Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ITERATION THEOREMS FOR FAMILIES OF
STRICT DETERMINISTIC LANGUAGES

K. N. King*
Computer Science Division
Department of Electrical Engineering
and Computer Sciences

University of California
Berkeley, CA 94720

4/11/78

*The author is a National Science Foundation Graduate Fel-
low. This research was supported in part by the National Science
Foundation under Grant MCS74-07636-201.

-

2

Abstract. Two iteration theorems, one for strict deterministic

languages of degree n, the other for simple deterministic

languages, are presented. Examples demonstrating the use of

these theorems are also given.

1. Introduction

Recent papers have extended the theorem of Bar-Hillel,
Perles, and Shamir [1], and its refinement by Ogden [18,11], to
apply to various classes of deterministic context-free languages.
We refer to theorems modelled on the Bar-Hillel result as "itera-
tion theorems." In [8], Harrison and Havel presented an itera-
tion theorem for general deterministic context-free languages,
Boasson [4] has given one for deterministic one-counter
languages, and recently Beatty [2,3]) has established two itera-
tion theorems for LL(k) languages.

We introduce two more iteration theorems, each for a family
of strict deterministic languages. The first theorem is for the
family of strict deterministic languages of degree n, for any
n>1. Harrison and Havel [7] introduced these families and
showed that they formed a hierarchy of strict deterministic
languages. The second theorem is for the family of simple deter-
ministic languages, which was defined by Korenjak and Hopcroft
[9]. Our first iteration theorem is also applicable to the fami-
ly of simple deterministic languages, since every such language
is strict deterministic of degree 1. However, the second itera-
tion theorem is stronger than the first for this special family
of languages.

In Section 2, we define the families of languages to be stu-
died ana introduce notation for dealing with trees. Section 3
lists several lemmas needed in subsequent arguments. Section 4
reviews some previous iteration theorems. In Section 5, we prove

an iteration theorem for strict deterministic languages of degree

4
n. Finally, in Section 6, -we establish an iteration theorem for
Simple deterministic languages and use it to show that the family
of simple deterministic languages is properly included in the
class of prefix-free LL(1l) languages.

!

|

!

|

2. Definitions

We first define some specialized terminology for discussing
strings. Let % be an alphabet (a finite set of symbols). For
X,y € Z*, we say that y is a prefix of x if there exists z € i*
such that x = yz. If y is a prefix of x and y # x, then y is a

proper prefix of x. A set of strings L is said to be prefix-free

if x,xy € L implie's'I y /\ (i.e., no string in L is a proper
*

prefix of any string in L). Let w € X . We denote by (n)w the

prefix of w of length2 min{n,lg(w)}. A sequence of strings

(w1,w2,...,wm) is said to be a factorization of w if w =

w1w2---wm. An integer i such that 1 < i < 1g(w) is called a po-

sition in w. By choosing some subset K of {1,...,1g(w)}, we

specify a set of distinguished positions within w. For any set K

of distinguished positions, a factorization ¢ = (w1,...,wm) of w
induces a partition K/¢ = {K1""’Km} of K, where
Ki = {k € K | lg(w1--’wi_1) <k £ lg(wq'-°wi)}.

We .now turn to the definition of various types of context-
free grammars. The reader is assumed to be’familiar with the
standard definition of context-free grammar (see, for example,
[51).

Let G = (V,2,P,S) be a context-free grammar. G is said to

be reduced if either P = @ or for each A € V, there exists d,B €

* * * *
V, w €3 such that s = dAB = w. G is in Greibach normal

form if every rule in P is of the form A->ad for a € 2, € V*.
(Note that this definition, unlike the standard definition of
Greibach normal form, prevents /\ from being in L(G).)

Let G = (v,2,P,S) be a context-free grammar and let w be a

partition of V. We say that w is strict if
1. 2 € w and

*
2. for all A,A' € V - ¥ and d,B,B' € V , if A—>qaBp, A'—>dqp’

are in P and A = A' (mod w) then either
(ii) B = B’ /\ and A = A"'.

If there exists a strict partition w of V, then G is said to be

p' (mod‘w), or

strict deterministic. A language L is strict deterministic if

there exists a strict deterministic grammar G such that L = L(G).

For m a strict partition, we define3
lwll = max |V.].
Vien—{i}

If G is a strict deterministic grammar, the'degree of G is
deg(G) = min{lirll | ¥ is a strict partition of G}.
For L a strict deterministic language, the degree of L is
deg(L) = min{deg(G) | G is strict deterministic and L(G) = L}.
A context-free grammar G = (V,%,P,S) in Greibach normal form

is simple deterministic if A->aq, A->ap in P implies o = B, for

allAev-3 ae€ez qB€ V*. (Note that every simple deter-
ministic grammar 1is strict deterministic of degree 1.) A
language L is simple deterministic if L = L(G) for some simple
deterministic grammar G.

We now define a number of terms concerning trees. Our de-
finitions come from [3], in which they are presented in more de-
tail.

A tree T = (V,E) is a connected dag (directed acyclic graph)
in which every node (element of V) has exactly one entering edge

(element of E), except for one node, denoted by rtn(T), which has

no entering edges. We call rtn(T) the root node of T.

The set E defines the immediate descendancy relation on

V X V. The relation is written x [y, and we say that "x has im-
mediate descendant y," and "y has parent x.".The transitive clo-
sure of [is F+, and the reflexive transitive closure of [is
.

