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Abstract

This thesis studies a combinatorial problem which we call the

k-Partition Problem: "Given an undirected graph G and an integer k,

divide the nodes of G into k equal-sized sets in a way v/hich

minimizes the number of arcs which connect nodes in different sets".

This problem finds application in the field of Design Automation and

in problems of allocating program or data segments to pages of secon

dary storage. V!e have obtained a variety of results.

Our problem is shown to be NP-complete even when we require that

the maximum node degree of G is at most three. A variant of the

problem, which we call the General Partition Problem, is also proved

to be NP-coniplete.

Iterative-improvement algorithms are often employed to find

k-partitions. A probabilistic analysis proves that on a very simple

sot of graphs the simplest of the iterative-improvement algorithms

almost surely produces a 2-partition which is far from optimal.

Empirical tests shov/ed that more complex iterative-improvement strate-.

gies also fail to find good solutions on these graphs.
*
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Suppose we randomly select a graph G from the space of all graphs

with n nodes and N arcs. A probabilistic analysis produced two

functions L(n,N) and U(n,N) such that if m* is the number of

cross arcs (arcs which cross from one set to the other) in an optimal

2-partition of G, then with probability going to one as n

L(n,N) £ m* £ U(n,N).

We have derived some new heuristics which augment the standard

iterative-improvement techniques. Also, we propose new approaches for

extending 2-partition algorithms to find k-partitions.

Finally, we investigate properties of the 2-Partition Problem for

special types of graphs. For instance, when we restrict the maximum

node degree of a graph G we can improve the upper bound on m*(G),

the number of cross arcs in an optimal 2-partition of G. When 6

has fewer than half as many arcs as nodes we have proved that m*(G) = 0.

If G is a tree with bounded node degree we can show that m*(G) =

O(log (assuming n nodes), and if G is planar with bounded node

degree we prove that m*(G) = 0(»^).
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• CHAPTER 1

INTRODUCTION

^^ The k~Partition Problem and Its Applications

This thesis is a study of a combinatorial problem which we call

the k-Partition Problem: "Given an undirected graph 6 and an integer

k, divide the nodes of G into k equal-sized sets in a way which

minimizes the number of arcs which connect nodes in different sets."

The problem can be generalized by attaching cost to each arc, and/or

assigning a weight to each node. Another variation of the k-Partition

Problem involves partitioning the nodes of a hypergraph. We commence

this study by mentioning a number of areas where versions of our

problem arise, and then outline the contents of the remaining chapters.

Consider the problem of placing a collection of intercommunicating

subroutines onto a paged secondary storage device (see [3,17,21,27]).

With the aim of minimizing the number of page faults during execution,

it is desirable to place routines which reference each other on the

same page. We can abstract the problem by creating a graph which con

tains a node corresponding to each subroutine, and ah associated

weight proportional to the size of the subroutine. For each pair of

subroutines v^hlch access each other we create an arc between the

corresponding pair of nodes, and place on it an arc cost proportional

to the average number of accesses which occur between the two routines

during execution.

A pagination of the subroutines defines a partition of those

routines, and hence of the corresponding nodes. An arc connecting

nodes which are separated by the partition is called a cross arc.



We seek a partition for which the sum of costs of the cross arcs is

minimal, subject to the constraint that for each set in the partition

the sum of its node weights doesn't exceed a certain constant (the

page size). The techniques which have been developed for the k-Parti-

tion Problem can also be applied to this problem.

Partitioning algorithms can also be applied to a similar problem,

that of placing data onto a paged memory device. The data in a struc

tured database is usually accessed in a systematic manner. Hence,

certain collections of records tend to be referenced as a group, and

it is desirable that these records be contained within a small number

of pages.

Large sparse square matrices are used in the computer solutions

to a wide variety of problems (see [8]). The associated (directed)
th

graph has a node for each row of the matrix, and an arc from the i

node to the j node wherever entry i,j of the matrix is non-zero.

Gaussian elimination methods can be made more efficient when blocks

of nodes can be identified such that relatively few arcs connect nodes

within each block to nodes outside of that block. Such blocks can be

found by a k-partition algorithm.

In the field of Design Automation computers are being used to aid

in grouping electrical modules into packages (e.g. assigning chips to

circuit boards) so as to minimize the number of electrical connections

between packages (see [11,19,24»33]). The problem is equivalent to

partitioning a hypergraph, where a node represents each module, and an

arc (which is a set of two or more nodes) exists for each signal net

connecting a set of modules.



Graph partition problems are encountered in the everyday world,

though computers aren't generally used to solve them. For instance,

workers in a multi-story office building who must frequently interact

with each other ought to be assigned to the same floor when possible.

Problems of this type fall under the heading "Subdivision of a Business

or Social Community".

1.2 Outline of Remaining Chapters

The 2-Partition Problem has been shown to be as hard as any NP-

complete problem, which indicates that the existence of a polynomial-

time algorithm to solve it is unlikely. In Chapter 2 we show that with

the restriction that the maximum node degree of a graph is three, the

2-Partition Problem on such graphs is still NP-hard. A different ver

sion of the problem, the General Partition Problem, is also shown to

be NP-hard.

Chapter 3 begins by proving that a 2-partition algorithm we call

one-opting can always find a solution for which there are at most

|-+o(N) cross arcs, assuming that the graph contains N arcs. Next
v/e prove that on a certain special class of graphs the one-opting

algorithm almost always finds a solution for the 2-Partition Problem

which is very far from optimal. We have also observed empirically

that on a slightly more complex class of graphs none of our heuristic

2-partition algorithms has a good chance of finding a near-optimal

solution.

Our next approach to the k-Partition Problem, in Chapter 4, is

that of a probabilistic analysis on the space of random graphs. Our

graphs here have kn nodes and N randomly-chosen edges. We define
i



a function L(k,n,N), and prove that as n increases the probability

goes to one that an optimal k-partition of a graph has at least

L(k,n,N) cross arcs. We also find a function U{n,N), and an algorithm

which with probability going to one as n -> «> will find a 2-partition

with at most U(n,N) cross arcs. These results give us some insight

into the behavior of our k-partition algorithms -- in particular they

tell us that the optimal k-partition of a relatively dense graph (one

where the ratio of arcs to nodes is large) is likely to be only a

little better, percentagewise, than a randomly-selected k-partition.

In Chapter 5 we introduce some new heuristics which suggest new

algorithms to solve the 2-Partition Problem. Then we present the

results of empirical tests where we executed all of our 2-partition

algorithms on some pseudo-randomly generated graphs. Lastly we indi

cate how most of the algorithms can be implemented so that they run in

linear time.

Up until Chapter 6 the only algorithms discussed are those for

solving the 2-Partition Problem. Here we show how to extend the algo

rithms to do k-partitioning and general partitioning. Also, we show

how arc costs and node weights can be dealt with, and how hypergraphs

are treated.

In the final chapter we take a look at the properties of the

2-Partition Problem for special types of graphs, such as very sparse

graphs, trees, and planar graphs. One of our observations is that if

the maximum degree of a graph is d ^ 3, and there are N arcs, then
rl 1

a 2-partition with at most -^^ +o(N) cross arcs exists. Further,

if that graph is a tree then a 2-partition with at most

0(d log N) cross arcs exists. This indicates that graphs with



special structure may often be more tractable (i.e. yield partitions

with fewer cross arcs) than randomly-chosen graphs like those encoun

tered in Chapter 4.



CHAPTER 2

NP-COMPLETENESS OF TWO PARTITION PROBLEMS

2.1 Definitions

We first introduce some notation which is used throughout this

paper: G = (W,A) is a finite undirected graph. W is the set of

nodes (vertices) and A is the set of arcs (edges). There will be n

(or an integer multiple of n) nodes in our graphs, and N arcs. If

sew is a subset of the nodes then S ^ W-S. A cut (S;S) is the

set of arcs v/hich connect a node in S with a node in S. "#(S;S)"

denotes the size of the cut (S;S), i.e. the number of edges which

cross between S and S. "|S|" denotes the number of nodes in S.

Ak-partition of G will mean a partition {P-j jPg*• •• .of W

into k equal-sized subsets. Any (undirected) arc (u,v) which

crosses between two different sets of the partition (u e P., v e P.,

i j) is termed a cross-arc.

k-Partition Problem is to select from the space of all k-

partitions of W one which minimizes the number of cross arcs. The

remainder of this paper focuses primarily on aspects of this problem.

The special case when k = 2 is the 2-Partition Problem. It embodies

most of the features of the more general problem, and we will often

find it convenient to deal with this simpler version.

The 2-Partition Problem, which is an optimization problem, is con

verted to a problem of existence by defining it slightly differently.

Let "2-P" denote the problem:

Given an integer m and a graph G, does there exist
a 2-Partition of G with at most m cross arcs?



We note that any algorithm which solves the 2-Partition Problem also

solves 2-P, so the 2-Partition Problem is at least as hard as 2-P.

Suppose we add a restriction to the problem 2-P by requiring that no

node of G may have degree greater than three. Then G is constrained

to be a relatively sparse graph, and we might hope that in this case

2-P would be easier to solve. We call this restricted version "S2-P".

A problem similar to but distinct from the k-Partition Problem is

the General Partition Problem. Here an integer W is fixed. A parti

tion {P-j ,p2»•. • is "feasible" if |P.| £W for i = 1 to SL. For

this problem Z is not fixed. The problem is to find a partition

which minimizes the number of cross arcs, from the space of all feasible

partitions of G. If we are in addition given an integer m, and wish

to know if there exists a feasible partition with at most m cross

arcs, then we call the problem GP.

The General Partition Problem has been treated by Lukes [27,28,29].

2.2 Graph Partitioning — A Hard Problem

Suppose our problem was to find a cut (S;S) of G of minimum

size. A polynomial-time algorithm exists [4] to solve this problem.

However, requiring that both pieces of the cut be of equal size, as in

the 2-Partition Problem, appears to make the problem much more diffi

cult. We suspect that no polynomial-time algorithm exists for this

problem.

A paper by Karp [14] showed that a number of important combina

torial problems have something in common: 1) they are polynomially

reducible to each other, implying that if any one of them can be solved

in polynomial-time they all can, and 2) no sub-exponential-time



algorithm is known for any of them. These problems have since been

joined by a long list of other problems, and have come to be called

NP-complete (see [1,14] for a more rigorous discussion).

Two different polynomial reductions [6,7] have shown that the

Simple Max Cut Problem ("Is there a cut of G containing at least m

cross arcs?") is NP-complete, and [7] reduces Simple Max Cut to our

problem 2-P, indicating that it is also NP-complete. Since the 2-Parti-

tion Problem answers the question raised in 2-P, it is at least as

hard. The same is true a fortiori for the k-Partition Problem.

2.3 2-Partitioning with Maximum Node-Degree Three is NP-Complete

As stated above, the demonstration in [7] that 2-P is NP-com

plete starts with a maximum cut problem on a graph G. Sufficiently

many new singleton nodes are added to G to form a modified graph G'

so that if we limit our consideration only to those cuts which split

G' exactly in half, we are still solving the original max cut problem.

Solving the equal-sized max cut problem on G' is equivalent to solving

a 2-Partition Problem on the graph complement of G*. The point here

is that this construction produces a complementary graph which is

2 ....
dense, i.e. the number of arcs is of order n . The possibility is

left open that if we are restricted to considering only sparse graphs

-- we fix an upper bound d on the degree of any node -- then a nifty

algorithm exists for solving 2-P.

In fact, this is not the case, as we show in our first theorem,

where d has the value three.

Theorem 2.1. 2-P is polynomially reducible to S2-P.

8



(Theorem 2.1 implies that S2~P is NP-complete.)

If the value of d . is reduced to 2 then the 2-Partition Problem

is no longer NP-complete. Every component of a graph with maximum

node-degree two consists of a simple cycle or a simple path, and a

2-partition {L,R} exists such that at most one component is not

wholly contained in L or in R, Hence there exists a 2-partition

with two or fewer cross arcs when d £ 2.

We can test in polynomial time whether or not a 2-partition with

two or fewer cross arcs exists: To test for a 2-partition with no

cross arcs is equivalent to solving a unary-coded SUBSET-SUM problem

(see [13]) -- dynamic programming techniques provide a polynomial-time

algorithm. To test for a 2-partition with at most one cross arc,

remove each arc in turn and test for a 2-partition with no cross arcs.

To test for the existence of 2-partitions with two or fewer cross arcs,

remove each arc in turn and test for the existence of 2-partitions with

at most one cross arc. Induction can be applied to show that for any

fixed m there is a polynomial-time algorithm to test for the exis

tence of a 2-partition with m or fewer cross arcs.

Proof of Theorem 2.1. Given an n-node graph G for which a solu

tion to the 2-Partition Problem is desired, we will produce (in time

polynomial in the size of G) a graph G' having maximum node degree

three such that, given any optimal 2-Partition of G', there exists a

straightforward transformation to an optimal solution for G.

Our overall strategy is very simple. There is available to us a

certain graph having nodes of degrees two and three which is relatively

costly to split into pieces, i.e. there exists no cut of small



cardinality which splits off a large set of nodes. We will refer to

this special graph as a block. Our construction of 6' replaces each

node i in G by a block . Some of the degree two nodes in

are designated as outlet nodes. Each arc incident with node i in G

will be connected to a different outlet node of , so that all node

degrees in the final construction are at most three. A block will con

tain 2(4n+l)^-2 nodes.

Example.

I

G'

All of the blocks B. have the same number of nodes. We will demon-
1

strate that in any optimal 2-partition of G', all of the nodes of a

block B^ will lie in the same set. Hence, if G' can be 2-parti-

tioned with m or fewer cross arcs, then G can also. The converse

is trivially true, and Theorem 2.1 follows.

Claim 2.1. Suppose the nodes of a block B^. are contained in two

disjoint sets S and S, with lS| _< |S|, and suppose S contains

r outlet nodes. Then

^(S;S) - r max{^TsT,r} .

10



The construction of the blocks and a proof of Claim 2.1

appear directly after the proof of Theorem 2.1.

Suppose we have a 2-partition of G' in which some of the

are divided between the two sets. Using Claim 2.1 we show how to find

another 2-partition with fewer cross arcs:

Call the original two sets of the 2-partition L and R. For

each block B^ define = B^ ni and R^. = B^. HR.

Algorithm I.

1. L' 0, R' ^ 0.

2. For each block B^:

if 1L.| < |R.l th^ R' ^ R* UB.

else L' L' UB..

3. If |L'| = |R'| stop.

4. -t-max{L',R'}, +• min{L',R'}.

5. t •<- (#blocks in M^) - (#blocks in Mj^).

6. H (|- blocks randomly chosen from
7. L' •<- R'

Starting with a 2-partition {L,R} which splits some of the blocks B^

we claim that Algorithm I finds an improved 2-partition {L',R'}.

Consider a block B^ which was split by the 2-partition {L,R},

and suppose for definiteness that |L |̂ £ |R |̂» with L. containing

r outlet nodes. During step 2 is moved over to R^.'s set. This

causes a decrease in cross arcs of size at least

#(L.j;R.j) - (# arcs connecting to L-L^) £ ;R^) - r . (2.1)

By Claim 2.1, (2.1) is at least one, so at step 3 ^'(L';R') < #(L;R).

11



If we are not lucky, and |L'| f |R'| at step 3, then we need a

further argument. Let l be the number of blocks which we split by the

partition {L,R}, and let b. be the size of the smaller of the two
J

pieces of the split block. Applying Claim 2.1 to (2.1) tells us

that step 2 created a decrease in cross arcs of size at least

I • (2.2)
j=l ^ ^

If our blocks contain m nodes each, then to create the imbalance at

step 3at least |m nodes must have moved in step 2, implying that
m

By definition we have

Xb, > t ^ . (2.3)
0=1 2

b/<f. (2.4)
J Cm

Minimizing (2.2) subject to (2.3) and (2.4) tells us

(2.2) >|l| . (2.5)

Performing step 7causes an increase of at most -|n cross arcs, where
n is the maximum degree of any node in 6. Recalling that when con-

2 2 . .structing the B^.'s, rn was chosen to be m=2(4n+l) - 2 >8n implies
with (2.5) that

(2.2) ^ tn .

