

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ITERATION THEOREMS FOR FAMILIES OF

STRICT DETERMINISTIC LANGUAGES

K. N. King*

Computer Science Division
Department of Electrical Engineering

and Computer Sciences

University of California
Berkeley, CA 94720

4/11/78

*The author is a National Science Foundation Graduate Fel
low. This research was supported in part by the National Science
Foundation under Grant MCS74-07636-A01.

2

Abstract. Two iteration theorems, one for strict deterministic

languages of degree n, the other for simple deterministic

languages, are presented. Examples demonstrating the use of

these theorems are also given.

1. Introduction

Recent papers have extended the theorem of Bar-Hillel,

Perles, and Shamir [1], and its refinement by Ogden [10,11], to

apply to various classes of deterministic context-free languages.

We refer to theorems modelled on the Bar-Hillel result as "itera

tion theorems." In [8], Harrison and Havel presented an itera

tion theorem for general deterministic context-free languages,

Boasson [4] has given one for deterministic one-counter

languages, and recently Beatty [2,3] has established two itera

tion theorems for LL(k) languages.

We introduce two more iteration theorems, each for a family

of strict deterministic languages. The first theorem is for the

family of strict deterministic languages of degree n, for any

n > 1. Harrison and Havel [7] introduced these families and

showed that they formed a hierarchy of strict deterministic

languages. The second theorem is for the family of simple deter

ministic languages, which was defined by Korenjak and Hopcroft

[9]. Our first iteration theorem is also applicable to the fami

ly of simple deterministic languages, since every such language

is strict deterministic of degree 1. However, the second itera

tion theorem is stronger than the first for this special family

of languages.

In Section 2, we define the families of languages to be stu

died and introduce notation for dealing with trees. Section 3

lists several lemmas needed in subsequent arguments. Section 4

reviews some previous iteration theorems. In Section 5, we prove

an iteration theorem for strict deterministic languages of degree

4

n. Finally, in Section 6, «we establish an iteration theorem for

simple deterministic languages and use it to show that the family

of simple deterministic languages is properly included in the

class of prefix-free LL(1) languages.

2. Definitions

We first define some specialized terminology for discussing

strings. Let X be an alphabet (a finite set of symbols). For

x,y 6 Z , we say that y is a prefix of x if there exists z G £

such that x = yz. If y is a prefix of x and y t x, then y is a

proper prefix of x. A set of strings L is said to be prefix-free

1 ...
if x,xy 6 L implies1 y = A. (i.e., no string in L is a proper

prefix of any string in L) . Let w 6 £ . We denote by ;w the
2

prefix of w of length min{n,lg(w)}. A sequence of strings

(WhWa,...iW) is said to be a factorization of w if w =
12 m

W1W2*,#W * An inte9er i such that 1 < i < lg (w) is called a po

sition in w. By choosing some subset K of {1 ,. ..,lg (w) }, we

specify a set of distinguished positions within w. For any set K

of distinguished positions, a factorization 4> = (w.,...,w) of w

induces a partition K/<|> = {K«,...,K } of K, where

Ki = {k e K | lg(w1---wi_1) < k £ lg(w1---wi)}.

We now turn to the definition of various types of context-

free grammars. The reader is assumed to be familiar with the

standard definition of context-free grammar (see, for example,

[5]).

Let G = (V,Z,P,S) be a context-free grammar. G is said to

be reduced if either P = JJ or for each A G V, there exists c(,p G

V , w 6 £ such that S =^ c(Ap =» w. G is in Greibach normal
_ *

form if every rule in P is of the form A-»ac(for a G i., c(G V .

(Note that this definition, unlike the standard definition of

Greibach normal form, prevents J\, from being in L(G).)

Let G = (V,£,P,S) be a context-free grammar and let it be a

6

partition of V. We say that it is strict if

1 . £ G it and

2. for all A,A' G V - I and c(,p,p' G V*, if A-»c(p, A'-^p'

are in P and A = A' (mod it) then either

(i) both p,p' t J\. and (1)p = (1)p' (mod it), or
(ii) p = p' = A. and A = A1 .

If there exists a strict partition it of V, then G is said to be

strict deterministic. A language L is strict deterministic if

there exists a strict deterministic grammar G such that L = L(G).

. . . 3
For it a strict partition, we define

IIttII = max |V. |.
V^ir-iZ}1

If G is a strict deterministic grammar, the degree of G is

deg (G) = min{llirll I it is a strict partition of G}.

For L a strict deterministic language, the degree of L is

deg(L) = min{deg(G) | G is strict deterministic and L(G) = L}.

A context-free grammar G = (V,£,P,S) in Greibach normal form

is simple deterministic if A->ac(, A-»ap in P implies c(= p, for
_ _ *

all A G V - X, a G ^_, c(,p G V . (Note that every simple deter

ministic grammar is strict deterministic of degree 1.) A

language L is simple deterministic if L = L(G) for some simple

deterministic grammar G.

We now define a number of terms concerning trees. Our de

finitions come from [3] , in which they are presented in more de

tail .

A tree T = (V,E) is a connected dag (directed acyclic graph)

in which every node (element of V) has exactly one entering edge

(element of E), except for one node, denoted by rtn(T), which has

7

no entering edges. We call rtn(T) the root node of T.

The set E defines the immediate descendancy relation on

V X V. The relation is written x Ty* and we say that "x has im

mediate descendant y," and "y has parent x." The transitive clo

sure of r is r r and the reflexive transitive closure of |~ is

r\

The trees that we will be considering are ordered trees;

that is, the immediate descendants of each node are ordered by

some relation n. Thus, if y-, y-r-.-r Yr are the immediate des

cendants of a node in left-to-right order, then y« «"» y7 n ... ny .

