
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



CONCURRENCY CONTROL AND CONSISTENCY OF MULTIPLE COPIES

OF DATA IN DISTRUBUTED INGRES

by

Michael Stonebraker

Memorandum No. UCB/ERL M78/24

24 May 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



CONCURRENCY CONTROL AND CONSISTENCY OF MULTIPLE COPIES OF DATA

IN DISTRIBUTED INGRES

by

Michael Stonebraker

Electronics Research Laboratory

University of California, Berkeley

ABSTRACT

This paper contains algorithms for ensuring the con

sistency of a distributed relational data base subject to

multiple concurrent updates. Also included are mechanisms

to correctly update multiple copies of objects and to con

tinue operation when less than all machines in the network

are operational. Together with [EPST78] and [RIES78], this
paper constitutes the significant portions of the design for

a distributed data base version of INGRES.

I INTRODUCTION

This paper contains a collection of algorithms to han

dle concurrency control, crash recovery and the update of

multiple copies of relations in a distributed data base sys

tem. Together with [EPST78] and [RIES78] this suggests the

heart of the design for a distributed version of the rela

tional data base system, INGRES. Earlier thoughts on the

same subject are presented in [ST0N77, W0NG77].

The algorithms presented herein are based on what might

be called the "primary site" model [ALSB76, ST0N77] for

copies. As such, these algorithms borrow notions from the

work of [ALSB76]. Hence, each object possesses a known

Research sponsored by Naval Electronics Systems Command

Grant #N00039-78-C-0013 and National Science Foundation

Grant MCS75-03839-A01.



primary site to which all updates in the network for that
object are first directed. It should be clearly noted that
different objects may have different primary sites.

In our environment an object is a subset of the rows of
a relation (a so called fragment [ROTH77]). Consequently, a
relation is partitioned into fragments, each with a primary
site and some number of redundant copies. The syntax by
which fragments, primary sites and copies are specified is
given in [RIES78].

Concurrency control is, of course, a problem to contend
with. Unlike [MENA78], who proposes a centralized "GOD"
called the lock controller to maintain lock tables and
detect and resolve deadlock, we propose to handle locking in
a distributed fashion. Deadlock detection and resolution
can also be distributed, but we propose allocating these
tasks to one machine called the SNOOP. It will be seen that
extremely low lock overhead can be achieved using our
scheme.

Lastly, crash recovery entails two tasks:

1) handling the failure of a single node in the network and
2) dealing with a failure that partitions the network.

It will be seen that both situations can be handled by
very simple algorithms.

In the next section we point out some fundamental
assumptions we have made and explain the environment in
which distributed data management takes place. Then, in
Sections III and IV we present the algorithms for con
currency control and consistency of multiple copies respec
tively. Lastly, in Section V, we examine our proposal in
light of those of [BERN77, MENA78, R0SE77, TH0M75]-

Throughout this paper we only sketch our algorithms and
make no attempt at formal proofs. Arguments along the lines
of [MENA78, LAMP76] can be applied to our situation without
difficulty, but for the sake of brevity, they are omitted.

II THE ASSUMED ENVIRONMENT

Our work is based on the four following basic assump
tions. (The reader can think of these as global assumptions

-2-



about the "state of the world". For environments where

these are not true, our proposals may not be appropriate.)

1) Locality

At least 95 percent of the traffic to be processed by a

distributed data base system is LOCAL. By this we mean that
all data to successfully process an interaction is resident

at the site where the interaction originates. Moreover,

this statement holds even if there are no redundant copies

of objects.

We make this assumption based on our belief that other

architectural choices (namely centralization or tightly cou

pled networks with a notion of "GOD") become cost effective
when traffic is not predominantly local.

2) Reliability

Computer hardware (and perhaps software) is becoming
more reliable. Hence, when possible, mechanisms should make

normal processing faster at the expense of lengthened crash

recovery time.

3) Closeness

The main performance consideration when processing an

interaction is whether it is LOCAL or not. Non local

interactions are not expected to be scaled on "closeness",

and the notion of a "nearby" site is not assumed to be mean

ingful. This is a reasonable approximation of most real

networks that we are familiar with.

4) Types of networks

The algorithms should work well for both "broadcast"

networks and "point-to-point" networks. Hence, they should

be able to utilize the capabilities of a network where the

cost to send a message to all sites is almost equal to the

cost to communicate it to one site. Likewise, the algorithms

should also perform well if only point-to-point communica
tion is possible. To a first approximation, we think of the

ETHERNET [METC76] and the ARPANET [R0BE70] as generic exam
ples of these two cases.