Hence after step 7 there is still a net decrease in the number of cross

arcs. •

12



We now reveal what a block looks like. It is convenient to start

by drawing what we will call a D-qraph. The size of a D-graph (and of

a block) is a function of n. The left graph of Fig. 2.1 is a D-graph

for ^ ~ ^^9- 2.2b shows a D-graph for n = 1. In general each

of the four "longer sides" of a D-graph consists of 4n edges.

To form a block, place a dot (a node) in each of the triangular

faces of a D-graph. Next, draw a line (an arc) between every pair of

dots v;hich is separated by a single edge of the D-graph (see Fig. 2.1).

Now erase the D-graph. The resulting graph is a block, and looks like

a stack of hexagons if drawn correctly. A block has 2n output nodes

which are selected by choosing every other node from among the degree-

three nodes along one "side" of the block (see Fig. 2.2a).

It remains to show that Claim 2.1 holds for our block construction.

The D-graph will aid us in this endeavor. If we regard the edges

along the perimeter (dotted in Fig. 2.2b) as fictitious, then we have

a one-to-one correspondence between edges in Fig. 2.1a and edges in

Fig. 2.1b.

For Lemma 2.1 and Lemma 2.2 which follow we define S and S to

be disjoint sets whose union is the nodes of a block. Furthermore

|S| £ |S|. We define F and F to be the corresponding sets of

faces in the D-graph. We will assume that each edge of the D-graph has

unit length. Define p(F) as the length of the perimeter around the

region F (dotted edges don't count). For example, if F = {a,b,c,d}

in Fig. 2.1b, then p(F) =3. A cut (S;S) in a block has the same

value as p(F) in its D-graph.

13
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Outlet nodes

Fig. 2.2a

D-graph
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Fig. 2.2b



Lemma 2.1. Given sets of faces F and F, as defined above,

for all F

p(F) > /]?T .

An immediate consequence of Lemma 2.1 is:

Corollary 2.1. Given a block, and sets of nodes S and S, as

defined above, then #(S;S) £

Lemma 2.2. Given a block, and sets of nodes S and S, as

defined above, let S contain r outlet nodes. Then #(S-,S) £ 2r.

Claim 2.1 follows directly from Corollary 2.1 and Lemma 2.2.

Proof of Lemma 2.1. For ease of reference we have numbered the

sides of the D-graph, and distinguished two nodes with the labels "il"

and "r" (see Fig. 2.2b). We will refer to faces as being above or

below the line segment Zr, Each side has length s = 4n.

We observe that if F is a set of faces, then the faces can be

"moved" so that they form a connected region whose perimeter has not

increased- Hence we may always assume that F is a connected region,

and the region is adjacent to at least two of the sides of the D-graph,

Case 1. F touchs only sides 2 and 3, and lies entirely below

the line Ir (see Fig. 2.3a). Draw a line parallel to ilr through

the highest point of the region F. Let F' be the region containing

all faces below this line (Fig. 2.3b). Then

p(F) > p(F') = /[TT+T > /FT •

16
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Case 2. Region F touchs sides 2 and 3 onlyj but rises above the

line £r. We first can add in all faces not in F which lie below £r

without increasing the perimeter. Now our region looks like the shaded

part in Fig. 2.3c. Circumscribe the faces above ir with a.trapezoid,

and add any faces necessary so that the space inside the trapezoid is

filled. Call this new, bigger region F'. Let the trapezoid have

sides of length h, and a base of length w, as in Fig. 2.3d. We see

that
p(F') = s + h +1

(the distance from I to r is s+1). Also the number of faces in

F' is

|F'l = (s+l)^-l +2wh-h^ .

Because w<s, p(F')^ > lF'|. Hence p(F)^ > IF|.
Case 3. Region F touchs only sides 3 and 4. We can circum

scribe F by a rhomboid F' which has a perimeter no larger than

p(F). We let the sides have length w and h (see Fig. 2.3e). Then

the number of faces in F' is 2wh. The perimeter p(F') = w+ h,

and (w+h)^ < 2wh for w, h >. 1. The desired inequality follows.

Case 4. Our region F touchs exactly three sides of the D-graph.

We first observe that it must then have a perimeter of length
2

p(F) > s + 1. Secondly, there are 2(s+l) -2 faces altogether, and F

contains at most half of these by definition. Hence p(F) > /|F|.

Case 5. F touchs all four sides of the D-graph. We turn our

attention to the complementary region F. Suppose it is made up of t

subregions F^jF^,...,F^, each of which is connected. Then each sub-
region must touch at most two of the sides of the D-graph. This allows

us to apply the results of Cases 1, 2, and 3 to say that p(F^)

18
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least for n > 16. Contradiction. Hence, for
D D cO C "•

definiteness and without loss of generality we may assume that

contains at least ^ of the nodes in , and P2 contains at least
I" of the nodes In We can now show that in fact £ p^ and

«2 ^ Pz-
Suppose y^ of W '̂s nodes lie somewhere else than in P^, and

y^ of the nodes in not in Pg. If we move the y^ nodes of
to P^, and the y^ to P^, the number of cross arcs decreases

by at least - l)(yi+y2) • This move may cause one of P^ or P^

to exceed their maximum allowance of nodes. Suppose P^ now has

t too many nodes (t^y-j). Choose t nodes from P-i-W-j and put them

in P2. This causes an increase of at most 3t cross arcs. The new

partition is feasible and shows a net decrease of

{^-l)(yi+y2)-3t >(^-4){y^+y2)
> (yi+y2) n > 5 .

This is a contradiction to the optimality of the starting partition

unless y-j = proves Claim 2.2.

Now let us start with a partition {P-j ,p2>• ••»p£} of 6', sup

posing that —̂ 1» ^2 —̂ 2' ^ ~ ^ Since

|H| < the partition {P^,p2>H} is feasible, and has no more

cross arcs than the former partition.

Let s^=-^^-|P |̂, S2=-y-|p2l» h=|Hl, so that s^ +S2 =h
In the subgraph induced by H no node degree exceeds three. We claim

that H can always be split into disjoint sets S-j and $2 such

that |S |̂ = s^, IS2I = Sg, and < h:

23



Suppose S-j and $2 are disjoint sets whose union is H, and

assume that no pairwise exchange of nodes between and Sg

reduces Define x(u) = "number of cross arcs incident to

node u." If x(u) £ 2 for all u 6 USg then

1 2 min{s^,S2} < h, so we're done. Otherwise there exists a
u such that x(u) = 3. Suppose u GS^. If there is a v € S2 with

x(v) > 2, an exchange of u and v reduces the number of cross arcs

by at least two.

Example.

new S new S,

Contradiction. Hence x(v) £ 1 for all v £ S2. Then

1 ^2 £ h.

Back to the partition {Pi»P2»H}. Each node in H is adjacent

to a node in and a node in P2. Hence if we consider the (feasi

ble) partition {P.jUS^, least h cross

arcs have disappeared, and at most h new ones formed when H was

split into S-j and S2.

We have shown that given any feasible partition of G' with x

cross arcs, we can find a 2-partition {P-j ,Pp of G' with not more
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than X cross arcs and such that c p|, c p^. By construction

the partition {P-j-W-j, ^ 2-partition of 6 with at most

x-n cross arcs.

Conversely, if {S,S} is a 2-partition of G with x cross

arcs, then {SUW^, SUW^} is a partition of G' with x+n cross

arcs subject to capacity -y. •
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CHAPTER 3

WORST-CASE RESULTS FOR k-PARTITIONING

3.1 Introduction

This chapter investigates worst-case properties of the k-Partition

Problem. Let us define m* = m*(G) to be the minimum number of cross

arcs among all k-partitions of a graph G with kn nodes and N arcs.

We prove that for every such graph G

m* < k-1 ^ k-1
- X k^n-k •

This bound is shown to be best possible.

Suppose we have an algorithm in mind to solve the 2-Partition

Problem; call it algorithm "A". Then we can define m^ = ni^(G) to be

the number of cross arcs in the 2-partition of G found by algorithm A,

Assuming that m*, the value of an optimal 2-partition, is greater

than zero, it would be desirable to find a constant upper bound on the

ratio for then we are guaranteeing that algorithm A always gets

us to within a fixed multiple of the optimum solution. Unfortunately,

all of our results are negative. We prove that on a series of very

simple graphs the algorithm we call "one-opting" will with very high

probability find a solution which is far from optimum.
m«

For the more complex algorithms we investigated the ratio -S-
m*

empirically. We found a series of simple graphs upon which all of the

usual heuristic algorithms fell far short of the optimum. It appears

that for all of these algorithms examples of graphs exist for which

m^ is arbitrarily large, while m* = 1. Thus none of the available
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k-partitlon algorithms can provide the assurance that their solutions

are near-optimal. Later chapters address the question of how well

they do on the average.

3-2 An Upper Bound on the Number of Cross Arcs

Let G have kn nodes, and suppose one node connects to all of

the others, so that it has degree kn-1, and all other nodes have

degree one. Every k-partition of G has (k-l)n cross arcs, and

there are kn-1 arcs altogether. Hence,

m* _ (k-l)n _ k-1 . k-1 .x
N - -kn-1 - k • <3.1)

Again, let 6 be the complete graph on kn nodes. Then

fn* =(2^"^ N=(2")* ratio ^ equals that in (3.1). We
m*will show that for every graph the ratio never exceeds this value,

Fix A> 0 and let {Pi»p2 ^k^ ®k-partition of a graph.

Suppose for no pair of sets of nodes U and V is it true that

i) U c p V c p for some i, j, i j,
' w

i i) IUI = IVI £ X, and

iii) exchanging U and V reduces the number of cross arcs.

Then we say that the partition {P^,P2>. ••,Pj^} is "X-optimal" (in

[25] Lin refers to an equivalent notion as "X-opt").

For the case of 2-partitioning of graphs having 2n nodes, the

notions "optimal" and "n-optimal" are equivalent, and in fact a solu

tion which is ^optimal is optimal. Most heuristic 2-partition algo
rithms only guarantee that their solutions are 1-optimal.
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Theorem 3.1. Let G be a graph with 2n nodes and N arcs, and

suppose {P^.Pg} is a 2-partition of G which is 1-optimal. Then

<1+1
N - 2 4n-2 •

Corollary 3,1. Let G be a graph with kn nodes and N arcs,

and let m be the number of cross arcs in a 1-optimal k-partition of

G. Then

m^ J<il+ k - 1
^ k^n-k

Proof of Corollary 3.1. Let {P-j ,p2»... >P|̂ } be a k-partition of

G v^hich is 1-optimal. Define

m.. = "the number of arcs connecting nodes in P.
^ with nodes in P., for i j"

J

= "the number of arcs connecting nodes within P."
IJ •

If G^j. is the subgraph of G induced by P^. for i j, then

{P.,P.) is a 2-partition of 6.., and it is 1-optimal with respect
I J • J

to G... Hence Theorem 3.1 applies to tell us
3

implying

k k

Let m = I
i=l j=i+l

•n < .1^ ° • (3:3)
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Hence

by (3.3)

ki+JL-_L a
k 2 '
^ rn-k

Comparing Coronary 3.1 with the example resulting in equation

(3.1), we observe that our upper bound is tight. We now turn to the

Proof of Theorem 3.1. We are given a graph G = (M,A) with

2n nodes and N arcs. Let {L,R} be a 1-optimal 2-partition of G,

Define

x(u) = "number of cross arcs incident with node u"

A(u) = 2x(u) - degree(u)

For u e L, v e R define

1 if (u,v) G A
a(

0 otherwise
u,v) =I

6(u,v) = &(u)+A(v) - 2a(u,v)

If nodes u and v are exchanged, the number of cross arcs decreases

by 6(u,v). Hence, if {L,R} is 1-optimal then for all u e L,

V G R,

6(u,v) < 0 . (3.4)

Let

S, = I A(u) , S = j; A(v)
•- uSL VSR
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Assume that the partition {L,R} has m cross arcs. Then

tn =#(L;R) =̂ N+^S^+S^)
SO that

1 S. +S„ni =1 + B. (3 5)
N 2 4N •

Our objective is an upper bound on (3.5), so we will seek to

maximize (Sj^+Sj^)/4N subject to the restriction (3.4). Using the

fact that

we can write

N=2m-^SL+S|̂ )

_1 \ "^^R /,
4N " Z4m- (S^+S,^) '

If we regard and as fixed, then (3.6) is maximized by making

the m in the denominator as small as possible. We can use (3.4) to

determine a lower bound for m.

We introduce new variables to make explicit m's dependence on

and Define for li| < n

C. = {uGL|A(u) = i}

= {veR|A(v) = i}

and let c^ = d^. = |D^.]. Assume for definiteness that

max{i|c^ >0} il max{i |d^ >0}

and define

r = max{i|c^ >0} - 1 .
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m 1

If r < 0 then A(w) < 0 for all nodes w € LUR, implying

Otherwise r ^ 0. Then.(3.4) implies that for all v e R,

A(v) £ 1 - r. (3.4) further implies that

A(veD^^^UD_^) => (u,v)GA

(v€C^^^) A(u€C^^^uC^) => (u,v) eA

These implications give us a lower bound on m:

> Vl^l-r^Vl-r-'S+l^'-r •

Next,

+rc^+(r-l)c^.i+•••+(-n)c_|^

f fn + - c

where c"Ac i+c„, + *--+c„. Similarly,- I -n

SRl-rn +d^.^-d-

where d" ^ d_^ ^^ +d_2_p +***+ Hence

Sl +S^I Vi+dl.r• (3.8)

We now wish to plug (3.8) and (3.9) into (3.6). The particular value

of the variable r has no bearing on the resulting equation, so we

will assume for notational convenience that r = 0. Note that with

this assumption

Ci +Cq +c = d^+dg +d = n (3.9)

(all variables are non-negative). We have
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- c" - d'

- 4(c^(l^+CQCl^+c^dQ) - (c^+d^-c--dT
c^d-j + c-^d, + Cnd« 1

= [8(-u—yj—i-y-)-.2] '
c-j +d^ - c" - d'

= (8E-2)"^ (3.10)

v/here we can eliminate c" and d" by using (3.9) to get

c^d-i c^dn c^dn
E= E(c„.c,.d„,dJ 4 ^ °= 2c^+2d^+CQ +dQ-2n '

The constraint (3.9) implies that a lower bound on the function E

exists, and hence we can bound (3.6) above.

3E _ (''r^pHZd^-'-dp-an) (3 11)
®^1 (2c.,+Cg+2d.|+dQ-2n)^

Equation (3.11) is non-positive when d.j ^ d^. If all variables

except c-j are fixed, and d^ dQ, then E is at a minimum when

c^ is maximal.

JL _ '̂ l '̂̂ r '̂o^ +d.,(2d^+dQ-2n)
3^0 ' (2c,.V2d,.do-2n)== '

Here (3.12) is negative when d^ j< dg. Hence if Cq is the free

variable, and d^ 1 ^q' ^ is at a minimum when Cq is maximal

We conclude that E is at a minimum when c^ +Cq is maximized,

i.e. if c^ +Cq = n (so that c" = 0). By symmetry d^ +dQ =n is

also necessary if E is to be minimal.

32



We plug Cq = c-j -n, - n into E to get

(c-i+di)n -
E' = E(n-c^.cpn-d^,d^)

.2

= 1 < 0
(c^+d^)^

E' decreases as increases. By symmetry we should also

maximize d^. Hence, setting c^ = d^ = n we have

2

E>E(0,n,0,n) =^ =f •

Next, (3.10) implies (3.6) >_ (4n-2) ^ and hence by (3.5)

?i>. i+
N - 2 4n-2 *

This proves Theorem 3.1. D

3.3 The One-Opting and X-Opting Algorithms

All of the heuristic algorithms under our consideration for solv

ing the 2-Partition Problem are called "iterative-improvement" algo

rithms (see [19]). Such an algorithm is handed an initial 2-partition

which it seeks to improve. Each time a better 2-partition is found,

it is regarded as a new initial partition, and the algorithm is

re-applied. Eventually a 2-partition is found which the algorithm

cannot improve upon. This solution is called "locally optimal" with

respect to that algorithm. It may or may not be an optimum solution.
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Commonly the initial 2-partition is regarded as "randomly chosen".

By a "randomly-chosen 2-partition" we mean that the 2-partition {S,S}

is constructed by selecting half of the nodes at random and placing

them in S, and placing the remaining nodes in S,

The most elementary of the iterative-improvement algorithms scans

the nodes to find a pair of nodes lying in opposite sets whose exchange

improves the graph, exchanges them, and repeats until no such pairs

exist. Let us label this algorithm R. In section 3.2 6{u,v) was

defined as "the decrease in cross arcs if nodes u and v are

exchanged".

