

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A DISTRIBUTED DATA BASE MACHINE

by

M. Stonebraker

Memorandum No. UCB/ERL M78/23

23 May 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

• *

A DISTRIBUTED DATA BASE MACHINE

by

Michael Stonebraker

Electronics Research Laboratory

University of California, Berkeley

ABSTRACT

In this paper we propose the use of a distributed data

base machine to augment the performance of a data base sys

tem. As such, the paper has points in common with proposals

for "back end data base machines" such as [CANA74]. How

ever, our organization is fundamentally oriented toward mul

tiprocessing of data base commands rather than simply moving

their execution from an expensive host to a cheaper back

end. Hence, our design bears a close resemblance to previ

ously proposed distributed data base systems such as distri

buted INGRES [STON77] and SDD-1 [ROTH77]. However, unlike
such systems, we propose to exploit the notion of a central

controller ("GOD") to simplify the flow of control and aug
ment performance.

I INTRODUCTION

There are at least two possible motives for proposing
distributed computing in a data base management environment.
The first is to exploit the parallelism possible with mul
tiprocessor systems in order to increase the throughput of
data base management transactions. The second is to allow

distribution of the control of a data base and its contents
(geographically and/or logically).

Systems such as SDD-1 [ROTH77] and distributed INGRES

[STON77] were designed to exploit the advantages that dis
tribution of data and control may accrue. They are

Research sponsored by National Science Foundation Grant

#MCS75-03839-A01 and Army Research Office Grant #DAAG29-76-
G-0245.

-1-

multiprocessor systems in which there is no notion of a cen
tral controller (or "GOD") and details concerning the loca
tion of data are hidden from the end user. Issues such as
resiliency to crashes and distributed concurrency control
are stressed. The primary motivation behind systems such as
RAP [OZKA75.0ZKA77], CASSM [COPE73], and RARES [LIN 76] is
parallelism.

These may be described as "associative disks", and the <.
general idea is to duplicate the search logic for the data
base on each track of a fixed head disk (or CCD device) so
as to search a device in parallel.

While the focus of this paper is on the parallelism
made possible by distributed computing, the proposed design
bears a close resemblance to SDD-1 or distributed INGRES.

In fact, the main difference is that this design specifi
cally includes a central controller whose existence simpli

fies the control flow and augments performance. There is no

resemblance to associative disks.

The design of the distributed data base machine is

motivated by the following deficiencies that we see in asso

ciative disks.

1) Associative disks do not substantially outperform conven

tional access methods for simple transactions.

For example, an associative disk can find the salary of

Stonebraker by a parallel search of an associative device.

However, a conventional access method can store the employee

records hashed on employee name. As such it can execute the

above request by directly addressing the correct bucket.

For a given secondary storage device (fixed head disk, con

ventional disk, or CCD), both methods will perform compar

ably. *»

In many environments a large majority of the transac- f

tions are quite simple. In such cases an associative disk •*•'

(which will cost far more than a conventional one) will not

be particularly cost effective.

2) Services such as crash recovery and concurrency control

must be an integral part of any data base system. Associa

tive^ disks have tended to overlook these issues.

-2-

f.

3) Associative disks have exploited the parallelism possible
within the execution of one query. However, they have

ignored the potential parallelism possible in the execution
of different concurrent transactions.

4) Associative disks do not appear to be cost effective on

large data bases.

Associative disk proposals appear to perform well when

the whole data base fits on the device. If this is not pos

sible, relevant data must be loaded a portion at a time from

a larger capacity backing store (typically a moving head

disk). In such cases the device will perform approximately

at the speed of the backing store. Hence, it will not out

perform a system which directly manipulates the same backing

store.

Consequently, an associative disk will only be cost

effective for data bases that are small (say 10**7bytes) or

that have a small subset which almost all transactions

exclusively access. In addition, an associative disk per

forms best for complex transactions (i.e. ones with several

boolean conditions in the qualification). For simple tran

sactions or large data bases without locality a different

architecture is needed.

In the next section we discuss an architecture which

avoids all deficiencies mentioned above. Then in Section 3

we discuss six significant design decisions and our current

thinking on each. Lastly, Section 4 summarizes our approach

and discusses an implementation plan.

One feature of our proposal is that it is designed to

fit nicely into the current structure of the existing INGRES

uniprocessor data base system [HELD75, STON76]. In fact, our

proposal amounts to offloading portions of the existing code

onto auxiliary processors. Consequently, we plan to minim

ize implementation difficulties by initially insisting that

all processors be PDP-11's.

