°

*b v0

Zn-Port LTC

* [£>Mfe]
dtl JJ, * 0

2n - Port Rotator

W-HM
d»tTR«l

2n-Ppft Reflector

det Xr —I

2n-Port Scotof

MM*]
TR is a diagonal matrix

The symbol and terminal characterization for a 2n-port LTC,

rotator, reflector, and scalor.

-$ « «

(•> (c)

Kiq<H; « re,
m=°

(b) (d)

Fig. 23. Four basic cascade configurations for realizing a 2n-port LTC

where det TD > 0, whereas configurations (c) and (d) correspond to the
~R

case where det T < 0.

Theorem 5 shows that every LTC can be realized using only 3 basic

building blocks. The significance of the LTC lies in its capability of

transforming a locally active n-port resistor into a locally passive

n-port resistor.

Theorem 6. LTC-locally passive n-port resistor decomposition [28].

Every C and reciprocal voltage-controlled n-port resistor charac

terized by a constitutive relation i = i(v) satisfying
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a^y)
8v,

< M < «, Vv, Vj,k « l,2,...,n (9)

can be synthesized by connecting a reciprocal and locally passive n-port

resistor across a reciprocal 2n-port LTC. (See Fig. 24). In particular,

the LTC can be synthesized using n identical negative resistors with a

conductance G = -(nMfe), where e is any positive number.

2n-port
LTC

+ .

o—

o-

•n

-(nM +e) mho

-(nM+e) mho

-(nM +6) mho

V

v2

-O

->•

In

Reciproca
and

locally
passive
n-port

resistor

Fig. 24. Synthesis of reciprocal n-port resistor.

1
Observe that since the constitutive relation i(v) is C , (9) is

always satisfied on a compact domain. Since all physical n-ports must

have a bounded dynamic range, it is clear that (9) represents very little

loss of generality.

3. The Last Synthesis Hurdle

The last two sections show that the basic n-port resistor synthesis

problem reduces to that of realizing a reciprocal and locally passive

n-port resistor. If we allow only locally passive 2-terminal resistors

as building blocks, then this problem includes the classic "linear
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resistor n-port synthesis problem" [45] as a special case.1 Consequently,
we must allow at least negative resistors, or ideal transformers as

additional building blocks. We therefore close this section with the

question: "can any reciprocal and locally passive n-port resistor be

realized using only locally passive 2-terminal resistors and ideal

transformers, or negative resistors?"

IV. Qualitative Properties of Dynamic Nonlinear Networks.

The dynamic behaviors of linear networks are simple and a complete

theory has been developed. In contrast to this, the dynamic behaviors of

nonlinear networks can be extremely complex and unpredictable, even for

simple networks. For autonomous networks, i.e., networks containing only

time-invariant lumped elements and dc sources, there may be several

equilibrium points, such as those associated with a flip-flop circuit

having different stability properties [39]. For "completely stable"

circuits each solution must tend to an equilibrium point determined by the

initial condition. A non-completely stable circuit, on the other hand,

could display a great variety of exotic qualitative phenomena [46]. The

simplest behavior consists of periodic oscillations. Even then, depending

on the initial condition, a circuit may support several distinct periodic

oscillations having distinct frequencies. Much more complicated behaviors

are possible, however. For example, an autonomous network could support

one or more almost periodic oscillations [47], In fact, even more bizarre

behaviors resembling stochastic processes have been observed [48].

For non-autonomous networks, i.e., networks containing time-varying

elements, or ac sources, a periodic input may give a periodic or non-

periodic output [46-47]. In the former case, the period of the output

waveform need not coincide with that of the input signal. Moreover,

various modes of ferroresonance and jump phenomena could occur. In the

latter case, subharmonic oscillations and various synchronization

phenomena have been widely observed.

Both autonomous and non-autonomous networks may also exhibit finite

escape time solutions [49], i.e., solutions tending to » in a finite time.

For linear n-ports [45], a necessary condition for a symmetric conduct

ance matrix G to be realizable using only linear positive resistors is

for G to be a paramount matrix. A sufficient realizability condition is

for G to be a dominant matrix. However, if negative resistors or ideal

transformers are also allowed as building blocks, then any symmetric G

can always be realized.
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Even if a solution is bounded in finite time, it could still become

unbounded as t -*• °°.

The qualitative theory of nonlinear networks is concerned with the

analysis of the various nonlinear behaviors described in the preceding

paragraphs. The objective is to derive conditions under which certain

nonlinear phenomenon may, or may not occur, without actually solving the

differential equations describing the network. In particular, the theory

is aimed at identifying various subclasses of nonlinear networks displaying

similar qualitative behaviors.

Although a large body of mathematical results relevant to this study

is available, a direct application of these results often lead to circuit

conditions which are either too restrictive or artificial. The goal of

"qualitative theory of nonlinear networks" is to derive useful theorems

involving physically meaningful conditions. In particular, it would be

most desirable that the conditions be expressed in terms of the network

topology and-the elements' constitutive relations. Any additional

conditions of a mathematical nature should be readily verifiable,

preferably by engineers having only rudimentary mathematical trainings.

Although many more years of research will be needed to develop such a

qualitative theory of dynamic nonlinear networks, research in this area

over the past three decades have provided a firm foundation for building

such a theory [50-78]. Our objective in this lecture is to focus on some

of the recent developments in this area.

1. Formulation of State Equations.

Let^\l be an RLC network containing multi-terminal and multiport

resistors, inductors, capacitors and independent voltage and current

sources. Linear and nonlinear controlled sources are also included since

they can be considered as multiport resistors. Without loss of generality,

each (n+l)-terminal element or n-port can be modeled by "n" "coupled11

2-terminal elements. The reason for doing this is to allow an (n+1)-

terminal element or an n-port to be represented by an element graph so that

topological results from graph theory may be brought to bear. For example,

the graphs corresponding to the elements in Figs. 1(a) and (b) are shown

in Figs. 25(a) and (b), respectively.

Our goal in this section is to show how the state equations for (JvJ
may be formulated. To do this, it is convenient to regard all multi-

terminal and multiport "capacitors and inductors,-as "coupled" 2-terminal

capacitors and "coupled" 2-terminal inductors, and to connect them across
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9

•

(a) (b)
Fig. 25. (a) Graph of an (n+1)-terminal

element, (b) Graph of an n-port.

an n-port resistor N as shown in Fig. 26, where n = nc+n_ , n^ being the

number of capacitor-terminated ports, and n_ being the number of inductor

terminated ports. Without loss of generality, we can always choose the

polarity as shown in Fig. 26 so that the capacitor voltage is equal to the

port voltage, and the inductor current is equal to the port current. We

assume that the n-port resistor N admits the following hybrid

representation:

i - h (v ,i ;u )
-a ~a -a ~d -o

Yb = Mvib;V

where

US " [h h]

(1)

(2)

(3)

denotes the source vector with E„ and I representing the voltages and

currents of all voltage and current sources in N, respectively. Now assume

the constitutive relations of the capacitors and inductors can be

represented either in the "voltage and current-controlled" form

9C = 9c(Yc)

*L " *L(iL>

or in the "charge and flux-controlled" form

?c = ^c(9c)

LThis corresponds to the hybrid representation 2 in Sec. I.
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C„ zkn

L

LnL i V|-nL VbnL
' « O O—

Fig. 26. Any RLC nonlinear network lA) can be represented by an
n-port resistor N terminated by coupled 2-terminal
capacitors and inductors.

(7)

From Fig. 26, we obtain i = -i , v '= v , i = i, and vT = -v. . The

state equations of N corresponding to (4) and (5) are therefore given by:

k =-t"1^L)^b(^C^L^S) "?L(YC'iL^S)
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where v and i. are the state variables, and where C(yc) = 3qc(yc)/3Yc de~
~C "L

notes the np*nrincremental capacitance matrix of the capacitor, and where
tM ^ = 3d> (i )/3i denotes the nT xn_ incremental inductance matrix of the
rvil/ iL ~L ~L L L
of the inductors. If we choose gc and JL instead as state variables, then
the state equations of N corresponding to (6) and (7) are given by:

Now if we define

r—« -^

p n
"~ —N r— —^ r— "->

A
x =

V
-a v-c

a
. y -

i
-a

_.

ic
A

, z =

9c

ib h \ ?L *L

then (l)-(2) describing the n-port resistor N may be recast into the

compact form

y = h(x;u )

where

*• [5. */
The state equations (8)-(9) now assume the form

-1x = - D (x)h(x;u ) = f(x;u )

where

D<x)*
C(x)

L(?)

Similarly, (10)-(11) may be recast into the compact form'

z£-h(g(z);us) =f(z;us)

2The reader is cautioned that our notations here differ from those in
[69-72]. Specifically, the vectors x, y, z, h(x), and §(z) in this
section correspond to xp, -y ,zp, gp(?p), and hp(zp) in [69-72].
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where

«<:> • [Vsc> ii^]* <18>
If all sources in N are dc, then u is a constant vector and the network

(JvJ is said to be autonomous. Otherwise, u = u (t) and uM is said to be
non-autonomous.

The preceding state equation formulation is deceptively simple

because it assumes that the hybrid representation of N is given explicitly

by (l)-(2), and that the capacitors and inductors are characterized by

either (4)-(5), or (6)-(7). While the latter assumption is usually

satisfied by most nonlinear networks, the former is not. It is easy to

find examples where N cannot be described by (l)-(2) [11,57]. Indeed,

this hybrid representation is defined if, and only if, i and v. are

uniquely determined by any port voltage y and any port current i, , and
~a ** d

for any value of the source vector u„. Hence the basic issue here is to

determine the existence and uniqueness of the solution of the resistive

network obtained by replacing all capacitors by voltage sources and all

inductors by current sources, and then letting all external and internal

sources assume all possible values. This subject has been studied

extensively over the past decade and a large collection of results are now

available in the literature [9,57-68,74-76].