Algorithm R.

Assume we start with a 2-partition {L,R}.

1. If there exists no pair of nodes u, v such that u G L,

V G R, and 6(u,v) > 0, then stop.

2. Select any u € L, v e R such that 6(u,v) > 0.

3. I •<r LU{v} - {u}

R RU{u} - {v}

4. Go to step 1.

Algorithm S is a variation of algorithm R. It is the same except

for step 2, which reads

2. Select u G L, v G R to maximize 6(u,v).

This version finds the exchange which maximizes the decrease in cross

arcs for that iteration. Algorithms R and S are the fastest and sim

plest of the iterative-improvement algorithms. Their performance forms

a standard against which other algorithms are usually compared.
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Algorithms R and S are specific instances of a more general tech

nique which Shen Lin has called "A-opting" (see [25] or [16, p.83]).

Here exchanges of groups of nodes of any size from one up to A are

performed. The resulting solution is A-optimal (defined in section 3.2).

Algorithms R and S represent one-opting, and their final 2-partitions

are one-optimal. A-opting for A 2 is seldom used for the 2-parti-

tion problem because it is too time-consuming.

3.4 An Example Where One-Opting Does Poorly

It is our objective to discover examples where the A-opting

algorithms are expected to fail, i.e. we look for graphs whose A-opting

solutions are expected to be far from optimal.

We build a "chain graph" by linking the n nodes of a graph

together to form one long chain or path. Specifically, 6 = (W,A)

where
W= {v^,V2,...,v^} and

A= {(v^,v^.^^)|v^GW, i <n} .

Assume n is even. A 2-partition of G exists which has only one

cross arc: set L = ^ ~ ^^n

We will prove that with high probability the §sual one-opting

algorithms, operating on chain graphs, find 2-partitions with a large

number of cross arcs. The indications are that a A-opting algorithm,

with A > 1, will also do badly on a chain graph.

We will assume that our one-opting algorithms are patterned after

algorithm R, and are started on a randomly-chosen 2-partition {L,R}

of an n-node chain graph. We place one requirement on the method of
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implementing step 2. Let us call a node u "good" if A(u) > 0.

Then step 2 must obey

Rule Y- If upon entering step 2 of algorithm R
there exist good nodes u 6 L and v G R such
that (5(UvV) > 0, then step 2 must select a pair
of good nodes for the next exchange.

Any version of algorithm R which looks first among the sets of good

nodes for the next candidates for exchange satisfies Rule y- Also,

algorithm S satisfies Rule y. The purpose of the rule is to limit the

number of times that nodes u with A(u) = 0. participate in an

exchange.

Theorem 3.2. Fix e > 0 and let G be an n-node chain graph.

Let R' be a one-opting algorithm obeying Rule y which is started on

a randomly-chosen 2-partition {L,R} of G. Then the probability

that mj^, >^(l-e) goes to one as n -»• «>, where m^^, is the number
of cross arcs in R' 's final solution.

Proof. We define a "run of length A" to be a sequence of nodes

jV^.^1,... such that

i) V. .j GS (unless i = 1),

ii) G s (unless i+jl-1 = n), and

where S = L or S = R.

For short we will refer to a run of length £ as an "£-run".

Referring to Fig. 3.1a, we see five 1-runs, four 2-runs, and one 3-run

A one-opting algorithm will always find exchanges v/hich eliminate the

one-runs. For example, if in Fig. 3.1a v^ is exchanged with v^,

and v^^ is exchanged with v^g then the resulting partition is as
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shown in Fig. 3.1b. There are no one-runs left, and the partition is

1-optimal (it is also 2-optimal, but not 3-optimal). There are two

more cross arcs than in an optimal partition.

Our next definition gives us an indication of which cross arcs

might be left after a one-opting algorithm has been applied to our

starting partition. First we order the runs of length greater than

one. Let us say that a run v.,v.,i,... ,v... is "below" a run
1 i+i i+j

V,-1 »v., ,... ,v.,. ., if i < j. Next, label the lowest run p,, the
1 1 +1 1 +j I

next lowest p2> and so on. The runs of length greater than one in

Fig. 3.1a have been labelled in this fashion. Now, if runs p^. and

P^+l 0" opposite sides of the partition, we say an "alternation"
has occurred. In Fig. 3.1a alternations occur between the pairs p^

and p^, p2 and p^, and p^ and pg. If neither of the runs

defining an alternation is moved during a one-opting procedure, then

a cross arc will remain between them in the final 2-partition. This

happened in Fig. 3.1b. We will find it useful to know how many jl-runs

and alternations are expected to occur in a randomly-chosen 2-parti

tion of a chain graph.

We introduce a notation which is used extensively in Chapter 4:

If a = a(G) and b = b(6) are real-valued random variables asso

ciated with an n-node graph G, and if for any c > 0 the probability

that {ja-bl >e} goes to zero as n ->• » then we write

a E b
G

(read "a is epsilon equivalent to b").
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Lemma 3.1. Fix an integer Jl > 0 and let {L,R} be a randomly-

chosen 2-partition of an n-node chain graph. Let p = "the number of

il-runs defined by {L,R}". Then

= n
"en 2 '̂+! *

Lemma 3.2. Let {L,R} be a randomly-chosen 2-partit1on of an

n-node chain graph. Let a = "the number of alternations which occur

in {L,R}". Then for any e > 0,

a^^(l-e)

with probability going to one as

The behavior of our one-opting algorithm can be conveniently

split into three stages. Stage one exists as long as both L and R

contain good nodes (on a chain graph a node is good if and only if it

is a 1-run). Define an "iteration" to be the selection of a pair of

nodes, and their exchange. Rule y requires that two good nodes are

selected and exchanged at each iteration of stage one. An alternation

present before such an exchange still exists after the exchange, since

runs of length greater than one haven't been affected..

Observe in Fig. 3.1a that when v^ is moved to L, v^ no longer

is a good node. This is a general phenomenon — v/hen a good node is

moved, any adjacent runs are absorbed into one longer run. For our

purposes it is sufficient to observe that at most three good nodes on

each side disappear at each iteration of stage one. Stage one ends

when one side has run out of good nodes. From the proof of Lemma 3.1

it can be deduced that initially ^ 1-runs occur on each side of
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the partition. To exhaust these good nodes takes at least ^(1-e)
iterations, with a probability going to one as n ->

Assume for definiteness that side L runs out of good nodes first,

Stage two is now in effect, and continues as long as R still con

tains good nodes. Subtracting the number of iterations in stage one

from the number of good nodes in R initially, we find that if t is

"the number of iterations during stage two", then for c > 0

t <^l+e) (3.13)

with probability going to one as n -> «>.

If the Z nodes of an £-run in L all are moved to R, there

is an accompanying decrease of two cross arcs. At the beginning of

stage two no 1-runs exist in L, so moving x nodes from L to R

results in a decrease of at most x cross arcs (that happens when
y f\

2 2-runs are moved). Hence by (3.13) at most --(^(I-g) cross arcs

are eliminated as a result of moving nodes from L to R during

stage two.

The alternations account for at least ^1-e) cross arcs whose
existence is unaffected by the moving of any of the original one-runs.

Thus, at the end of stage two at least -^(1-e) cross arcs still
remain, with probability going to one as n » (we made the sub

traction ^-•^)-
Stage three is in effect from the point when the last of R's

original 1-runs disappears until the algorithm halts. Its behavior

is described in the proof of Claim 3.1 at the end of this section.

Claim 3.1. Stage three contains fewer than cn iterations with

probability going to one as n ^
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This concludes the proof of Theorem 3.2. •

It should be possible to show that fewer than en iterations of

stage two occur, with probability going to one as n «>. This would

imply that a one-opting algorithm's solution is expected to have at

least ^ cross arcs. Empirical evidence indicates that stage two
seldom lasts more than 3 or 4 iterations.

Fig. 3.2 shows the results of empirical testing. A version of

algorithm S was applied to four chain graphs of varying sizes. On an

n-node graph the algorithm was launched from 6 log^n different

initial 2-partitions. The final solutions contained just under ^
cross arcs on the average, and it was observed that solutions with

fewer than ^ cross arcs never appeared on the larger graphs.
Intuitively, the one-opting algorithms do badly on chain graphs

because they always remove 1-runs, but eliminate longer runs only

accidently. We would expect that a A-opting algorithm (with X > 1)

would similarly ignore runs of length greater than A. Since Lemma 3.1

guarantees that a lot of these long runs exist, we expect that when A

is greater than one the A-opting algorithms will still do poorly on

large chain graphs.

We remark that for the SIMPLE MAX CUT problem (described in

section 2.2) a one-opting type of procedure always finds a solution

v/hich is within a factor of two of optimal. The algorithm described

in [32] finds a solution in which at least one half of all arcs are

cross arcs.
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Proof of Lemma 3J. Given a randomly-chosen 2-partition of an

n-node chain graph, we wish to show that the number of Jl-runs

_ n
"en 2^^*

It is convenient for us to adopt a slightly different probabilistic

model.

Assume that each node is placed in the set L with (3.14)
probability and otherwise it is placed in R,

Lemma 4.2 of Chapter 4 tells us that with this model |Ll |Rl j

It is to be understood that after performing all of our calculations

using the model (3.14), we can patch things up by moving P =

nodes from the larger set to the smaller. This patching will affect

the existence of at most 3p runs. For any e > 0 we have 3p £ en

with probability going to one as n ->- «>. Since our results are accu

rate only to within en anyway, they will remain unaltered by the

patching.

The probability that a particular 2-partition is selected is the

same if we chose a 2-partition at random, or if we use the method

(3.14) and then patch things up. Hence this new model is interchange

able with the old.

Define the random variables

^ n if is a run in R
^ lo otherwise

for 1 1 i 1 n-S.+l. Assume n > £. For 1 < i < n-A+l, under assump

tion (3.14) v^.,v.^.|,...,v.^^ .j is a left run with probability
2"(^+2)^ and a right run with equal probability. Hence
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E X.. = ^
i •

2At the ends of our graph we have E = E = "1+2*

n-£.+l „ 0,-3 ^
=2 EX. (3.15)

Next we will show that the variance D(vi^) = 0(n), and then

Lemma 4.1 in Chapter 4 assures us that We will bound

the variance on the random variable S, "the number of % runs

occurring in the set R".

n-Jl+1 « n-i,+l n-jl+1
S = ^ X. , so = E I I X.X. .

i=l ^ i=l j=l ^ ^

Let us examine the cross products X.X., ignoring the special cases
• W

when i G {l,n-;i+l} or j G {l,n-jl+l}. For i+i, + l < j,

EX.X. = EX.EX. = (EX.)^, because assumption (3.14) guarantees inde-
1 j 1 J

pendence. For i < j 5 i+il+1, X. and X. are dependent.
• %}

Suppose X^ = 1. Then X^^.j = X^.^2 ~ *** " ~ because

runs can't overlap. This tells us that at least ^(n-ZJt-l) of the

terms EX.X. are zero. However,
1 J

=1|X. =1} - 2*Prob{X. =1} ,
l+x,+ ! '1 1

so that (n-2£-4) of the terms EX.X. are twice the value of (EX^.)
* J

The zero terms cancel out the oversized terms to give us

E(S^) <(n-t+l)EX? +(n-t-l)(n-Ji-2)(EX^)^ .

2
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Then

D(S) =ES^-(ES)^ =ES^ - (n-Jl-1){EX^)^
<(n-A+1)(EX^-(EX^)^)
< nD(X.) = 0(n) . •

Proof of Lemma 3,2. We wish to show that the number of alterna

tions a is at least ^(1-e) for any e >0 with probability going
to one as n -> «.

Assume there are \i runs of length two or more: ,P2,...»p^.
By Lemma 3.1

' J2 2^^
As in the proof of Lemma 3.1 we will simplify things by using the

assumption (3.14). Define random variables , for 1 = 1 to p-l:

1 if there is an alternation between p^ and p^^^

0 otherwise

Choose an i from {1,2,... ,i.i-l} and suppose for definiteness that

the nodes in the run p. are in L. Let v. be the first node follow-

ing the run p.. Then v. G R, and starts the next run. Assumption

(3.14) tells us that Prob{v^^^GR} = which implies
Prob{p^^^ GR} Thus

Prob{p. and p.^, define an alternation} >1 .
1 1+1 — Z

Hence

y-1 1
E(a) = I EY. > .

i=l ^
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The assumption (3.14) guarantees that the Y/s are independent, so

EY.Y. = EY.EY. for i j. We can now apply Lemma 4.2 of section 4.3
I J ' vf

and conclude

E(a) >1^-11(1-6)

with probability going to one as n -»- «>. Plugging in (3.16) we get

E(a)

with probability going to one. D

Proof of Claim 3.1. We will describe the third stage of our one-

opting algorithm, and show that its lifetime is brief. We are assuming

that at the end of stage one side L ceased to have any good nodes,

and hence during stage two L never contained more than one good node

at a time, while the number of good nodes in R v/as steadily

decreasing.

The last iteration of stage two may or may not create a 1-run in

L. If it doesn't, then all good nodes have vanished, and the algorithm

terminates without entering stage three.

The other possibility is that during the last iteration of stage

two, as the last good node in R is used up, a node in L belonging

to a 2-run is moved to R -- creating a 1-run in L, but none in R.

This signals the beginning of stage three. The next iteration

exchanges the good node in L with a node w in R for which

A(w) = 0. If w belongs to a run of length three or longer then all

good nodes have been used up, and we stop. However, if w was one

half of a 2-run, then a 1-run has just been created in R. The
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situation here is a mirror image of what it was upon entering the

previous iteration. Hence as long as the only good node is exchanged

wi th a member of a 2-run stage three wi 11 continue to improve the 2-parti-

tion, but the first time that our node w is selected from a run

longer than two the algorithm terminates.

We will demonstrate that the chance that the algorithm terminates

quickly is very high. Upon entering stage three there are at least

^-(1-e) cross arcs remaining (with probability going to one). This
implies that there are z >^^(l-e) runs of length two or more whose
nodes are in R. Label these runs We will prove that

at least half of these runs are of length three or more, with very high

probability. This implies that the chance of terminating whenever

node w is selected from R is 50% or better. Thus the chance of

stage three continuing for en iterations goes to zero as n

At the end of stage two none of the original runs in R of length

2 or more has been disturbed. Consider a run pi, for i < z. Either

pi coincides with one of the original runs p., or it v/as formed
1 J

later by the merging of two or more runs. If the latter case is true

then pi has length at least three. In the former case we observe that

as far as the algorithm is concerned, the nodes in pi (= p^) have
never been looked at, because a one-opting algorithm doesn't distinguish

2-runs from longer runs. Since there is no conditioning, we can apply

assumption (3.14) to obtain Prob{p. is a 2-run} = Hence in either

case

Prob{p^ is longer than 2} ^^ .

Applying Lemma 4.2 as in the proof of Lemma 3.2 finishes this proof. •
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3.5 The Kerniqhan-Lin Algorithm

Brian Kernighan and Shen Lin have developed a heuristic algorithm

to solve the 2-Partition Problem which is more powerful than one-opting

(see 116,17]). We will refer to their method as algorithm K. It

happens that algorithm K usually finds the optimal partition of a chain

graph. However, it fails markedly on a graph which is only slightly

more complex.

Algorithm K consists of a series of passes, each pass trying to

improve the result of the previous one. A single pass commences by

exchanging the pair of nodes u, v which effects the largest decrease

in the number of cross arcs. Nodes u and v are then fixed so that

they cannot be moved again during this pass. Algorithm K now selects

a new pair u', v' to maximize the decrease in cross arcs, but u and

v are not considered as candidates for exchange. Nodes u' and v*

are exchanged and fixed to their new sides. The algorithm continues

in this fashion until all nodes have exchanged sides, resulting in a

partition equivalent to the original. The best of the intermediate

2-partitions has been saved, and if it is better than the original

partition it becomes a new starting partition for the next pass. Other

wise the algorithm terminates.

Here is a more formal version of the algorithm:
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The input is a 2-partition {L,R} of a graph on 2n nodes.