The trees that we will be considering are ordered trees;
that is, the immediate descendants of each node are ordered by
some relation m. Thus, if Yqr Yoreeer Yy, are the immediate des-
cenaants of a node in left-to-right order, then gy, ...y, .

If ply and there is no node x such that xny, then we write
plzy. Similarly, if p[x and there is no y such that xny, we
write p Ex. We define the relation | by

L= (g ncp™.
Again, L+ is the transitive closure of |, and L* is the re-
flexive transitive closure of |[..

A seguence (x,| Xy *° xm) of nodes in a tree T is a maximal

and the sequence cannot

left-to-right sequence if Xy sz Le-- Lxm
be extended. Those nodes of T with no descendants are called
leaves. Let leaves(T) denote the maximal left-to-right sequence
of all leaves in T.

An L-labelled tree is a tree T and a function A which as-

signs a label from L to each node of T. 1If G = (V,%,P,S) is a
context-free grammar, then T is a tree over G if T is a
(Vu {/\})-1labelled tree. The label of rtn(T) in a labelled tree
T is denoted by «rtl(T). The frontier of a labelled tree T,

denoted by fr(T), is defined as follows:?

£r(T) = AN(leaves(T)).

Any node of a tree T which is not a leaf is said to be

5

internal. If x is an internal node of T, then” {y € T| x=y or

x [y} is the elementary subtree of T rooted at x.

The set of cross-sections of a tree T is defined inductively

as follows:
1) (xg), where Xy = rtn(T), is a cross-section (CS) of
level 8.
(2) If (x,I et Xt xm) is a CS of level i and X, is an
internal node of T, then
(x1 e o o xk_" y" e Yr xk+'| e s o xm)
is a Cs of level i + 1, where Yqreeory, are the immedi-

ate descendants of Xy in order (i.e., with respect to

n).

Tne left canonical cross-sections (LCCS) of T are defined simi-

larly, but with the restriction that Xy (the node that is re-
placed by its descendants) is the leftmost internal node in the

original CS.

Trees T and T' are structurally isomorphic, written T = T',

if there exists a bijection h from the nodes of T to the nodes of
T' such that, for all x,y € T, (i) x[y if and only if
h(x) Ch(y), and (ii) xny if and only if h(x) mnh(y). If in addi-

tion, A(x) N(h(x)) for all x € T, then we write T = T'.

!}

Let G

(V,2,P,S) be a context-free grammar, and let T be a

tree over G with labellingyk. T is a grammatical tree over G if

fr (T) € Z* and either (i) T consists of a single node, or (ii) to

every elementary subtree T' of T there corresponds a production

9
A->q in P such that rtl(T') = A and fr(T') = d; furthermore, if
any leaf o% T' is labelled by /\ , then it is the only leaf in T'
(hence d = /\). Leaves of a grammatical tree which are labelled

with symbols in X are called terminal nodes. A grammatical tree

T is called a derivation tree if rtl(T) = S.

Let T be a grammatical tree, and let m = 1lg(fr(T)). Let
(y,l s ym) be a left-to-right sequence of all terminal nodes in
T. For any n, 1 < n { m, define the trees

e = xer xL My),

bl o xer xLU* ry) v

{x € TIdb € T s.t. bl_*yrl and bn+x}.

Also, let [g]T and {ﬂ}T be the empty tree, and let [n]T = {n}T =

T if n > m. We call ™7 ang {n}T left n-parts. [(Mr contains

all of the nodes of T which lie on the path from rtn(T) to Yoo
Plus all nodes of T to the "left" of that path. {n}T contains
all nodes in [n]T, and in addition contains all immediate descen-
dants of nodes on tne path from rtn(T) to Yn- Figure 2.1 shows a

grammatical tree T and its left n-parts, for n = 4.

10

3. Elementary properties of grammars and trees

The following lemmas will be used to prove the main theorems
of this paper. The first two lemmas deal with the prefix-free
properties of strings derivable in a strict deterministic gram-
mar. The other lemmas (from [3]) concern cross-sections in gram-
matical trees; they are reproduced here for the convenience of

the reaader.

Lemma 3.1. Let G = (V,2,P,S) be a strict deterministic

grammar and let w be a strict partition of V. For any A,A' €
* * *
V-2,wuex, ifa=A'" (modw), A = w, and A' = wu, then

u = A.
Proof. Identical to the proof of Theorem 2.2 in [7]. [

Definition 3.2. Let G = (V,X,P,S) be a context-free gram-

*
mar. For each o € V*, define L(q) = {we X | =¢* w}.

Lemma 3.3. Let G = (V,X,P,S) be a strict deterministic

*
grammar. For each o € V , L(d) is a prefix-free set.

Proof. Use induction on 1lg(d) and apply Lemma 3.1 to each

nonterminal in . [

Lemma 3.4. [3, Theorem 3.35] Let T be a tree and let x be a

node in T. Then x appears in at least one LCCS of T. Moreover,
we may assume that there are no internal nodes to the left of x

in this cross-section.

Lemma 3.5. [3, Theorem 3.38] Let G = (V,%,P,S) be a

11
context-free grammar and let T be a grammatical tree over G. If
n and n' are LCCS's of level k and k + i, for any k,i > @, then

A(q) =>i %(q') is a leftmost derivation in G.

Lemma 3.6. [3, Theorem 3.49] Let n be an LCCS of the gram-

matical tree T at level k and let n be a positive integer. If

{n}T

the restriction q‘ of n to contains an internal node of T

then q' =1 and q' is an LCCS of level k in {n}T as well.