It is clear from Fig. 26 that the hybrid representation (l)-(2)

cannot be defined if there exists at least one loop formed exclusively by

capacitors and voltage .sources (C-E loop), or a cut set formed exclusively

by inductors and current sources (L-J cut set). This is because the

voltage v cannot be arbitrarily prescribed if lAJ contains a C-E loop,

while the current i, cannot be arbitrarily prescribed if cjvl contains an

L-J cut set. This is the reason why many papers on dynamic nonlinear

networks assume apriori that eAI contains neither C-E loops nor L-J cut
sets since realistic models of many semiconductor devices contain

capacitor loops (representing stray capacitances) and inductor cut sets

(representing parasitic inductance)[11], specially for high-frequency

operations, this restriction appears to be overly stringent. Fortunately,

our next theorem shows how this condition can always be satisfied by an

appropriate transformation.

Theorem 1. C-E loop and L-J cut set elimination theorem [11,70,78]

(a) Every C-E loop in'^AI may be eliminated by open-circuiting any one
capacitor in the loop, and by modifying the constitutive relations of the
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remaining elements in the loop, without altering the solutions ofoM.
(b) Every L-J cut set in oAl may be eliminated by short-circuiting any one
inductor in the cut set, and by modifying the constitutive relations of

the remaining elements in the cut set,without altering the solutions of

JL
(c) The modified constitutive relations of the capacitors and the

inductors can be derived explicitly from the original constitutive

relations [11,70,78]. Moreover, if the original elements are reciprocal,

increasing, strictly-increasing, or uniformly increasing, then these

properties are preserved and therefore remain invariant in the trans

formed constitutive relations.

Theorem 1 shows that in so far as the qualitative properties of

dynamic RLC networks are concerned, there is little loss of generality by

assuming apriori that oVj contains neither C-E loops nor L-J cut sets.

This fact greatly simplifies many research problems on nonlinear RLC

networks. For example, the procedures for formulating state equations are

drastically simplified when there are no C-E loops and L-J cut sets [59-67].

Under this assumption, the associated state equations can usually be

handled easily even if it may not be possible to express the equations in

explicit analytical form. By introducing additional assumptions, it is

possible to derive the state equations explicitly for various subclasses of

nonlinear networks. One important subclass studied extensively by Brayton

and Moser is often referred to as the class of complete networks ]54].

Another subclass that also admits an explicit formulation corresponds to

those networks having an explicit Lagrangian or Hamiltonian function [79],

A. State Equations of Complete Networks

Definition 1. Topologically complete n-ports

An n-port N is said to be topologically complete if either the
3

voltage, or the current, of each internal branch is determined

topologically by the port voltages across the voltage-driven ports

(capacitor-terminated ports in Fig. 26) via KVL, and by the port currents

in the current-driven ports (inductor-terminated ports in Fig. 26) via

KCL, without invoking the constitutive relations of the internal elements.

3
As always, multiterminal and multiport elements inside N are represented

by "coupled" 2-terminal elements, so that topologically, each terminal

pair, or each port, is represented by a branch of the element graph.
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Definition 2. Complete n-ports

A topologically complete n-port N is said to be a complete n-port if

each multiterrainal or multiport element R of N is characterized by a hybrid

representation yR = h (xR) such that the independent variable xR is

determined topologically by the external port variables (v and i in

Fig. 26) via KVL and KCL alone.

Definition 3. Complete RLC networks

An RLC network vjv) is said to be complete if its associated n-port

resistor N is complete.

It follows from Def. 3 that given the values of the external port

variables (vc and iT in Fig. 26), all branch currents and voltages

associated with the internal elements of a complete network can be uniquely

determined by using merely KVL, KCL, and direct substitution into the

element's constitutive relations. In other words, no equations need be

solved at all. Clearly, the "completeness" requirement is a very strong

condition and the class of complete networks is rather small. However, by

augmenting a non-complete network with parasitic capacitors and inductors,

it is always possible to derive a complete network from it. We will now

show how the state equations of such networks can be formulated explicitly.

Let c_A) be a complete and connected network containing "coupled"
2-terminal capacitors, 2-terminal inductors, 2-terminal resistors, and dc

voltage and current sources. Assume that N contains neither C-E loops nor

L-J cut sets. For simplicity, let us first assume that the resistors are

uncoupled. Let uL be a subtree made up of "composite" branches each of

which consists of a capacitor and all voltage-controlled resistors

(possibly none) connected in parallel with it, and let §L2 be a subcctree
made up of "composite" branches, each of which consists of an inductor and

all current-controlled resistors (possibly none) connected in series with

it. The composite branches are shown in Figs. 27(a) and (b), respectively.

If we extract all elements in uL and 9l« and consider them as loads

connected across an n-port N, then it is easy to show that N is complete
iff there is a subtree uL made up of current-controlled resistors such

that ^tS =^ uy2 forra atree of°^» and if a11 remainin8 elements are
voltage-controlled resistors forming closed loops exclusively with branches

in ^ • If we denote these voltage-controlled resistors by the subcotree

9?,, then 92 =^1 uS^o ±S the cotree associated with <J. It follows in
this case that the fundamental loops associated with branches in &l^
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R«

o

"U

R

(b)

Fig. 27. (a) A typical capacitor composite branch" in ^J.. The
resistor R represents the parallel combination of all

voltage-controlled resistors (including dc current

sources) connected across the capacitor. Note the

current into Rfc is denoted by i'; (b) A typical

"inductor composite branch" in 92«. The resistor R
represents the series combination of all current-

controlled resistors (including dc voltage sources)

connected in series with the inductor. Note the

voltage across R is denoted by v!.

contain branches from iJL only, i.e., v + B v =0, where v
1 ~* ~X j ~rr -J

and

1 1 1

y denote the branch voltage of the elements in 92- and ^, respectively,

and ?., ^ denotes an appropriate submatrix of the following fundamental

loop matrix B:

a, ££„ <er, ff.

~Vi ~v2

2 1 2 2

n

B 0

11 1 2

B B

"Vl ^2*2

92

92.

where the upper right-hand corner submatrix is always a zero matrix. If we
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let i , v , i , and v denote the current and voltage vectors for
"H -£ ~j "I
J J J J

elements in 9l. and tj., respectively, then the voltage-controlled

resistors in 9P, and yTi can be represented by i. fv \ and i /v \,

respectively. Similarly, the current-controlled resistors in 9l« and <J„
be represented by V [i ]and y (i ], respectively. Hence, we cancan

2\ "2f 2\ 2

write:

KCL : -c/v \ 4z v =- BT i • (-B v \ +i /v \ - B^ i (19)
tvdt ^i ~Vi ^i v-vrv -*A-*J ~Vi ~*2

KVL- -L/i \ — i =v/i\ + B v o/bT i\+B v (20)
\ *2 ' 2 2V2/ 22 2 x 2 2 2' 21 1

where C|i/v \ and L(i ]denote the incremental capacitance and inductance

matrix, respectively, and where the symbol "°" denotes the "composition"

operation. It follows from (19)-(20) that the state equations of any

complete network can be written explicitly with v and i as the state
Jl 2

variables; namely,

v =HfVv \/-BT i °/-B v \ + i /y \ -eF i 1 (2

i =-L"1/! \fv /i \ +B • v • (b[ i \ +B • v 1 (22)
"*2 ~ WKW •V2 "J2 KVV "*2*1~M

An examination of (21)-(22) shows that elements belonging to the same

group may be coupled to each other. For example, all capacitors (resp.,

inductors) may be coupled to each other, and all resistors belonging to

92.. |resp., 929, ^\y ^o fmay be coupled to each other. Moreover, the
couplings need not even be reciprocal in the sense that the associated

multi-terminal element or multiport resistors inside N need not be

reciprocal. However, if all resistors inside N are reciprocal, then it is

possible to express the state equations in terms of a scalar potential

function. To derive this, let us observe that if we extract all

capacitors inductors from the complete networkUV), the resulting n-port
resistor N has the following explicit hybrid representation in view of

(1), (2), (8), (9), (21), and (22):
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i =-BT i o/_b v \ +i (v )-BT i. =h (vQ,i. )
a "i, j "s \ "i J ~ai ~d -a' -j, j ~b -a'-a'-b'

111 x 11 ' 1 21

v =v (i )+B v o/BT i, \+B v =^(v ,it)
-b ~jc -b ~t.n3n ~3n \ "£ S ~bl ~£ j ~a ~V~a,:V

2 2 2 2 \ 2J2 / 2 1

where we have defined i =i ,v = v , i, = i and v = v The

incremental hybrid matrix associated with N is the Jacobian matrix of
(23)-(24):

ai 31

3V
!fB J-B

"J. 1 1 ~X. *Vi

5<V*b> =
B

Vl

-BT

3v 3v

2 + B

3i *-*
^. BT

2 2 3i
2 2

(23)

(24)

(25)

Notice that H(va,jb) is not symmetric since the off-diagonal blocks are
negative transpose of each other, as expected in view of the Corollary of
Theorem 10 in Sec. II-2. Hence, the hybrid representation h(.) of N is

not a state function and we cannot define a potential function via its

line integral. However, since the only thing that prevents H(v ,i ) in
(25) from being symmetric is the "negative sign" attached to B^ we

* 2 1
can introduce anew variable i^ = -±h so that (23)-(24) becomes

11 1 v 11' 1 21

yb = y^ (-if) +B v ./-BT i*\+B v -h*(v ,i*)
^ V2 ~*2 \ ^232hl "Vl ~* V~a'^

(27)

Observe that (26)-(27) now defines a state function h*(v ,i*) and we can
~a -b

now define a potential function via its line integral. To derive the

explicit form of this potential function, let us consider first the

simpler case where all elements in N are 2-terminal uncoupled resistors
and define the following 4 scalar functions:*

v

(28)£L (v \ =E i Ji,(x)dx
J
Recall the definitions of content and co-content in Table 3 of sec. II-2.
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V.