Algorithm K

i, k, and m are integer variables; U( ] and V[ ] are arrays of

nodes; L, R, and R^ are sets of nodes; u and v are nodes.

1. m ^

2. Lq 0, Rq -c- 0, k 0.

3. For i = 1 to n do Steps 4, 5, and 6.

4. Select uGL-Lq and v e R-Rq to maximize 6(u,v).

5. (exchange u and v)

L LU{v}-{u},

Lq-LqUM,

V[i] V,

R^RU{u}-{v},

Rq Rq
U[il u.

6. (save the index of the best intermediate partition)

If #(L;R) < m set

m •<- #(L;R),

k •<- i.

7. If k = 0 stop (no intermediate partition was an improvement)

8. For i = 1 to k do

L L U{V [i] }-{U[i]},

R ^ RU{U[i]}-{Vli]}.

9. Goto Step 2.
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When algorithm K is applied to a chain graph it usually finds a

partition v/ith only one cross arc — an optimal partition. It appears

to eliminate the runs of length two or longer by moving nodes (v/hose

delta values are zero) in such a way that the runs get shorter and

shorter until they disappear. An illustration should make the process

clear:

A = 0

A = 0

A = 2

In order to fool the algorithm it is necessary to add something to the

chain graph which makes such a judicious choice of moves less probable.

This can be done by adding "leaves" to the graph.

From an n-node chain graph we will build what we call an r-leaf

chain graph. For each node v^ in the original graph we create r new

nodes (the leaves) and add them to the graph. The

leaves are connected to v. by adding the arcs (v^,v^^),(v^,v.2)»...»

(v^.,v^^). For example, here is a two-leaf chain graph:

0 0

-0

Our r-leaf chain graph has (r+l)n nodes. For the case of n even,

all r-leaf chain graphs can be partitioned so as to have only one cross

arc.
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Algorithm K usually finds the optimal 2-partitions of 0-leaf and

1-leaf chain graphs. However, it finds poor solutions on a 2-leaf

chain graph -- its solutions here average about (.06)n cross arcs.

Chapter 5 introduces new heuristic 2-partition algorithms, some

of which do better than algorithm K on 2-leaf chain graphs. Still, the

number of cross arcs in an average solution appears to grow linearly

in n for all of the algorithms (see Fig. 5.2). Vie conclude that

none of the available heuristic 2-partition algorithms can assure us

that their solutions are always close to optimal.
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CHAPTER 4

A PROBABILISTIC ANALYSIS OF THE k-PARTITION PROBLEM

4.1 The Random Graph Model

We have indicated that the existence of a polynomial-time

algorithm to solve the k-Partition Problem is very unlikely. In fact,

we have shown that the commonly-used polynomial-time algorithms for

this problem may find solutions which are arbitrarily far from optimal.

There remains the possibility that one or more of these algorithms

might do very well almost all of the time, i.e. the probability that

it finds a near-optimal solution is high. We will begin an exploration

of this avenue via the theoretical tool of "random graph analysis".

A classic introduction to random graph analysis is a study by

Erdbs and Renyi [5] in which probability distributions for numerous

graph properties are discovered. The expected behavior of algorithms

on randomly-chosen graphs has been explored in [2,9 ,15) , where NP-

complete problems such as the clique, coloring, and Hamiltonian circuit

problems have been dealt with.

The graph which we wish to 2-partition is the "random graph"

r , which has n nodes and N undirected arcs. We suppose that
n.N (P)

was randomly selected from the ( fj ) ~ labelled graphs on

n nodes and N arcs, i.e. the N arcs are chosen at random among

the ("j possible arcs. Thus if ^ is any one of the ^
graphs from our sample space of graphs, the probability that

= G ., i s C .
n,N n,N
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Assume that N = N(n) is a fixed function of n. Define the ran- .

dom variable X= X(r^ by

X = "the number of cross arcs in an optimal 2-partition

Possible values of X range from 0 to N. We don't know how to find the

probability distribution for X, but asymptotic estimates are possible.

We can find a function - Xj^{n) such that Prob{X<x^} goes to

zero as n -> <». Also we find a function x^ = Xjj(n) for which

Prob{X£Xy} goes to one as n ->- «>. We have in essence bounded X

above and below, but not with absolute certainty. Vie call such bounds

"probabilistic" to distinguish them from bounds which are absolute.

4.2 A Probabilistic Lower Bound

For convenience we will assume in this chapter that we are given

a graph with kn nodes and N = ksn arcs (for notational convenience

we will often write N instead of N(k,s,n)). k and s are regarded

as fixed constants. Our results will be asymptotic -- increasing in

accuracy as n Our problem is to divide the graph into k n-node

sets, and examine the number of arcs which cross between sets. Let

a(f) A

(log^otCf) equals the entropy function plus the term f log2{k-l)). If
we set h(f) = logga(f) we find that

h'{f) =logg((l<-l)(l^)) >0
k-1 / Vfor f on the interval [0,—j^] . We conclude that a(f) is an

increasing function of f on [0,^^].
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k-1
Theorem 4.1. Fix s and k, and choose f on [Oj-r—] such

that a(f) <k ^ . Then for a randomly chosen graph N(k s n)
the probability that it can be k-partitioned with not more than fN

cross arcs goes to zero as n

We will have a better idea of what this theorem is saying if we

prove a few corollaries.
k-1We know that there always exists a k-partition with £-^-N(1 +n(l))

cross arcs for every graph

Corollary 4.1.1. Given any e > 0, for sufficiently large s
k-1the existence of a k-partition of ''kn.Ndc.s.n) with<(—-e)N

arcs has probability going to zero as n -»• <».

Proof. Let f = Then

-1

a(f) = '̂ = k .

k-1
Since a(f) is strictly increasing on lO,-r—1 we know that

^ s-1

a(f-e) < k. Hence if s is large enough, then a(f-e) < k .By

Theorem 4.1 we know that the chance of a k-partition with £ (f-e)N

cross arcs existing goes to zero as n «>. •

Corollary 4.1.1 tells us that if the number of arcs in our graphs

grows faster than linearly with the number of nodes, then with proba

bility tending to one as n ~ an optimal k-partition will be within

k-1
a factor of (1-e) of the upper bound Hence only for the case

when the number of arcs is linear (or less) in the number of nodes can

we expect to be able to find a k-partition with significantly fewer
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k-1
than cross arcs.

For the special case k = 2 we can derive a convenient asymptotic

expression for the "f" in Theorem 4.1.

Corollary 4.1.2. Fix an s ^ 9. For a randomly-chosen graph

Fkn N probability of a 2-partition existing with less than
1 fin ^(^-^-2^)N arcs goes to zero as n «>.

s-1

Proof. We will require (1-f< 2 ^ to apply Theorem

4.1. Set f = i-~. We will determine c:
A"

-(]-+-) -(I--) 2 1-2---^
/l.Cv ,1 C\ /s _ /I c \ 2/ /s.^/s

1 —

=2(1 -—) ^(1
^ i/s+2c

2c^ 4c^
2 exp(— -) as s ~

^ s + 2cy^

(using (4,2) and (4.5) which appear farther on)

2

2c^ s-1

2e

?c
' s

In 2We set 2e ^ = 2 ^ and solve for c, obtaining c = ]~2~'

f f(x) = ^A^more detailed analysis than the one just shown
proves that a(f) <2 ^ for s ^ 9. Numeric computation of a(f(s)|
and 2 ^ for s = 1, 2, 4, 6, 8 showed a(f) to be less than 2 ^

for those values of s as well. •

Corollary 4.1.2 gives us an easily-computed probabilistic lower

bound for the 2-Partition Problem. The graph in Fig. 4.1 shows what

55



P 0.6

K-Partition: Probabilistic Lower Bound

4 8

Arc density S ( ^ ores / Anodes)

Values for "f" are determined by the
s-1

equation.a(f) = k ^ in Theorem 4.1.

Fig. 4.1
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our probabilistic lower bound looks like for various values of k and

X.

It is interesting to note a simplification whiclji occurs as k
f f iE

a(f) converges to (k-1) , and hence (k-1) < k implies that f

cannot exceed For example, if N = 2kn, our probabilistic
*1

lower bound approaches the limit as k ••>•«>.

Before we begin the proof of Theorem 4.1 we will list a number of

inequalities which will be useful further oh.

n! = {~)/2Trn(l +o(l)) (4.1)

For m > 0:

For m > 6,

i> (1 -If . (4.2)
e m

(4.3)
e 5m m

For all natural numbers s and r, with s < r,

s+1

For y > 6,

s

(1-^)^ > .n (1-i) >(1-f-)

(1-1) >ey y-e/5' . (4.5)
IxmInequality (4.3) is derived by expanding (1 --)

(1-1)"' =i-(>-^ (>•'-•
(1-1) (1 .l)(i .2.)

-1 1+^ m'_ ^ 511+..- I - i + 2 6

/I 1 . 1 ^ 1 \ Ifl 3 , 6 10 . >° ^2" 6 24 ""-m!^ •m '̂2'"6 24 "120
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M *6 10 ^ 15 s ^ 1 c«Now UQ ^ 5

(1 .i)"! >1 1 +o(m"^)
^ in e 5m ^ '

> i_i m> 6
e 5m -

Inequality (4.4) is found in [20]. We can derive (4.5) from

(4.3):

d-}) > by (4.3)
=exp[-y'^l{l^
>exp[-y"^(1 +|y'̂ +(f)^ y'̂ +••• +(f) ^y

e -H

•0 "(f) y )
(after applying (4.3) i times)

z

>exp[~y"'̂ 11 (-^)M^ •
i=0

Finally the limit as £ •> <« is

exp[-y*'̂ (l-•^)"'̂ ] =exp[-y"^(l-iy§^^)] .

A proof of a result similar to Theorem 4.1 for the case k = 2

appears in [20]. Our version sharpens their result, and generalizes

to an arbitrary k-partition.

Note. In the proofs of Theorems 4.1 and 4.2 the asymptotic nota

tions 0( ), o( ) and 'X/ are understood to hold for increasing n

unless dependence on another variable is specified.
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Proof of Theorem 4.1. The probability that an optimal k-partition

of has no more than m cross arcs is bounded above by the

expected number of k-partitions of having £ m cross arcs. The

value of this expression is

(kn)! y
(n!)"^ S,=0

in .(o^)n2wk(S)w(^").-l
2

N-&

(4.6)

which is the number of such partitions in the space of all graphs with

kn nodes and N arcs, divided by the number of those graphs. We will

now bound (4.6) above for increasing n.

(4.6) <k^" n'i)
1=0 *•

kn ? /N>i'=o' ^

i=0

i=0

«.-l N-il-1

=k^"i(^).
(k-l)^l -i) n 0 - aTT) -TTru)

" i=0 (o)n^ i=0 k(,)
N-1

k"(1 n
i=0 (2)

Vie note that for c > 0,

This is because

N-1

n

i=0 cn

1,2 2k s
2c

N-1

11 (1 ^ e (1 +o(l)) .
i=0 cn

N

n'd -—2) i (1
cn

by (4.4)

=(l--2~)''""(1+0(1))
k2s2

> e (1 +o(1)) by (4.3) .

(4.7)
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From (4.5) we have

„ 1,N
kn

Now we use (4.7) and (4.8) to get

(4.6) < I (j)(k-l)V^O(l) .
i=0 *

For any f such that 0 £ f £ 1,

(fp)) " . (4.9)

This is discovered by application of the Stirling approximation (4.1).

Now (4.9) gives us

(4.6) <k'̂ "'"N" '̂'̂ I [{l-fJ ^^\^)S'̂ -0(1)
(where we set f= -j^)

=kk"-V^/2 I )N.o(i)
4=0 *•

<k'̂ ""V''̂ (ffl+l)oi(y"-0(l) (4.10)
k-1 k-1because a ^is increasing on 10,-^-] and we can assume that 1 "IT

Let r = k^ a(f ). Then (4.10) =0(r'̂ N '̂̂ ^). which converges to
(^4)

zero when r < 1. This is true if ^ > which is assumed

in the statement of Theorem 4.1. D

4.3 A Probabilistic Upper Bound

We now turn our attention to the problem of finding a probabilis

tic upper bound for the k-partition problem, using our random graph

model. Vie present an algorithm which can be applied to the 2-partition
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problem, and which can be analyzed with a good deal of precision.

Chapter 6 discusses how several algorithms for the 2-partition problem,

including this one, can be extended to find a k-partit1on. Extending

our analysis to cover the case of arbitrary k proved to be overly

complex. For fixed values of s and k one could grind out some

numeric approximations, but no satisfactory general formulas or asymp

totic approximations were found.

Thus, the problem we deal with here is, given a randomly chosen

undirected graph r2^ ^ with 2n nodes and N= 2sn arcs, divide

the nodes into two equal sized sets L and R, so as to minimize the

number of arcs which cross from L to R.

To simplify the statement of the next theorem, let us define a

few functions:

~ 2i+j
I.(2s) ^ y (j order modified Bessel function)

b(s) = fl.71i/s] (smallest integer ^ 1.71v^)

H(s) =
4

L j=b(s) j=b(s) s 0 J
(humongous equation)

Theorem 4.2. Fix s > 0. For a randomly chosen graph

the probability that it has a 2-partition vn'th £N(-^-H(s)) cross arcs
goes to one as n -»• «>.

We expect that upon seeing function H(s) one will not be infused

I e-25jl.(2s)'
•j=b(s)

ith a feeling of comfortable familiarity. Fortunately we can provideW1
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an alternative. We will show in the proof of Theorem 4.2 that as s

grows to infinity

H(s) .2385"^^^ (ignoring decimal roundoff)

This approximation is fairly good even when s is as small as unity.

Let us compare our lower and upper bounds. Corollary 4.1.2 says

that with probability tending to one the optimal 2-partition will have

at least N(-^-(.589)s"'̂ '''̂ ) cross arcs. If we view ourselves as start
ing from an initial solution of | cross arcs (the worst case upper
bound), we have beaten our solution down about of the distance from

~ to the lower bound. The values of the upper and lower bounds for

various values of s are shown in Fig. 4.2.

In [20] a much weaker, non-constructive upper bound is derived.

That result states that the probability that a graph can be 2-parti-

tioned with not more than N(^- (.085)s ^) cross arcs is at least
ninety-eight percent.

Our algorithm commences by dividing the 2n nodes arbitrarily

into two equal-sized sets. This constitutes a randomly-chosen 2-parti

tion. We then seek to improve the initial solution by exchanging

appropriately chosen nodes among the two sets. This format is common

to most 2-partition algorithms. Their differences arise in the manner

in which these changes are effected.

Let W M (N,A) where W is the set of nodes and A is the2n,N ^ '

set of arcs. Let us refer to the two sets in our initial 2-partition

as L and R, so LOR = W. For any node u G N we define
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deg|̂ (u) A|{{u,j}GA|jeL}| ,

degp(u) A eA| jeR}| and

deg(u) Adeg^(u) +degj^(u) .

Next we define, for any node u e L,

A(u) Adegj^(u) -deg|_(u) .

If u GR, then we define A(u) as deg^(u) - degj^(u). In each case,

A(u) is the number of arcs adjacent to u which cross to the other

set, minus these arcs adjacent to u which don't leave u's set. If

A(u) >0 then moving u to the other set will decrease the number of

cross arcs by an amount A(u). We refer to the nodes u such that

A(u) >0 as "good" nodes.

Our algorithm will identify the good nodes in L and R, and

exchange some of them. An example will indicate some of the conse

quences of such an exchange.

Before

M V
«'4 ^ ^

After exchanging /Ig ^2

Initially, assuming L = and R= {r^}, nodes £.j, £.2®

{.3, and r2 are "good". The decrease in cross arcs is

A(£2)+A(r2) =1+2 =3. If we had exchanged and rg the
decrease would have been A(X,i) +A(r2) - 2 because the arc {£-j,r2}

remains a cross arc after the exchange. Although
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still good nodes after the first exchange, exchanging them won't

improve the graph -- the decrease is +^tr-j) - 2 = 0.

decreased, although didn't move, and it is no longer a good node.

In general, many of the initially good nodes are no longer good

after some exchanges have taken place. Also, some nodes which were

bad initially may become good somewhere along the way. The usual one-

opting algorithms (see section 3.3) alternately swap a pair of good

nodes (or a good node and a A = 0 node), and then update the A-values

of the other nodes, until no pairwise exchanges exist which improve

the 2-partition. The partition is now "1-optimal" (see section 3.1).