Another recent proposal, DIRECT [DEWI78] is embedded in

the basic INGRES software architecture. It is a multipro

cessor system which overcomes deficiency 3 (and perhaps 2)

but does not address issues 1 and 4. It has points in com
mon with our proposal.

-3-

II SYSTEM ARCHITECTURE

The conceptual architecture which we have in mind is

shown in Figure 1. Here, we hypothesize a host CPU (say an

11/70 or VAX) with its own collection of peripheral equip

ment together with a group of satellite CPU's each with its

own secondary storage system. In our implementation these

will be 11/34's or 11/40's, but in principle they could be

anything which could support the needed functions. The gen

eral idea is that each satellite CPU will perform some data

base management functions. The host will provide the

remainder of the functions. It is expected that the satel

lites will have no responsibilities unrelated to data base

management.

Each satellite will contain one (or perhaps more) mov

ing head disk devices and perhaps a cache. (The utility of

a cache is discussed in Section 3)- In addition, the satel

lite CPU's will use conventional access methods to limit the

amount of data examined. Lastly, the satellites will

operate asynchronously. Hence, different satellites may or

may not be executing the same command.

The general advantages of such an architecture are the

following.

* Large data bases can be accommodated.

* Conventional access methods avoid exhaustive searches for

simple transactions.

* Parallelism is achieved whenever multiple satellites can

be coordinated to execute a command. This will happen if

desired data exists on multiple devices. Moreover, parallel

execution of transactions which reference data on different

satellites is possible. Hence both inter-query and intra-

query parallelism [DEWI78] is possible.

* Concurrency control and crash recovery can be provided

(either by the host or by the host in conjunction with the

satellites).

* The satellite CPU may be cheaper than a host because it

may be slower and have less functions.

-4-

Satellite

Secondary

Storage

Secondary

Storage

The Proposed Architecture

Figure 1

-5-

Satellite

Secondary

Storage

* The software in the satellite may be small and simple (and

hence reliable and fast).

* The satellite CPU can be microprogrammed to execute DBMS

functions very rapidly.

* The satellites need never communicate with each other.

Hence, interface hardware and software is economized. »"

Although it is possible that the satellite and the host

CPU's will be the same, it is felt that such a choice will

not be particularly cost effective.

We turn now to the functions which should be performed

by the satellites. Of course, our proposal depends on the
structure of the INGRES data base system which is diagramed

in Figure 2.

The following interpretation of Figure 2 is intended.

At the top of the figure one notes that input from humans
comes from data communications or terminal support software

in the operating system. This input either goes to a termi
nal monitor (for humans interactively running INGRES) or to
an application program. Such an application program may

make requests on the data base system as well as system
calls for other operating system services. The part of the

operating system not explicitly shown elsewhere is present
to the right of the applications program. Either the appli
cations program or the terminal monitor makes data base
requests. These requests are either data manipulation com
mands (RETRIEVE, APPEND, DELETE, REPLACE) or utility com

mands (CREATE, DESTROY, HELP, SAVE, BULKLOAD, MODIFY). The
utility commands are, in general, ones which interact with
the system catalogs (data dictionary) or affect the physical
organization of the data base. These utility commands are
processed by calls on the access methods or the file system.

The data manipulation commands may span several rela
tions. Hence, they must be decomposed into simpler commands

only involving one relation. Then a one relation command
can be processed by making calls on the access methods. The
lower three levels are easily identifiable as steps taken
within the operating system (UNIX) in executing an access

method request.

-6-

*

DATA COMMUNICATIONS

or

TERMINAL DRIVER

LI

System

Calls

! Application Program
OS& extras

Terminal Monitor

(10K)

Parser

(50K)

Decomposition
(40K)

One Variable Query

Processor (30K)

Access Methods

(15K)

File System
(6K)

Buffer Management

(2K + buffers)

Device Driver and

I/O Queue

(2K)

Device

-7-

Logical View of

A DBMS

Figure 2

An estimate of the size of most modules is given in
bytes for the current version of INGRES. It should also be

noted that the data base system can perform the functions of

some of the boxes at compile time for application programs.
Naturally, for ad hoc interactions submitted through the
terminal monitor, all actions must take place at run time.