Q h \* Ej j ii(x)dx
7l\~V Ji Jo j

of the resistors in 92, and <J-, respectively. Similarly, except for the
negative sign in (29) and (31), Q /i \ and Q (i \ are just the sum

of all "conjugate" contents of the resistors in 922 and U^' resPectivelv>

'2\ -2

Observe that

(29)

(30)

are just the sum of all co-contents

where

i*

G(i*) ^f 3v.(-x)dx

is defined as the conjugate content associated with the constitutive

relation v. = v.(i.) of the jth resistor in9L9 or <J?. We are now
ready to define the potential function associated with (26)-(27):

Definition 4. Hybrid content of N

We define the hybrid content of a complete n-port resistor N by

^o!v(-v,M'9.i!J'9;(!;)
' l B v

*2 "Vl ~J1

Theorem 2. State Equations Via the Hybrid Content [64].

(32)

(33)

The hybrid contentxWv ,i | is a potential function associated

with the state function defined in (26)-(27). Moreover, the

\*i V
Comparing (34)-(35) with the state equation derived by Brayton and Moser

[54], we can identify the hybrid content to be their mixed potential.

6 • * *
Recall that V = v and i = i, .-, -a -*2 -b
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state equations of any complete RLC network containing uncoupled 2-terminal

resistors can be formulated explicitly via the hybrid content as follow:

v = -C

~*2 ' V*J
31

Proof. Taking the gradient of^jlv ,i \, we obtain

-BT 1 o /-B v \ + 1 /v \ + BT 1*
*%.<)

3v

J&tfv ,1
(Vk)
3i*

v /-i ) + B v o f-B i \ + B v
~M V ~V2 ~J2 \ "V2~V "Vl ~*1

(34)

(35)

(36)

(37)

Substituting (36) and (37) into (34) and (35) and replacing i with

2

-i , we obtain the state equations derived earlier in (21)-(22). n
*2

Now consider the general case where the resistors are coupled to each

other. Observe that so long as the couplings are reciprocal; i.e., all

multi-terminal elements and multiports inside N are reciprocal, then the

scalar functions defined in (28)-(31) can be generalized via line integrals

of the respective constitutive relations.

It is interesting to observe that although the first 4 terms in the

hybrid content XJ6[v ,1 \ are defined via the elements' constitutive

relations, the last term is strictly a topological quantity determined only

by the submatrix B . This peculiar term has the following physical
Vl

interpretation: partitioning the network^ =lA), uoAL whereo\L

contains all branches in 9l U *0 and^lL contains all branches in
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*T
920uy ,then the term IB v is equal to the instantaneous

*2 "Vl "'l
power delivered from<^\i2 tou^^ [77,81,82].

Finally, observe that (34)-(35) implies that the stationary points

of the hybrid content cWfv ,i \ are equilibrium points of the associated
V°l "V

complete network lAI. The significance of the hybrid content is that it
plays a crucial role in determining whether all solutions of lAJ will
eventually settle at some equilibrium points [54,77].

B. State Equations Via the Lagrangian and Hamiltonian

Consider a connected network u\l containing uncoupled 2-terminal

resistors, inductors, capacitors, dc voltage and current sources, and two

types of controlled sources; namely, voltage-controlled current sources

(VCCS) and current-controlled voltage sources (CCVS). Assume that c_AJ
contains no C-E loops and no L-J cut sets. Assume that there exists a

true (~J=<xJ1 U 'xj and an associated cotree 92 =92x u922 having the
following properties:

1. All branches in <3T, are voltage-controlled capacitors and all branches

in 9l« are current-controlled inductors.

2. Each branch in 92.. forms a loop exclusively with branches in Oy
Moreover, branches in 92, are restricted to voltage-controlled resistors,
flux-controlled inductors, dc current sources, and voltage-controlled
current sources whose controlling voltages are associated with elements in

3. Branches in ^T? are restricted to current-controlled resistors, charge-
controlled capacitors, dc voltage sources, and current-controlled voltage
sources whose controlling currents are associated with elements in

Let us label the branches in o\l consecutively as follow:

1. Label the elements in 92]^ first. Start with the resistors (RS^),
followed by the inductors (L92.,) dc current sources (j9l1) ,and voltage-
controlled current sources (J 9ui)•

2. Label the elements in 92« next. By assumption, all these elements are

inductors (l9u) .
3. Label the elements in u next. By assumption, all these elements are

The other two types of controlled sources can also be included by modeling

them with VCCS and CCVS.
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capacitors(C^).
4.Finally,labeltheelementsiny^.Startwiththeresistors(R<J2),
followedbythecapacitors(C^),dcvoltagesources(E^)>andcurrent-
controlledvoltagesources(Ecu^'

Usingtheabovelabellingconventionandnotation,thebranchvoltage
vectorvandthebranchcurrentvectoriofJmaybepartitionedas

follow:

r

v=rvvT„vT.v_.!vT,!vr!vvvv7]
1III

I

i=\ht^htV,'kr"-R3ica^V2I I111Cli2n222CZJ

(38)

(39)

Itfollowsfromtheprecedingassumptionsandlabellingconventionthatthe

fundamentalloopmatrixwithrespecttothetreeJalwaysassumesthe
followingspecialform:

RiiL^J-CxJ^L*2C3iR32Ca2EJ2Ec32

000

B=

10000

01000

001Q0

00010

00001

?RC9
11

11

0

he2
1

?jc9 Jcci

000

00

0

B..B.B,a_a
"LC~LR"LC~LE~LE„

21222222C

(40)

Definition5.Energyandco-energyfunction

WedefinetheenergyfunctionQandco-energyfunctionQasfollow:

£*

whereW.

wl(*l*)+wc7(9ca)+i«♦«+9ejYej 1\1/A2/112:

2\2'l\1'

T(*T/Iand^rf^CT\denoterespectively

(41)

(42)

thesumoftheinductor

8
Recallthedefinitionsofenergyandco-energyinTable3ofSectionII-2.
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energy of all inductors in ^J- and the sum of the capacitor energy of all

capacitors in ij and where W (iw )and ^r l^CJ Jdenote respectively the

sum of the inductor co-energy of all inductors in 9l« and the sum of the

capacitor co-energy of all capacitors in O_.

Using the special structure of the fundamental loop matrix B, it can

be shown that the energy function o is a function of $c~ and q - only,
A 1 2

and that the co-energy function o is a function of v _ and i . only [79],

1 2

Definition 5. Lagrangian and General Force

We define the Lagrangian 9l associated with oM as follow:

%o '9w 'hi >v~co) =fif^Lx -Yea) "£(*« •%.*) +£i 5ic. *ca
\ 1 2 2 1/ > 2 1/ \ 1 2/ 2 2 11

w.s(H) *\H -\ • ("V,*",)' \ •fe)

+& ?jc tea " ?L ?L EYEa +^ ?L C *CJ
111 22 2 2211

(43)

We define the generalized force F associated with L/VJ as follow:

F^

B.
R C
1 1

iR£

2 2

Yr3

'5-C
C 1

0

"Vc

C 1

V,
(A4)

Again, in view of the special structure of the fundamental loop matrix B,

it can be shown that the generalized force F is also a function of vc_
1

and i only [79]. Hence, we can write F = Fjv^ ,!_.).
2 \ 1 2/

We are now

ready to formulate the Lagrangian equation associated with oAJ.

Theorem 3. Lagrangian Equations of Motion [79]

The solution of the nonlinear RLC network u\) satisfying the

assumptions stipulated earlier is identical to the solution of the

following Lagrangian equations of motion associated withiA):

^92(x,x) 39f(x,x)'
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where

?=[*c39lJ " (46)
L 1 2j

and

x= [*v i 1 (47)
- ~CJ ~L*

I- 1 2J
Under various simplifying assumptions, the Lagrangian and the gener

alized force take on particularly simple forms. Some of these special

cases are:

1. (^contains no controlled sources. In this case, we have

3P(x)
F = - —r^ (48)

3X

where

P
vj ^(x) -E ( i,(v,)dv, + Zl v,(i.)di (49)

Ri, ''o J J J R3./0 J J J

represents the sum of the co-contents of all resistors in 9l.,, and the sum
of the contents of all resistors in tjL. Substituting (48) into (45), we

obtain the following Lagrangian equation:

^92(x,x)\ 392(x,x) 3P(x)
3x / 3x 3x

2. Lossless networks: iAlcontains no controlled sources and no resistors.

In this case, the right side of (50) is identically zero. Moreover,if lAI has

a tree U made up of voltage-controlled capacitors and an associated cotree

9l made up of flux-controlled inductors, then (50) can be written explicitly
by

N r i

where the Lagrangian 9l is defined by

On the other hand, if oM has a tree J made up of charge-controlled
capacitors and an associated cotree ci. made up of current-controlled

inductors, then (50) assumes the form

d'/aS£\ a$£ „

x I1 2
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9?where the Lagrangian 5L is defined by

\ 2 2/ 2N V 2 v 2 2 2'

(54)

The Lagrangian equations of motion consist of a system of second order

nonlinear differential equations. They can be transformed into state

equations by a number of well-known methods. If the network is lossless ,

then by defining the generalized moments y by

392 (x x)
A

y =
3x

(55)

and assuming that (55) can be solved for x uniquely as a function of x and

y, we can define the following useful scalar function:

Definition 6. Hamiltonian function

We define the Hamiltonian function #(x,v) associated with a lossless

network u\J by

tf(x,y) =yx-92(x,x) (56)

It can be shown that if all constitutive relations are bijective, then x

in (56) can always be expressed as a unique function of x and y. In this

case, we can write

x =

Hence

x =

*C5
1

Slx

Yc.-r
1

-Li

y =
Scj

1

<J> ., + B * „

2 2 11

*1

?2

!i(Sca)
?2(*L3C ?2°(y2-?L2C^l

We are now ready to formulate, the Hamiltonian equations of motion.