If p |~y and there is no node x such that xny, then we write

p £y. Similarly, if p |~x and there is no y such that xny, we

write p (Tx. We define the relation L by

L = (£ h "(£) .
, + *

Again, |_ is the transitive closure of _, and |_ is the re

flexive transitive closure of |_«

A sequence (x. x2 •"• x) of nodes in a tree T is a maximal

left-to-right sequence if x. _*2 L,,# l_xm and the sequence cannot

be extended. Those nodes of T with no descendants are called

leaves. Let leaves(T) denote the maximal left-to-right sequence

of all leaves in T.

An L-labelled tree is a tree T and a function }\ which as

signs a label from L to each node of T. If G = (V,£,P,S) is a

context-free grammar, then T is a tree over G if T is a

(V u (TV })-labelled tree. The label of rtn(T) in a labelled tree

T is denoted by rtl (T) . The frontier of a labelled tree T,

denoted by fr(T), is defined as follows:

fr(T) = h(leaves(T)).

Any node of a tree T which is not a leaf is said to be

internal. If x is an internal node of T, then {y G T| x=y or

x |~y} is the elementary subtree of T rooted at x.

The set of cross-sections of a tree T is defined inductively

as follows:

(1) (x0)' where x0 = rtn(T), is a cross-section (CS) of

level 0.

(2) If (x. ••• x. ••• x) is a CS of level i and xk is an

internal node of T, then

(x1 "" xk-1 *1 '•' yr xk+1 •"• xm>
is a CS of level i + 1, where y«,...,y are the immedi

ate descendants of x. in order (i.e., with respect to

n).

The left canonical cross-sections (LCCS) of T are defined simi

larly, but with the restriction that x (the node that is re

placed by its descendants) is the leftmost internal node in the

original CS.

Trees T and T' are structurally isomorphic, written T s T*,

if there exists a bijection h from the nodes of T to the nodes of

T' such that, for all x,y G T, (i) x |~Y if and only if

h(x) f~h(y), and (ii) xny if and only if h(x) nh(y). If in addi

tion, X(x) = Mh(x)) for all x G T, then we write T = T'.

Let G = (V,£,P,S) be a context-free grammar, and let T be a

tree over G with labelling)\. T is a grammatical tree over G if

* . .
fr(T) G £ and either (l) T consists of a single node, or (n) to

every elementary subtree T' of T there corresponds a production

9

A-»c{ in P such that rtl(T') = A and fr(T') = c(; furthermore, if

any leaf of T' is labelled by J_ , then it is the only leaf in T'

(hence c(= J\.) . Leaves of a grammatical tree which are labelled

with symbols in £ are called terminal nodes. A grammatical tree

T is called a derivation tree if rtl(T) = S.

Let T be a grammatical tree, and let m = lg(fr(T)). Let

(y* ••• y) be a left-to-right sequence of all terminal nodes in

T. For any n, 1 £ n £ m, define the trees

.[n]T = {x GT| xL* T*yn},
{n}T = {x GT| xL* T*yn} u

{xGT|3bGTs.t. bf~*y and bn+x}.

Also, let t03T and *0'T be the empty tree, and let [nlT = *n*T =

T if n > m. We call [n]T and *n*T left n-parts. [nlT contains

all of the nodes of T which lie on the path from rtn(T) to y ,

plus all nodes of T to the "left" of that path. *n*T contains

all nodes in JT, and in addition contains all immediate descen

dants of nodes on tne path from rtn(T) to y . Figure 2.1 shows a

grammatical tree T and its left n-parts, for n = 4.

10

3. Elementary properties of grammars and trees

The following lemmas will be used to prove the main theorems

of this paper. The first two lemmas deal with the prefix-free

properties of strings derivable in a strict deterministic gram

mar. The other lemmas (from [3]) concern cross-sections in gram

matical trees; they are reproduced here for the convenience of

the reader.

Lemma 3.1. Let G = (V,£,P,S) be a strict deterministic

grammar and let ir be a strict partition of V. For any A,A' G

V - £, w,u G £ , if A = A' (mod it) , A =» w, and A' =^ wu, then

u = yv.

Proof. Identical to the proof of Theorem 2.2 in [7]. D

Definition 3.2. Let G = (V,£,P,S) be a context-free gram-

mar. For each c(G V , define L(c() = {w G 1. I c(=^ w}.

Lemma 3.3. Let G = (V,£,P,S) be a strict deterministic

*

grammar. For each c(G V , L(c() is a prefix-free set.

Proof. Use induction on lg (c() and apply Lemma 3.1 to each

nonterminal in c(. Q

Lemma 3.4. [3, Theorem 3.35] Let T be a tree and let x be a

node in T. Then x appears in at least one LCCS of T. Moreover,

we may assume that there are no internal nodes to the left of x

in this cross-section.

Lemma 3.5. [3, Theorem 3.38] Let G = (V,£,P,S) be a

11

context-free grammar and let T be a.grammatical tree over G. If

q and q' are LCCS's of level k and k + i, for any k,i > 0, then

Mq) =^1 Mq') is a leftmost derivation in G.

Lemma 3.6. [3, Theorem 3.49] Let q be an LCCS of the gram

matical tree T at level k and let n be a positive integer. If

the restriction q' of q to l *T contains an internal node of T

then q' = q and rj' is an LCCS of level k in l ;T as well.