In the current INGRES environment, all actions take place
only at run time. If application programs had functions

performed at compile time, there would be only a slight
impact on this proposal.

Actions to be performed at run time can be done either

in the host or in one of the satellites. There are alterna

tives within this division of labor, labeled L1 through L3.

In each case, everything below the line runs in the satel

lite; everything above the line in the host.

Basically L1 suggests running the entire data base sys

tem plus the application program in the satellite. On the

other hand, L2 suggests running the data base system in the

satellite, while L3 has the "inner loop" of the data base

system in the satellite.

It should be noted that no lower level interface

between the satellite and the host makes sense. The general

reason is that it will take 2000-4000 host instructions to

set up a call from the host to the satellite and process the

return. This overhead includes a system call from the

application program, some validity checking, writing the

command over the interface to the satellite, doing a task

switch to run another process, accepting a return from the

satellite, awakening the user process and communicating the

return to it. With comparable overhead the host can also

directly process a file system call or an access method

call. Hence, the host might as well do the call directly as
pass it to a satellite. The bottom line is that a satellite

architecture will win only if the time to process a satel

lite command is large compared to 2000-4000 instructions.

It should be noted that both L1 and L2 would offer the

general architecture proposed for distributed INGRES and

SDD-1. We feel, however, that L3 is an attractive interface

when performance enhancement is the only goal. Hence, in the

remainder of this section we explore some advantages and

-8-

disadvantages of L3 compared to a conventional uniprocessor
data base system. In the next section we briefly return to
the advantages which L3 might have over L2 or L1.

2.1 Advantages of L3

1) Data need never be transferred between the host and the
satellite unless the user wishes it displayed.

For example, a user can request that the data base sys
tem give a ten percent raise to employee Zilch. Only the
command needs to be transmitted from host to satellite and a
status condition returned; Zilch's record does not need to
be moved. As a result, the information sent across the

interface is economized.

2) Natural parallelism can be exploited.

It is clear that independent commands from different
host processes can be simultaneously executed on different
satellites. However, decomposition also allows innate
parallelism in processing commands which span multiple rela
tions [WONG76, STON76]. Such parallelism can be easily
exploited in this architecture.

3) The access methods and file system can be combined,
which results in performance improvement.

The satellite software need not support any notion of a

UNIX file. Instead, only custom software directly support
ing the access method need be present. Such software can do
buffer management more cost effectively than is possible in
a general purpose operating system. For example, the access
method often knows exactly which physical storage block will
be examined next. Hence, a "perfect" prefetch buffer

management policy can be implemented. Also, should indexed
sequential access be desired, a multilevel tree structure
will be constructed. This tree can be integrated with the

information concerning physical placement of blocks. Doing
both tasks at once instead of separately results in perfor

mance improvement.

4) Low level code is economized.

-9-

It is possible that no protection and concurrency con

trol features will be needed in the satellite. Conse

quently, code to support them need not be present. More on

this subject later.

5) The satellite can be efficiently microcoded.

The only task of the satellite is to run 60-80 Kbytes
of code efficiently. Hence, the instruction set can be
chosen appropriately. For example, a substantial portion of
the one variable command processor is code to evaluate a
QUEL qualification for a given record. This expression
evaluator can be microcoded. Searching directory pages in
an indexed sequential collection of records can be similarly
committed to microcode. Other microprogrammable functions
are data compression and computation of hash functions.

2.2 Disadvantages of L3

1) The one variable command processor is essentially con
fined to being an interpreter.

There are cases where a substantial gain is possible
from compilation [LORI77]. However, it is felt that a well
chosen instruction set for the interpreter can be as effi
cient as the code which might be compiled for a general pur
pose host. Hence, it is expected that disadvantage 1 is
alleviated by advantage 5. Also, the one variable command
processor can optionally compile on the fly code for the
evaluation of an individual command. This strategy will
also eliminate the potential disadvantage.

2) A mechanism must be found to convert between storage
structures.

It is clearly essential to convert between different
implementations of the access methods (say indexed sequen
tial to hash) and to create secondary indices on the fly.
These utilities must be run in the satellite otherwise the
host-satellite interface must be enlarged so that these
functions can be performed under the direction of the host.
To do so would require that at least the access method calls
of GET and INSERT be visible to the host.

-10-

My bias is to run this portion of the utilities in the
satellite. Since they are run infrequently, the code can

overlay the normally resident code.

3) Performance may be improved by showing the access method
to the host as well as the one variable command processor.