Lemma 3.7. [3, Theorem 3.57] Let T be a grammatical tree

{n}

and let n be a positive integer. If n is an LCCS of T then n

is an LCCS of T as well.

12

4. Previous iteration theorems

Before presenting our new iteration theorems, we briefly re-
view the development of iteration theorems for families of deter-
ministic context-free languages.

The first iteration theorem ("pumping lemma," "intercalation
theorem," “uvwxy theorem") was introduced by Bar-Hillel, Perles,
and Shamir [1] and was applicable to the entire family of
context-free languages. It has proved to be a very useful tool
for showing that a language is not context-free. A still

stronger result was proved later by Ogden [16,11].

Theorem 4.1. ("Ogden's Lemma") Let G (v,2,P,S) be a

context-free grammar and let L = L(G). There exists an integer p
such that, for each w € L and each set K of p or more dis-
tinguished positions in w, there 1is a factorization ¢ =
(w1,w2,w3,w4,w5) of w such that
1. if K/¢ = {K1""’K5} then

(i) either K1'K2'K3 # @ or K3,K4,K5 # 8,

(ii) IK2 u K3 v K4I < P
Ny, € L,

4”5
* *
3. for some A €V -3, s = w’IAWS' A > szw4, and

2. for each n > 0, w1w2w3w

A =9*
LEE

A proof of Theorem 4.1 appears in [5].

By studying the special properties of grammatical trees over
strict deterministic grammars, Harrison and Havel [8] were able
to establish iteration theorems for both strict deterministic

languages and (general) deterministic context-free languages.

13

Theorem 4.2. [8] Let L be a strict deterministic language.

There exists an integer p such that, for each w € L and each set
K of p or more distinguished positions in w, there is a factori-
zatlpn ¢ = (w1,w2,w3,w4,w5) of w such that

1. 0wy # A\

2, if K/¢ = {K1""'K5} then

(i) either K1’K2’K3 # 3 or K3,K4,K5 # 7,
(ii) |K, U K3 U K,| < p,
n+m n

*
3. for each n,m 2 6, u €.2 , WaWy WqW,u € L if and only if

m
w1w2w3u € L.

If, in Tﬁeorem 4.2, we replace 3 by
3'. for each n > 6, w1w2w3w2w5 € L, and if We # /\, then
for each n,m 2 0, u € Z*, w1wg+mw3w2u € L if and only if
w1wgw3u e L,
then the theorem holds for all deterministic languages.

In [6], the family of real-time strict deterministic
languages is introduced. It follows from results in [6] that,
for L a real-time strict deterministic language, Theorem 4.2 can
be strengthened by adding

4. if w, # /\, then for each n 2 8, u € s¥, w1wgu € L im-

plies 1lg(u) > n.
Beatty has proved two iteration theorems for LL(k) languages

[2,3]. One of these theorems is presented below for comparison

- with our results in Section 6.

Theorem 4.3. [2,3] Let L be an LL(k) language. There ex-

ists an integer p such that, for each w € L and each set K of p

14
or more distinguished positions in w, there is a factorization
¢ = (wq,wz,w3,w4,w5) of w such that

1- WZ#AI
2. if K/¢ = {Kq,...,Ks} then
(1) either K1,K2,K3 # # or K3,K4,K5 # 4,
(ii) 1K, U K53 U K41 < py
<* . . (k) _ (k)
3. for each u € ¥ , if w,w,u € L and u = w.w,w., then
172 37475
there exists a factorization € = (w,,w,,wi,w),wt) of
17727737475
w1w2u such that
(i) for each n 2 6, for each u,l,...,un e {w4,WA}, the

following are all in L:6

n
n n_ .,
w1w2w3(ig1ui)w5, w1w2w3(ig1u.)w5,

n
n n
w1w2w3(ig1ui)wé, and wlwzwé('ﬂ u.)wé,

- n
n,u,l,...,u € {w4,wa}, if [Tu, =

(ii) for each u1,...,u

n
ig1ui, then u, = u, for 1 < i £ n.

15
5. An iteration theorem for strict deterministic languages of

degree n

The family of strict deterministic languages, first studied
in [7], has been shown to coincide with the family of prefix-free
deterministic languages. Thus, any deterministic language can be
made a strict deterministic language by adding an endmarker.
This fact indicates the usefulness of the class of strict deter-
ministic languages, for by proving properties about it, we can
often infer properties of the entire class of deterministic
context-free languages.

One of the properties of strict deterministic languages that
nas been studied is the degree of such a language. One defini-
tion of degree has been given in section 2. ItAis also possible
to view the degree of a strict deterministic language L as the
number of states in a "minimal" deterministic pushdown automaton
(dpda) accepting L by final state and empty store (see ([7]).

Until now, there has been no good way to determine the de-
gree of a strict deterministic ianguage. Of course, it is possi-
ble to put an upper bound n on the degree of such a language by
giving a strict deterministic grammar of degree n that generates
the language, or a dpda with n states that recognizes it. Yet,
there have been only ad hoc methoas for showing that a language
had degree at least n. In this section, we prove an iteration
theorem that enables a lower bound to be placed on the degree of
a strict deterministic language, and we give an example of how
the theorem is used.

First, however, we quote a "left part theorem” from [8] that

16

we will need to prove our iteration thneorem.