Lemma 3.7. [3, Theorem 3.57] Let T be a grammatical tree

and let n be a positive integer. If q is an LCCS of T then q

is an LCCS of T as well.

12

4. Previous iteration theorems

Before presenting our new iteration theorems, we briefly re

view the development of iteration theorems for families of deter

ministic context-free languages.

The first iteration theorem ("pumping lemma," "intercalation

theorem," "uvwxy theorem") was introduced by Bar-Hillel, Perles,

and Shamir [1] and was applicable to the entire family of

context-free languages. It has proved to be a very useful tool

for showing that a language is not context-free. A still

stronger result was proved later by Ogden [10,11].

Theorem 4.1. ("Ogden's Lemma") Let G = (V,£,P,S) be a

context-free grammar and let L = L(G). There exists an integer p

such that, for each w G L and each set K of p or more dis

tinguished positions in w, there is a factorization <t> =

(w.,w2,w3,w4,Wc) of w such that

1. if K/(j) = {K,j,...,K5} then

(i) either KlrK2,R3 ? 0 or K3,K4,K5 ? 0,

(ii) |K2 u K3 u K4I ^ p,

2. for each n > 0, wiw?w3w4w5 ^ L'
* *

3. for some A G V - £, S =» w.Aw,-, A =*• w0Aw., and
1"w5' w2"w4

A =» w3.

A proof of Theorem 4.1 appears in [5].

By studying the special properties of grammatical trees over

strict deterministic grammars, Harrison and Havel [8] were able

to establish iteration theorems for both strict deterministic

languages and (general) deterministic context-free languages.

13

Theorem 4.2. [8] Let L be a strict deterministic language.

There exists an integer p such that, for each w G L and each set

K of p or more distinguished positions in w, there is a factori

zation 4 = (w.,w2,w.,w.,w5) of w such that

1. w2 f yv /

2. if K/(J> = {K,.,...,K5} then

(i) either K,j,K2,K3 + %or K3,K4,K5 ? 0,

(ii) |K2 U K3 u K4I 1 p,
ie n+m n3. for each n,m £ 0, u G .£ , w«w2 w^w.u G L if and only if

W1W2W3U e L*

If, in Theorem 4.2, we replace 3 by

3'. for each n > 0, w,,w2w3wnw5 G L, and if w5 / J\, , then
* n4*m nfor each n,m ;> 0, u 6 1. , w.w2 w3w4u G L if and only if

W1W2W3U 6 L'

then the theorem holds for all deterministic languages.

In [6] , the family of real-time strict deterministic

languages is introduced. It follows from results in [6] that,

for L a real-time strict deterministic language, Theorem 4.2 can

be strengthened by adding

—* n4. if w4 ? A» then for each n > 0, u G i. , w.w2u G L im

plies lg(u) > n.

Beatty has proved two iteration theorems for LL(k) languages

[2,3]. One of these theorems is presented below for comparison

with our results in Section 6.

Theorem 4.3. [2,3] Let L be an LL(k) language. There ex

ists an integer p such that, for each w G L and each set K of p

14

or more distinguished positions in w, there is a factorization

<t> = (w. ,w2,w3,w4,w5) of w such that

1. w2 f TV,

2. if K/4> = {K^,...,K5} then

(i) either K.,K2,K3 ^ or K3,K4,K5 t 0,

(ii) |K2 U K3 U K4I £ p,
_* (k) (k)3. for each u G i. , if w.w2u G L and 'u = W3W4W5' then

there exists a factorization § = (w„,w2,w^,w^,w£) of

w.w2u such that

(i) for each n > 0, for each u-,...,un G {w4,w^}, the

following are all in L:
n n

W1W2W3(.A ui)w5' W1W2W3(.5 Ui)w5'
n n

w,,w"w.(II u.)w' and w-,w9w'(II u.)w',
'i=1 _ _ i=1 n

(ii) for each u, ,.. .,u .u, ,.. .,u G {w.,wl}, if II u. =
n I _n ' n * * i=1
TTu., then u. = u. for 1 < i < n.
i-1 x

15

5. An iteration theorem for strict deterministic languages of

degree n

The family of strict deterministic languages, first studied

in [7], has been shown to coincide with the family of prefix-free

deterministic languages. Thus, any deterministic language can be

made a strict deterministic language by adding an endmarker.

This fact indicates the usefulness of the class of strict deter

ministic languages, for by proving properties about it, we can

often infer properties of the entire class of deterministic

context-free languages.

One of the properties of strict deterministic languages that

has been studied is the degree of such a language. One defini

tion of degree has been given in section 2. It is also possible

to view the degree of a strict deterministic language L as the

number of states in a "minimal" deterministic pushdown automaton

(dpda) accepting L by final state and empty store (see [7]).

Until now, there has been no good way to determine the de

gree of a strict deterministic language. Of course, it is possi

ble to put an upper bound n on tne degree of such a language by

giving a strict deterministic grammar of degree n that generates

the language, or a dpda with n states that recognizes it. Yet,

there have been only ad hoc methdas for showing that a language

had degree at least n. In this section, we prove an iteration

theorem that enables a lower bound to be placed on the degree of

a strict deterministic language, and we give an example of how

the theorem is used.

First, however, we quote a "left part theorem" from [8] that

16

we will need to prove our iteration tneorem.