Chapter 5 explores empirically how well one-opting algorithms and

others perform on randomly-generated graphs.

For purposes of analysis we looked for a simpler algorithm. One

possibility is an algorithm which considers as candidates for exchange

only those nodes which were good initially, and have not been previously

moved. This version can be viewed as selecting a block of good nodes

from each side and swapping the two blocks. To select the nodes for

each block we chose to set a parameter "b", and put into the blocks

those nodes u such that A(u) > b (a small patch is necessary to

insure that sets L and R are of equal size after the exchange).

The forthcoming analysis finds the optimal value for b, and deter

mines the expected improvement in the number of cross arcs. Section 4.4

verifies these quantities empirically.

Our analysis succeeds because certain quantities relative to any

graph can be shown to be nearly equal for almost all graphs

with n nodes and N arcs. For example, given any c > 0, we will

show that the probability that {the number of cross arcs for a
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randomly-chosen 2-partition is within en of 9oes to one as n -> «>.

We introduce a special notation for this type of occurrence: If

a = a(r) and b = b(r) are numerical quantities associated with a

graph and if for any c > 0 the probability that {|a-b| >g) is

()(P(n,e)), with P(n,G) = o(l), then we write

a b with r.c. P(n,e)

(real "a is epsilon-equivalent to b with rate of convergence P(n,G)").

We now prove a couple of lemmas which give sufficient conditions

for G-equivalence.

Lemma 4.1. Let 0 = 8 (r .,) be a random variable withn n n,N

E(O^) = np and D(e^) =0(n). (D( ) is the variance). Then

-^ = p with r.c. —« .

Proof. Chebyshev's inequality [12] tells us that

0(0.)
Prob{l8^-nul >e} < —g—

so that

Prob{|0 -np| ^cn} £
n"c ne

which goes to zero as n -)• «>. D

Corollary 4.1.1. Let „ be a set of 0-1 random variables1 1 _ j p
n .

(determined by r ») and let S = I X. have a hypergeometric (orn,i\ n 1 3

binomial) distribution with mean np. Then p with r.c.

0(-^-).
nc

0(0.) 1
n _ Af L
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Proof, In [12] E(S^) is shown to equal n]j, and D(S^) = 0{n\i)

Apply Lemma 4.1. •

Lemma 4.2. Let X^,X2,...,X^ be a sequence of random variables

(with values determined by j^) having identical means n, bounded

variance, and such that

(i) EX? =EX^ for an i, j and
• W

(ii) EX.X. = EX.,X., for an iVj";
I J '0

Suppose furthermore that

(ii1) EX.X. < EX.EX. for all i j.
• J ' vl

n S -J
Define = I X^. Then V with r.c. —j.

Proof. We need only to show that the variance D(S^) = 0(n)

and then Lemma 4.1 gives us our result.

Then

n n

E(S') = E( E I X.X.)
" i=1 j=l ^ J3'

n 2 n n
= E(I Xf) + E{ I I (X.X.))

i=l ^ i=l j=1 ^ J
jj'i

=nEX^ +(n^-n)E(X.jX2)
<nEX^ +(n^-n)EX^EX2 .

O(Sn) = - (ES„)^
<nEX^ +(n^-n)p^ - (nu)
=n(EX^V)
= nD(X^)
= 0{n) . a
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Remark 4.1. There Is a trade-off between the value of e and

the rate of convergence for any e-equivalence expression. We will

sometimes find it necessary to let c = e(n) = o(l). In this case

convergence to zero is less rapid, but in the case of Lemma 4.1 it

still occurs if e = rro—. For example, if e = (log n)'̂ the
) 2

rate of convergence is = o(l) for 0(9^^) ~ 0(n).
n

Note. For the remainder of the chapter "log( )" will denote the

natural logarithm. Also, we will write "[xj" to mean "the largest

integer not greater than x".

Using the elementary inequality, for all real x,

1+X£ e^

and inequality (4.5), we can derive a useful asymptotic formula:

For e > 0, m increasing, with e. = e(m) = o(l) we have

cxm(l±|)'"'V'l. (4.11)

We now have the main event:

Proof of Theorem 4.2. We suppose that we are handed a randomly-

chosen graph 12^^ with N= 2sn. The nodes are divided into two

n-node sets L and R. We set

qn = # of cross arcs from L to R

p^n = # of arcs connecting nodes in L

pj^n = // of arcs connecting nodes in R



Between each pair of nodes i and j Is a slot where an arc may

appear. Let

Then

p

There are n slots connecting nodes in L with nodes in R. The

corresponding X..'s are related such that J J] X.. = qn has a
•'J iGL jGR

hypergeometric distribution (with variance 0{v?- ^)). Corollary 4.1.1
applies to tell us that

2 ^1
q = s with r.c. n
^ e n 12

Reapplying the same type of argument obtains

®' Pl "e I ' Pr I

all with r.c. tf .

We now have our first item of information about our graph

The next thing we would like to know is the probability that a randomly-

chosen node u has A(u) = j, for j G {0,1,...,n). Let us assume

for definiteness that u G L. As a preliminary we compute

Prob{deg^(u) =j} and

Prob{deg|̂ (u) -3} for 0 £ j £ n .

1 if arc {1 ,j} G A
X.

lo otherwise .

_ ^ ^2n,N
ij " # slots

2sn

l(4n^-2n)

'V. " as n grows
n
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Fig. 4.3 diagrams our situation,

n nodes

(?) slots

n nodes

n'' slots slo^

p^n left arcs qn cross arcs Pj^n right arcs

Fig. 4.3

Node u sees n slots crossing to the other side. The number

of these actually filled by arcs is determined by a hypergeometric

distribution, so

^qnjjn -qn^
Prob{degj^(u) =j} = .

(" )^ n '

(4.13)

(We are choosing from a population of n objects, of which qn are

distinguished. We choose n of them.). See [121.

Also node u sees (n-1) slots connected to other nodes in L,

out of a total of (2) on that side, p^n of them are filled with
arcs, so

Prob{deg^(u) =j} =

p. N (o)-P, n

((^))
. n-1

2 ,

.Pl"
- -i^^ n-l-j ^

2 „
n n

(T--^
n-1

(4.14)
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For j = o(n^^^) we can use the elementary asymptotic formula

(^)

We also need:

1/2
Lemma 4.3. For any fixed c and d, and j = o(m )

{ 2d4-l V

m - J •'

Lemmas 4.3-4.7 are proved at the end of the chapter. For

j = we can plug (4.15) and Lemma 4.3 into (4.13) to get

1 /2
Hence for j = o(n )

^ • /2iTn

Prob{degj^(u) =j} 'v,. (4.16)

Note that this is just a Poisson distribution with mean q. We simi

larly plug (4.15) and Lemma 4.3 into (4.14) to get

(2p -2p
Prob{deg^(u) =j) 'v,—j|—e . (4.17)

We state without proof that as n -> «>

Prob{deg(u) = j} • (4.18)

The proof technique is the same. Knowing (4.18) makes it easy to

prove:



Lemma 4.4.

Prob{there exists uC-W such that deg(u) > log n} = o(l) .

Hence for the remainder of this chapter we need never consider cases

where the degree of a node exceeds log n.

Knowing the values q and serves to isolate probabilistic

dependencies between cross arcs and arcs joining nodes in L (left

arcs). Hence the probabilities expressed in (4.16) and (4.17) are

independent. This fact allows us to easily determine the probability

distribution for A(u):

n-j
Prob{A(u) =j} Prob{deg^(u) =i+j}*Prob{deg, (u) =i}

i=0

-(q+2p. ) Jlog nj (q'2p. )''
' I TiTTnrr*-") •i=0

Here v/e have used Lemma 4.4 to truncate our summation. It assures

us that with probability one the remainder is o(l). We have another

lemma, which Lemma 4.4 also makes use of:

Lemma 4.5. For any positive constants £ and t,

n\ I
1=Uog nJ

Lemma 4.5 allows us to say

-(q+2Pi) i ~ (q-2p,)''
Prob{A(u) =j} e ^ T TTfT-f3")T ' (^•''9)

From (4.12) we remember that q =j, s and p. T: so we can set
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q = s +

2Pl = s +02

where and can be made arbitrarily close to zero. (4.19)

becomes

-(2s+G^+e:2)^ j « (s+e^($+82)^
e

Let c^ = /(s~+Ep($+82) - s. can also be made arbitrarily close to

zero. Now (4.19) equals

(2i+j)

^.^Q"~'i!(i+j)! * (4.20)
-(2s+e, i-e«) s+£, . «> (s+e.,)

e I ^ / ^1^0 V A.

We can assume that je-j], IG2I Ic^l are (}(n" '̂'̂ ) (using
Remark 4.1). Then for j = O(log n) v/e use (4.11) to find

(2i+j)
~ (s-i-Co)

Next we notice that

(4.20) =e'̂ ^I .(2s+2e,)(1+o(1)) (4.21)
J ^

wnere

i=0

I (zi A 7
j' ' = ,tn i!(i+j)!

is a "j^ order modified Bessel function of the second kind". There is

no convenient expression for this Bessel function, but it turns out

that we can find an elementary function which closely approximates

1.(2$) for values of s near one, and is asymptotically equal as
3
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s goes to infinity.

Lemma 4.6. Given e > 0, choose any large enough so that

k

(f) <f •

Then for s sufficiently large, and any j G [OjAqS] wg have

lI.(2s).2y?FFe-2^-e "*'1 <e .
0

This lemma is proved at the end of the chapter.

Lemma 4.6 tells us that

2s J-
I.(2s) =-^"'̂ ^(1+0(1)) (4.22)
^ 2/1??

for large values of s. This is a very handy formula for our purposes.

Because I.(2s) is analytic we know that
<3

I^(2s+e3) = Ij(2s)(l+0(1))

so (4.21) becomes, for j = O(log n)

Prob{A(u)=j} =e^^Ij(2s)(l +o(l)) . (4.23)

Expression (4.23) gives us a precise formula for the distribution

of A(u), and (4.22) gives us an asymptotic approximation which we

will need later on in our analysis.

We will now take the time to find out how many nodes u in L

(or R) there are with A(u) = j. Define a random variable
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1 if A(u) = j

lo otherwise

(4.23) tells us the value of EX and hence we know the expected

number of u's in L such that A(u) = j is nEX .. The precise
UJ

dependency between the variables X . is hard to compute, but we can

easily show that EX .X . < EX .EX . for any nodes u and v in L.

Then we can apply Lemma 4.2, and conclude that the number of nodes in

L with A = j is within en of

ne"^®I.(2s) (4.24)
J

with probability tending to one as n -> <» (en-equivalence).

The probability that A(u) = j for a node u in' L depends on

the ratio

(# cross arcs) v (# places where left arcs intersect left nodes) .

(4.25)

For the case j 0, the Prob{X^Q =l} is greatest when ratio (4.25)

is closest to one. Initially the ratio is Knowing that

A(u) = 0 effectively decreases the value of the numerator and denomina

tor by the amount deg(u), as seen by another node v. This causes

the effective ratio for the node v to diverge from 1 (unless = 1,
/:P|̂ n

which has probability zero). Hence EX^qX^q £ EX^qEX^q.

For the case j > 0, EX . is greatest when ratio (4.25) is

largest. We use:

Lemma 4 ^7. Let d = (?(log n) and q = P^ ±e where

Then for j ^ 1 and n large
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qn-M
^ _gn_

PL" •

We see that when d = deg(u) is within reasonable bounds, the ratio

that V sees decreases when we know that A(u) = j. Hence

EX .X . < EX .EX ..
uj vj - uj vj

Now we know the number of nodes u in L with A(u) = j. We

also need to know the total number of arcs which intercept these nodes.

We first calculate

P(d,j) ^ Prob{deg(u) =d and A(u)=j}

= Prob{A(u) =jIdeg(u) =d}Prob{deg(u) =d} . (4.26)

Vie already know the second factor, from (4.18). The first is deter

mined by a hypergeometric distribution:

Prob{deg|̂ (u) =a|deg(u) =d} =
( d"" )

(qn)J(2p,^n) '̂jd!
J,!(d-)l)!((q+2pL)n)^
using (4.15) and requiring d = O(log n)

= (sn)'̂ ,d.(Ue')J"(H-e") '̂'̂
(2sn)'' ^ (1+|-(e'+e"))''
setting q = s(l+e') and 2p^ = s(l+e")

using e' and e" = 0{n and (4.11).

We set and get that when j £ d and Parity(3) = Parity(d)
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so

P(d.j) =e-2's'̂ [(^)!(^2"^-)!]'''(l+o(1)) . (4.27)

This expression is correct v/ith probability tending to one. Define

random variables

' 0 otherwise

1 if A(u) = j and deg(u) = d
Y. •{

d if > 0 for some d

0 otherwise

n

We wish to find X . So far we know the distribution for the Y .'s,
u=l "

Using the same type of argument that we used to derive (4.24) we know

for any two nodes u and v, and all d,

'̂ ^^^^^ud'̂ vd ^ Prob{A(u) =A(v) ^jldeg(u) =deg(v) =d}
•Prob{deg(u) = deg(v) = d)

< Prob{A(u) =A(v) - j|deg(u) =deg(v) =d}

•Prob{deg(u) = d}*Prob{deg(v) = d}

£ Prob{A(u) =j|deg(u) =d}Prob{A(v) =j|deg(v) =d}

•Prob{deg(u) = d}Prob{deg(v) = d}

= Prob{Y^^ =l}Prob{Y^^ =l} .

Hence EY .Y . < EY .EY . and Lemma 4.2 is applicable! Remembering
ud vd — ud vd

(4.27) we know that

1 " 1
— y Y . = P(d,j) with r.c. —5- . (4.28)
" u=l "d r ^ •J'
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Next,

n n 2n

l\ - I I ''̂ ud
u=i u=1 d=j

|_log n] n _i
1 d I Y . + o(n" ) (using Lemma 4.4)

d=j u=l

hog nj hog nj ^
y dnP(d,j) + n I de . + o(n ) (4.29)

d=j d=j

where we have set

=dj •

We will require, for d = j,j+1,..., [log nJ , that

This implies that

so (4.29) becomes

[log nJ
) ^

d=j
< n log"^n

hog nl o
n I dP(d,j) + 0{n log" n) . (4.30)

d=j

Remark 4.2. The probability that any one of the e^^.'s is greater
-4 -1 9

than log n in absolute value is less than n log.n = o(l), from

(4.28).

We set d in (4.27) equal to 2m + j, plug it into (4.30) and

get
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"U=/" ^ ""log'̂ n)
.e-2S(2jos(2"'̂ j).^.,-1.(23)) (1.0(1))
= e-2^

CO (2Jt+j +l)
+o{l))

%

=e-^®(2slj^^(2s)+jlj(2s)) (1+0(1)). (4.31)

We have learned that deg(u) is within en of {n times (4.31)}.
uGL

A(u)=j
Let us denote this quantity by t.. Let w. denote the number of nodes

j j

u v/ith A(u) = j, calculated in (4.24). Then

^(t.+jw.) ={the number of cross arcs emanating from nodes u
such that a(u) = j}

,n ne'̂ '(slj+l(2s)+jlj(2s)) . (4.32)

Also,

^(t. -jw.) =(the number of points where left arcs emanate
from nodes u such that A(u) =j)

E ne-2'sl,^,(2s) . (4.33)
en j+1

We are now getting to the algorithmic part of this proof. Fix a

constant b (to be determined precisely later on).

Let

Bj_ 4 {uGL|A(u) >b}
4 {uGR|a(u) >b} .

We are going to swap these two blocks of nodes, so that L L+

and R R+Bj^-B^^, and observe a decrease in the number of cross arcs
for this new 2-partition.
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Using Leniina 4.4 and (4.32) we find that the number of arcs spanning

and R is

[log nj 2
ne

j=b
""en .1 (slj.^^{2s) +jlj(2s))

Llog nJ
We note that e = 0( I log" n) = ()(log" n), from (4.30). .Also, our

j=b
rate of convergence may have slowed by a factor of log n. Looking at

Remark 4.2 this gives us r.c. =n'̂ log^^n.
We let il*n be the number of points where left arcs leave nodes

in B, , so
[loq nJ o

£-n = ) ne" sI.,t(2s) .en j+1^

Note that J^«n is not the number of left arcs which leave B^, because

many arcs connect two points inside of B^. In fact, we need to know how

many arcs cross from B^ to L-Bj^. Let us denote this quantity by

Jl^n. Let c^n be the number of arcs crossing from Bj^ to

Vhen the decrease in cross arcs when we swap B|̂ and Bj^ will be

E (2c^-2£..)n. Fortunately we know how to find c^., knowing c, and
en ^ 0 0 u

how to find 5,^, knowing V.