-3-



The algorithms we propose must exist within the context
of the query processing done by a distributed INGRES in han
dling transactions. We now give necessary information on
distributed query processing.

A transaction, T, in our environment consists of ONE
QUEL command which is either a RETRIEVE or an UPDATE
(APPEND, DELETE, REPLACE). There is no extra algorithmic
complexity in handling the more general case where a tran
saction consists of an arbitrary collection of such com
mands. The only problem is that crash recovery will be
decomposed into local crash recovery followed by some extra
processing. Current INGRES one-site crash recovery software
can only handle the smaller transactions, and we do not plan
to rewrite it to be more general.

In the discussion to follow, the reader should note
that while we present the restricted context, our algorithms
will work for the general case if one pretends that the
local notions of "commit transaction" and "recover transac
tion" handle the general case for a one-site environment.

Such a transaction originates from a user process

(application program or interactive terminal monitor) at
some site, i, in the network. A "master" or coordinating
collection of INGRES processes is invoked at site i. This
master creates "slave" INGRES processes at other sites and
ensures that each slave knows the identity of all other
slaves. Although slaves need be created only at sites where
processing will take place, it may be convenient to pretend
that they exist at all sites. Hence, we make no further
note of creating or destroying slaves. As discussed in
[EPST78], a master can send two commands to slaves:

1) run the (local) interaction, I, at a subset of the sites.
2) send a copy of fragment R to a subset of the sites in
the network.

The slaves eventually return a "done". By a sequence of
such commands, as shown above, the master ensures that the
user interaction is eventually processed. The details on
how such a sequence is generated appear in [EPST78].

If T is a RETRIEVE command then it can be equally
thought of as a sequence Ir...,In of interactions where

-4-



each I is either a local RETRIEVE command or a SEND command

to be executed on a subcollection of the sites.

If T is an update, the master first generates a

RETRIEVE command to figure out what to do. This command is
processed as above and (eventually) generates a deferred
update list of the changes to be made. As noted in
[EPST78], these lists of updates may not always be at the

site where the tuples to be updated reside. Consequently,

the lists may have to be appropriately shuffled so that each

slave has a complete deferred update list for its site.

Since each slave knows the identity of all other slaves, it

can simply wait for a message from all other sites contain

ing the appropriate tuples. Alternatively, the master site
knows the collection of sites where deferred update is pos

sible. It can send this information to the slaves with some

interaction, I. Each slave, in this case, need only expect

a message from this subset of sites.

When all is appropriately arranged, a "commit transac
tion" message must be sent by the master to all slaves.

Hence, an update transaction is a sequence of local interac

tions, I-,...,I , followed by some shuffling and a "commit
transaction". The detailed protocols to be followed on

updates will be explained presently.

It should be noted that Ij,...,In for RETRIEVES and
updates is always a collection of local RETRIEVES and SENDS.

For updates however, the local RETRIEVES that isolate

changes to be made sometimes contain a "tuple identifier" as

part of the requested data. In this way, the deferred

update list will have an indication of exactly which tuples

must be modified. The "tuple identifier" also indicates

that the current RETRIEVE is really isolating tuples which

will later be changed. Hence, for some local locking algo

rithms (such as [GRAY76]), these must be considered writes

rather than reads.

Ill CONCURRENCY CONTROL ALGORITHM

If T is a RETRIEVE command, proceed according to step

one or step two.

STEP ONE: (high performance but has data integrity

-5-



problems)

The master directs each interaction, I, to the local

copy of each object. If one does not exist, he directs it

to the primary copy. Section 4 indicates how the identity

of the primary copy is determined.

STEP TWO: (lower performance but no "surprises")

The master directs each I to the primary copy of each

object. (We will discuss in Section 4 what the "surprises"

are and when step one can be safely chosen.)

Alternatively, if T is an update, the master must

direct each I to the primary copy of the object without

exception.

Note that the choice of step one or step two will

affect whether a particular interaction is local or not.

Hence, it may affect the sequence of interactions which is

chosen by the master during distributed decomposition.

A local concurrency controller (cc) runs at each site.

This cc sees a transaction, T, as consisting of a collection

of interactions, I.,...,I , EACH LOCAL TO THAT SITE which it
1 n

receives one by one from the master. It is assumed that
level 3 consistency [GRAY76] for such a transaction is

satisfied. How cc performs this task is of no concern here.

All that matters is that the response to each interaction,

I, which a master sends to a slave, is a "done" (indicating

that it is complete) or no response (indicating that it is

either still processing or is waiting for permission from

the cc to proceed further).