Theorem 5.1 . [8] Let G = (V,£,P,S) be a reduced context-

free grammar and let it be a partition on V such that £ G tt. Then

tt is strict for G if and only if, for any n ;> 0 and any grammati

cal trees T,T' over G, if £tl(T) = rtl(T') (mod tt) and (n)fr(T) =
f r\\

'fr(T')f then there exists a map h such that

(a) [n+1]T S ^^T' under h,

(b) X(x) = Mh(x)) for all x G [n+'l]T such that x |_+y for
some y G [n+^]T (or if [n+1]T = [n]T, for all x G
[n+1]T), and

(c) X(x) = h(h(x)) (mod tt) for all x G [n+,,1T.

We can now give the main result of this section.

Theorem 5.2. Let L be a strict deterministic language of

degree n. There exists an integer p such that, for each w G L

and each set K of p or more distinguished positions in w, there

is a factorization cj> = (w-,w2,w3,w4,w5) of w such that

1. w2 ^ yv r

2. if K/(t> = {K,j,...,K5} then

(i) either KJ|,K2,K3 / 0 or K3,K4,K5 f 0,

(ii) |K2 u K3 u K4I < p,

3. for each k,m >0, uG£*, w-w2+mw3w4u G L if and only if

W1W2W3U G L'

4. for each uv*"'un+1 e£ ' if w1w2iui € L for
i = 1, — ,n + 1, where each n.^ 2 n, then there exist

1 < i < j in +1, 1 < r in., 1 < r' in., and factori

zations § = (v,x,y,z) and ^t = (v',x',y',z ') of u. and

17

u., respectively, such that

(i) for all m > 0, the following are all in L:

WiW(ni-r)+nu:vxymz# ^nj-r')+«•v,x,y ,»z, ,
wlW<ni-r)+m,:Vxyraz, and v^wfj^ ')+rat' vx'y 'raz •,

(ii) none of w3,v,v' is a proper prefix of any of

w3,v,v'.

Proof. Let G = (V,£,P,S) be a reduced strict deterministic

grammar of degree n such that L = L(G) and let it be a strict par

tition of V such that Hirll = n. The proof of Theorem 4.2 (in [8])

snows that there exists an integer p such that, for each w G L

and each set K of p or more distinguished positions in w, there

is a factorization 4> = (w. /w2'w3'w4'w5) of w sucn tnat Parts 1'

2, and 3 hold, and such that, for some A G V - £,
JL I J.

S =* W1AW5 ^ wTw2Aw4w5 ** W1W2W3W4W5 = W" ^*
Thus, to complete the proof of Theorem 5.2, we need only show

that d> satisfies part 4 of the theorem.

Assume that w*iw2iui e L for i = 1r..-*n + 1, where
u.,...,u - G £ , and each n. > n. For each i = 1,—,n + 1, let

* n iT! be a derivation tree corresponding to S =^ w-w^u^. Hence,

rtl(TJ) = S and fr(T|) = W1w2±ui•
From (1) we obtain the derivation

S =*• wiAwc ^ w1w2Aw4w5 ^ wnw2Aw4w5 ** ••• =*

wlWniAw^iw5 =>+ w1w^iw3wniw5 (2)
for each i. Let T. be a derivation tree corresponding to (2).

For j = 0,...,n., let xj be the node of T. labelled by A in the
J l 3 l

cross-section (CS) of Ti labelled by w-w^Aw^w^. Clearly

Xq T+xj r+-" T+xj|;.. Let kt =lg^i^1) and let y£i+1 be the

18

st
leaf of T. which is labelled by the (k.+1) symbol in

w.w2iw3w4iw5 (such a node exists since K~ ? 0) . Then, for i =

1,...,n + 1,

Lfel(T-) = £tl(T!) = S and

^^frfT.) = (ki)fr(T!) =w^^i.
Therefore, by Theorem 5.1, there exist maps h. , ,h +- such

that, for i = 1,...,n + 1,

(a) [ki+1]T. s tki+^T! under h.,
l l i'

(b))\(x) =X(hi(x)) for all xG [ki+^Ti such that x|_+y for
some y G l 1 UT. , and

(c) h(x) EX(hi(x)) (mod tt) for all xG [ki+,,]T..
Since w3 contains a distinguished position, it is nonempty;

hence y^.+ii is labelled by the first symbol in w3, so

xnir+yki+r Thus'
i i—+ i r—+ r-+ i i—+ i

x0r xi r ••• r xnir yki+r
so xi,...,x* G [ki+1]T.. Let z^ = h.(xj) for i = 1,...,n + 1,

w nx 1313

j =0,...,n.. By-(a), zj T+z^ r+'-' l~+z* ..
By (c), Mx*) = h(zt.) (mod ff) for i = 1»-..»n + 1. Since

ni ni

IIttH = n, and X(x*) = A for all i, there exist i,j, where 1 < i <
1

j < n + 1, such that X(z^.) = h(z^). For the remainder of this
1 j

proof, i and j are fixed at these values. Let B = Mz1.) =

Also, for q = 0,...,ni, hi**) = Mx*) = A, so each Mz*) is

in the same equivalence class as A. Since ||tt|| = n, there are at

most n elements in this equivalence class, so since n. > n, there

exist 0 i s < t i n. such that K(zt) = X(zJ). By a symmetrical
1 s t

argument, there exist 0 £ s1 < t' <, n- such that Mz3,) = X(z^,).
J st

19

We fix the values of s,t,s', and t' for the remainder of the

proof. Let C=Mz*) =Mz£) and D=Mz^,) =Mzj!,). The trees
T.f T., T!, and T'. now appear as in Figure 5.1.
i 3 i D

Let q. ,q2, q3 be the CS' s of Ti in which only x*, x£, x*.,
respectively, are internal nodes. Then

X(q*|) = wiw2Aw4W5'
t tX(q2) = w,jW2Aw4w5, and

X(q3) = w^Aw^Wg
by the definition of x* x£, and x^.. Similarly, let q,j, q^, q^
be the CS's of T! in which only z\ zl, z*., respectively, are

1 s t. n^

internal nodes.