Theorem 4. Hamiltanian Equations of Motion [79]

The solution of a lossless network lAI satisfying the preceding

assumptions is identical to the solution of the following Hamiltonian

equations of motion associated witht_AJ:
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where the Hamiltonian function is defined explicitly by:

1 \ X '/ 1 X 1 1 ' 2 V 2 2 '

(*2-?Lc5l)?Lc5l (61)
\ 2 1/21

-wc

11 2 2

The above expression can be further simplified under additional

assumptions. In particular, if oM contains no dc sources and if all

constitutive relations are bijective, then applying the integration-by-

parts-formula, we obtain the following simplified expression:

*(x,y) -Wc (Xl) +Wc .(?* cx2) +WL .(-BL cx)+WL .U-^ *\
1 2 N 2 2 ' 1 x 11 2 X 2 1 '

(62)

Observe that the Hamiltonian in this case is just the sum of the energy of

all inductors and capacitors in(Jvl. The significance of the Hamiltonian

is that it plays a crucial role in determining the qualitative properties

of nonlinear lossless networks.

We close this section with the remark that the expression for the

Lagrangian in (43) and the Hamiltonian in (61) are derived for the case

where there are no loop of inductors in L£. and no cut set of capacitors

in CCL. *n tne general case, the expressions will involve also initial

conditions as in [79].

2. Qualitative Properties of Autonomous Networks.

Our objective in this section, as well as in the next section on non-
autonomous networks, is to identify various classes of nonlinear RLC net-
words which shared certain common qualitative properties. Two types of
results will be presented: the first involves only the two functions
defining the state equations (D~l(x) and h(x;u_)j in (15), or h(x;u ) and
g(z), in (17) whereas the second involves only'the constitutive relations
of the internal elements and their interconnections. The first type of
results are more general but requires the state equations be formulated
first before the hypotheses could be checked. The second type of results
are slightly less general but they are explicit in the sense that they
usually involve only graph and circuit-theoretic conditions which can often
be checked by inspection. Due to limitation of space, only the more basic
results will be presented. The reader is referred to a series of recent
papers [69-68,77] for the proofs of most of these results, as well as for
many additional theorems on qualitative properties.

Since only autonomous networks are considered in this section, the
state equations that concerned us here are given by (8)-(9) and (10)-(11),
or more compactly, by (15) and (17), where the source vector uq is a
constant vector. For simplicity, we will henceforth suppress u and simply
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write (15) and (17) as follows:9

x «=» -D~ (x)h(x) - f(x) (63)

z--h(g(z)j «= f(z) (64)

where x = g(z) denotes the capacitor — inductor constitutive relation,
A "*T T A T

-= ^~C ~L^ = ''-a -b^ and 5= ^C ~L^ '? = -^ denotes the constitutive
A T

relation of the n-port resistor N in Fig. 26, y = [i v, ] .
~ -*a ~d

A. Local Asymptotic Stability at Equilibrium Points

Let [v ,i \be an equilibrium point of the autonomous system (63).

1 Q Q' 10The Jacobian matrix of f evaluated at this point is given by:

~(V\)= AwYhS) (65)
where D/v_ ,i_ t is defined by (16), and H/v0 ,iT \ is the incrementald/v ,i_ \ is defined by (16), and H/v_ ,iT \ i

A °Q LQ/ TCQ Q/
hybrid matrix associated with h(»). To investigate the local stability
property of this equilibrium point, we make use of the following lemma:

Lemma [83]

If D is a real symmetric positive definite matrix and if H is a real
positive definite matrix, then the real parts of all eigenvalues of DH are
positive.

Observe that H in this lemma need not be symmetric. Even if H is
symmetric, DH may still not be symmetric. Observe also that DH need not be
positive definite if H is not symmetric. We are now ready tostate our
next theorem.

Theorem 5. Local Asymptotic Stability Criterion [83].

Assuming all partial derivatives of the autonomous system (63) are
continuous in a neighborhood of an equilibrium point Q:/v ,i_^ \, then Q

\ Q Q/
is locally asymptotically stable if T)(vr ,i \ is symmetric and positive

Tcq "V
definite and if H/v ,i \ is positive definite.

.tcq -y
Proof. Since D/v ,i \ is symmetric positive definite, its inverse

A Q. oj
exists and is also positive definite. The theorem then follows immediately
from the above lemma and a standard result on local asymptptic stability [84].

9
For simplicity, we use f(«) in both (63) and (64) for two different
functions. No confusion should arise, however, since only one euation will
be used in any given context.

Note that the Jacobian matrix of f(») has a second term which vanishes at

(%\y
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Corollary 1.

Assuming all partial derivatives of the autonomous system (63) are
continuous in a neighborhood of an equilibrium point Q, then Q is locally
asymptotically stable if the inductors and capacitors are reciprocal and
strictly locally passive at Q, and if the n-port resistor N is Fig. 26
is strictly locally passive at Q.

Corollary 2 [64].

If the n-port resistor N in
Fig. 26 is reciprocal then N is
strictly locally passive at Q if,
and only if, the associated nc~
port resistor N^ and the n-port
resistor NL in Fig. 28 are
strictly locally passive at Q.

To apply Corollary 2, one
must first solve for the loca
tion of the equilibrium points
and then test whether the fol
lowing two matrices are positive
definite:

1.

matrix of N

n xn incremental conductance
C C

?<Ya)
A -a

3v
-a

v =v
-a -a, .•*b"ib.

(66)

2. ilxil incremental resistance

matrix of NT

W = IT
v =v ,iv=i,~a ~aQ *b ~bQ

(67)

Fig. 28.

(o) (b)

(a) An n_-port resistor N
obtained by open-circuiting all
inductor ports in Fig. 26.
(b) An iL-port resistor Nt
obtained by short-circuiting all
capacitor ports in Fig. 26.

In the special case where all elements inside N are strictly locally
passive, one could obviate the above test if the overall n-port N is also
strictly locally passive. Unfortunately, it is easy to find counter
examples showing that N need not be strictly locally passive even if all
elements inside N are strictly locally passive [70]; i.e., strict local
passivity does not possess the closure property. However, by introducing
a simple topological condition, we can prove the following result.

Theorem 6. Explicit Local Asymptotic Stability Criterion [28]

Assuming all partial derivatives of the autonomous system (63) are
continuous in aneighborhood of an equilibrium point Q:(yc »iL )> then Q

is locally asymptotically stable if the following hold:

(1) Fundamental topological hypothesis: There is no loop (resp. no cut
set) formed exclusively by capacitors, inductors, and/or dc voltage sources
(resp., current sources).
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(2) All multi-terminal and multi-port capacitors and inductors are
reciprocal and strictly locally passive at Q.

(3) All multi-terminal and multi-port resistors are strictly locally
passive at Q.

B. Global Asymptotic Stability at Equilibrium Point

The preceding asymptotic stability criteria are local results and the
circuit could still oscillate or display other complex motions even if all
equilibrium points are locally asymptotically stable. Our next theorem is
a global result which guarantees that all trajectories must eventually tend
to a unique equilibrium point.

Theorem 7a. Global Asymptotic Stability Criterion [71]

Let an RLC network lAI be described by the autonomous state equation
(64) and assume that the "capacitor-inductor constitutive relation g(-) is a

C1 strictly increasing state function mapping 3R onto K. . Then we have
the following properties:

1. If the constitutive relation h(0 of the n-port resistor N is strictly
passive with respect to some x* £ i? in the sense that

(x-x*)Th(x) > 0, Vx£En, x * x* (68)

then lA) has a unique equilibrium point z* = g" (x*). Moreover, z* is
globally asymptotically stable.

2. If the constitutive relation h(.) of the^-port resistor N is a
strictly increasing homeomorphism mapping 1R onto ]R , then there exists a
unique xe ]Rn such that h(x*) =0 and z* = gi"1(x*) is aglobally
asymptotically stable equilibrium point.

Our next theorem provides some more explicit criteria.

Theorem 7b. Explicit Global Asymptotic Stability Criterion [71].

Let an RLC network (_A1 be described by the autonomous state equation
(64), and assume that the capacitor-inductor constitutive relation g(.)
is a C1 strictly increasing state function mapping H onto "R . Assume
that lAI contains no CE cut sets, no LJ loops, and no loops and cut sets
made up of both capacitors and inductors and/or dc sources.^ Then we
have the following properties:

1. If lAJ contains no dc sources and if each multi-terminal or multiport
resistor in ^Al is strictly passive, then^M has a unique equilibrium point
2* = g-l(0). Moreover, z* is globally asymptotically stable.

2. If each multi-terminal or multi-port resistor R in oM is strictly
passive, and if every.loop ofcAl containing adc voltage source also
contains a capacitor, and every cut set of lA) containing a dc current
source also contains an inductor, then^AJ has a unique equilibrium point
z* ^ Hn. Moreover, z* is globally asymptotically stable.

1:LoWmay contain CE loops and LJ cut sets
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3. If each multi-terminal or multi-port resistor Ro in <^\| is characterized
n n

a . _ aby a strictly increasing homeomorphic function ha(*) mapping ]R " onto H
then (^\l has a unique equilibrium point z* G ]Rn. Moreover, z* is globally
asymptotically stable.H

The hypotheses in Theorems 6 and 7 are sufficient but not necessary
for global asymptotic stability. For example, the linear circuit shown
in Fig. 29(a) has a globally asymptotically stable equilibrium point;
namely, the origin. Yet, it is easy to verify that the hypotheses of
Theorem 6 are violated because the constitutive relation h(») of the
associated 2-port resistor N is passive, but not strictly passive with
respect to the origin. Moreover, N is increasing, but not strictly
increasing. Similarly, the hypotheses of Theorem 7 are violated because
(Xj contains a loop made up of a capacitor and an inductor. Hence neither
theorem can be used to show that the origin is globally asymptotically
stable in this case. This example clearly demonstrates that loops and
cut sets made up of both capacitors and inductors may be allowed in certain
cases. On the other hand, the linear circuit shown in Fig. 29(b) can

l

C?k Vr i R

(a)

Fig. 29. (a) The origin is a globally asymptotically
stable equilibrium point for this network,
(b) The origin is an unstable equilibrium
point for this oscillatory network.

support a non-trivial periodic solution in view of the presence of the
capacitor-inductor loops and cut set. To distinguish these two
"qualitatively" distinct networks requires additional topological
conditions of a rather subtle nature:

Theorem 8. Explicit Global Asymptotic Stability Criterion [71]

Let an RLC network lAI be described by the autonomous state equation
(64), and assume that the capacitor-inductor constitutive relation g(0
is a C1 strictly increasing diffeomorphic state function mapping TBP"onto
!Rn. Assume that c_AI contains no CE loops and no LJ cut sets. Assume
further that the following inductor-capacitor loop-cut set hypothesis
(LC Hypothesis) is satisfied: .