Theorem 5.1. [8] Let G = (V,X,P,S) be a reduced context-

free grammar and let w be a partition on V such that X € w. Then
m is strict for G if and only if, for any n 2> 6 and any grammati-

cal trees T,T' over G, if rtl(T) = rtl(T') (mod w) and (n)§£(T) =

(n)gg(T'), then there exists a map h such that

(a) [n+1]T = [n+1]T' under h,

(b) A(x) = A(h(x)) for all x € [n+“T such that x|_+y for

e [n+’I]T

some Yy [n+1]T = [n]T, for all x €

[n+1]T),

(or if
and

() Nx) = N(h(x)) (mod w) for all x e P*1lg,

We can now give the main result of this section.

Theorem 5.2. Let L be a strict deterministic language of

degree n. There exists an integer p such that, for each w € L
and each set K of p or more distinguished positions in w, there
is a factorization ¢ = (w1,w2,w3,w4,w5) of w such that
T wy # A\,
2. if K/¢ = {K1""'K5} then
(i) either K1,K2,K3 # @ or K3,K4,K5 £ 7,
(ii) IK, u K3 u K,| < p,

k+m k

3. for each k,m > 8, u € i*, WaW, WaW,u € L if and only if

m
w1w2w3u e L,
*

-— N ni
4. for each u1""'un+1 e > , if w1w2 uy € L for

i=1,...,n+ 1, where each n; 2 n, then there exist
1T<i<ji<n+1,1<r¢(ng, 1T < r' < ny, and factori-

zations & = (v,x,y,z) and &' = (v',x',y',z') of u; and

17
uj, respectively, such that

(i) for all m > @, the following are all in L:

wqwéni-r)+mrvxymz, w1w£nj-r')+mr'v.x-y.mz|'
. - vt §]
w1wén1 r)+mrv‘xymz, and wqwénJ £')+mr vx'y'mz‘.

(ii) none of w3,v,v‘ is a proper prefix of any of

w3,v,v'.

Proof. Let G = (V,%,P,S) be a reduced strict deterministic
grammar of degree n such that L = L(G) and let w be a strict par-
tition of V such that |iwll = n. The proof of Theorem 4.2 (in [8])
shows that there exists an integer p such that, for each w € L
and each set K of p or more distinguished positions in w, there
is a factorization ¢ = (wq,wz,w3,w4,w5) of w such that parts 1,
2, and 3 hold, and such that, for some A € V - %,

s =" w,aw. =7 w,w Aw,w >t wwowow,we = W (1
1775 17277475 172737475
Thus, to complete the proof of Theorem 5.2, we need only show
that ¢ satisfies part 4 of the theorem.

Assume that w,lwgiu.1 €L for i=1...,n+1, where
Upreeortp g € Z*, and each n; 2 n. For each i =1,...,n + 1, let
Ti be a derivation tree corresponding to S =>* w1wgiui. Hence,
rtl(T}) = S and f£r(T}) = wqwgiui.

From (1) we obtain the derivation

* + + 2. 2 + +
S = w,lAw5 = w,lszw‘lw5 = w,lwzl\waw5 = cee =
nj,. ni + nj nj
w,lw2 Aw4 We => w,lw2 WaW, "W (2)

for each i. Let T, be a derivation tree corresponding to (2).

1

For j = ﬂ,...,ni, let xj be the node of Ti labelled by A in the

cross-section (CS) of T, labelled by wqw%AWZWS. Clearly
i+, 10+, ., ~t 1 _ nj i

xﬂl_ X3 F' I xni. Let ki = lg(w,lw2) and let yki+1 be the

18
leaf of Ti which is 1labelled by the (ki+’l)St symbol in

nj nj . . . —
w,‘w2 w3w4 w5 (such a node exists since K3 # #). Then, for i

"veeeyn + 1,

EEL(Ti) = £~l(Ti) = S and
(ki)g—t;—(Ti) = (ki)..E(T]!.) = w'l gi.

Therefore, by Theorem 5.1, there exist maps h1""'hn+1 such

that, for i = 1,...,n + 1,

(a) [ki+1]T. = [ki+1]Ti under hi’

1
(b) N(x) = N(h;(x)) for all x € “‘i‘“”'ri such that x Lty for
some y € [ki+1]Ti, and
(€) N(x) = N(h;(x)) (mod m) for all x € “‘i"”Ti.

Since w, contains a distinguished position, it is nonempty;
3
hence y;,+1 is labelled by the first symbol in 'w3, so
i
i + i
xni [yki+1. Thus,

iti ... 40 ~+.d
Xg I x'| [r xni I yki'l"l'

i i [ki+1] i _ i .
so xﬂ,...,xni € Ti’ Let zj = hi(xj) for i = 1,...,n + 1,
2 - i + i +-0. + i
J - 0,...,ni. BY(a), 20 [_ Z'I I— I_ Znio

By (c), A(xii) = %(zii) (mod w) for i =1,...,n + 1. Since

lwll = n, and A(xii) A for all i, there exist i,j, where 1 < i <
j £ n + 1, such that A(zii) = h(zgj). For the remainder of this
proof, i and j are fixed at these values. Let B = %(zii) =
Mz | | |
Also, for q = 8,...,n;, %(z;) = %(x;) = A, so each A(z;) is
in the same equivalence class as A. Since |lwll = n, there are at
most n elements in this equivalence class, so since n;, 2n, there

exist B ¢ s < t £ ny such that A(z;) = A(z;). By a symmetrical

argument, there exist 0 < s' < t' ¢ nj such that %(zg.) = %(zg').

e

19
Wwe fix the values of s,t,s', and t' for the remainder of the

proof. Let C %(z) = %(z) and D = A(zJ = A(zg,). The trees

s')
Ti’ Tj' Ti, and Tj now appear as in Figure 5.1.