Since the sequence of interactions may not be known in

advance, deadlock may occur. If it happens within one

machine, the cc picks a victim and performs local backout.
The appropriate slave sends a "reset" message to his master
which in turn resets all other slaves. This accomplishes

backing out T.

However, deadlock may happen in such a way that it
involves multiple machines. We suggest the following mechan
ism to deal with this problem. Whenever an interaction is
run at a node it will either run to completion or wait, due

to a lock conflict. Say transaction Tj holds a lock for
which transaction Tk waits. When cc detects such a

-6-



condition, it sends identifiers for Tj and Tk to an agreed
on machine (The SNOOP). The SNOOP then detects deadlock by

ordinary analysis of the global "wait for" graph, which it

oan generate from all such messages. When a master com

pletes a transaction, it sends a "done" to the SNOOP, who

can appropriately update his "wait for" graph.

In summary, each site has a cc that handles concurrency

control for local transactions (using some technique). The

lock tables each cc creates and uses are LOCAL to its site

and are present nowhere else. Only the SNOOP needs to be

informed of "wait for" conditions.

In the absence of crashes, it is clear that such a

scheme can work correctly. We now turn to control of multi

ple copies and crash recovery.

IV COPIES AND CRASH RECOVERY

There are two algorithms to handle copies and crash

recovery. One is called the "performance" algorithm. It
processes updates with the minimum possible delay (i.e.
fastest possible response time). However, it will be seen

to have a data consistency problem since transactions can be

lost and relations can become inconsistent if certain sorts

of crashes happen. In the absence of crashes, however,

there are no consistency problems.

This algorithm will require the notion of a "copy

INGRES". This is an invocation of INGRES that can receive a

complete deferred update list from a slave INGRES for some

object, and performs the update on a copy of that object. A
copy INGRES must exist for every copy of the object which is

not the primary copy.

The other algorithm is called the "reliability" algo

rithm. It ensures that there is never a data consistency

problem. However, there may be a substantial response time

penalty in order to guarantee this.

In this section we make the following assumptions:

1) Crashes of a single node can happen. Service is restored
after some delay. Local crash recovery procedures will

automatically be run and will guarantee that local

-7-



transactions, which were "committed" before the crash but

whose effects were not completely merged into the local data

base, are correctly committed.

2) Communication failures can happen. They will either be
transparent or will partition the network into subsets that

cannot communicate with each other.

3) Every message sent is reliably received if the recipient
is "up" and the sender does not crash inopportunely. If the

recipient is down, the sender can queue the message for
later delivery. Presumably, it is queued at the sender's
site so that subsequent delivery can only happen if the
sender is "up".

In this section we will indicate several algorithms

that must be run by the various actors under various cir
cumstances. The data structures used in the algorithms are
the following.

4.1 Data Structures

Each machine in the network maintains the following
information:

1) a state flag

This is either "normal", indicating normal operation,

or "restructure", which means the network is dynamically

adjusting to a crash or restoration of service.

2) an up-list

This is a list of sites that the given node thinks are

in operation. These sites form a "logical partition"
[MENA78] of the network that may lag in time behind the
actual physical state of the network.

3) the identity of the current SNOOP

This is an identifier for the machine that performs

deadlock detection. If the up-list changes in such a way
that the current SNOOP is not in the up-list, there is a

globally agreed upon procedure for choosing a new SNOOP.

-8-



Moreover, each master INGRES must have:

4) a commit flag

This flag is set by the master when it thinks that a

transaction is committed. It is reset otherwise.

Each slave INGRES must have:

5) a ready flag

This flag is set if the slave has the proper deferred

update list and is ready to commit a transaction. It is

reset otherwise.

6) a commit flag

This is set when the slave believes that his transac

tion is committed and is reset otherwise.

Lastly, the location of all copies for each object is
known (by an examination of some system catalogs whose com

position will not concern us here). In addition, there is a

known linear ordering of all these copies. As a result, any

site can always access its up-list and find the particular

copy which is lowest in the ordering among those at sites in

the up-list. This is by definition the PRIMARY COPY of the

object.

Now, if the network is currently partitioned, nodes in

different partitions will disagree on the identity of the

primary copy. Obviously, chaos would result if more than

one partition was allowed to independently update a given

object, since there would be no possible way to make the

objects consistent when the network was repaired. The easi

est way to avoid this situation is to allow a primary copy

to exist ONLY if a majority of all copies are at sites in

the up-list. Otherwise, the object is inaccessible.