We have already seen that x* xj, x* G tki+"]T. . Hence, by
(b), each node to the left of z* (resp. z£, z*.) in q,j (resp. q^,
q') is labelled the same as the corresponding node in q. (resp.

*

q2, q3). Therefore, for some x,y,z G £ , we have

X(qij) = w,jW2Cz,

X(q2) = w.w2Cyz, and

Mq3) =w^w^Bxyz.
Let v be the frontier of the tree rooted at z* and let r = t - s

l

(hence 1 < r < n.). From q,j , q£, q3 we obtain the following

derivation:

S =» w.w2Cz =^+ w.w2w2Cyz =»+

w1w2w2w5i""(S+r)BxyZ ^+ wlW|w|w5i-(s+r)vxyz. (3)
Thus, ^ = (v,x,y,z) is a factorization of u.. Also, from (3) we

see that

(ni-r)+mr „ m„ « rw.w2 -1 ' vxy z G L

for all m £ 0, whicn satisfies part of 4(i).

20

The arguments of the last two paragraphs apply if we use T!

—*
instead of T!. Hence, there exist 1 < r* ^ n., v' ,x',y',z' 6 1.

such that §' = (v*,x',y',z') is a factorization of u. and

S =»* w.w2'dz' =3>+ w.w^'w^Dy'z' =*+
w1w^,w^,wnJ"(s,+r')Bx'y'z' =*+
w. w2'w2'w23"(s '+r '}v'x'y' z'. (4)

Again, from (4) we have that

wlW;<nJ-r')+n,c,v'x'y'raz' 6L
for all m £ 0.

By substituting the last part of (4), i.e., B =^+ v', into

(3), we see that

(nj-r)+mr , m -. T
W1W2 v'xy z G L

for all m > 0. Similarly, by substituting B =^+ v into (4), it

is clear that

wflwinrr,)+mr,vx'ymz' G L
1W2

for all m > 0. Thus, 4(i) holds.

j(ft ft

Since A =» w3, B =*> v, 3 ^ v', and A = B (mod it), none

of w3,v,v' is a proper prefix of any of w3,v,v', by Lemma 3.1.

This establishes 4(ii), completing the proof of Theorem 5.2. Q

Definition 5.3. For n > 1 , let L denote the context-freen

language {ambkambk I1 i m, 1 < k < n}.

In [7], a hierarchy of strict deterministic languages by de

gree is established by proving that, for n > 1, L is not strict

deterministic of degree n - 1 (or less) . The proof there is

quite complicated. Using Theorem 5.2, we give a short proof of

the same result.

21

Theorem 5.4. For all n > 1, L is not strict deterministic

of degree n - 1.

Proof. Assume for the sake of contradiction that Ln is

strict deterministic of degree n - 1. Let p be the constant of

Theorem 5.2. Let w = apbnapbn and let the leftmost block of p

a's be distinguished. By invoking Theorem 5.2, we obtain a fac

torization d> = (w. ,w2,w3,w4,w5) of w such that parts 1 through 4
g

hold. In order to satisfy 1, 2, and 3, we must have w. = a ,

w2 = afc, w3 G ap_(s+t)bna*, w4 = afc, and w5 G a*bn, for some
s,t > 1 .

Now let

p-(s+t),i p+(n-2)t.i
u. = a^ * 'b a^ v b

l

for 1 i i < n. Clearly w.w* u. G L for 1 < i < n, so by part 4

of the theorem, there exist 1 i i < 3 < n, 1 < r,r' < n - 1, and

factorizations ^ = (v,x,y,z) and §' = (v',x',y',z') of u. and

u., respectively, such that 4(i) and 4(ii) hold. Since v is a

prefix of u. and v' is a prefix of u., and, by 4(ii), neither v

nor v' is a proper prefix of w3, it must be the case that v G

ap-(s+t)bia+ and v, e aP"(s+t)bJa* (See Figure 5.2). (Observe

that, by 4(i), w.w^n~'1 ~r) +mrvxymz G L for all m>0. Since w2 ^
J_ and r > 1, this implies that y G a . Similarly, we must have

y' G a . Thus, neither v nor v1 can include the entire block of

p + (n-2)t a's in ui or u•, respectively.) By 4(i), with m = 1,
n—T n—1 * "i * iW1W2 V'XYZ ® L* However, since w^w^ v'wyz G a bJa b and i ^

j, this is impossible. Therefore, L is not strict deterministic

of degree n - 1. D

22

6. An iteration theorem for simple deterministic languages

In [9], Korenjak and Hopcroft defined the family of simple

deterministic languages. This family was originally studied be

cause it was the first nontrivial class of languages for which

the equivalence problem was known to be decidable.

It has been shown that the family of simple deterministic

languages coincides with the family of strict deterministic

languages of degree 1 (except for {J_ }, which is not simple

deterministic). Hence, Theorem 5.2 (with n = 1) can be used to

show that a language is not simple deterministic. However, using

the special properties of the simple deterministic languages, we

prove in this section a stronger and more concise iteration

theorem for this family.

The following theorem is due to Beatty.