Let 2 be any subset of capacitors and inductors in <_A1 such that any
capacitor or inductor in 2 forms a loop and/or cut set exclusively with
any combination of dc voltage and current sources, and other capacitors and

12t_A(rcay contain dc sources in this case. The internal resistors may have
any number of terminals and ports. We let R(
na-port resistor .
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inductors of 2* For each and every such set 2> assume that at least one
of the following conditions is satisfied:

a) There is a capacitor C, in S which is not in a cut set formed
exclusively with any combination of current sources and elements of c>.
Moreover, this capacitor is not coupled to any other capacitor of 2*

b) There is an inductor Lj in 2 which is not in a loop formed
exclusively with any combination of voltage sources and elements of c>.
Moreover, this inductor is not coupled to any other inductor of 2*

Under the above condition, we have the following properties:

1. If lAI contains no sources and if each multi-terminal or multi-port
resistor of u\fis strictly passive, then o\f has unique equilibrium point
z* = g-l(O) which is globally asymptotically stable, provided all voltage
and current solution waveforms of u\l are C* functions of t.

3
2. If the capacitor-inductor constitutive relation g(.) is a C -function,
and if each multi-terminal or multiport resistor in (jAl is characterized

by a C^ strictly increasing diffeomorphism mapping H , then cJU has a
unique equilibrium point z* £ !Rn. Moreover, z* is globally
asymptotically stable.

Observe that the preceding LC Hypothesis requires that all possible
subsets of capacitors and inductors which qualify as *> must be tested.
The circuit shown in Fig. 29(a) is easily seen to satisfy this hypothesis
since 2 in tnis case consists of the single capacitor C and inductor L,
and since the capacitor C does not form a cut set with L. It follows from
Theorem 8 that the origin is globally asymptotically stable. On the other
hand, the "LC Hypothesis" is clearly violated by the circuit in Fig. 29(b).
Indeed, if we choose 2 to consist of the two capacitors and the two
inductors, then both a) and b) of this hypothesis are violated.

C. Exponential Decay of Transients to the Globally Asymptotically Stable

Equilibrium Point.

The class of globally asymptotically stable networks studied in the
preceding section behaves qualitatively like a linear network in many
respects. In particular, it has aunique equilibrium point and all
trajectories approach it regardless of the initial condition. Our next
theorem shows that it is even possible to bound each trajectory by two
exponential waveforms with a time constant Tma^ and Tmin» respectively.

Theorem 9. Exponential Transient Decay Property [71]

Let an RLC network ^\| be described by the autonomous state equation
(64) and assume that the capacitor-inductor constitutive relation g(«)
is a Cl strictly increasing diffeomorphic state function mapping
]Rn onto Hn. Let the constitutive relation h(«) of the n-port resistor
N be C1 and strictly passive with respect to some x* £ TR in the sense of
(68), and assume that N is strictly locally passive at x*.13 Then we have
the following properties.

13That is, 3h(x*)/3x is positive definite,
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1. All solutions z(t) tend to the unique equilibrium point z* = g~1(x*).

2. Let D Cin be any convex and compact set such that z(t) G D Vt > 0.
Then one can find constants 7 > Y_ > ° and ^u > 1^ > ° such that for

8 g n —n

all z1 and z" belonging to D, the following basic inequalities hold:iA

Y Uz'-z"il2 <(z,-z")Trg(z')-g(z")l <y Ilz'-z"N2 (69)
-g - ~ - - - |_- - ~ ~ J 8 - -

lhig(z,)-x*02 <[g(zM-x*jTrh/g(z'))j <Yh"|(z,)-x*H2 (70)
3. If we define the two time constants

x _J&_ , T kJ±- (71)
min -2 - max 2

YgTh -Vh
where y , Y » Y, and y_ are the constants obtained from (69) and (70),

V -Lg» 'h -h
then each trajectory z(t) with initial condition z(0) tends to z*
exponentially in the sense that

V mln <Hz(t)-z*il <K2e maX (72)

where

V2 A 1/2A , i- v n ,«% _j.ii „ A /_:Kl (W ^(O)-!*1 >K2 =(VV I15(0>-5*1 (73)

D. Complete Stability

The results in Sections C and D are valid only for circuits having a
unique equilibrium state. For circuits having multiple equilibrium states,
such as flip flops, one must settle for a weaker form of stability which
we define next.

Definition 7. Completely stable networks

An autonomous RLC network oM is said to be completely stable if each
trajectory tends to an equilibrium point of the associated state equation.

Theorem 10. Completely stable RC networks [71]

An autonomous RC network characterized by the state equation

Yc =C"1(vc)h(vc) (74)
is completely stable if:

1. The incremental capacitance matrix C(yc) is positive definite.

2. The associated n-port resistor N is reciprocal, voltage-controlled,

The inequality (69) is equivalent to requiring that §(•) be a strongly
uniformly increasing function.
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and its co-content

A f ~
yW =1 l}(Y)'dY "*" °° as IIvll •*• <» (75)

JO

Theorem 11. Completely Stable RL network [71].

An autonomous RL network characterized by the state equation

iL =L~1(4L).(iL) (76)

is completely stable if:

1. The incremental inductance matrix L(iT) is positive definite.
"* " Li

2. The associated n-port resistor N is reciprocal, current-controlled,
and its content

Q(i) «[" h(i)-di -*• oo as Hill -* « (77)

Theorem 12. Complete Stability Criterion 1 for Complete RLC Networks [54].

A complete RLC network described by the state equations (34)-(35) is
completely stable if the following conditions are satisfied:^

1. The incremental capacitance matrix C/v \ and the incremental

inductance matrix L/l* \ are symmetric and positive definite.

2. All resistors in C]L and 9l!i are voltage-controlled.

3. All elements in tJL are linear positive resistors, i.e., v = R i
"7 ~y "J

2 2 2

where R is a positive definite diagonal matrix.

4. Any element in series with an inductor in each "inductive" composite
branch in <^t) is a dc voltage source.

5. The topological submatrix B_, _, has maximal row rank.
2 2

'•,*,i*a'.w*V(-v,'',)
6.

\-x a -
1 2 1

7. iKll2 ^

-*- «, as Hv li -*- » (78)

1

< 1-6, 6 > 0 (79)

where R&B^ y R^ B^^,C"1/2(.)C 1/2(.) -CV) and
1/2 1/2 2 x 2 2 2
L («)L (.) = L(»)» and where HkII denotes any convenient induced norm
of the matrix K.

Definitions 3 and 7 -are unrelated even though the word "complete" appears
in both. All symbols in this theorem have been defined earlier in
Sec. IV-l-A.
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The matrix R in (79) may be singular for some complete network.
Moreover (78) may not be easy to verify if the voltage-controlled
resistors in <rj* and 9l-i are coupled to each other. Our next theorem
overcomes these two objections:

Theorem 13. Complete Stability Criterion 2 for Complete RLC Networks[77].

A complete RLC network described by the state equations (34)-(35) is
completely stable if the following conditions are satisfied:

1. The incremental capacitance matrix C/v \ and the incremental

inductance matrix L/i* \ are symmetric and positive definite.itrix L/i* \ are symmetrii

itors in CjL and 9^ are ^2. All resistors in yfl and y\ are voltage-controlled which may be
coupled to each other so long as the couplings are reciprocal.

3. All elements in <xJ2 are linear, reciprocal and strictly passive
resistors; i.e., V = R i where R is a positive definite symmetric

~J2 "°2 ~J2 72
matrix.

4. Any element in series with an inductor in each "inductive" composite
branch in ^22 is a dc voltage source.

when ^(A) denotes the range space of A.
A T I

6. Let R = B R B ^ and let R denote the generalized inverse of R
- -X 7 "7 "X 7

2 2 2 2 2

[77], then

1 _ 1 2

2A L2/i* \RX B£7 C 2/Y7\ •<!-«. «>° <81>
\ 2/ 2 1. \ l) 1

•

where IIkO denotes any convenient induced norm of the matrix K.

7. The network has at least one equilibrium point.

8. All solutions of (34)-(35) are bounded.

It is easy to see that Theorem 13 is a generalization of Theorem 12.
In particular, if B has maximal row rank, then (80) is satisfied so

22 I -1
that R is non-singular and R = R .

Interchanging the roles of capacitors and inductors, the following
"dual" of Theorem 13 is easily obtained.

Theorem 14. Complete Stability Criterion 3 for Complete RLC Networks[77].

A complete RLC network described by the state equations (34)-(35) is
completely stable if the following conditions are satisfied:

1. The incremental capacitance matrix C/v \ and the incremental
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inductance matrix L/i* \ are symmetric and positive definite.

2. All resistors in Cjl and 9lo are current-controlled which may be
coupled to each other so long as the couplings are reciprocal.

3. All elements in 9li are linear, reciprocal and strictly passive
resistors, i.e., i • G v where G is a positive definite symmetric

" X ~Jl-o<_ - X
111 1

matrix.