Number the cross arcs leaving Bj^ l,2,...,cn. Let the random

variable

j. I-

r1 if the i cross arc spans B, and B^
Z. = -i .. L R
^ Lo if the i cross arc spans B^ and R-Bj^

We know that El. — because the number of cross arcs leaving
1 e sn K

is = cn. Also it is clear that for any two cross arcs i and j,
en

EZ.Z. < EZ.EZ.. Hence Lemma 4.2 is applicable, and tells us that the
13-10

number of arcs spanning B^^ and B^^ is
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cn 2 2 2
(c-c^)n H y EZ. =0 en .^1 1 en sn s

so

c = c-^!^0 ~c ^ s *

Using similar reasoning we find that

w-k-

The situation is diagrammed in Fig. 4.4.

The decrease in cross arcs when we swap B, and Bq is now
2 „2 L R

c it2n(c - it- — + . Plugging in values for c and it we have

C-X= I e-2®jl.(2s) (4.34)
j=b J

and

= 2s( I e-2®L^,(2s))(I e-2®jl(2s))
^ j=b j=b ^

CO ^

+ ( I (2s))^ . (4.35)
j=b J

As it stands, expressions (4.34) and (4.35) are fairly intractable

We can compute values numerically, but v/e don't know what the best

choice for the value of b would be. For the case when s is large,

(4,22) comes to our rescue:

CO oo 2

I e-2^jl.(2s) =-1- I je-j /^^(l+od))
j=b ^ 2/iri" j=b

bZ/Trs

= +0(1)) (4.36)
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{f- ) n arcs

cross from Bl
to L-B.

n arcs cross

from Bl to Br

( C- — ) n arcs
b

span Bl and R-Br

Fig. 4.4
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Next we observe, for increasing s, that

2s j e-%,(2s).f
j=b j+1

= s

/iFs •

.2
e"'' +o(l)]

(1+0(1)) .= s 1 -
/f^i" 0

Insert (4.36) and (4.37) into (4.35) to get

rb .2

(4.37)

l(c2-.2),
s ' e lir ^ /Fi" J

-j /4s..dj) . (4.38)

We subtract (4.38) from (4.34) (using (4.36)) to get

c-,.J-(cV) ŝ g-b'/4s _L
/Fi-J 0

=2\f e"''̂ /'̂ ^(erf(-^;)-1) . (4.39)
nr To- t

We can simplify (4.39) by setting b = t>^. Ignoring the leading

constant, the function we have left, which we would like to maximize, is

e'*^ /^(erf(t)-1) . (4.40)

We finally break down at this point and use numerical techniques. (4.40)

is maximized around the point t = 1.21, so the optimal value for b

is
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b = 1.71/s .

At this point (4.40) has value .211 and (4.39) has value .238»^ .

We conclude that the decrease in the number of cross arcs after

exchanging and is (ignoring roundoff error)

2n(.238)/s . (4.41)

Hence we expect a final result of

E 2ns(i-—~) cross arcs .
en 2

It is unlikely that |B |̂ = jBj^l, so we have to insert a small

patch which insures that L and R are of equal size after the

exchange.

First we calculate the expected size of the set B^^:

\\\ = I |{uGLlA(u) =j}|

[log nj
I |{uGL|A(u) =j) 1 + o(l) (using Lemma 4.4)

llocj nJ «
H • I ne"^^I.(2s) . (4.42)

j-b ^

To get (4.42) we used (4.24) and the fact that the sum of errors intro

duced for each term is o(n) (see the derivation of (4.30)).

We can find |Bj |̂ similarly, and conclude that |Bj |̂ I^rI*
Suppose |B |̂ - |B|̂ =m> 0. Then to increase R's size to be equal to

that of L we move ^ nodes from L to R. VJe can always choose ^
nodes from L all of which have degree not more than 4s (when
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Hence we can insure that our patch increases the number of cross

arcs by an amount

£ ^s <e2sn for any given e >0 .

This leaves our result (4.41) unaffected.

We will note that for the case of large s we can evaluate (4.42)

by plugging in (4.22). We find that

I\1 •

When s is large L contains about ^ good nodes initially, so we are
moving the top .32 of those nodes.

This concludes our proof of Theorem 4.2. •

Before proving Lemmas 4.3-4.7 we have a comment on our choice of

the algorithm for analysis. No reason was given for constructing B|̂

and from among those good nodes with the largest A-values. In

fact, the case when B^ and represent randomly chosen subsets of

the good nodes has been analyzed. It can be shown that the optimal

strategy is to place one half of all of the good left nodes into B^,

and an equal number into After sv-zapping Bj^ and a decrease

of «2n(.141)v^ cross arcs is observed. This is significantly less

than the value (4.41),so we conclude that this alternative algorithm is

inferior.

Now we set to work on the lemmas.
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Lemma 4.3. Fix non-negative real numbers c and d, and assume

1 /2
that j = o(ni ' ). Then for increasing m

[ m-3 J ' '

Proof. First consider the product

m-j-1
. ("3)

1 =0 cm

(4.43) < (1--^'—(ro-j-1) similar to (4.4)
™ 2cm

2q +l +0(1) , .
=(1 25r-^)^ using (4.2)

2q + l+0(n,)
, 2S
j< e

2q+l

o J 2c'V e

On the other hand

Hence

. (Pizl)
(4.43) > (1 ^ similar to (4.4)

cm
cm

^ cm

- finJ.] (1 +o(i)l
>e^ cm VJ („3ing(4.5))

'V' e

.(ML)
(4.43) -v e . (4.44)
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Mext we observe

(m-j)! 'V V27rrm-77 (Stirling)
G

= +o(l)) (4.45)

using (4.2), (4.5), and j =o(m^^^). Finally (4.44) and (4.45) give us

m-j-1 2
2 n (cm -qm-i)

cm - qm

t m-j J
- i=0

(m-j)!

/ ^2d+lx
(cm) '̂"~'̂ ^e /2TTm . •

Lemma 4.4. Prob{there exists a node u such that deg(u) ^log n}

=0(1),

Proof. For all j < 2n - 1, (4.18) is an upper bound on the

fi^obability that deg(u) = j. This can be verified by straight calcu

lation, starting from the hypergeometric distribution for deg(u).

Hence

Prob(deg(u) >log(n)} £ I e ^
Dog nj J-

Then

-2
= o(n ) by Lemma 4.5

Prob{(3u)(deg(u)£log(n))} £ 2n-o(n ^)
=o(n"'') . •

Lemma 4.5. For any positive constants I and t.

n^ I
i=Llog nJ
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£roqf.

0 0 tPog nl
|lognJ>2t

'V' n 7. 1 (using (4.1))
(log n) ^ /log n

^ ,^(1^ +1•«• log t - log log n)

o(l) . •

Define

.thI.(z) is a j order modified Bessel function.
J

Lemma 4.6. Given c > 0, choose any kg large enough so that

(fl^O/ST-ko <f . (4.46)
Then for s sufficiently large, and any integer j G [Oj/iTqS]

v/e have

|I.(2s)2/t;s < e .
J

Vie make use of a Hankel expansion, found in [31J , which is an

asymptotic approximation to I-(25) for the case of large s:

.2s rJ-l
I.(2s) -v- - ..
^ ?Virs 1=0 (2s)

where A(0,j) ^ 1, and for i > 0

!l=l 8^!
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Also,

lYjl 1
J (2s)^

where

. !'(?j +1)X(j) 6.-2
^{'2^ +2)

^rj

We fix a constant b:

={
r1 if V<f

kg otherwise

and note that in all cases

.2
j- < b
s —

We win show that, for sufficiently large s.

(i)

(ii)

(iii)

j-1 i A(i,.i)I (-)'
i=b (2s)' J

.2,.^ b-1, ,i .2 .
"0 /4s r ( ) 13

<f

b-1

_ y

iSo

i'̂ O (2s) i=0 ^•

Then from (i), (ii) and (iii) we can conclude:

.A(l,y_, .3-o^/4s
i=0 (2s)' J

< c
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which proves the lenima.

First we set

a AA(i.j)
' " (2s)'

Now from (4.47) and (4.49) we have

Ir^l <2x(j)exp{^)a..^(i44^)
TT k^ exp{-5^)(^)aj_^ (using (4.48))

=0(s" '̂̂ a. .j) (becuase j £
=o(aj_.,). (4.50)

We next show that, for i g , the terms a^ are positive and

furthermore that

a^ > a.^., . (4.51)

By definition

.2

^-Vl

but

2 . 20< —"I6si"^ ~ (because i £ j-1)

- W "'̂ e'sV (using (4.49) and b<i)
=1 +0(s"''/^) . (4.53)

We see that (4.52) and (4.53) imply (4.51). From (4.50) and (4.51) we

know
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j-1

< 2a.

.2
<2{|^)''(b!r''

16s

"^1 •

(from (4.51)

(using (4.1))

(using (4.49))

(from (4.46))

This proves claim (i). A similar proof shows that

L u V/js' l(4)''(''!)-'' <f
i=b

Combining (4.54) with the Taylor expansion

e-0^/4s , y
,>0 i'

yields claim (ii). Finally, consider the sum

b-1/ xi -.2 .

'fen

Each term in (4.55) can be expressed as

^-I(4j^) '̂ +c.^_,(4/)^-'' +... +c.Q - (4j^)^] (16s)"'

(4.54)

(4.55)

2 2where the c.^'s are all constants. There are £ b < kg c^^'s. so all

of them can be bounded above by some constant independent of s. Hence
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each term in (4.55) is

(2i-2)
-20{o__) = = ^(T) .

s

We conclude that (4.55) <-^ for large s. This proves (iii). •

Lemma 4.7. Let d = C)(log n) and q = p±e where e £

Then for j > 1 and large n

qn-
7̂- <

pn
d-j p *

Proof. It is clear that if q = p-e. then < 1 and the lemma

is true. Hence we assume that q = p + c.

1 c .For large n we have ^ >-p implying

a =i+£< i4< =
p p d — d d d-j

=> cbi <
2pn 2qn

Then

d+jqn - -y- 1 - M
2qn

1 -
d-j
2pn

•

4.4 Empirical Testing of the Block Exchange Algorithm

The proof of Theorem 4.2 suggests an algorithm for improving the

2-partition of a graph which we call the Block Exchange algorithm. It

has a very simple program:
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Block Exchange Algorithm

Assume a starting 2-partition {L,R} of a graph

1. s b 1.71.^.

2. Lq-f- {ueLlA(u) ^b}, Rq •<- {veR|A(v) >b}.

3. LURq-Lq, R^ RULq-Rq.

4. x-<- ||L|-|R||. Move randomly-chosen nodes from the

larger of L and R to the smaller, so that iLj = lR|.

This algorithm, which we call algorithm B for short, was coded

and executed on randomly-generated graphs to see how well its behavior

would follow analytical predictions. Runs were made on graphs of 128

nodes and 128s arcs, for s = 1,2,4,8,16. The arcs were selected pseudo-

randomly. For each value of s 6 graphs were generated, and on each

graph algorithm B was tried from 7 different starting 2-partitions.

Hence each data point in Figs. 4.5 and 4.6 represents the average of

values from 42 different runs of the algorithm (Chapter 5 describes in

more detail how the trials were carried out).

First we wished to find out if the predicted value of b = ^J^/s

was really the best choice for a threshold. The values b = 1,2,3,...,10

were tried (bypassing Step 1), with the result shown in Fig. 4.5. The

"X" on each line indicates the location of the point We observe

that each "X" is fairly close to the lowest point on its curve.

If we let b 0 in equation (4.39) we obtain the somewhat

counter-intuitive result that for large s exchanging all good nodes on

both sides (b = 1) is expected to produce a partition little better

than the original randomly-chosen 2-partition. We see this verified

here: for s = 16 and b = 1 the final partitions had an average of
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1007 cross arcs, which is 49% of all of the arcs. A random 2-partition

is expected to have about 50% of all arcs be cross arcs.

We also checked to see if the average number of cross arcs in a

1 238
2-partition produced by algorithm B converged on the value

predicted analytically. Fig. 4.6 shows that the two quantities are

fairly close, and become closer as s increases. This is to be

238
expected, since the quantity is only an asymptotic approximation

to the function H(s) (defined when Theorem 4.2 was stated), which is

the true expected decrease in cross arcs.
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5.1 Overview

CHAPTER 5

A LOOK AT THE 2-PARTITION ALGORITHMS

This chapter begins by introducing two new iterative-improvement

algorithms for the 2-Partition Problem. The "Lookahead" algorithm is

somewhat like algorithm S, but it uses a more sophisticated objective

function for determining which nodes are to be exchanged. The "Maxcut

Analogue" is an algorithm which is patterned after a one-opting

algorithm to solve the Maxcut Problem (see section 2.2) -- it allows

the two sets in the 2-partition to become unequal in size. A penalty

function which encourages balance between the sets eventually restores

equality of the sets.

The heuristics embodied in the Kernighan-Lin, Lookahead, and Maxcut

Analogue algorithms can be combined in various ways to create hybrid

algorithms. We discuss some of these, and then proceed to the testing

grounds, which is the empirical evaluation of all of our algorithms.

The programs for the algorithms were run on randomly-generated

graphs. An ordering of the algorithms according to the quality of the

2-partitions produced proved to be invariant over a set of graphs

having a large variation in the ratio | However, when the
programs were tried on chain graphs a different ordering was produced.

Hence, no one algorithm can claim to be the best for all applications.

We show how to implement the algorithms so that most of them run

in linear time, and then compare the relative speeds of the algorithms.
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5.2 The Lookahead Algorithm

When a node w is moved from one side to the other of a 2-parti-

tion there is a decrease A(w) in the number of cross arcs. Given a

2-partition {L,R}, define

P = P(L,R) ^ I A(w) .
WSLUR
A(w)>0

A large value for P indicates the existence of a relatively large

number of good nodes and/or the existence of good nodes with large

A-values. We expect that the bigger P is the greater will be the

decrease in cross arcs effected by a one-opting algorithm. Hence P

may be considered an indicator of a 2-partition's potential for improve

ment. When choosing a pair of nodes for exchange it would seem desira

ble to select nodes whose exchange would minimize the decrease in

potential P. This is the basic idea behind the algorithm we call the

Lookahead algorithm.

Given a 2-partition {L,R} let u ^ L, v G R, and define

Tr(u.v) 4 P(LU{v}-{u}, RU{u}-{v})-P(L,R) .

tt(u,v) is the change in potential when nodes u and v are exchanged

Next, fix constants c-i and C2 and define

X(u,v) = XCujVjC^jC^) 4 c^6(u,v) +C2'n'(u,v) .

This will be our evaluation function in the Lookahead algorithm.

(6( ) was defined in section 3.2).

If v/e set c^ = 3, C2 = 1, and substitute X(u,v) for 6{u,v)
in algorithm S, the resulting algorithm has been shown by simulations
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to produce 2-partitions which are significantly better than those

produced by algorithm S.. However, the Lookahead algorithm incorporates

another modification which improves its performance even further. We

present algorithm L, dubbed the Lookahead algorithm because it takes

into account side effects of an exchange before selecting the nodes for

that exchange:

Algorithm L

Assume a starting partition {L,R}. Select non-negative integers

, c^, and 0.

1. If there exists no pair of nodes u, v with u g L, v e R,

and X(u,v) >0 go to Step 5.

2. Select u G L, v G R to maximize. X(u,v).

3. L -t- LU{v}-{u}, R RU{u}-{v}.

4. Go to Step 1.

5. Ci Ci +1.

6. If c^ < 0-C2 go to Step 1.

7. Stop.

A few comments are in order regarding the choice of the parameters

c,, Co, and 0. When c, and c^ are approximately equal the algo-
12 It

rithm will often choose exchanges which increase both the potential P

and the number of cross arcs. As c^ increases the evaluation func

tion X(u,v) behaves more and more like 6(u,v), so exchanges which

increase the number of cross arcs are seldom chosen. Hence the idea of

the algorithm is to increase the 2-partition's potential in the early

stages, and then take advantage of the abundance of large A-values

later on. Experimentation indicates that choosing c-j = 2, ^2 ~ ^
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produces good results. It also indicates that no improvement occurs

in the later passes beyond the point where c^ is four times bigger

than Hence 0=4 is a good choice.