In particular, the data dictionary may be stored in one
(or more) satellites. Access to the data dictionary usually

involves returning exactly ONE record. This can be more

efficiently processed if expressed as an access method call

rather than a query.

The disadvantage of showing the access method to the

host is that it will be conceptually less elegant.

4) Decomposition may require records to be returned to the

host one at a time.

If decomposition includes the notion of tuple substitu

tion as a tactic, then the host must be able to iterate

through a collection of records one at a time. Again, the

obvious way to allow this is to support the access method

interface as well as the one variable command interface.

5) The notion of a file may disappear.

It is not expected that the satellite will support any

thing resembling a UNIX file. Hence, unless the host has a

conventional file system for one of its peripherals, the

notion of a file will not be supported. For example, text

editors would have to store and access data using the one

variable command interface (or maybe the access methods).

Although this would be appropriate for the text editor, it

is less than ideal for all subsystems.

Ill SIGNIFICANT DESIGN DECISIONS

In this section we discuss how to handle the followinj

issues:

1) multiprogramming of the satellite
2) CCD devices

3) placement of system catalogs

-11-

4) whether a relation can span multiple satellites

5) concurrency control

6) crash recovery

We treat each issue in turn.

1) multiprogramming

It is my bias that the satellite NOT be multipro-
grammed. Instead, it will simply execute commands in a
first-in-first-out manner. The bottom line is that satel

lite code will be simpler; there will be no scheduler, no

I/O queue, no processes, etc. Also, concurrency control may

be simplified. Lastly, it is expected that performance,

comparable to that of multiprogramming, can be achieved.

The satellite can easily employ "look ahead" to pre

fetch the next data block for those commands which reference

more than one block. In this way, overlap between I/O and

CPU execution in a satellite is obtained. Moreover, if a

satellite is "hanging" on a secondary storage transfer, it
can perform initial processing on the next command in the
interim.

Two possible drawbacks of this approach should be

addressed.

a) A uniprogramming system cannot take advantage of disk
seek optimization tactics such as SSTF, SCAN, FSCAN,
etc. Rather it performs secondary storage accesses on a

FIFO basis. My belief is that this is not a signifi
cant disadvantage. In general, each command will have 0
or 1 outstanding secondary storage request. Hence, the
number of entries in the I/O queue is bounded above by

the number of active commands if multiprogramming is

supported. It is hard to imagine that this is greater
than three or four. Hence, little scan optimization is

possible.

Also, it is likely that a collection of I/O
requests from one command will be localized. This is
certainly the case for an indexed sequential access
method during directory searches. If so, the best disk
scheduling strategy may well be not to move the disk arm

-12-

for a while in the hope that another request for the

same cylinder will be forthcoming from the process which
issued the last request. Again, elaborate optimization

of scanning may be inappropriate.

b) Uniprogramming cannot exploit the parallelism possible

if multiple disk drives are connected to one satellite.

This is a correct disadvantage. My opinion is that

only one drive will typically be connected to each

satellite and both pieces would reside in one physical

package. To efficiently service two drives, a satellite

CPU would have to be twice as fast and contain more com

plex software. My preference is for two slower simpler

CPU's.

2) CCD Devices

The satellite CPU can be a general purpose (fast)

microprocessor with 60-80 Kbytes of primary memory. Here,

we discuss the nature of the secondary store.

We argue that a three level system ("core", CCD and

disk) is not viable. Hence, the system will either be

"speedy" ("core" and CCD) or "pokey" ("core" and disk).

(Regardless, for those situations in which the following

analysis is inappropriate and a CCD cache is advantageous,

we would propose handling it in the same fashion that a

register cache for main storage is handled.)

In order for a CCD cache for a disk to be viable, one

must get a high percentage of "hits" in the cache. We envi

sion that "core" memory in the satellite will contain a

buffer pool with space for:

1 page (the current block)

3 pages (indirect blocks, i.e. file control blocks)

3 pages (index blocks for indexed sequential access)
3 pages (secondary index blocks)

When processing a single call, the command processor

will have NO locality other than what is on these ten pages.
The only advantage to making the buffer pool larger than 10

blocks is to employ "look ahead". In any case it should be

-13-

clearly noted that a very limited amount of main memory will

hold all desirable information.