Let qq, Ny q3 be the CS's of 'I'i in which only x;, xi, x;i,

respectively, are internal nodes. Then

W5,

il

h(q1) = 1
A(qz) 1
Nng) = wywaiawgtug

2
t]
2 4 5, and
n

; i i i ..
by the definition of xs, Xio and xni ‘Similarly, let qi, qé, qé
be the CS's of Ti in which only z;, zt, z;., respectively, are
i

internal nodes.
We have already seen that xl, xl, xi € [ki+1]T.. Hence, by
'S t nj ' i
i i i . . \
(b), each node to the left of zs (resp. Zio Zni) in q1 (resp. nye
qé) is labelled the same as the corresponding node in q1 (resp.
*
Ny q3). Therefore, for some x,y,z € £ , we have

Ang)
INUTY

1 2Cz,

w1w2Cyz, and

nj
%(qé) WavWa Bxyz.
Let v be the frontier of the tree rooted at z;_ and let r = t - s
i
(hence 1 < r £ ni). From qi, qé, qé we obtain the following

derivation:

*
S = w12Cz% 122Cyz%
s r.nji-(s+r) SyLwli~ (s+r)
w,|w2w2w2 Bxyz =§ w,lwzw2 2 VXYZ. (3)
Thus, & = (v,x,y,z) is a factorization of u;. Also, from (3) we

see that

(nj-r)+mr
WaWo

for all m 2 @, which satisfies part of 4(i).

vxymz €L

. e

20

The arguments of the last two paragraphs apply if we use Tﬁ
*

instead of Ti. Hence, there exist 1 < r' < nj, v',x',y',2' € X

such that E' = (v',x'",y',2') is a factorization of uj and

s -+ s! +

‘ * ! ' r' Vol
s = w1w2Dz = w.lwzw2 Dy'z' =

[' - ' 1
w1w§ wg wgJ (s'+r)Bx'y'z' >t
[} . — 1 1
w1w§'w§ wgJ (s'+r)v'x'y'z'. (4)

Again, from (4) we have that

w{nj-r')+mr’

w,I 2 v'x'y'mz' €L

for all m 2 9.

By substituting the last part of (4), i.e., B =7 v', into
(3), we see that

w1wéni-r)+mrv'xymz €L ‘
for all m > 6. Similarly, by substituting B =% v into (4), it
is clear that .
wqwénj_r')+mr'vx'y'mz' €L

for all m > #. Thus, 4(i) holds.

Since A e,.* W3, B =>* v, B %* v', and A = B (mod w), none

of w3,v,v' is a proper prefix of any of w3,v,v', by Lemma 3.1.

This establishes 4(ii), completing the proof of Theorem 5.2. [J

Definition 5.3. For n > 1, let Ln denote the context-free

language {ambkambk I 1 <m 1 <k < n}.

In [7], a hierarchy of strict deterministic languages by de-
gree is established by proving that, for n > 1, Ln is not strict
deterministic of degree n - 1 (or less). The proof there is
quite complicated. Using Theorem 5.2, we give a short proof of

the same result.

21

Theorem 5.4. For all n > 1, Ln is not strict deterministic

of degree n - 1.

Proof. Assume for the sake of contradiction that L is
strict deterministic of degree n - |1. Let p be the constant of
Theorem 5.2. Let w = aPb"aPb™ and let the leftmost block of P
a's be distinguished. By invoking Theorem 5.2, we obtain a fac-

torization ¢ = (w1,w2,w3,w4,w5) of w such that parts 1 througn 4

S

hold. In order to satisfy 1, 2, and 3, we must have w,I = a,
W, = at, Wy € aP=(s¥t)pn > W, = at, and we € a*o", for some
s,t 2 1.
Now let
u, = ap—(s+t)biap+(n-2)tbi

for 1 < i £ n. Clearly w1w2-1ui €L for 1 i £ n, so by part 4

<n-1, and

of the theorem, there exist 1 ¢ i< j<n, 1 <r,r'
factorizations & = (v,x,y,z) and E' = (v',x',y',z') of u; and
us
prefix of u; and v' is a prefix of uj, and, by 4(ii), neither v

respectively, such that 4(i) and 4(ii) hold. Since v is a

nor v' is a proper prefix of W3y it must be the case that v €
- 1 - .

aP (S+t)b1a+ and v' € aP (s+t)bja (see Figure 5.2). (Observe

that, by 4(i), w1w§n-1~r)+mrvxymz € L for all m > 8. Since W, #

Z\ and r 2 1, this implies that y € at. Similarly, we must have

y' € a+. Thus, neither v nor v' can include the entire block of

p+ (n-2)t a's in u; or uj. respectively.) By 4(i), with m = 1,
- - * 3 % 3

w1wg 1v'xyz € L. However, since w1w3 1v'wyz € a bJa b! and i #

j, this is impossible. Therefore, L, is not strict deterministic

of degree n - 1. O

L&

22

6. An iteration theorem for simple deterministic languages

In [9], Korenjak and Hopcroft defined the family of simple
deterministic languages. This family was originally studied be-
cause it was the first nontrivial class of languages for which
the equivalence problem was known to be decidable.

It has been shown that the family of simple deterministic
languages coincides with the family of strict deterministic
languages of degree | (except for { /A }, which is not simple
deterministic). Hence, Theorgm 5.2 (with n = 1) can be used to
show that a language is not simple deterministic. However, using
the special properties of the simple deterministic languages, we
prove in this section a stronger and more concise iteration
theorem for this family.