However, it should be clearly noted that a problem

arises in the case where there are exactly two copies of an

object. In this (presumably very common) situation, any

network partition will make both copies inaccessible. To

handle this, one must be able to tell the difference

between:

a) a crash of a single site and

-9-



b) a network partition that leaves each copy in a different
partition.

In the former case we wish the backup copy to become

the primary, while in the latter case we do not. If these

two situations cannot be differentiated, the backup copy is
worthless.

There are six algorithms to be presented. In order to

assist the reader we first outline the general flow of con

trol before proceeding with the details.

ALGORITHM MASTER, SLAVE and COPY are executed respec

tively by master, slave and copy INGRESes. The key point is

that a master has a "commit point" when it sets its commit

flag. Before that point, it will back out a transaction if

a failure occurs. After that point it will ensure that the

transaction is correctly committed. The tactics used amount

to a "two phase" commit protocol [GRAY77] and are similar to

the proposal of [LAMP76].

Each slave responds to directives from the master. It

uses the local commit flag to indicate whether it thinks

that the transaction is committed. On crashes, local

recovery examines the flag to decide whether to backout or

complete the local transaction. When a slave commits a

transaction, it in turn directs copy INGRESes to correctly

update the auxiliary copies.

The final 3 algorithms are run in the context of

failures. ALGORITHM LOCAL RECOVERY performs "local cleanup"

and is run when a site wishes to resume service. ALGORITHM

RECONFIGURE is used to adjust the up-list after a failure or

a service restoration. It allows the network to continue

with less than all sites operational or even in a parti

tioned state. Lastly, ALGORITHM SLAVE PROMOTE is run when a

master crashes. Its purpose is to allow the slaves to

correctly finish or backout the transaction in question.

4.2 The Performance Algorithms

The reader is again cautioned that data integrity prob

lems exist in the algorithms which are now presented.

ALGORITHM MASTER

-10-



This is the algorithm to be used by a master INGRES

when it receives a an update transaction, T, from a user

process.

ml) refuse T unless state = "normal"

m2) Examine the up-list and calculate the primary site for

each object involved in T. Refuse T if the primary- site of

any object is inaccessible.

m3) Supervise distributed decomposition for T and coordinate

getting a correct local deferred update list (du) to each

slave.

m4) Wait for a "I am ready" message from each slave. If not

all respond, go to m8).

m5) Set commit flag. Send a "commit" message to all slaves.

Send a "done" to the user process.

m6) Wait for a "done" from all sites. If not all respond,

go to m9)•

m7) Send a "done" to the application program (if it is more
convenient to wait until master processing is complete).

Send a "done" to the SNOOP. Go to ml).

m8) Send "reset" to all slaves, the user process, and the
SNOOP. Queue this message for later delivery to the non

responding machines. Send a "reconfigure" message to each

site. Go to ml).

m9) Queue a "commit" message and a "potential trouble" mes
sage for the down machine(s). Send a "reconfigure" message
to each site. Go to ml).

ALGORITHM SLAVE

This algorithm is to be run by each slave which assists

a master in processing a transaction, T.

s1) Execute interactions at the request of the master and

-11-



assemble a deferred update list (du) for the local site.
When it is correct, set the ready flag.

s2) Send "I am ready" to the master.

s3) Wait for "commit" or "reset"

s4) If a "commit" is received, then set local commit flag.
Commit the transaction. Respond "done" to the master when
completed. Spawn a process to execute steps s6) to s8). Go
to s1).

s5) If a "reset" is received, run ALGORITHM LOCAL RECOVERY.
When complete, go to s1).

s6) Send (du) to each copy INGRES for the object being
updated that is operational. Queue (du) for later delivery
to non responding sites.

s7) Wait for a "done" from each copy INGRES. If not all
respond, queue a (du) message for the non respondants and
send a "reconfigure" message to all sites.

s8) Terminate.

ALGORITHM COPY

This algorithm is run by each copy INGRES that is
assisting in processing a transaction, T.

d) Wait for (du).

c2) Perform update and respond "done"

ALGORITHM LOCAL RECOVERY

This algorithm must be run when a site restores service

or when a transaction wishes to "reset".

r1) Read all outstanding (i.e. queued) messages and perform
appropriate local actions.