In order to exploit a CCD cache (which is substantial

compared to 10 blocks), one must obtain locality between

commands, i.e. the data accessed by one command must be

relevant to a subsequent command. Clearly, this possibility

is highly application dependent. However, the following

simple analysis "ballparks" application requirements.

Assume that something resembling the 80-20 law holds
(i.e. that eighty percent of the references are to twenty
percent of the objects). Hence, let R be the hit ratio and
X the size of the cache (measured as a percentage of the

whole data base). We suppose an R versus X curve of the

form noted in Figure 3-

Basically Figure 3 says that Q percent of the refer
ences are to P percent of the data base. Below a cache size

of P, the hit ratio is quadratic in X; above P the hit ratio

is linear.

Further suppose that a CCD device is fifty times faster
than a disk. Hence, the average delay to access a block

from such a device (assuming the CCD has access time of one)

is:

delay = R*1 + (1-R)*50

The cost of the device (assuming that the disk has unit cost
and the CCD is Z times as expensive) is:

cost = 1 + X*Z

We now wish to choose a cache size, X, in order to minimize

the following function:

function = cost*(delay)**Y

for some given Y.

In summary, Q and P are characteristics of the applica
tion, Z is a characteristic of CCD economics and Y is a
characteristic of how important device speed is. The fol

lowing results can be obtained.

-14-

R

Hit

Ratio

A

Q "

.5

—T

.5

X - cache size

R =s f-*r» X for X < P-(*)

~(£)He) for X > P

Hit Ratio Curves

Figure 3

-15-

->-€>.

1) For P = .2 and Q = .8 (the 80-20 law) one should operate
at point one or two in Figure 3 and never at point three for
all choices of Y and Z. Hence, a CCD cache is never a

winner.

2) For P = .1 and Q = .9 (90 percent of the accesses to 10
percent of the data base), there are choices of Y and Z
which suggest operating at point three.

If Y = .5 one should operate at point three only if 3 <

Z < 20. For Y = 1 the region is 15 < Z, < 70 and if Y = 2

the region is empty. The best gain possible is about 30

percent for the CCD cache.

In general, it does not look like a winner to have a
CCD cache; at least not big enough to justify its cost and

complexity.

3) Can a relation span multiple satellites?

It seems clear that graceful expansion requires that
this be true. Hence, a decomposition algorithm along the

lines suggested in [EPST78] is required. Moreover, system
catalogs must contain the distribution criteria which con

trols how a relation is divided over multiple satellites.

This subject is further discussed in [RIES78].

4) Placement of system catalogs

It appears possible to have the system catalogs for all
satellites stored on ONE satellite. In addition, some cata

log information must be stored at each site.

All accesses to the system catalogs are controlled

through the host. Hence, it can directly access the "spe

cial" satellite. Moreover, the parser runs in the host so
it can access the special satellite in a similar fashion.

All relations which are created or destroyed are done by

utilities in the host or by decomposition in the host. The

host can therefore alert the special satellite of all such

actions. Note that code in the satellites need NEVER access

system catalogs at the "special" site.

5) Concurrency control

-16-

The standard issues concerning concurrency control are

present here. Only three points make this architecture spe

cial .

a) It is possible (but not necessarily desirable) to
totally resolve concurrency control in the host machine

and have the satellites free of such code.

b) One variable commands can be run with no controls since

they are physically serialized.

c) Any code necessary to resolve deadlock (if it is allowed
to occur) can be run easily in the host. Hence, distri

buted deadlock detection is not required.

6) Crash recovery

Safety from crashes where data is irretrievably lost

can be obtained in two ways.

a) Relations can be duplicated on more than one satellite.

Decomposition can easily coordinate keeping all copies

correctly updated. If a satellite crashes, then the

system can continue if all data on that satellite is

duplicated elsewhere. The only hitch is that the whole

system dies if the host crashes.

b) a checkpoint/logging procedure can be used. The log can

be written by decomposition and can reside on one of the

satellites.

"Soft crashes" offer the routine headaches in this

architecture and can be handled in the routine ways.

We conclude this section with three reasons why L3 may

be a more attractive interface than L2 or L1.

a) It is reasonably justifiable to have L3 support a
uniprogramming system in the satellite. However, L2

commands might take a VERY long time and better response

could be obtained from preemptive scheduling rather than

FIFO scheduling. This would only be possible if the

satellite were multiprogrammed.