Theorem 6.1 . [3] Let G = (V,£,P,S) be a reduced context-

free grammar. Then G is LL(k) if and only if, for any n 2 0 and

any grammatical trees T,T' over G, if rtl(T) = rtl(T') and

(n+k)fr(T) = (n+k)fr(T-), then {n+1lT = <n+1>T«.

From Theorem 6.1 we can derive a theorem characterizing the

grammatical trees of a simple deterministic grammar. This

theorem will then allow us to prove the main result of this sec

tion.

Theorem 6.2. Let G = (V,£,P,S) be a reduced context-free

grammar in Greibach normal form. Then G is simple deterministic

if and only if

23

(*) for any n > 0 and any grammatical trees T,T' over G, if

rtl(T) = rtl(T') and (n)fr(T) = (n)fr(T') then *n*T = tn}T'.

Proof. Suppose that G is simple deterministic. Every sim

ple deterministic grammar is LL(1) [12], so by Theorem 6.1, for

any n > 0 and any grammatical trees T,T', if rtl(T) = rtl(T') and-

(n+1)fr(T) = (n+1)fr(T'), then {n+1}T = <n+1>T'. Since {0)T =
(0)i irpi for any t,T*, we can replace n + 1 by n to get (*) .

Conversely, suppose that (*) holds. Then, for any n > 0 and

any grammatical trees T,T', if rtl(T) = rtl(T') and *n+"*fr(T) =

(n+,,)fr (T') , then *n+1 }T = ^n+<,}T'. Hence, by Theorem 6.1, G is

LL(1). By [12], G is simple deterministic, since G is LL(1) and

in Greibach normal form. •

We now prove an iteration theorem for simple deterministic

languages.

Theorem 6.3. Let L be a simple deterministic language.

There exists an integer p such that, for each w G L and each set

K of p or more distinguished positions in w, there is a factori

zation <t> = (w- ,w2,w3,w4,w5) of w such that

1• w2 * i\ r

2. if K/<|> = {K. ,...,K5) then

(i) either K^,K2,K3 ^ 0 or K3,K4,K5 ? 0,

(ii) |K2 u K3 u K4I < p,
*

3. for each u G £ , if w.w2u G L, then there exists a fac

torization ^ = (w-,w2,w',w^,w') of w-w2u such that

(i) for each n > 0, for each u«,...,u G {w4,wi}, the

following are all in L:

24

n n n

w1w2w3(.n ui)w5' W1W2W3(.? Ui)w5'
n n

w1w2w3(."ui)w5' and W1W2W3(.? Ui)w5'
(ii) w3 (resp. w ,w) is not a proper prefix of w^ (resp.

wl, w!) and vice-versa.

Proof. (Our proof is similar to the proof of Theorem 4.3 as

given in [3], but is somewhat less formal.) Let G = (V,£,P,S) be

a reduced simple deterministic grammar such that L = L(G). Thus,

as we noted in Section 2, G is strict deterministic. The proof

of Theorem 4.2 in [8] shows that there exists an integer p such

that, for each w G L and each set K of p or more distinguished

positions in w, there is a factorization <J> = (w- ,w2,w3,w4,w5) of

w such that 1 and 2 of the theorem hold, and such that, for some

A G V - £,

* + + IK V

S ^ w*|Aw5 ^ w1w2Aw4w5 ^ W1W2W3W4W5 = W*

We must now show that <j> satisfies part 3 of the theorem. Let T

be a derivation tree corresponding to (1). Let x (resp. y) be

the node of T labelled by A in the CS of T labelled by w.Aw5
*

(resp. w-w2Aw4w5). Clearly x f~ y-
*

Suppose that w.w2u G L for some u G £ . Let T' be a deriva-
ft

tion tree corresponding to S =^ w.w2u. Thus, rtl(T') = S and

fr(T') = w.w2u. Let k = lg(w.w2). Since rtl(T) = rtl(T') = S

and *k*fr(T) = *k*fr(T') = w.w2, we have by Theorem 6.2 that
{k)T = (k}Ti# Let n be the isomorphism that maps nodes of * *T

to nodes of ^t' .

Let y. (resp. y.+l.) denote the leaf of T labelled by the k

(resp. (k+1)) symbol in w = wnW2w3w4w5. Since w2 ^ J\. by part

25

1 of the theorem, and w3 ^ A by part 2, yR is labelled by the

last symbol of w2, and yk+<j is labelled by the first symbol of
*

wv By the definition of x and y, we have that x[~ yk and

Since yR and yk+« are leaves of T, we have that yR L Yk+#| •

Suppose that there exists a leaf y' G T such that yk L y' L Yk+ij •

Since G is in Greibach normal form, y' is labelled by some a G £.

st
But then y. - cannot be labelled by the (k+1) symbol in w,

which is a contradiction. Therefore, Yk Lyk+ij •

By the definition of |_* tnere exist z-,z2 G T such that

yk(5"1)*Zlnz2([[;)*yk+r
Let z be the parent of z. and z2 (see Figure 6.1). Since

y|~ yk+1 , either y[~ z or z2 £ y. Suppose that y(~ z. Then

yr+z,, r yk/ which is impossible since both yk and y appear in

the CS of T labelled by w,.w2Aw4w5. Thus, it must be the case

that z2 L" y.

Suppose that z2 ? y. Let z' be the leftmost immediate des

cendant of z2. Since G is in Greibach normal form, z' is la-
_ *belled by some a G ^_. Since z2 £ y and z2 ? y, we have that

JL

z' T y. However, z' ^ y since My) = A/ and z' has no descen-
*

dants, so it is not possible tnat z' T y, which is a contradic-

* {kltion. Hence, z2 = y. Since z. T yk and z.ny, y G 'T.
« (k \ {k}

Since x|~ yk/ x G l JT. Tnus, both x and y are in JT, so

we have that

A = h(x) = X(h(x)) and

A = h(y) = A(h(y)).