-12-



r2) If a local commit flag is set (either for the transac

tion in question or all transactions), commit the update. If

not, correctly back out the transaction. Techniques for

doing r2) for "soft" crashes, (i.e. ones in which data is

not lost from secondary storage), are well known [STON76,

ASTR76, LAMP76] and easily implementable. A more elaborate

(and tedious) restoration must be done for hard crashes

where data may be lost. -

r3) If this is a service restoration, then proceed, other

wise, send a "done" to master and terminate.

r4) Send a "reconfigure" message to all sites.

r5) Execute ALGORITHM RECONFIGURE.

ALGORITHM RECONFIGURE

This algorithm must be executed whenever a "reconfig

ure" message is received by a site. Its purpose is to

dynamically alter the up-list.

fl) set state = "reconfigure". Instruct each master INGRES
at the local site to backout or complete the current tran

saction. Go to f2) when the site is quiescent.

f2) Send "I am up" to all sites.

f3) Wait for a predetermined interval for replies and set
the up-list equal to the set of all respondants.

f4) If current machine is the lowest in a predetermined ord
ering of all machines in the up-list, go to f5); otherwise,
go to f8).

f5) Send up-list to all sites in the up-list.

f6) Wait for "I agree" from everybody. If any do not
respond (or respond with "disagree"), send a "reconfigure"
message to each site and go to f1).

f7) Set state = "normal". Send "normal" to all sites on the

-13-



up-list and go to f11).

f8) Wait for up-list from some other site.

f9) Compare with local up-list and respond with "agree" or

"disagree".

f10) Wait for "normal". When received, set state -= "nor

mal".

f11) If current SNOOP is in the up-list, resume normal

operation. Otherwise, calculate the new SNOOP by the prear

ranged algorithm and send local conflict graph to that site.

Resume normal operation.

It should be noted that step f1) will take a varied

amount of time and an operational site may not send an "I am

up" message within the "predetermined interval" of step f3).
This problem can be handled by a straight forward (but tedi

ous) extension of the algorithm.

It should also be noted that various multiple crash

conditions can leave all up sites at step f8) in the algo
rithm. This can be detected and handled by a timeout and

algorithm restart mechanism.

ALGORITHM SLAVE PROMOTE

This algorithm is executed by any slave that cannot
communicate with its master.

p1) invoke execution of ALGORITHM RECONFIGURE

p2) Wait for state = "normal".

p3) Examine up-list to see whether all other slaves are up.
(If not, there may be a data consistency problem which is

discussed in the sequel).

p4) If the slave is the lowest one in a predetermined order
ing of the slaves in the up-list, go to p5); otherwise, go
to p9).

-14-



p5) Send "is there a commit flag on" to all other up slaves.

p6) Wait for all replies.

p7) If there are no commits, send a "reset" to all slaves,
the SNOOP and the user process. Queue this message to down
sites.

p8) If there is one or more commits, send a "commit" to all
slaves and go to m6) of the ALGORITHM MASTER.

p9) Wait for "is there a commit" message.

p10) Reply "yes" or "no" and go to step s3) of the ALGORITHM
SLAVE.

4.3 Data Integrity Problems with the Performance Algorithms

This collection of algorithms has the following three
"features".

1) Transactions may be lost

This situation will normally be detected by a received
"potential trouble" message. If a slave crashes after it

has set its local commit flag but before it has reliably
communicated (du) to any copy INGRES, the following situa
tion arises. No copy of the object in question has received

the update. However, ALGORITHM LOCAL RECOVERY will ensure
that a service restoration at the crashed site will commit

the update. Hence, when service is restored and the network

is reconfigured, one copy will not agree with the others
because it will have had an extra update performed. This

"phantom" is lost until service restoration, at which point
it generates a consistency problem.

Of course, the slave can make this possibility very
remote. However, there is another serious case to consider.

Suppose a slave crashes after the master has set its commit

flag. In this case, other slaves associated with the same

master will proceed with the update, and the crashed site
will not. Moreover, no copy of the object at the crashed
site will ever be updated. This generates the following
feature.

-15-



2) The data base may be inconsistent

According to the above scenario, a user "process could

be giving a ten percent raise to all system programmers. If
system programmers appear at fifteen sites, then fifteen

slaves will be processing. A crash of one of them at an

inopportune time will leave the update committed at fourteen

sites and undone at the other. Hence, some system program

mers got the raise and some did not.

3) Messages can get lost

The algorithms all assume that a down machine recovers

by (among other things) reading its outstanding messages.
However, some outstanding messages may be on machines that

are currently down. This may mean, for example, that (du)

messages that were queued are not delivered before a machine

resumes normal operation. Depending on the composition of

the lost messages, the result can be benign or catastrophic.