-17-

b) If L2 is used then messages must be sent from satellite

to satellite (for example, to do logging). In addition,

the system catalogs cannot easily be centralized on one

satellite. As a result the overall system would become

more complex.

c) L1 (and to a lesser extent L2) require a substantial

operating system in the satellite. The notion of

processes, a scheduler, interprocess communication, etc.

must be present.

IV CONCLUSIONS

Our architecture is essentially a very intelligent

channel, probably a microprocessor with 60-80 Kbytes of main

memory. It would execute a very primitive operating system

and the command processor for one variable interactions.

In general terms we expect that a system composed of a

host and five satellites would be two to five times as fast

as a host alone depending on the transaction traffic. More

over, it would cost much less than twice as much. The limit

on the number of satellites which could be connected would

occur when the host CPU saturates. It is expected that a

VAX host might support up to ten 11/34 satellites.

To get a better feel for the cost effectiveness of our

scheme, we plan to build a prototype. The initial prototype

will have a PDP-11/70 (or possibly a VAX) as a host and two

PDP-11/34's (or 11/40's) as satellites. The initial plan

will be to run a conventional UNIX in each satellite

together with the one variable processor code. This appears

to require little (if any) changes to the current software.

Hence, the only tasks will be to modify the parser and
decomposition. Once we have hardware in place, it should be

only a few months worth of work to get the initial plan

operational.

If the initial plan appears sound, we will then proceed

in designing a "mini-mini-UNIX kernel" containing just the
functions that we need and perhaps a customized access/method
file system. Also, we would hope to investigate replacing
the 11/34's by a microprocessor so we could optimize the

-18-

instruction set and discover exactly how economical our

satellite can be.

REFERENCES

[CANA74] Canaday, R. H., et. al. "A Back End Computer for

Data Base Management," CACM 17, 10, October, 1974.

[COPE73] Copeland, G. P. et. al. "The Architecture of

CASSM: A Cellular System for Non-numeric Process

ing," Proc. First Annual Workshop on Computer

Architecture, 1973-

[DEWI78] Dewitt, D. J., "DIRECT - A Multiprocessor Organi

zation for Supporting Relational Data Base manage

ment Systems," Proc. Fifth Annual Symposium on

Computer Architecture, 1978.

[EPST78] Epstein, R. S., et. al., "Distributed Query Pro

cessing in a Relational Data Base System," Proc.

1978 ACM-SIGMOD Conference on Management of Data,

Austin, Texas, May, 1978.

[HELD75] Held, G. D. et. al., "INGRES - A Relational Data
Base System," Proc. 1975 National Computer Confer

ence, Anaheim, Ca., May 1975.

[LIN 76] Lin, C. S. et. al., "The Design of a Rotational

Associative Memory for a Relational Data Base

Management Application," TODS 1, 1, March 1976.

[LORI77] Lorie, R. A. and Wade, B. W., "The Compilation of
a Very High Level Data Language," IBM Research,

San Jose, Ca., RJ2008, May 1977-

[0ZKA75] Ozkarahan, E. A. et. al., "RAP - An Associative
Processor for Relational Data Bases," Proc. 1975

National Computer Conference, Anaheim, Ca., May

1975.

[OZKA77] Ozkarahan, E. A. and Sevcik, K. C., "Analysis of

-19-

Architectural Features for Enhancing the Perfor

mance of a Data Base Machine," TODS 2, 4, December

1977.

[RIES78] Ries, D. and Epstein, R., "Evaluation of Distribu
tion Criteria for Distributed Data Base Systems,"

Electronics Research Laboratory, University of
California, Berkeley, Ca., Memo #M78-22.

[ROTH771 Rothnie, J. B. and Goodman, N., "An Overview of
the Preliminary Design of SDD-1: A System for Dis

tributed Data Bases," Proc. 2nd Berkeley Workshop
on Distributed Data Bases and Computer Networks,
Berkeley, Ca., May 1977.

[STON76] Stonebraker, M. et. al., "The Design and Implemen
tation of INGRES," TODS 2, 3, September 1976.

[STON77] Stonebraker, M. and Neuhold, E., "A Distributed
Data Base Version of INGRES," Proc. 2nd Berkeley

Workshop on Distributed Data Bases and Computer

Networks, Berkeley, Ca., May 1976.

[WONG76] Wong, E. and Youssefi, K., "Decomposition - A
Strategy for Query Processing," TODS 2, 3, Sep

tember 1976.

-20-

	Copyright notice 1978
	ERL-78-23