It is not immediately obvious that algorithm L terminates for all

choices of c-j and C2« Let us define a "pass" to be one of the inter
vals during v^hich c^'s value is unchanged.

Claim 5.1. During one pass of algorithm L, with 0:^ and C2

chosen to be non-negative integers, the number of exchanges never

exceeds (c^+2c2)N, where N is the number of arcs in the graph on
which the algorithm is operating.

Proof. Suppose x exchanges occur during a pass. Let u^"^^
and v'" '̂ be the nodes exchanged during the j exchange, for

1 £ j £ X. Let

Sr = I and
^ j=i

S = y .

Because c^ and C2 are integers we know that for all j

=c^6(u^^\v''̂ ^)+C21t{u '̂̂ ^v^^^) >1 .

Hence we know that

CtS. + c.S > X .
1 0 d IT —

The total decrease in cross arcs is at most N during this pass, and

the change in potential is at most 2N, so
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< N and S < 2N
6 — TT —

implying

X£ (c^+2c2)N . •

5-3 The Maxcut Algorithm

Our next algorithm was inspired by examining a one-opting algo

rithm for the Simple Maxcut Problem. Suppose we wish to find a minimal

2-partition of a graph G= (W,A). Let G:^ = (WjA^) be the comple

mentary graph: = {(i, j) 1(i J) $ A). If {L,R} is a partition of

G^ such that ^(L;R) is maximal, and if IL] = |Rl as well, then

{L,R} is a minimal 2-partition of G. If lL| and |R| are close,

then we can easily patch things up to get a. near-optimal 2-partition

of G.

With respect to a partition {L,R} (possibly |L| f |R|) and the

graph G^, define for each node wG W

y^(w) = "the increase in cross arcs if w is moved to the
'other' set" .

The one-opting algorithm we have in mind for the Maxcut Problem finds

a node w to maximize iJ^(w), moves it to the other set if y^(w) > 0,
c

and repeats this sequence until y (w) £0 for all w.

Now we turn to the graph G. With respect to G and the same

partition {L,R}, fix coefficients d^ and d^ and define for each

node w

d^(|R|-|L|-l)+d2A(w) if wGLf d +

y(w) =yCwjd^jdp) M. 1 2 U^(|L|.1R1-1) +d^ACw) if we R .
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If =d2 =1 then p(w) =p^(v/). Our next algorithm, without
Steps 5, 6, 7 and with d^ = d^ ^ 1, is the analogue of the Maxcut

one-opting algorithm.

Algorithm M

Assume a starting partition {L,R} and fix positive numbers d-j,

d2» and T. .

1. If there exists no w G W such that y(w) >0 go to Step 5.

2. Choose w G w to maximize p(w).

3. rf w G L then L L - {w}, R R^ {w}

else L Lu{w}, R R - {w}.

4. Go to Step 1.

5. If |L| = 1R| stop.

6. + T.

7. Go to Step 1.

As with algorithm L we need to prove tbat algorithm Malways

terminates. When =d2 =1 we know that with respect to G the
partition {L,R} gains at least one cross arc for every iteration of

Steps 1, 2, 3, 4. Hence we are guaranteed in this case to reach Step 5

sooner or later. A proof similar to that for Claim 5.1 shows that the

cycle of Steps 1-4 terminates for every choice of positive d^ and d^

We have proved that algorithm Mterminates if we can show that Step 6

is always executed finitely many times.

The term d^( lLl-|R|-l) or d^([Rj-jLj-l) in vi( ) acts as a
penalty function. As d^ grows the nodes have an increased tendency
to migrate towards the smaller of the two sets L and R. If
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the nodes are guaranteed to move so as to balance the two

sets in the next cycle of Steps 1-4. Hence for t > 0 Step 6 is

executed finitely many times.

The best choice for the parameters d^, d2> and t was deter

mined empirically. We first tried d^ = d^ = 1» with disappointing

results. The 2-partitions produced were not as good as those produced

by algorithm S. But when dg was increased the algorithm's perfor

mance improved significantly, d^ =1, d2 = 6 turned out to be a

good choice. Surprisingly, even for this choice of d^ and dg the

intermediate partitions produced by algorithm Mas Step 5 was first

reached were often perfectly balanced, and |lL|-lRl| was seldom over

6. Hence the choice of t is usually not critical — t = d2 is a

reasonable choice.

When the ratio ^ is high a phenomenon we call an
avalanche sometimes occurs. In an avalanche the high average degree

of the nodes has caused the term 'd2A( ) to dominate the function

vi( ) to the extent that all of the nodes migrate to one set or the

other. Balance is eventually restored, since t keeps increasing the

value of d^, but the mass migration in an avalanche represents a lot
of wasted moves. This situation can be avoided either by decreasing

the value of d2 for large values of 2~ (say when ^ >12), or
inserting a procedure before Step 3 which would cause a jump to Step 6

if the imbalance is about to exceed a specified threshold.
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5.4 Hybrid Algorithms

Here we discuss ways in which algorithms K, L, and M can be modi

fied or combined to produce more powerful 2-partition algorithms.

A very simple change to algorithm K has been shown to improve its

performance: Algorithm K (described in section 3.5) stops if no inter

mediate partition generated in Steps 3-6 was better than the one it

already had at Step 2. Instead of stopping (at Step 7) the algorithm

can be modified to try Steps 2-6 several more times, hoping to find a

different sequence of exchanges which will result in a still better

2-partition.

It is essential that a mechanism is put in so that different

sequences of exchanges are possible. Suppose algorithm Khas been

implemented with a queue structure such that the entries for A= 0

nodes are linked together, the entries for A= -1 nodes are together,

and so on. If each time that the queue is constructed the entries for

nodes with the same A-values are strung together in a different order,

then they will be accessed in a different order at Step 4. This

provides the random element which allows the extra passes to sometimes

find a better 2-partition.

This modification was incorporated in the algorithm we refer to as

algorithm Kx. Our version makes up to 5 extra passes through Steps 2-6

whenever the algorithm is blocked at Step 7. The results are discussed

in the next section.

Now recall the objective function X( ) which is used by algo

rithm L (section 5.2). It can be substituted directly for 6( ) in

algorithm K. Let us suppose that Step 4 of algorithm Kis modified

to read
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4. Select ue L-Lq and ve R-Rq to maximize A(u,v).

The parameters and which define X( ) have to be selected.

Aversion which works fairly well sets c| = 3, ^-

Algorithm L was improved when the parameters c^ and c^ were

not fixed, but instead c^ ran.through the values 2, 3, 4 while
equalled one. We can do a similar thing here. Change Step 7 in

algorithm K to read

7. If k == 0 then

begin c^ ^ c^+1;
rf c^ 1 go to Step 2
else stop

end

Experimentation has shown that the choice c^ = 2 (initially), ^2 ~ ^

and 0=3 works well. This version will be referred to as algorithm

K/L (algorithm Kwith lookahead).

Algorithm Mcan also be increased in power by adding the lookahead

function. However, algorithm L exchanges pairs of nodes, while algo

rithm Mmoves nodes one at a time, so we need a function A( ) similar to

X( ) which is defined for individual nodes. For each node wG S

(S = L or S = R) define

Tr'(w) ^ P(S- {w}, SU{w}) -P(S,S)

(P was defined in section 5.3). Now define

A(w) =A(w,c^,C2) k c^A(w)+C2Tt'(w) .



Algorithm Muses the objective function p(w), which has embedded in

its definition the term ."d2A(w)". Let us substitute d^Atw) for this

term. We call this modified algorithm algorithm M/L. The choice

di = 1, = 2, c^ = 3, Cg =1, T= 5 works well, and is used for our

simulations in the next section.

5.5 Empirical Evaluation of the 2-Partition Algorithms

Algorithms R, S, K, L, M, M/L, Kx, and K/L have all been programmed

and executed on a large number of graphs. This section presents the

findings — and discusses what they imply.

We must first make a disclaimer. Most of the algorithms mentioned

progress by repeatedly exchanging pairs of nodes. None of our programs

did this. Instead, all algorithms except Mand M/L alternately select

a node from the set L and move it to R, and then select a node from

R and move it to L. Usually the result will be.the same no matter

which method of exchange is used, but it can happen that our method of

exchange will end up exchanging a pair of nodes u, v such that

6(u,v) is not maximal (or such that A(u,v) is not maximal if look-

ahead is being used). In the left graph below, a decrease of two cross

arcs occurs if nodes y and z are exchanged. If however, our

algorithm chooses to move node w to the right instead of y (as

shown in the right graph), its best subsequent move is to move x to

the left.

A = 1 w

A= 1 y 0 i d X y o
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The net decrease is then only one cross arc.

For the algorithms where 6(u,v) is defined to be the objective

function, our implementations choose u G L such that A(u) = max {A(w)},
. r. wGLmove u to R, and then choose v G R, with A(v) = max {A(w)}, and

WG R
move V. Where the lookahead function is used, the function A{u)

(defined for algorithm M/L in the last section) is used in place of

X(u,v).

There are several reasons why our method of selecting nodes for

exchange is to be preferred. First of all, it is simpler. A(u) is

easier to compute than 6(u,v), and A(u) is much easier to compute

than A(u,v). The most reasonable way to determine the pair u, v

which maximizes 6(u,v) is to first calculate A(w) for all wg LUR

and then compute 6(u,v) for those u G 1 and v g R which have the

largest A-values. Our method does away with the second step of this

procedure. The same argument applies for algorithms using the lookahead

function. Hence, our method is not only simpler, but faster as well.

Finally, the results of the trials indicate that algorithms which some

times choose to exchange nodes whose objective function values are not

quite maximal exhibit little if any decrease in the quality of their

final 2-partitions.

Our first set of runs was designed to imitate the random graph

model described in Chapter 4. Each graph had 128 nodes, labelled

1,2,...,128. The ratio s of arcs to nodes was selected, and then

pseudo-random pairs of labels were generated and inserted as arcs until

the total reached 128-s. On each graph an algorithm was tried from

7 different starting 2-partitions. Because the labels have no meaning

attached to them, the partition {{1,2,...,64}{65,66,...,128}} can be



considered "randoinly-chosen", and was the first starting partition.

In general the i^*^ starting partition was formed by placing the first
2^"^ nodes in L, the second 2^*"^ in R, the third 2^ ^ in L,

and so on. For example, the seventh partition was {{1,3,5,...,127},

{2,4,6,...,128}}. For any two of our starting 2--partitions {L,R}

and {L',R'}, |tnL'l =1|L|, so they may be regarded as "far apart".
For each value of s, six different graphs were generated, and

all of the algorithms were tried on those graphs from the 7 different

starting positions. The number of cross arcs in each final 2-partition

was divided by 128'S to obtain the fraction of total arcs which

were cross arcs. Each data point in Fig. 5.1 is the average of the 42

runs made by that algorithm for that value of s. The variance v/as

observed to be quite small. Several runs were made on graphs of 256

or 512 nodes, with s equal to 1 or 2. The ratios of cross arcs to

total arcs were essentially the same as for the 128-node graphs.

We now turn our attention to Fig. 5.1, which contains the results

for our algorithms on randomly-generated graphs. Some of the curves

have been merged wherever they v^ere extremely close together. For

example, algorithms Kx and K/L were nearly identical in performance,

while bettering algorithm Kby only around .005 on the denser graphs.

The probabilistic lower and upper bounds, predicted in Chapter 4

to bracket the solutions obtained by our algorithms (with probability

going to one as n are observed to do just that. In general,

the slower, more complex algorithms found better 2-partitions. On the

graphs with higher arc densities (s ^ 8) however, the percentage

difference between the best and worst partitions is so slight (less

than 8%) that one of the simple, fast algorithms like S or Mwould
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generally be the most practical choice. On the sparsest graphs (s = 1)

the differences are significant, and when faced with a real-life parti

tioning problem one might wish to invest in the additional computer

time necessary to run a more complex algorithm. The next section

sheds some light on how fast the various algorithms run.

Before making any conclusions it is instructive to look at

Fig. 5.2. The relationship (the ordering by quality of solutions

found) of the various algorithms changes markedly on the chain graphs.

In particular, we see that using the lookahead function has a much

more positive effect here than for the random graph simulations. This

disparity in the relative performance of the algorithms on different

types of graphs cautions us that the determination of the most appro

priate algorithm for a specific graph partition problem cannot usually
be made a priori.

5.6 Implementation and Running Times

We indicated in section 5.5 that our implementation of the 2-

partition algorithms uses a non-standard procedure to perform the
pairwise exchange of nodes. It also employs a novel type

of data structure from which it selects the nodes to be exchanged.

These two decisions have resulted in an implementation which is both

flexible and fast — all of our algorithms make use of the same data

structures, and most of them have an average running time which is

linear in the size of the graph.

We will now describe our implementation, and at the same time

derive an estimate of the expected running times for most of the

no
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2-partition algorithms. Let us call the operation of moving a node

from one set to the other a move (a pairwise exchange involves two

moves). It is essential that we have an idea of how many moves an

algorithm is likely to make as it operates on a 2n-node graph.

It has been observed empirically that the number of moves made by

each of the algorithms (except for K, K/L, and Kx) never exceeds 2n,

and is generally a fraction like Algorithm Kmakes about 4'(2n)

moves on random graphs. Hence, we feel safe in making

Assumption 5.1. On the average the number of moves made by any

of our algorithms except for Kx and K/L is 0(n).

(Algorithms Kx and K/L probably also use 0(n) moves). Proving that

an algorithm like algorithm S uses an average of ()(n) moves is an

interesting open problem. We conjecture that in fact algorithm S uses

0(n) moves in the worst case.

Remembering that A is the set of arcs in our graphs, define

A(S) ^ {jl(i,j)eA, iGS}

A(S) is the set of nodes adjacent to nodes in the set S. When a

node u is moved by a 2-partition algorithm, its A-value and the

A-values of all nodes in A({u}) are changed. If we are using the

lookahead function when we move node u then the value of A(v) must

be updated for all nodes v in AA = A({u})UA(A({u})). It is

straightforward to update the A-values for all nodes in A({u}) in

time 0(lA({u})|). In our implementations using lookahead, the record

for a node w contains both the value of A(w) and the value of
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A(w). This information can be used to update the A-values of the nodes

in AA in time 0(|AA|).

We wish to count the total number of nodes whose objective func

tions must be updated during the course of an algorithm's execution.

If we knew that "no single node is moved more than a constant number

of times, say c times", then we could prove that for algorithms

using the objective function A(w) not more than c«2»n«s updates

will occur. However, that knowledge would also prove Assumption 5.1,

which we don't know how to prove. Hence, based on the knowledge that

the average degree of a node is 2s, we will make

Assumption 5.2. Suppose one of the 2-partition algorithms is

executed. Let d^ = "the degree of the i node moved", and
^(2) _ number of nodes a distance 2 from the i^^ node moved".

1

Let X be the actual number of nodes moved. Then

n X /«\ n

I d. =0(ns) and I di ^ = 0(ns ) .
i=l ^ i=l ^

Now we will start counting the number of operations made by the

algorithms. Since we repeatedly wish to select the node from L (or

R) v/ith the highest objective function value, we need two priority

queues — one containing entries for nodes in L, and one with entries

for nodes in R. Our algorithm first calculates the A-values for all

nodes, taking time ()(ns). Algorithms S, M, and Kfill the priority

queues at the same time (taking time 0(n) if heaps are used,

O(nlogn) if the nodes are sorted). If lookahead is used we next

calculate A(u) for each node u, and place u's entry in the
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appropriate queue. Calculating the A-values also takes time 0(r\s).

(If we are using algorithm Mor M/L, the node with the highest y-value

will always be either at the top of the left queue or at the top of

the right queue — depending on the value of |L| - |R|.)

Most of the remaining tiine is spent repeating the basic sequence

which consists of selecting a node, moving it, and updating the queue

entries of nodes affected by the move.