Let q and 0 be LCCS's of T in which the leftmost internal nodes

26

are x and y, respectively. Such LCCS's must exist by Lemma 3.4.

From the definition of x and y, we see that

Mq) = w^Ap and

Me) = w^Aotp
*

for some c(,p € V .
{k}

Since x and y are internal nodes of T that belong to T, q

and 0 are LCCS's of *k*T (Lemma 3.6). But *k*T = *k*T', so h(q)
and h(0) are LCCS's of *k>T', hence by Lemma 3.7, h(q) and h(0)

are LCCS's of T'. Since *k*T = *k'T',

MMq)) = Mq) = w^Ap and

Mh(0)) = M©) = w^Aotp.

Applying Lemma 3.5 to q and 0, we have
ft ft ft

S =^ w.Ap =^ w.w2Ac(p =3> WTW2W3W4W5 *2*

(where A =»* w3, c(=>* w4, and p => w5, by the definition of c{
and p). Next, we apply Lemma 3.5 to h(q) and h(0) to get

ft ft ft

S =» w-Ap =^ w-w2Ac(p =^ w.w2u.
ft ft *

Let w',w',w' G £ be such that u = w'w^w^, A => w^, c(=^ w^,
*

and p ^ w'. (See Figure 6.2.)

Setting § = (w.,w2,w^,w^,w£), we have that § is a factoriza

tion of w-w2u. Let n be any nonnegative integer. From (2), we

obtain the derivation

S =*> w.Ap =» w-w2Ac(p => w.w2Ac(p =» ••• =* w^w2Ac(p.

A terminal string may now be derived by continuing with either
* *

A =» w3 or A => w',

then n applications of any combination of

*

c(=> w4 and c(

completing the derivation with either

27

ft ft

p =» w5 or p =$> w£.

Clearly any of the strings in part 3(i) of the theorem may be ob

tained in this manner, so § satisfies 3(i).

Since G is strict deterministic, by Lemma 3.3 each of L(A),

L(c() and L(p) is a prefix-free set. Thus, since w3,w^ G L(A), w3

is not a proper prefix of wi and vice-versa. Similarly, w4

(resp. w5) is not a proper prefix of w^ (resp. w^) , and vice-

versa. Therefore, § satisfies part 3(ii), and the theorem is

proved. Q

Theorem 6.3 resembles Theorem 4.3 (Beatty's first iteration

theorem for LL(k) languages) in the case that k = 1. This is

understandable, since every simple deterministic language is

LL(1). There are two differences between the theorems, however.

First, condition 3 in Theorem 6.3 requires only a string w,.w2u G

(1)

(1)L, while Theorem 4.3 requires a string w-w2u G L such that v,/u =

w3. Second, part 3(ii) in Theorem 6.3 is stronger than the

corresponding condition in Beatty's theorem. In fact, part 3(ii)

is very useful in practice, as we see in the following example.

Theorem 6.4. The language L. = {an(bd + b + c)n$ I n > 1}

(where (,), and + are metasymbols, + denoting alternation) is

not simple deterministic.

Proof. Assume that L- is simple deterministic and let p be

the constant that Theorem 6.3 asserts must exist. Let w =

ap(bd)p$ and let the symbols (bd)p be distinguished. By Theorem

6.3, there is a factorization <J> = (w. ,w2,w3,w4,w5) of w which sa

tisfies parts 1, 2, and 3 of the theorem. In particular, since

28

part 3 is satisfied, w.w2w3wnw5 must be in L,j for all n > 0.
* +This implies that w. G a , w2 G a , and either

I. w3 G a*(bd)+, w4 G (bd)+, and w5 G (bd)+$, or
II. w3 Ga*(bd)*b, w4 Gd(bd)*b, and w5 Gd(bd) $.

The first case occurs if w. begins witn a b and ends with a d,

the second if w. begins with a d and ends with a b. Note that w4

cannot both begin and end with a b, for then w.w3w5 would contain

a d not immediately preceded by a b. Neither can w4 both begin
2 2 •and end with a d, since w.w2w,w.Wr would then contain adjacent

d's. We consider cases I and II separately. (See Figure 6.3.)

Case I. We can write w2 = ak, w4 = (bd)k, w5 = (bd)m$ for
some k,m £ 1. Let u = w3(bd) 'bcm$. Clearly w.w2u G L. By

Theorem 6.3, there exists a factorization § = (w- ,w2,w!,w!fw!) of

w-w2u such that parts 3(i) and 3(ii) are satisfied. From 3(ii)
k-1 + **

we see that wi = w,, w! 6 (bd) be , and w' G c $. But now

w1w2w3w42w5 *L <since w3w42w5 6a* (bd)p"m""'1 bc+(bd) k""'1 bcm$, we
2 2have that w*|W2wIw4 w' contains p + k a's but more than p + k re

petitions of bd, b, and c). Hence, 3(i) is contradicted.

k mCase II. We can write w. = d(bd) b, w5 = d(bd) $ for some
k+m+1k,m > 0. Let u = w^c $. It is easy to verify that w.w2u G

L. By Theorem 6.3, there exists a factorization {» =

(w.,w2,wA,w*,w') of w-w^u such that parts 3(i) and 3(ii) are sa-

+ *tisfied. From 3(n) we have that w' = w3, wi G c , and w' G c $.