4.4 Reasons for Tolerating Data Inconsistency

Obviously, these are serious drawbacks. Moreover, it is

not clear what a user process can do to deal with these

problems. However, there appear to be cases where a user

might be willing to tolerate such "surprises". Three exam
ples are suggested.

1) Update transactions always affect only one fragment of a
relation.

In this case, problem 2 cannot arise and problem 1 can

be easily recovered from. If machines are reasonably reli

able, problem 3 may not be an issue. (It only arises if at

least two machines are simultaneously out of service.)

2) Almost all updates are local.

With the above algorithms, a "done" can be given to the

user process for a local transaction after ONLY local pro

cessing. Hence, the response time can be (more or less) the
same as for a centralized system. To alleviate any of the

above problems would require at least one other machine be

signalled before a "done" could be sent to the user process.

This may degrade response time substantially (by perhaps an

-16-



order of magnitude, depending on the speed of the network).
There may be situations where such a degraded response time

is unacceptable.

3) Almost all updates can be decomposed into a sequence of
interactions, each of which is local to some machine.
Again, response time may be substantially degraded by any
mechanism dealing with the above problems.

As a result, a data base administrator can decide if
better response time is worth the above headaches. For

administrators who answer "no", we offer a collection of

much more reliable (and expensive) algorithms.

4.5 The Reliable Algorithms

The previous algorithms may be made more reliable by
making the following changes:

1) Treat each copy INGRES identically as the slave for which
it is updating a back-up copy. Hence, each copy INGRES

will receive a correct (du) before a transaction is commit

ted. All messages which are sent to slaves are also sent to

copy INGRESes.

2) ALGORITHM COPY is no longer necessary.

3) Steps s6) to s8) of ALGORITHM SLAVE are no longer neces

sary.

4) At every step where the instruction to queue a message

for a process at a non responding site occurs, change it to
queue the message at K sites, K>1.

With these modifications it is easy to show that all

three problems mentioned above are avoided if less than K

machines are down at any one time and if there are at least

K copies of each object.

The cost of this scheme is, of course, that a "done"
cannot be signalled to the user process until a correct (du)
is received reliably at ALL sites where a copy resides.

Clearly, substantial network traffic (and delay) will be
required to perform this.

-17-



It is obvious that there is no possible scheme which

can guarantee that there will be no "surprises" if K-1

machines crash, unless that scheme ensures that any update
is reliably received at K sites before commiting the update.
Whether users are willing to pay the cost in response time
for such a guarantee is unknown.

4.6 Accesses to the Local Copy

We are now in a position to discuss when a RETRIEVE can

be reliably directed to the local copy (step one from Sec

tion 3). Clearly a RETRIEVE can be directed to the local

copy of an object (step one) if it accesses only one frag
ment of any relation. If a RETRIEVE accesses multiple frag

ments of the same relation, then the possibility exists that

the local copies of each fragment are not consistent.' This
will happen if there is an update which spans multiple frag
ments (such as the previously discussed ten percent update
to all system programmers) and some local fragments have
received the update and the others have not (since copies

are updated asynchronously). This will be termed the "multi

ple fragment read problem".

Clearly, a multiple fragment RETRIEVE may yield an
erroneous answer and there is no way to guard against this

possibility (except by synchronizing the updating of copies
of fragments). However, since it is a performance winner to
access local fragments if possible, we plan to allow the

user to set a flag indicating that he wishes to "take a
chance" and use the local copy for RETRIEVE commands.

V COMPARISON WITH OTHER SCHEMES

We now examine our scheme in comparison with the updat

ing schemes proposed by [BERN77, MENA78, R0SE77, THOM75].

In [MENA78] a centralized concurrency control scheme is
proposed. Moreover, to successfully handle arbitrary

crashes, the lock table for this centralized controller must

be fully redundant (i.e. present at each of N sites).

Therefore, each interaction, I, in our model - using their
scheme, requires 3*N-1 messages to correctly alert all N

copies of the lock table. Our scheme only requires 1 mes

sage (the interaction I) to be sent to a SUBCOLLECTION of

-18-



the sites. Moreover, this message must be sent anyway.
Only if a "wait for" condition is generated must a second
message be sent to the SNOOP. Moreover, equal robustness on

crashes is achieved by our scheme with far less messages.
In addition, our recovery algorithms are much simpler
because the lock table is not redundant (and hence cannot be

inconsistent with copies of itself).