The following theorem is due to Beatty.

Theorem 6.1. [3] Let G = (V,2,P,S) be a reduced context-

free grammar. Then G is LL(k) if and only if, for any n > @ and

any grammatical trees T,T' over G, if rtl(T) = rtl(T') and

(n+k)§£(T) - (n+k)££(T,)' then {n+1}T - {n+1}T,‘

From Theorem 6.1 we can derive a theorem characterizing the
grammatical trees of a simple deterministic grammar. This
theorem will then allow us to prove the main result of this sec-

tion.

Theorem 6.2. Let G = (V,2,P,S) be a reduced context-free

grammar in Greibach normal form. Then G is simple deterministic

if and only if

. U

23
(*) for any n > # and any grammatical trees T,T' over G, if

rt1(T) = ctd (7)) and Mgr(m) = Mgrrr) then Plp o g,

Proof. Suppose that G is simple deterministic. Every sim-
ple deterministic grammar is LL(1) [12], so by Theorem 6.1, for
any n 2 @ and any grammatical trees T,T', if rtl(T) = rtl(T') and-
MM epry = Mgy, then Ml o I0¥llg | gince (0l -
{g}T' for any T,T', we can replace n + 1 by n to get (*).
Conversely, suppose that (*) holds. Then, for any n 2 @ and
any grammatical trees T,T', if rtl(T) = rtl(T') and (n+1)§£(T) =
(n*1)§£(T'), then {n+1}T = {n+1}T‘. Hence, by Theorem 6.1, G is

LL(71). By [12], G is simple deterministic, since G is LL(1) and

in Greibach normal form. [J

We now prove an iteration theorem for simple deterministic

languages.

Theorem 6.3. Let L be a simple deterministic language.

There exists an integer p such that, for each w € L and each set
K of p or more distinguished positions in w, there is a factori-
zation ¢ = (w1,w2,w3,w4,w5) of w such that
.oowy £ AN
20 if K/¢ = {K1'000,K5} then
(i) either K1'K2'K3 # @ or K3,K4,K5 # 0,
(ii) |K, U K3 U K,| < p,
*
3. for each u € ¥ , if WaW,u € L, then there exists a fac-
torization & = (wq Wy Wy wi,wi) of wewyu such that

(i) for each n > 0, for each uq,...,u € {w4,wa}, the

n
following are all in L:

24

n
n
1 Hﬂu YW w1w2wé('91ui)w5,
1 2 3(H1u)wsl and II 2 3(n u.)wsl
(ii) W3 (resp. 4,ws) is not a proper prefix of wé (resp.

wa, wé) and vice-versa.

Proof. (Our proof is similar to the proof of Theorem 4.3 as

given in [3], but is somewhat less formal.) Let G (V,>,P,S) be

a reduced simple deterministic grammar such that L L(G). Thus,
as we noted in Section 2, G is strict deterministic. The proof
of Theorem 4.2 in [8] shows that there exists an integer p such
that, for each w € L and each set K of p or more distinguished
positions in w, there is a factorization ¢ = (w1,w2,w3,w4,w5) of
w such that 1 and 2 of the theorem hold, and such that, for some
AeV -2,

s =" waw, = wowaw,w. 7 wowowaw,we = w. (1)

1775 17277475 172737475

We must now show that ¢ satisfies part 3 of the theorem. Let T
be a derivation tree corresponding to (1). Let x (resp. y) be
the node of T labelled by A in the CS of T 1labelled by w.|Aw5
(resp. w1w2Aw4w5). Clearly x F*y.

*
Suppose that Wy Wou € L for some u € > . Let T' be a deriva-

tion tree corresponding to S =" WawW,u. Thus, rtl(T') = S and
fr(T') = wpwyu. Let k = 1lg(wyw,). Since rtl(T) = rtl(T') =S
and (k)gg(T) = (k)gg(T') = wqwz, we have by Theorem 6.2 that

{k}T = {k}T'. Let h be the isomorphism that maps nodes of {k}T

to nodes of {k}T'.

Let Yk (resp. yk+1) denote the leaf of T labelled by the kth

(resp. (k+1)St) symbol in w = w,w,w,w,Ww.. Since w, # /\ by part
172737475 2

25
1 of the theorem, and Wa # /\ by part 2, Yy is labelled by the
last symbol of Wor and Y4 is labelled by the first symbol of
wy. By the definition of x and y, we have that xl—*yk ‘and
yl_*yk+.|-

Since Yy and Yk+1 are leaves of T, we have that yk|_+yk+1.
Suppose that there exists a leaf y' € T such that Yy L+y' L+yk+1.
Since G is in Greibach normal form, y' is labelled by some a € 2.
But then yk+1 cannot be labelled by the (k+1)St symbol in w,
which is a contradiction. Therefore, Yy Lyk+1.

By the definition of |, there exist Zq 12, € T such that

_1 * *
Y (R) TIEPY L) Yt -
Let z be the parent of Zy and Z, (see Figure 6.1). Since
y F*yk+1, either yl_*z or z, E*y. Suppose that yl_*z. Then
y|'+z1|_*yk, which is impossible since both yk'and y appear in
the CS of T labelled by w1w2Aw4w5. Thus, it must be the case
that z, E*y.