However, w*|W2w3wlw5 0 L (since w' ends in a c and w5 begins with

a d), which contradicts 3(i).

In both cases we reach a contradiction, so L- cannot be sim

ple deterministic. •

29

The language L. above is a variation on the LL(k) language

{an(bkd + b + cc)n I n £ 1} (where k is any fixed value greater

than or equal to 1) which Rosenkrantz and Stearns [12] showed

could not be generated by an LL(k) grammar without /\. -rules.

Since the class of simple deterministic languages is equal to the

class of languages generated by LL(1) grammars without .A. -rules

[12], their result shows that {an(bd + b + cc)n I n > 1} is not a

simple deterministic language. Unfortunately, this also follows

trivially from the observation that {an(bd + b + cc)n I n 2 11 is

not prefix-free. Thus, the added $ is essential in Theorem 6.4.

Note also that each of the alternates (bd, b, and c) in L,j is

necessary for L. to be nonsimple. An interesting exercise is to

verify that the languages {an(bd + b)n$ In > 1}, {an(bd + c)n$ I

n ;> 1}, and {an(b + c)n$ I n £ 1} are all simple deterministic.

We have noted earlier that every simple deterministic

language is both LL(1) and strict deterministic (hence prefix-

free). The language L- is LL(1), since it is generated by the

following LL(1) grammar:

S-»aDA$,

D-> aDA | TV *

A-»bB I c,

B-»d | A.-

Hence, L. is a prefix-free LL(1) language which is not simple

deterministic. Our final theorem follows immediately.

Theorem 6.5. The class of simple deterministic languages is

properly included in the class of prefix-free LL(1) languages.

30

References

[1] Y. Bar-Hillel, M. Perles, and E. Shamir, On formal proper

ties of simple phrase structure grammars, Zeitschrift fQr

Phonetik, Sprachwissenschaft und Kommunikationsforschung 14

(1961) 143-172. Also available in Y. Bar-Hillel, Language

and Information (Addison-Wesley, Reading, Mass., 1964) 116-

150.

[2] J. C. Beatty, Iteration theorems for LL(k) languages, Proc.

Ninth ACM Symp. on Theory of Computing (1977) 122-131.

[3] J. C. Beatty, Iteration theorems for the LL(k) languages,

Ph.D. Thesis, Univ. of California, Berkeley, Calif. (1977).

[4] L. Boasson, Two iteration tneorems for some families of

languages, J. Comput. Sys. Sci. 7 (1973) 583-596.

[5] M. A. Harrison, Introduction to Formal Language Theory

(Addison-Wesley, Reading, Mass., 1978).

[6] M. A. Harrison and I. M. Havel, Real-time strict determinis

tic languages, SIAM J. Comput. 1 (1972) 333-349.

[7] M. A. Harrison and I. M. Havel, Strict deterministic gram

mars, J. Comput. Sys. Sci. 7 (1973) 237-277.

[8] M. A. Harrison and I. M. Havel, On the parsing of deter

ministic languages, J. ACM 21 (1974) 525-548.

[9] A. J. Korenjak and J. E. Hopcroft, Simple deterministic

languages, Conf. Rec. of the Seventh Ann. IEEE Symp. on

Switching and Automata Theory, Berkeley, Calif. (1966) 36-

46.

[10] W. F. Ogden, Intercalation theorems for pushdown store and

stack languages, Ph.D. Thesis, Stanford Univ. (1968).

31

[11] W. F. Ogden, A helpful result for proving inherent ambigui

ty, Math. Systems Theory 2 (1968) 191-194.

[12] D. J. Rosenkrantz and R. E. Stearns, Properties of deter

ministic top-down grammars, Information and Control 17

(1970) 226-256.

32

Footnotes

'The empty string is denoted by J\. .

2The length of a string x is denoted by lg(x).

3We use |SI to denote the cardinality of a set S.

4We extend X to sequences of nodes in the natural way: if q =

fx. x ••• x) is a sequence of nodes from T, then Mq) =
v 1 2 m

Mx,j)Mx2)---Mxm).
5When defining a subtree of T, we list only the nodes in that

subtree. All edges of T which connect nodes of the subtree are

implicitly included in the subtree. Also, for T = (V,E) we write

x G T instead of x G V.

6
n

For u. ,... ,un G £ , we let II ^ = u«|u2""un#

33

A. a b b

Figure 2.1

s r nt-(s+r)
WW w w •*•

12 2 2

wlw2 •I w^i-<s+r>

n,-(s+r) r
w w J- ww3 w4 "4

Ti
Figure 5.1

(continued on next page)

34

W4W5

T.

„ s' r' n-i-fs'+r') .
Wlw2 w2 W23 v

Tj
Figure 5.1

35

y'

ap+(n-2)t b1 ap+(n-2)t b1

wl
wn-l
w2 V X y z

•V"

U

36

ap+(n-2)t b^ ap+(n-2)t bi

wl
wn-l
w2 v' x' y' z'

Figure 5.2

rtn(T)

yk *k+l

Figure 6.1

37

T'

Figure 6.2

Case I.

ap 1bd. ..db...db.. .bd $

wl w2 w3 W4 W5

a? bd. ». Q O ...CC.<. .c $

wl w2 w3 w4 w5

Case II.

a? bd....bd...bd....bd $

wl w2
w3 w4 W5

aP bd..>•Uv•••CC•«. .c $

wl w2 w3 W4 w5

Figure 6.3

	Copyright notice 1978
	ERL-78-15