[ROSE77] proposes a concurrency control scheme that
avoids using the SNOOP by having timestamps on transactions
to resolve deadlock in a distributed fashion. However, that
scheme may abort a transaction without a deadlock existing.
Our scheme, on the other hand, backs out a transaction only
if a deadlock actually occurs. Whichever scheme has less

overhead is application dependent, and a simulation model
(perhaps along the lines of an extension to [RIES77]) would
have to resolve the issue.

In [THOM75] a scheme is presented for updating multiple
copies of objects based on majority voting. In this propo
sal, a "done" cannot be given to a user until n/2 copies are
serially updated. Only when this number is achieved can the

transaction be sure that it will not be backed out due to

conflict. Clearly, our performance algorithms generate a
"done" much sooner. However, our reliability algorithms (in
essence) require all copies to be updated before a commit
ment is signalled. On the other hand, we deal robustly with
arbitrary crashes. [TH0M75] does not contain a crash

recovery proposal (and would have to be extended to do so).
Without adding crash recovery procedures to the algorithms
of [THOM753, there is nothing more that we can say.

We now consider the proposal of [BERN77]. In environ
ments where traffic is not predominantly local, it appears
to be a desirable (but very complex) solution. Our scheme,
on the other hand, is directed toward environments where

there is high locality (assumption 1 from Section II).

Without giving the details of [BERN77], it should just
be noted that it proposes doing conflict resolution (if pos
sible) at data base design time. If transactions do not
conflict, each can update the copies of an object in any
order. The preferred order is to update the local copy
first and give a "done" to the user process when this is
complete. Hence, excellent response time can be guaranteed.

-19-



Transactions that cannot be shown to be non conflicting do

not have this freedom. For such transactions more extensive

coordination must be done. In general this will require

communicating with all sites where copies reside, although

in fortuitous circumstances a "luck out" may happen and a

site will send the right sort of a message without being

requested to.

Comparing our scheme with that of [BERN77] we first
presume that an equal number of copies of objects exist at
the same sites for either situation. Also, we note that the

algorithms in [BERN773 are not robust on machine crashes.
Providing such a feature will require additional mechanisms.
Hence, it appears appropriate to compare [BERN77] with our
performance algorithms, which also fail to make robustness
guarantees. Lastly, [BERN77] avoids the "multiple fragment
read problem" mentioned earlier by requiring that a transac
tion only send ONE write message to each site (p 13)- This
will ensure that all fragments of objects at a given site
are updated atomically. This requirement either substan
tially reduces the potential parallelism with which a tran
saction can be executed or requires extra synchronization
effort. In any case, this condition can be equally well
guaranteed by our proposal. It should be noted that assum
ing this notion allows us to direct RETRIEVE transactions to
the local copy of every object.

The comparison to follow is based on response time
only. The actual overhead of the two schemes depends on what
is counted, is stochastic in nature, and would require addi
tional study to quantify. The comparison is based on the

following cases:

1) The transaction is a RETRIEVE and there is a local copy

of each referenced object.

Here both proposals can access the local object and
response time is the same either way (assuming that both
proposals synchronize multiple fragment updates as discussed

above).

2) The transaction is a RETRIEVE and 1) is not satisfied.

In either case, a non-local copy is accessed. By our
assumptions concerning closeness (assumption 3), it does not

-20-



matter which copy is used, and the delay is the same.

3) The transaction is an update and the primary copy of all

objects is local, and the transaction is one which can be

preanalyzed by [BERN773 as a "non conflict" one.

Both algorithms will generate a "done" after local pro

cessing only.

4) The transaction is an update and its primary copy of all

objects is local and it is not in the "non conflict"

category.

Here, [BERN77] requires a message be sent to each site

and a response received (unless there is a "luck out"). Our

scheme requires only local processing.

5) The transaction is an update and is "non conflicting" but

is not local.

Here, [BERN77] requires no messages (but only if there
is a local copy of all objects). Our scheme requires com

municating with the primary site of each non local object.

6) other cases

This is the same as 4) for [BERN77] and 5) for our pro
posal.

Suppose X percent of the update transactions are local

for our algorithm and Y percent are "non conflicting" for

[BERN77]- Figure 1 indicates the number of sites which must
be communicated with for each scheme in cases 3)-6). Here,

c represents the number of copies of an object which are

present in the network.

-21-



CASE PROBABILITY NUMBER OF SITES

TO BE COMMUNICATED

WITH PER OBJECT

([BERN773)

3 XY 0

4 X(1-Y) c

5 Y(1-X) 0

6 (1-X)(1.-Y) c

NUMBER OF SITES

TO BE COMMUNICATED

WITH PER OBJECT

(OUR PROPOSAL)

A Comparison of Our Scheme With [BERN77]
Figure 1

CLearly, [BERN77] will win only if the following inequality

holds:

Y > 1 - { (1-X)/c)

By assumption 1 concerning locality, 1-X < 0.05.