4. Any element in parallel with a capacitor in each "capacitive"
composite branch in \J. is a dc current source.

5' ^(f^y^ffW (82)
AT

6. Let G = B Q B and let G denote the generalized inverse of

G, then ~ "Vl Xl "Xl7\
1 1 2

llsll2 &
5N 2 1 m

< 1-6, 6 > 0 (83)

7. The network has at least one equilibrium point.

8. All solutions of (34)-(35) are bounded.

Most of the conditions in theorems 12, 13, and 14 are either graph or
circuit-theoretic in nature and are therefore easily checked. For example,
condition 1 in these theorems is equivalent to the condition that all
multi-terminal and multiport capacitors and inductors are reciprocal and
strictly locally passive. Conditions 2, 3, and 4 in these theorems can be
checked by inspection. Condition 5 of Theorems 13 and 14 can be tested
either by numerical methods, or by a simple explicit topological test
given in [77], Only condition 7 in Theorem 12 and condition 6 in Theorems
13 and 14 require numerical computation. This condition can be used to
derive an upper bound on Hl(')" in terms of Hc(«)"> or vice-versa. To
show that this upper bound is rather sharp, an example is given in [77]
which shows that a completely stable circuit becomes oscillatory when this
bound is violated at its boundary!

The most serious drawback of Theorems 12, 13, and 14 is thecompleteness
hypothesis since many RLC networks are not complete. However, if one is
willing to introduce "parasitic" inductances and capacitances at
appropriate locations, any network may be transformed into a complete
network. Such parasitic elements would tend to make the circuit model
more realistic anyway. On the other hand, the completeness hypothesis is
needed only if we insist on writing the state equation explicitly via the
hybrid content as in (34)-(35). There is no fundamental reason why this
hypothesis is needed. In fact, by defining a pseudo hybrid content,
theorems 12, 13, and 14 have been generalized for non-complete networks in
[77].

Finally, note that condition 6 in Theorem 12 has been replaced by the
condition that "all solutions of (34)-(35) are bounded." We will show in
the next section that this boundedness hypothesis (condition 8) as well as
the existence of an equilibrium point (condition 7) are satisfied by
almost all practical networks. Since the basic hypotheses which guarantee
boundedness are identical for both autonomous and non-autonomous networks,
let us now turn to the latter.
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3. Qualitative Properties of Non-Autonomous Networks

Consider now the case where ^Al contains ac sources so that ug = ys(t)
in the state equations (15) and (17). For the results to be presented in
this section, it is more convenient to work with (17) which we reproduce
as follow:

z=-h(g(z);us(t)j (84)

A. Boundedness and Eventual Uniform Boundedness
i ' "

Definition 8. Boundedness

The solutions z(.) of the non-autonomous system (84) are said to be
bounded if given any bounded u<,(«)» the solution z(«) is bounded in the
sense that there exists a constant K such that

ilz(t)U <K, for all t_> tQ (85)

where K may depend on both the initial state z(tQ) and the initial time tn.

Definition 9. Eventual Uniform Boundedness.

The solutions z(») of the non-autonomous system (84) are said to be
eventually uniformly bounded if given any bounded u (•), there exists a
compact set- ^c 3Rn such that for any solution z(«; of (84), there is a
time T £ H such that

llz(t)!l£ Q^, for all t^ T (86)

where T may depend on both the initial state and on the initial time.
Observe that there is a subtle difference between Definitions 8 and

9. For example, the periodic solutions of a linear passive autonomous
Lossless LC network are all bounded but not eventually uniformly bounded.

Theorem 15. Boundedness and Eventual Uniform Boundedness Criterion [72],

Let an RLC non-autonomous network (_A1 be described by the state
equation (84). Assume the capacitor-inductor constitutive relation g(»)
is a C* state function and let £: IRn -> ]R denote its associated scalar
"energy" function, i.e., v£(z) = §(z). Assume that g(.) and £(•)
satisfy

lira Hg(z)H + •*» (87) lim P,(z) -> -H» (88)
llzll-H* " " liZll-~>

Assume further that the source vector u (•) is bounded; i.e.,

flu (t)D £kx, for all t^l1 (89)

Then we have the following:

1. The solutions z(«) of (84) are bounded if the associated n-port
resistor N is eventually passive in the sense that there exists a finite
constant k-. > 0 such that

xTh(x;ys) >_ 0, for all llxll >kQ (90)
and for all us(«) satisfying (89)
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2. The solutions z(0 of (84) are eventually uniformly bounded if the
associated n-port resistor N is eventually strictly passive; i.e., (90)
is satisfied with a strict inequality. Moreover, if u'(.) is periodic
with period T, then (84) has a periodic solution with the same period T.
In particular, in the autonomous case where Ug(.) is a constant vector,
the associated autonomous equation has at least one equilibrium point.

To derive an explicit version of Theorem 15, we note first that it is
easy to find examples showing that eventual passivity does not obey the
closure property [71]. Consequently, an additional condition must be
imposed in our next theorem.

Theorem 16. Explicit Eventual Uniform Boundedness Criterion [72].

Let an RLC non-autonomous network (Jvj be described by the state
equation (84). Assume the capacitor-inductor constitutive relation §(.)
is a C state function and let Q: JR •> ]R denote its associated scalar
"energy" function; i.e., v£(g) = g(z). Assume that g(*) and £(•)
satisfy

lim llg(z)ll -• -too (91) lim g(z) -*- -f» (92)
Uzll-*» llzil-Hx>

Assume that (Jv) satisfies the following: Fundamental Topological
Hypothesis: there is no loop (resp., no cut set) formed exclusively, by
capacitors, inductors, and/or dc voltage sources (resp., current sources).

Moreover, let the constitutive relation ha(0 of each internal
multi-terminal or multi-port resistor Ra satisfy the following conditions:

Eventual strict passivity condition:

xTh (x )> 0, for all llx II >kn (93)

Growth condition:

1 T
lim i—it x h (x ) = +» (94)

ii j. llx II ~a -a ~a
IIX tl-Ho ~a

Then all voltage and current waveforms of C-AJare eventually uniformly
bounded. Moreover, if the source vector us(«) is periodic with period T,
then (84) has a periodic solution with the same period T.In particular,in
the autonomous case where uc,(*) is a constant vector, the associated
autonomous equation has at least one equilibrium point.

Remark.

If<_AI contains only voltage-controlled resistors (resp., current-
constrolled resistors) and only dc voltage sources (resp., dc current
sources), then (94) in Theorem 16 can be replaced by the following
condition:

lim xT h (x ) = -H» (95)
II x II -*»
~a

Since most physical multi-terminal and multi-port resistors satisfy
(93) and (94), it follows from Theorem 16 that hypotheses 7 and 8 of
Theorem 13 and 14 are satisfied by most practical networks.
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B. No Finite Escape-Time Solutions

To motivate the materials in this section, consider first the circuit

shown in Fig. 30, whose state equation is given by:

VC =
_S
C I

v /V
C7 T -

e -1 (96)

This equation has the following
explicit solution:

vc(t) = vc(0)£n

where

f(t)

ef(t)-sgn vc(0)
(97)

sgn vc(0)
f(t) -

CVr
t + in -vc(0)/VT

d-e

ivT/v«»

(98)

Fig. 30. A simple diode
circuit having a
finite escape-time
solution at t = t-

< 0. The pn junction
diode is character

ized by
iR - Is[exp(vR/VT)-l].

and sgn vc(0) - vc(0)/|vc(0)|,
v (0) ^ 0. Observe that for any initial condition vc(0) > 0, the solution
tends to infinity at a finite time

-vc(0)/V < 0 (99)

1-e

This "non-physical" phenomenon is called a finite escape-time solution
and is clearly an undesirable property. One could impose conditions on
the state equation so that no finite escape-time solutions are possible
[85]. Unfortunately, these conditions are much too restrictive that they
would exclude most practical networks of interest. However, it is
possible to relax these conditions considerably if we wish to exclude only
"forward" finite escape-time solutions, i.e., no solution tends to
infinity in a finite forward time t, >t,., where tQ is the initial time.
After all, engineers are usually only interested in solutions after the
"switch" is thrown. The following theorems have been derived for this
purpose.

Theorem 16. No Finite Forward Escape-Time Solution Criterion 1 [71]

Let an RLC non-autonomous network lA) be described by the state
equation (84). Let the capacitor-inductor constitutive relation g(»)
be a C^ state function and assume that §(•) is eventually strongly
uniformly increasing in the sense that there exist constants k >_ 0 and
y L X > ° sucn tnat

.nil2Xl,5'~5'" 1 (z'-z") /g(zf)-g(z")\ <_ yilz -z

Observe that (96) has this property even though it has a "backward"
finite escape-time solution.

rn„i_„nii2
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for all Hz* II > k^ and Hz"ll > kn.
D - D n

Moreover, for every compact set D C ]R , assume that there exist
constants y > 0 and k > 0 such that for all u_ G D , the constitutive

**S u
relation of the n-port res^stor N satisfies the condition

xT h(x;ug) >_ -yllxll2 , for all llxll >k (101)

Then the state equation (84) has no finite forward escape-time solutions.
That is, for any bounded and continuous source function Ug(t) and for any
initial time tQ, each solution z(t) of (84) exists for all t _> tQ.

Observe that (101) is an extremely weak condition satisfied by all
practical networks. Intuitively speaking, (101) can be interpreted as
requiring that the n-port resistor N be eventually no more active than
some active linear n-port resistor. In the next theorem, we relax the
"eventually strongly uniform increasing" condition (100) and in turn place
a stronger condition than (101) on h(-)

Theorem 17. No Finite Forward Escape-Time Solution Criterion 2 [71]

Let an RLC non-autonomous network cjvl be described by the state
equation (84). Let the capacitor-inductor constitutive relation §(•) be a
C* state function and let £: Rn -»• "R denote its associated scalar
"energy" function, i.e., Vg(z) = §(?). Assume that

lim g(z) = +-> (102)
z -*»

Let the constitutive relation h(«) of the associated n-port resistor
N satisfy the inequality

xT h(x;uc) >-k (103)
n

for all source vector u„ £ K. 8 and x £ R. , where k >^ 0. Then (84) has
no finite forward escape-time solutions.