Suppose that z, #y. Let z' be the leftmost immediate des-
cendant of Z,. Since G is in Greibach normal form, z' is la-
belled by some a € >. Since z, l;*y and z, # y, we have that
z! E*y. However, 2z' # y since A(y) = A, and z' has no descen-
dants, so it is not possible tnat z' E*y, which is a contradic-
tion. Hence, z, =Y. Since Zy r*yk and 2g Y, Y € klg,

Since x F*yk, X € {k}T. Tnus, both x and y are in {k}T, SO
we have that

A = Nx) = Nh(x)) and

A = Ay) = Nh(y)).

Let n and © be LCCS's of T in which the leftmost internal nodes

26
are x and y, respectively. Such LCCS's must exist by Lemma 3.4.

From the definition of x and y, we see that

A(n) = w,AB and

N(©) = w,w,Adp
for.some d,B € V*.

Since x and y are internal nodes of T that belong to {k}T, n
and © are LCCS's of {k}T (Lemma 3.6). But {k}T = {k}T', so h(n)

and h(8) are LCCS's of {k}T', hence by Lemma 3.7, h(q) and h(9)

are LCCS's of T'. Since {k}T = {k}T',

Nh(r)) = A(n) = w,AB and
A(h(8)) = A(8) = wyw,AdB.

Applying Lemma 3.5 to n and 8, we have

* * *
S = w,lAp = w,lszcxp = w1w2w3w4w5 (2)
(where A %* LEY d é* Wy and B =>* W by the definition of

and B). Next, we apply Lemma 3.5 to h(n) and h(®) to get

S => Ap => 1 qup % w1w2u.
* * *
1 ' ' = 1
Let w3,w4,w5 € > be such that u w3w4wé, A > w3 qd = w";,
and B =>* wé. (See Figure 6.2.)

Setting § = (W 1w,y Wy, Wy,Wwe), we have that € is a factoriza-
tion of WpW,u. Let n be any nonnegative integer. From (2), we
obtain the derivation

* * * *
S = W,AB S waW,AdR > ww 2AdP% cee S ,lec(p
A terminal string may now be derived by continuing with either
* *
A = w3 or A = w:'s,
then n applications of any combination of
* *
q = Wy and d = w"l,

completing the derivation with either

27

*
]
w5 or p=> w5.

Clearly any of the strings in part 3(i) of the theorem may be ob-

p ="

tained in this manner, so E satisfies 3(i).

Since G is strict deterministic, by Lemma 3.3 each of L(3d),
L(d) and L(B) is a prefix-free set. Thus, since w3,wé € L(Aa), W
is not a proper prefix of wé and vice-versa. Similarly, W,
(resp. ws) is not a proper prefix of wa (resp. wé), and vice-
versa. Therefore, & satisfies part 3(ii), and the theorem is

proved. [

Theorem 6.3 resembles Theorem 4.3 (Beatty's first iteration
theorem for LL(k) languages) in the case that k = 1. This 1is
understandable, since every simple deterministic 1language is
LL(1). There are two differences between the theorems, however.
First, condition 3 in Theorem 6.3 requires only a string w1wéu €
L, while Theorem 4.3 requires a string WaWou € L such that (1)u =
(1)w3. Second, part 3(ii) in Theorem 6.3 1is stronger than the

corresponding condition in Beatty's theorem. In fact, part 3(ii)

is very useful in practice, as we see in the following example.

Theorem 6.4. The 1language L,I = {an(bd + b + c)n$ | n > 1}
(where (,), and + are metasymbols, + denoting alternation) is

not simple deterministic.

Proof. Assume that L1 is simple deterministic and let p be
the constant that Theorem 6.3 asserts must exist. Let w =
ap(bd)ps and let the symbols (bd)p be distinguished. By Theorem
6.3, there is a factorization ¢ = (wq,wz,w3,w4,w5) of w which sa-

tisfies parts 1, 2, and 3 of the theorem. In particular, since

28
part 3 is satisfied, w1wgw3w2w5 must be in L,I for all n > 6.
*

This implies that w,I € a , W, € a+, and either

I. wy € a (bd)¥, w, € (bd)*, and wy € (bd)"s, or
* * * *
II. w3 € a (bd) b, Wy € d(bd) b, and We € d(bd) S$.
The first case occurs if w, begins witn a b and ends with a d,

4

the second if Wy begins with a d and ends with a b. Note that W,

cannot both begin and end with a b, for then w,|w3w5 would contain
a d not immediately preceded by a b. Neither can W, both begin
and end with a d, since w1w§w3wiw5 would then contain adjacent
d's. We consider cases I and II separately. (See Figure 6.3.)
Case I. We can write Wy = ak, Wy = (bd)k, wg = (bd)ms for
some k,m 2 1. Let u = w3(bd)k_1bcm$. Clearly Wewyu € L. By
Theorem 6.3, there exists a factorization € = (W1rW21W§rW&'W§) of

w1w2u such that parts 3(i) and 3(ii) are satisfied. From 3(ii)

we see that wé = Wy, wa € (bd)k—qbc+, and wé € c*$. But now
2 2 . 2 * p-m-1, + k-1, .m
w1w2wéw& wé € L (since wéw& wé € a (bd) bc (bd) bc™S$, we
2 2,

have that W1W2W§WA we contains p + k a's but more than p + k re-

petitions of bd, b, and c). Hence, 3(i) is contradicted.