Hence, if c = 3 then Y > 0.983 in order for our proposal to

lose. Of course, the actual value for Y is application

dependent. To support the plausibility of a high Y, an

example is presented in [ROTH77a] where Y=0.9925. However,

for the identical example an interested reader can ascertain

that X = 0.9925 also. A cursory examination of the above

equation indicates that our proposal wins for the case Y=X.

REFERENCES

[ALSB76] Alsberg, P. A. and Day, J. D., "A Principle for

Resilient Sharing of Distributed Resources,"
Center for Advanced Computation, University of

Illinois, Urbana, Iii, 1976.

[ASTR76] Astrahan, M. M. et. al., "System R: A Relational

Approach to Database Management," TODS 2, 2, June

-22-



1976.

[BERN77J Bernstein, P. A. et. al., "The Concurrency Control

Mechanism of SDD-1: A System for Distributed Data

Bases," Computer Corp of America, Cambridge,

Mass., December 1977.

[EPST78] Epstein, R. S., et. al., "Distributed Query Pro
cessing in a Relational Data Base System," Proc.

1978 ACM-SIGMOD Conference on Management of Data,

Austin, Texas, May, 1978.

[GRAY76] Gray J. et. al., "Granularity of Locks and Degrees

of Consistency in a Shared Data Base," IBM

Research, San Jose, Ca., RJ 1849, July, 1976.

[GRAY77] Gray, J., "Notes on Data Base Operating Systems,"

unpublished course notes, July 1977.

[LAMP76] Lampson, B. and Sturgis, H., "Crash Recovery in a

Distributed System," Xerox Palo Alto Research

Center, 1976.

[MENA78] Menasce, D. A. et. al., "A Locking Protocol for
Resource Coordination in Distributed Systems,"

Proc. 1978 ACM-SIGMOD Conference on Management of

Data, Austin, Texas, May 1978.

[METC76] Metcalfe, R. M. and Bogs, D. R., "Ethernet: Dis
tributed Packet Switching for Local Computer Net

works," CACM 19, 7, July 1976.

[R0BE70] Roberts, L. and Wessler, B., "Computer Network
Development to Achieve Resource Sharing," Proc.

1970 Spring Joint Computer Conference, 1970.

[RIES77] Ries, D. and Stonebraker, M., "A Study of the

Effect of Locking Granularity in a Relational Data

Base System," TODS 3t 3, September 1977.

[RIES78] Ries, D. and Epstein, R., "Specification of the
Distribution Criteria for a Distributed Data Base

-23«



System," Electronics Research Laboratory, Univer

sity of California, Berkeley, Ca., Memo #M78-25.

[ROSE77] Rosenkrantz, D. J. et. al., "A System Level Con
currency Control for Distributed Database Sys

tems," Proc. 2nd Berkeley Workshop on Distributed

Data Bases and Computer Networks, Berkeley, Ca.,

May 1977.

[ROTH77] Rothnie, J. B. and Goodman, N., "An Overview of
the Preliminary Design of SDD-1: A System for Dis

tributed Data Bases," Proc. 2nd Berkeley Workshop

on Distributed Data Bases and Computer Networks,

Berkeley, Ca., May 1977.

[ROTH77a] Rothnie, J. B. et. al., "The Redundant Update

Methodology of SDD-1: A System for Distributed

Databases," Computer Corporation of America, Cam

bridge Mass., June 1977.

[STON76] Stonebraker, M. et. al., "The Design and Implemen

tation of INGRES," TODS 2, 3, September 1976.

[STON77] Stonebraker, M. and Neuhold, E., "A Distributed

Data Base Version of INGRES," Proc. 2nd Berkeley

Workshop on Distributed Data Bases and Computer

Networks, Berkeley, Ca., May 1976.

[THOM75] Thomas, R. H., "A Solution to the Update Problem

for Multiple Copy Data Bases Which Use Distributed

Control," BBN Report #3340, July 1975.

[W0NG77] Wong, E., "Retrieving Dispersed Data from SDD-1: A

System for Distributed Data Bases," proc. 2nd

Berkeley Workshop on Distributed Data Bases and

Computer Networks, Berkeley, Ca., May 1977.

-24-


	Copyright notice 1978
	ERL-78-24