Our next theorem gives explicit conditions in terms of the internal
elements directly. We assume, without loss of generality, that each
voltage sources is in series with a resistor and each current sources is
in parallel with a resistor. These resistors with sources attached will
be combined as composite resistors where each constitutive relation j} (•)
is given by

y = h (x ) = h (x +b ) + c (104)
la ~a ~ot -a -a ~cc -a

where the components of the vectors b and c represent the original
dc sources in (J\).

Theorem 18. Explicit No Finite Forward Escape-Time Solution Criterion [71]

Let an RLC non-autonomous network ^\| be described by the state
equation (84). Let the capacitor-inductor constitutive relation g(«) be a

C2 state function and let fi: 3Rn -»• 3R denote its associated scalar
"energy" function; i.e., V£>(z) = |(?)- Assume that

lim g(z) « 4- - (105)
z'i-*co
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»

9

Assume further that there is no voltage source (resp., current
source) forming a loop (resp., cut set) exclusively with capacitors,
inductors and other voltage sources (resp., current sources) ofUVK ?

Moreover, if the constitutive relation ha(.) of each composite
internal multi-terminal or multi-port resistor satisfies the inequality

x h (x ) > -k
~cx ~a -a — ct

for all x GR^ and k >0. Then (84) has no finite forward escape-
time solutions.

C. Small-Input Gives Small-Output Property.

All "small-signal" analysis of electronic circuits are based on the
implicit assumption that a small "ac" signal applied about a dc operating
point will give rise to a small "ac" output signal. It is easy to find
example where this assumption is not satisfied. Our objective in this
section is to present sufficient conditions which guarantee this property.
For complete generality, we will allow any ac signal. Since such signals
need not be periodic, or even almost periodic, the following
"characteristic" of ac signals will be used.

np.finition 10. Eventual Range of a signal s(-) [72]

Let s(0 :R1 -»- Rm be a continuous function of time. We define
the eventual range <QS of s(«) to be:

(^ = A {sGEm: there exists t >. T such that s(t) = s} (107)
T€RX

It can be shown that when §(•) is bounded, then the eventual range Hk?s
is compact and connected in Rm.

Theorem 19. Small-Input Small-Output Criterion [72].

Let an RLC non-autonomous network cAI be described by the state
equation (84). Let the capacitor-inductor constitutive relation g(-) be
a Cl strictly increasing diffeomorphic state function mapping Rn onto
Rn. Let the constitutive relation h(-;ys) of the associated n-port
resistor N be a strictly increasing eventually strictly passive Cl
diffeomorphism mapping Rn onto Rn for all ug € R s. Then (_AJ has the
following properties: n

1. For any "dc bias" source vector u* € R s, there exists a unique
z* € Rn such that

(108)h/g(z*);u*) =0
2. Given any e > 0, there exists a 6 >0 such that for any continuous
and bounded "ac" source vector function ug(.) satisfying!7

iV*
(109)

"the corresponding solution z(«) satisfies

E*i <c (110)fR-s-
See bottom of next page.
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regardless of the initial conditions.

3. Given any continuous "ac" source vector Ug(«) satisfying

lim us(t) = u* (111)
t-*°°

the corresponding solution z(') satisfies

lim z(t) = z* (112)
t-*»

regardless of the initial conditions.

Remarks:

1. It can be shown that a C strictly increasing diffeomorphism
h(.;y ) mapping Rn onto Rn is eventually strictly passive if it is a
state function, or if it is a uniformly increasing function.
2. The preceding property 3 is an extension of Theorem 6 where the same
conclusion is found assuming u (t) = u*, and without assuming that
h(.;u ) is eventually strictly passive for all u £ Rn. There is a
subtle difference here in that z* is not an equilibrium point of (84)
unless ug(t) =u*. That is, z(t) =z* is not asolution of (84) if\M is
driven by a time-varying input yg(t).
Theorem 20. Explicit Small-Input Small-Output Criterion [72]

Let an RLC non-autonomous networko\j be described by the state
equation (84). Let the capacitor-inductor constitutive relation g(«) be
a C1 strictly increasing diffeomorphic state function mapping TRnontoTRn.

Assume that o\l satisfies the following:
Fundamental Topological Hypothesis: There is no loop (resp., no cut set)
formed exclusively by capacitors, inductors, and/or dc voltage sources
(resp., current sources).

Moreover, let the constitutive relation h (•) of each internal
multi-terminal or multi-port resistor ^a be aC1 strictly increasing
homeomorphism mapping R s onto R s and let ba(0 satisfy the growth
condition

,"? Tnrr{?aHa(v} =̂ (113)
llx H-**0 -a ^
-a

Then eAI has the three properties listed in Theorem 19.

17We have abused our notation slightly in (109) and (110) by using the
"eventual range" symbol ^R defined earlier in (107) to mean
tlu _u*l! < 6 for all u„ €<£>S ,and Hi-z**' <e for all z gQ ,
~s ~s ~s ucL_ "* ii ii

respectively.. Here ^Q and^jj denote the eventual range of the "ac"
source vector Ug(-) andSthe solution z(-) respectively. Roughly speaking,
(109) defines a class of source waveforms Ug(*) with the Property that
»u (t)-u*'l < 5 as t -*• °°. Similarly, (110) defines a class of solution
waveforms z(.) such that Hz(t)-s*fl < e as t -»• °°. Here, the constant
vector u* can be interpreted as the "dc" bias" used in Electronic Circuits
to establish a suitable "operating point" z*.

-94-



D. Unique Steady State Property.

It is well-known that autonomous networks containing locally active
resistors could have several distinct "dc" steady state solutions
corresponding to locally asymptotically stable equilibrium points. For
non-autonomous networks, multiple "ac" steady-state solutions could occur
even if all elements are strictly locally passive. For example, consider
the network^ shown in Fig. 31. Observe that all elements (except the
source) are passive and strictly locally passive. It follows from

1L» (460(<£L)5 +5</>L)lO

I0~4{UR,

nl06t©
0.0003U

Fig. 31. A non-autonomous RLC network (Jv) containing strictly locally
passive elements having more than one steady-state
solutions.

Theorem 16 that all solutions of this network are eventually uniformly
bounded. Moreover, if we replace the voltage source in Fig. 31 by one
having a terminal voltage E(t) = 6 sin 106t, where 6 << 1, then it
follows from Theorem 19 thato\j has a unique steady-state solution z(-)
in the sense that all solutions tend toward z(«) as t -*• », regardless of
initial conditions. However, for 6 = 1 as in Fig. 31, we have found by
computer simulation that ^Al has ai least two distinct steady-state
solutions [72], Our objective in this section is to present some
sufficient conditions which guarantee a unique steady-state solution.
Since the steady-state solution need not be periodic, we will define
first the following more general classes of signals.

Definition 11. Almost Periodic Signals [84]

Rl + mA continuous function s : R x -*- R'" is said to be almost periodic
if for any e > 0, there exists an £(e) > 0 such that every time interval
of length £(e) in R^ contains a time t such that

lls(t+T)-s(t)H < £ , for all t G R

Definition 12. Asymptotically Almost Periodic Signals [52,86].

A continuous function s:R -> Rm is said to be asymptotically
periodic if s(«) can be uniquely decomposed into

1s(t) = sQ(t) + sT(s), for all t G -r

-95-

(114)

(115)



where sQ(t) is continuous and almost periodic, and sT(») is continuous
and lim ST(t) =0. ~T

It is well-known that a continuous function s(.) :R ^ -*• Rm is almost
periodic if, and only if, s(.) can be uniformly approximated by a
multiple Fourier Series [86]

JO), t
§(t) - 2J?,e (116)

h

where {w, } is a countable set of real numbers called Fourier exponents,
or base frequencies, and the corresponding countable set of vectors {s,}is
called the associated Fourier coefficients.

Definition 13. Spectrum Combinations (o-module)[52,84]

Let an almost periodic function be represented by (116). Let 2q
denote the countable set of real numbers which are integer combinations
of the (o^. That is, 2c =iCIY*>, for all possible integers n,. The set
2C is called the spectrum combinations (or a-module) of s(.)«

It follows from (116) that an almost periodic function s(«) is
periodic if, and only if, for any integers k and £, u),/u) is a rational
number. In this case, the spectrum combinations 2q *s just the set of
harmonics generated by the base frequencies a, . For almost periodic
signals, the spectrum combinations would contain all harmonics and
modulation products of the base frequencies. The following theorems
provide sufficient conditions which guarantee that a network has a
unique steady-state solution and that the spectrum combinations 2 °f
the solution z(») is a subset of the spectrum combinations of the input
signal 2 ofu (•)• Hence, no unusual frequency components, such asUg ~b

subharmonics, will be generated. Since the simple RLC network shown
earlier in Fig. 31 fails to have a unique steady-state solution, it is
clear that rather strong hypotheses will be required in the following
theorems.