Case II. We can write W, = d(bd)kb, w5 = d(bd)ms for some
kem 2 0. Let u = w3ck+m+1$. It is easy to verify that w1w2u €
L. By Theorem 6.3, there exists a factorization E =

(w1,w2,w§,wa,wé) of w1w2u such that parts 3(i) and 3(ii) are sa-

tisfied. From 3(ii) we have that wé = Wqy w& e c+, and wé € c*$.

However, w,|w2w3wl'1w5 € L (since w& ends in a ¢ and We begins with
a d), which contradicts 3(i).
In both cases we reach a contradiction, so L,I cannot be sim-

ple deterministic. [

29

The -language L,I above is a variation on the LL(k) language
{an(bkd + b + cc)n | n 21} (where k is any fixed value greater
than or equal to 1) which Rosenkrantz and Stearns [12] showed
could not be generated by an LL(k) grammar without J/\ -rules.
Since the class of simple deterministic languages is equal to the
class of languages generated by LL(1) grammars without /\ -rules
[12], their result shows that {an(bd + b + cc)n | n > 1} is not a
simple deterministic language. Unfortunately, this also follows
trivially from the observation that {a(bd + b + cc)™ | n 2 1} is
not prefix-free. Thus, the added $ is essential in Theorem 6.4.
Note also that each of the alternates (bd, b, and c) in L,l is
necessary for L1 to be nonsimple. An interesting exercise is to
verify that the languages {a™ (ba + b)n$ | n 211}, {a™ (ba + c)ms |
n>1}, and {a®(b + ¢)™$ | n 2 1} are all simple deterministic.

We have noted earlier that every simple deterministic
language is both LL(1) and strict deterministic (hence prefix-
free). The language L,I is LL(1), since it is generated by the
following LL(1) grémmar:

S—>aDAS§,

D—>aDA | A\,

A->bB | c,

B=>d | A\ .
Hence, L,| is a prefix-free LL(1) language which is not simple

deterministic. Our final theorem follows immediately.

Theorem 6.5. The class of simple deterministic languages is

properly included in the class of prefix-free LL(1) languages.

39

References

(11

(2]

(3]

(4]

[5]

(6]

(7]

(8]

[9]

(10]

Y. Bar-Hillel, M. Perles, and E. Shamir, On formal proper-
ties of simple phrase structure grammars, Zeitschrift flr
Phonetik, Sprachwissenschaft und Kommunikationsforschung 14
(1961) 143-172. Also available in Y. Bar-Hillel, Language
and Information (Addison-Wesley, Reading, Mass., 1964) 1716-
150.

J. C. Beatty, Iteration theorems for LL(k) languages, Proc.
Ninth ACM Symp. on Theory of Computing (1977) 122-131.

J. C. Beatty, Iteration theorems for the LL(k) languages,
Ph.D. Thesis, Univ. of California, Berkeley, Calif. (1977).
L. Boasson, Two iteration tneorems for some families of
languages, J. Comput. Sys. Sci. 7 (1973) 583-596.

M. A. Harrison, Introduction to Formal Language Theory
(Addison-Wesley, Reading, Mass., 1978).

M. A. Harrison and I. M. Havel, Real-time strict determinis-
tic languages, SIAM J. Comput. 1 (1972) 333-349.

M. A. Harrison and I. M. Havel, Strict deterministic gram-
mars, J. Comput. Sys. Sci. 7 (1973) 237-277.

M. A. Harrison and I. M. Havel, On the parsing of deter-
ministic languages, J. ACM 21 (1974) 525-548.

A. J. Korenjak and J. E. Hopcroft, Simple deterministic

languages, Conf. Rec. of the Seventh Ann. IEEE Symp. on

_Switching and Automata Theory, Berkeley, Calif. (1966) 36-

46.

W. F. Ogden, Intercalation theorems for pushdown store and

stack languages, Ph.D. Thesis, Stanford Univ. (1968).

31
[11] W. F. Ogden, A helpful result for proving inherent ambigui-

ty, Math. Systems Theory 2 (1968) 191-194.

[12] D. J. Rosenkrantz and R. E. Stearns, Properties of deter-

ministic top-down grammars,

(1979) 226-256.

Information and Control 17

32

Footnotes

1The empty string is denoted by /\ .

2The length of a string x is denoted by lg(x).

3We use |S| to denote the cardinality of a set S.

]

4We extend N\ to sequences of nodes in the natural way: if n

(x1 Xy toe xm) is a sequence of nodes from T, then %(q)

)\(xq)}\(xz)'“)\(xm)-

5When defining a subtree of T, we list only the nodes in that

subtree. All edges of T which connect nodes of the subtree are
implicitly included in the subtree. Also, for T = (V,E) we write
x € T instead of x € V.

6 n

*
For Ll,l,...,un e z ’ we 1et iI=I"|ui = u1u200.un.

A
A A
b
C \B
a
Nab
(4]

Figure 2.1

33

1
T!

Figure 5.1
(continued on next page)

34

T?!

Figure 5.1

ap+(n-2)t bi ap+(n-2)t bi ap+(n—2)t ap+(n-2)t
Wy wg'l v x |y z Wy wg'l v'
\ v J \
Ui
Figure 5.2

Y Yyi1
T

Figure 6.1

37

Figure 6.2
Case I. Case 1I1I.
aP bd...db...db...bd|$ aP bd...bd...bd...bd|$
Wy v, Wy W, We wylw, Wy W, We
aP bd...db...cc...c‘s aP bd...bc...cc...cC
Wi|%a w3 Wy W Wy W2 w3 Wy wg

Figure 6.3

	Copyright notice 1978
	ERL-78-15