Theorem 20. Unique Steady-State Criterion for Linear LC Networks [72]

Let an RLC non-autonomous network o\j be described by the state
equation (84), where the capacitor-inductor constitutive relation g(»)
is linear; i.e.,

g(z) = r z (117)

where r is an nxn symmetric and positive definite matrix. Assume further
that the constitutive relation h(»;uc) of the n-port resistor N is a
C% strictly increasing eventually strictly passive funtion for all
uq *= R s. Then Q_y\J has the following properties:

1. There is a unique steady-state solution for any continuous and bounded
source vector u_(.)^

2. If u_(») is asymptotically almost periodic and satisfies a local
Lipschitz condition, then each solution z(«) of (84) is asymptotically
almost periodic, and in the steady state, the spectrum combinations
of z(.) is a subset of the spectrum combination of u-(-); i.e.,

C2„ ' (H8)
z ~u
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3. If in addition, the constitutive relation h(«;Ug) of the ^-port n
resistor N is a C1 diffeomorphism mapping Rn into Rn for all u S R s}
then for any continuous and bounded yg(.) and for any pair of solution
z'(-) and z"(.) of (84), there exist a constant y satisfying 1 >_ y > 0
and time constants Tmax and Tmin satisfying Tmax > Tm±n > 0 such that

ke_t Tmin <Hz'(t)-z"(t)ll <k2e TmaX (119)

for all t >_ 0, where
1

2
1

k. -Y2 llz,(0)-z"(0)H ,k? ^ (I) llz'(0)-z"(0)ll (120)

Moreover,

Y = X/X (121)

where X and _X denote the maximum and minimum eigenvalue of r, respectively.

Theorem 21. Explicit Unique Steady-State Criterion for Linear LC Networks

[72]

Let an RLC non-autonomous network (_A) be described by the state
equation (84), where the capacitor-inductor constitutive relation g(«) is
linear; i.e., it satisfies (117). Assume (_AI satisfies the following
Fundamental Topological Hypothesis: There is no loop (resp., no cut set)
formed exclusively by capacitors, inductors, and/or dc voltage sources
(resp., current sources). Moreover, assume the constitutive relation
h (.) of each internal multi-terminal or multi-port resistor R is a
strictly increasing homeomorphism mapping R a onto R a, and

lim yKt xT h (x ) --K> (122)
-a

Then o\) has the three properties listed in Theorem 20.

Theorem 22. Unique Steady-State Criterion for RC and RL Networks with

Linear Resistors [72].

Let an RLC non-autonomous network oA) be described by state equation
(84). Let the capacitor-inductor constitutive relation g(«) be a
C2 strictly increasing diffeomorphic state function mapping R onto Rn.
Let the constitutive relation h(«;u ) of the n-port resistor N be a linear
function of x and u„; i.e.,

h(x;us) = Hxx + Huus (123)

where H is an nxn symmetric and positive definite constant matrix, and
H is an nxn constant matrix. Then (A)has the following properties:
-us v^

1. Thee exists a unique steady-state solution for any continuous and
bounded input Uo(0« -

2. Given any pair of solutions z'(0) and z"(.), there exist a constant
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Y satisfying 1 > y > 0 and time constants t and t . satisfying

t > t . > 0 such that
max — min

"* Tmin ±|5.(t).g»(t)0 <k2e maX (124)

for all t >_ 0, where

1

I 2
kx £Y2 llz»(0)-z"(0)!l ,k2 £(i) llz'(0)-z"(0)H (125)

3. if u (•) is asymptotically almost periodic, and satisfies a local
Lipschiiz condition, then each solution z(-) of (84) is asymptotically
almost periodic, and in the steady state, the spectrum combinations
0 of z(.) is a subset of the spectrum combinations 2U of ^s^*

Observe that the symmetry condition on the matrix Hx in (123) cannot
be satisfied in general if the n-port resistor is terminated by both
capacitors and inductors in view of the corollary to Theorem 10
(Sec. II-2). Consequently, the following version of Theorem 22 is stated
for either RC or RL networks.

Theorem 23. Explicit Steady-State Criterion for RC and RL Network with

Linear Resistors [72]

Let an RC (resp., RL) non-autonomous network cAI be described by
state equation (84). Let the constitutive relation g(.) of the capacitors
(resp., inductors) be a C* strictly increasing diffebmorphic state
function mapping Rn onto Rn. Assume that ^satisfies the following
Fundamental Topological Hypothesis: There is no loop (resp., cut set)
formed exclusively by capacitors (resp., inductors) and/or dc voltage
sources (resp., dc current sources). Moreover, assume the constitutive
relation h (.) of each internal multi-terminal or multi-port resistor
R is linear, passive, and reciprocal; i.e.
a

i « H v (resp., v «Hi ) (125)

where H is an naxn symmetric and positive definite constant matrix.
Then l(jahas the three properties listed in Theorem 22.

Theorem 24. Unique Steady-State Criterion under Small-Signal Inputs [72]

Let an RLC non-autonomous network oWbe described by state equation
(84). Let the capacitor-inductor constitutive relation g(.) bena
C* strictly increasing diffeomorphmic state function mapping R onto
Rn, and let the Jacobian matrix of §(•) satisfy the following local
Lipschitz condition:

3g(z') Dg(z")

3z 3z
< £ llz'-z'i (126)

z

for all z', z" e nn, Jz'-z/'il < <5, and *2 > 0 where both 6 and *z may
depend on z1.
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Let the constitutive relation h(»;u ) of the n-port resistor N be a
C2 strictly increasing, eventually strictly passive diffeomorphism
mapping Rn onto R
properties:

1. For every "dc bias" u* £ R S, there exists 6 > 0 such that (84)
has a unique steady-state solution due to any continuous and bounded
"ac" signal uQ(«) satisfying

IP,
-ii* < 6

for all u £ Rns, Then (_A) has the following

(127)

2. If in addition u<,(«) is asymptotically almost periodic and satisfies
a local Lipschitz condition, then every solution z(») is asymptotically
almost periodic, and, in the steady state, the spectrum combinations
2 of z(') is a subset of the spectrum combinations 2 of u«(').

Theorem 25. Explicit Unique Steady-State Criterion under Small-Signal

Inputs [72]

Let an RLC non-autonomous network lA) be described by state equation
(84). Let the capacitor-inductor constitutive relation g(0 be a
C* strictly increasing diffeomorphic state function mapping Rn onto
Rn, and let the Jacobian matrix of g(«) satisfy a local Lipschitz
condition in the sense of (126). Assume that ^A) satisfies the following
Fundamental Topological Hypothesis: There is no loop (resp., cut set)
formed exclusively by capacitors, inductors, and/or dc voltage sources
(resp., current sources). Moreover, let the constitutive relation h (•)
of each internal multi-terminal or multi-port resistor Ra be a C2 strictly
increasing diffeomorphism mapping Rn onto Rn, and satisfying the growth
condition

lim
ix

(xT h(x )\ =^-cc -a -a J
+0P (128)

Then (^Al has the two properties listed in Theorem 24.

Our final theorem is addressed to the class lA) of diode-transistor
networks shown in Fig. 32. If we model the pn junction diodes and the
pnp and npn transistors by the standard "ac" Ebers-Moll Model (with
junction capacitances) [11], and if we define the following port variables

A
x =

V~T>

V~C ic

A
z =

St

3d

5c

(129)

where the subscripts T, D, C, L correspond to transistors, diodes,
capacitors, and inductors, respectively, then the state equations ofo\!
assumes the following form:

-Th°(g(?)) -Hg(z) +Ug(t) (130)
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Fig. 32. A diode-transistor dynamic network. The m-port N contains
only linear 2-terminal resistors and independent sources.
The only nonlinear resistors are diodes and transistors.

where H denotes the hybrid matrix associated with N; i.e., y = Hx-uc(t)
and - b

T *

1 -a
(1)

-a(1> 1
£

T

I

I

I l •
I

U<p>

»

-r i
-I

1--
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is an mxm block diagonal matrix. The vectors h(0 and g(*) are defined
as follow:

h(x) *

fT<YT>

?D(V

V-C

k

g(z)

gT(qT)

§d(5d)

§c(Sc}

!l(*l>

(132)

diode- constitutiveEach component of fT(') and fn(*) of the transistor-
relation is defined by ij = f.(v.), where f.(.): l1^! is aC1
strictly increasing function andJfj(0) = 0. Each component of the
capacitor-inductor constitutive relation g(.) is defined by q. = gjCO
or <J>, = g.(i.), where g.(-):l •*• K1 is a ^ uniformly increasing
function.J We are now ready to state a slightly generalized version of
a theorem due to Sandberg [62],

Theorem 26. Unique Steady-State Criterion for Diode-Transistor Networks

Let c_AJ be a diode-transistor network described by the state equation
(130). Assume that there exists a diagonal matrix D with positive
diagonal elements such that DT is weakly column-sum dominant and DH is
strongly column-sum dominant. 1® Assume further that fi(•) :R •*- R^ is
C* strictly increasing, fj(0) = 0, and g. (•) :R^ -*• IR* is C uniformly
increasing. Then <_A1 has the following properties:

1. For any two bounded source vectors u'(t) and Ug(t)i l —°» which
tend toward each other in the sense that

lim[us(t)-u^(t)j =0
t~H» *

(133)

the corresponding solutions z'(t) and z"(t) also tend toward each other;
i.e.,

lim

t-x»

z!(t)-z"(t)l «= 0

2. c^Al has a unique steady state response z(0 corresponding to each
bounded source vector us(»).

(134)

3. If u\l contains only dc independent sources (i.e., ug(t) = y"(t) = u*),
then all solutions z(») tend to a unique and globally asymptotically
stable equilibrium point.

18
An nxn matrix M is said to be weakly (resp., strongly) column-sum

dominant if

min

k=l,2,...n

n

\k - 2 |Mjkl
J=l

for some e > 0 (resp., e > 0).

> e
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V. Recent Tools for Nonlinear Network Analysis

Several powerful and potentially useful tools have found important
applications in the qualitative theory of nonlinear networks. Due to
limitation of space, we will only list them here along with some
references on where applications have been found:

1. The colored branch theorem [28,70,91].

2. Degree theory [25,68,75].

3. The Hopf Bifurcation theorem [87-88].

4. Transversality theory [89-91].

These basic tools are likely to find many new applications in future
research on nonlinear network theory.

Research sponsored in part by the National Science Foundation under
Grant ENG77-22745, by the Office of Naval Research under Contract
N00014-76-C-0572, and by the Joint Services Electronics Program Contract
F44620-76-C-0100.
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