If we are using a heap or sorted list to maintain each priority

queue the time to select a node is O(log n). Moving a node takes

constant time. If the queue entries are ordered by their A-values then

under Assumption 5.2 updating takes time O(nslogn). If lookahead is
2

used updating is more expensive, taking time ()(ns logn).

Assumption 5.1 implies that the basic sequence is repeated 0(n)

times, so that the time to update dominates the other terms in an

expression of total tunning time. (Algorithm Kdoes some extra

bookkeeping in addition to the basic sequence, but under Assumption 5.1

it can be done in time 0(n). We are choosing to neglect afgorithms

Kx and K/L in the rest of our discussion.)

If we could eliminate the factor (log n) which appears in the

running time we would have algorithms which run in time 0(ns) (or

0[r\s^) with lookahead). We can do this by using a version of address
calculation (bucket sorting, see [18]) to build faster priority queues

for which most basic queue operations take constant time.

Let HIGH and LOW stand for integers, with HIGH > 0 and

LOW < 0. Our priority queue consists of (HIGH-LOW+ 1) doubly-linked

lists, one for each of the integers in the interval [LOW,HIGH].

Suppose node u's objective function value is "t" if t ^ HIGH, node u
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is put on the front of HIGH's list. If t £ LOW, u is put on LOW's

list, and otherwise u . is put on the intermediate list corresponding

to the integer t. A pointer, TOP, always points to the highest-

valued non-empty list.

During a basic sequence the node selected is the first one on the

list pointed to by TOP. This takes constant time. After the node is

moved, some nodes have had their objective values changed. Each of

these nodes can be relocated to the front of the appropriate new list

in constant time. Hence the only operation on our queue which takes

more than constant time is the adjustment of the pointer TOP, which

can take on the order of (HIGH-LOW) steps in the worst case. We shall

decree that the quantity HIGH - LOW = 0(s), and can then conclude that

the total running time for our algorithms under Assumptions 5.1 and

5.2, and using our priority queue, is 0(ns) (or 0(ns ) if we are

using lookahead).

The big question which remains is, "What have we sacrificed by

using a priority queue which does not discriminate between nodes v^hose

objective functions equal HIGH or better, or between those with

values less than or equal to LOW?" We would like to point out first

that the average A-value of a node, given that it is positive, is

0(A"). This was proved in Theorem 4.2. Hence we would expect that if

HIGH is some suitable constant times s, then few nodes' A-values

will exceed HIGH. The expected value of A(w) in the calculation of

lookahead functions has not been calculated, but is clearly 0(s).

If algorithms R, S, or L are being implemented then LOW is set

equal to zero, because they ignore all nodes with A < 1 (a more
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efficient implementation would not even put such nodes in the queue).

Algorithms M, M/L, and Kmove nodes with non-positive A-values, so that

LOW should be negative, but since the algorithms rarely move nodes

with large negative A-values, LOW doesn't have to be very negative.

Hence we have a plausible argument that the algorithms should be

able to v/ork well with suitably chosen values for HIGH and LOW such

that (HIGH - LOW) = 0(s). Empirical tests were made to test this

hypothesis. Let us say that when a node is moved whose objective

function exceeds HIGH that an overflow has been observed, and when

one is moved whose value is less than LOW an underf1ow has occurred.

On our graphs on 128 nodes, with s = 1,2,4,8,16 overflow occurred

very infrequently when algorithms S, L, M, M/L, and Khad HIGH set

as low as 10, and the partitions produced were just as good as those

produced when HIGH was large enough that there were no overflows at

all. With HIGH set equal to 5 algorithms S, M, and K performed as

well as before, and algorithms L and M/L were a little poorer only when

s was 8 or bigger. Note that if algorithm S is implemented with

HIGH set equal to one, it is equivalent to algorithm On random

graphs algorithms R and S perform almost identically.

Algorithms K, M, and M/L were able to run with LOW equal to -10

without any occurrence of underflow, unless an avalanche occurred. As

noted before, algorithms Mand M/L won't cause avalanches if they are

programmed correctly. Hence, for s _< 16 with HIGH = -LOW = 10, we

have implementations whose running times are linear in n for algorithms

S, L, M, M/L, and K, and which would work as well as the more elaborate

versions which contain full scale sorting routines or heaps.
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If we are partitioning a graph so large that only a small portion

of the records for its nodes will fit into main memory, then the

running time will depend mainly on the number of times records outside

of core are accessed. The majority of record accesses occur i) when

nodes are moved, ii) when objective functions are updated, and

iii) when entries in the priority queue are changed.

The choice of algorithm determines the number of moves and updates.

Algorithms Sand Lmake the fewest moves, around ^ on most graphs in
our tests. Algorithm M averages half again as many, and algorithms R

and M/L average about three times as many. Algorithm K makes about

16 times as many moves as algorithm S. For algorithms without look-

ahead the number of updates is about 2s times the number of moves;
2

for those v/ith lookahead the factor is about 4s .

With our implementation, moving an entry in the priority queue to

a different linked list requires accessing several pointers. Hence,

updates which leave a node's entry on the same linked list are much

cheaper than those which require relinking. Algorithms S and L save

a lot of time because the majority of their entries always stay on the

LOW list (because their objective function values are non-positive).

Algorithms M, M/L and K can move nodes whose A-values are zero or

less, but if LOW is set high enough the majority of entries should

still occur on the LOW list most of the time.

We have shown that there are significant differences in the execu

tion times of our algorithms, even though they all run in linear time

for a fixed s. Furthermore, the speed of execution is affected by

such things as the values of HIGH and LOW or, if the maxcut



analogue is being implemented, the choice of the coefficients d^^

and T. Hence the selection of a 2-partition algorithm to solve a

real problem involves a large number of decisions.
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CHAPTER 6

EXTENDING THE 2-PARTITION ALGORITHMS

6.1 k-Partitioninq

The algorithms considered in Chapter 5 are designed to solve only

the 2-Partition Problem. The applications described in Chapter 1

generally require that a graph be partitioned into a number of pieces.

Hence v/e have need of an algorithm which can find a good k-partition,

for any specified k. It is also desirable that a partitioning algo

rithm adapts to solve more complex partition problems, such as ones

where a cost is assigned to each arc, or a weight assigned to each

node. We will show how the algorithms of Chapter 5 can be modified to

solve these more complex problems. We begin by looking at k-partition

algorithms.

Two methods suggested in the literature for k-partitioning a graph

might be called the chipping method and the splitting method. Given a

kn-node graph, the chipping method begins by dividing the nodes into

two sets of sizes n and (k-l)n so as to minimize the cross arcs

betv;een the two sets. The n-node set is set aside, and the remaining

nodes are divided into sets of size n and (k-2)n. The process

continues until k n-node sets have been produced. All of our 2-par-

tition algorithms can be adapted to the chipping method. We will not

pursue the details because k-partition algorithms which are apparently

more powerful exist.

The splitting method is best described by an algorithm:
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Input to SPLIT - A set R of nodes, and an integer n > 0 such that

n divides 1r|. SPLIT produces a -^^-partition of the subgraph
induced by R.

Procedure SPLIT(R,n)

1. Set k -c- If k = 1 then record the set R and return.
n —

2. Find a partition {S,S} of R such that |S| =

3. SPLIT(S,n); SPLIT(S,n).

4. Return.

The sets which have been "recorded" during the recursive calls to

SPLIT make up the desired k-partition. All of our 2-partition algo

rithms can be easily adapted to find the type of partition defined in

Step 2 of procedure SPLIT. References [16, pp. 117-123] and [3] sug

gest partitioning algorithms similar to the chipping and splitting

methods.

Some of the weaknesses inherent in the splitting and chipping

methods can be illustrated by an example:

Define S-j and S^ to be two simple paths of n nodes each (in
Chapter 3 these were called n-node 0-leaf chains). Let , C2, and

2nC3 be cliques each having ~ nodes. Let G be a graph consisting

of these five components. It is our object to find a good 4-partition

{P-j >P29P3>P4^ 0^
Assign to the set P^, for i = 1 to 3, and set P^ = S^.

Place the first third of S^'s nodes in P-j, the second third in P2»

and the remaining third in P^- This defines a 4-partition v/hich has

only two cross arcs.
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Suppose we have chipping and splitting algorithms which find an

optimal partition at each step. In this case the chipping method will

put one of the S^*s in , the other in and then will have to

split one of the cliques in half to form and P^ from , C2,

and C^. The splitting method will begin by placing and in

one set of a 2-partition, and , C2, and in the other. Then

it will split each set in half, again requiring that one of the C/s is

split in half by the final 4-partition. Hence both methods find a
2

4-partition having cross arcs.

The chipping and splitting algorithms represent a blend of the

constructive and the iterative-improvement approaches. They are

expected to run faster than the pure iterative-improvement algorithms

we are about to present. Kodres [19] describes some constructive

algorithms which should also run very fast. It is possible that

initial use of one of these fast algorithms to generate a starting

k-partition, rather than using a randomly-chosen starting k-partition,

would reduce the overall running time when an iterative-improvement

algorithm is subsequently employed.

The one-opting algorithms R and S can be easily generalized to

produce k-partitions. Assume a graph (W,A) with a k-partition

{P-j >P2>'• • ^^ch node ue p^ (i = I To k) define

A..(u) ^ I{vG PJ (u,v) CEA) 1- I{vG P. I(u,v) GA} I
' J V •

A..(u) is the decrease in cross arcs when node u) is moved from P.

to Py Now define for uGP^, vGP^

r 1 if (u,v) G A
a(u,v) ^

LO otherwise
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and

iS,-j(u.v) ^ A^j(u) +Aj^(v) - 2a(u,v) .

Algorithm S now becomes "repeatedly select a maximal S^.(u,v) and

exchange nodes u and v, until no <S4,-'s exceed zero". Unlike the pre-
• J

vious k-partition algorithms, this one guarantees that the partitions

it finds are 1-optimal (defined in section 3.2).

In the manner of algorithm K we can "lock" the nodes u and v

to their new sets after each exchange, and continue exchanging pairs

of nodes until all nodes have been moved and locked in place. Then

the best intermediate k-partition is found, and the sequence is

repeated as long as improvements occur. However, as in the case for

the 2-partition algorithms in Chapter 5, we can design more efficient

algorithms if nodes are moved one at a time, instead of being exchanged

pairwise. This results in what we call the cyclic method.

Here is the cyclic version of Algorithm S:

Algorithm S-C.

Assume kn nodes and a starting partition {P-j ,P2»• •• M[]

is an array of size k whose entries take the values OPEN or CLOSED.

1• fPL ^ ^ -to. ^ OPEN.

2. IfA..(u)=0 for al 1 uGw stop.

3. Choose u such that

A. , (u) = max {A. .(v)|veP., M[i] =OPEN}
''O^O l<i<k ^

l<a<k

4. If M[i.] = CLOSED then MEip] OPEN,

5. Move u from P. to P. . '
''o ^0

6. If |P. I = n then go to Step 2.
^0



7. Choose u G P. such that
^0

'o^o ''o'

8. If A. {u) < 0 then MCJq] CLOSED.
^0 0

9. ig Jq' ^0 ^0'

When Algorithm S-C selects a node in Step 2 and then moves it in Step 5
an imbalance is created - one of the sets has one too few nodes, and
one has one too many. This condition may continue for several moves
before a move happens to be directed into the deficient set - in which
case balance is restored. Thus a cycle of improving moves occurs,

rather than a simple pairwise exchange.

To ensure termination a set P. is "closed" when it has no good
nodes (6jj,(v) 10 for all veP^, and for all «.), meaning that the
algorithi will no longer move nodes into it. The OPEN-CLOSE mechanism
could be implemented differently. For example. A-values of some nodes
must be updated after the move in Step 5. If a node belonging to a
closed set becomes good at this point, the set could be opened immed
iately. rather than waiting for Step 4 to open it. Also, instead of
immediately closing a set P^ when it has no good nodes, a counter
could be started which would allow some fixed number of moves into and
out of Pj before closing it. This would allow more A=0 nodes to
be moved, and might uncover some additional improving moves.

Algorithm Kcan be adapted to a cyclic format more elegantly than
Algorithm S. because no problems with termination occur. Here is an
outline of Algorithm K-C's principal subroutine:

A. (u) = max {A. n(v)lvGP., M[£] =OPEN}
Jn^n 1 f)
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Subroutine for Algorithm K-C.

Assume kn nodes and a k-partition {P-j ,P2»• ••>P|̂ )• M[] is an

array of size kn which takes the values FREE or USED.

1. For u = 1 to kn M[u] FREE.

2. Choose a free node u such that

A. . (u) = max {A. .(v) | v^p., M[v] = FREE}
0 0 l<i<k

l<j<k

3. Move u from P. to P. and set M[u] USED.
••o •^o

4. 1£ |P- 1 = n then go to Step 2.
^0

5. Choose a free node u ^ P. such that

A. . (u) = max (A. »(v)|vSP,, M[v] =FREE}
Jq 0 l</<k ^0

6. *^0^" ^0* Step 3.

A mechanism to keep track of intermediate partitions has to be

inserted into this subroutine. The sets making up the partitions are

all equal in size only occasionally. The lowest number of cross arcs

will often belong to a partition which has one node "out of place". If

{P^ jp2> ••♦ sPp is an intermediate partition, and |Pj|+} =
= n, then to form a k-partition a node has to be moved from PI to

P'., possibly changing the number of cross arcs. It is simple to com-

pute what the value (in cross arcs) of each intermediate partition will

be after this adjustment is made, and the intermediate partition with

the best adjusted value is the one which should be remembered by the

subroutine.

Algorithm Madapts to solve the k-Partition Problem in a straight

forward way. For a node u ^ P^. and some constants d^ and d2 we

define
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y..(u) =y.j(u,d,,d2) Ad^{|P.|-|Pj|)+d2A^j{") •

We repeatedly move the node with the highest p^.j-value until all
values are non-positive. Then d^ is increased and the process

repeated until all sets are of equal size. From now on we will refer

to this k-partitioning version as Algorithm M.

We have a few remarks on the implementation of our k-partition

algorithms. Algorithm S-C should have a priority queue for each

set P.. For a node u in P. there are up to k-1 entries in queue

Q^. —an entry containing A^j(u) for each set j i which hasn t
been closed. Step 7 of Algorithm S-C selects the node u correspond

ing to the top entry in queue Q. . We could facilitate the selection

of u in Step 3 by maintaining another queue containing the top entry

from each queue , but probably Step 3 is executed a small enough

percentage of the time that simply finding the maximum among all of the

queues whenever Step 3 occurs is faster than maintaining the extra

queue.

If Algorithm K-C has a structure which can quickly produce the

value max {A-.(u) |uGP.}, given i and j, then the adjusted
1J I

values" of the intermediate partitions can be easily computed. This is
2 2

realized if we maintain k priority queues -- there are k - k

queues Q.. (i =1 to k, j =1 to k, i 5^ j) such that each queue Q-^
J

contains the values {A^^(u)[u^P^}, and we maintain k more priority
queues (i=l to k) such that queue contains the highest

entry from each of the queues (j =1 to k, j i). Though this

scheme requires k times as many queues as the scheme for Algorithm S-C,

the total number of entries in all of the queues is not much greater

than before.



Algorithm Mchanges a large number of p..-values with each move,
* J

because the sizes of the. sets are constantly changing. Our strategy

is to have - k queues Q.. (i?^j) containing A. .-values, as for
I J • J

Algorithm K-C. Only the p..-value corresponding to the top A..-value
1 J • V

of each queue Q.. needs to be calculated. Thus, of all of the
1 j ' j

values which change, only a fraction of them have to be updated.

The cyclic algorithms and Algorithm Mappear to be more powerful

than the previous k-partition algorithms because they can perform

cyclic exchanges of nodes as well as pairwise exchanges. Their imple

mentations are relatively straightforward. Lookahead (Chapter 5) can

be added to any of them.

6.2 General Partitioning

Suppose we are asked to partition a graph G into exactly k

pieces of approximately equal size so as to minimize the number of

cross arcs. Specifically, assume we have a graph with kn nodes, and

a positive integer c is fixed: we seek a partition {P-j ,p2>• ••

such that |P^. 1£ n+c for i = 1 to k. To make this a k-Partition

Problem all we have to do is add kc new singleton (dummy) nodes to G,

Call the augmented graph G'. Let {P] .P^.•♦•»Pp be a k-partition

of G' which minimizes the number of cross arcs. Set

P^. = PI - {the dummy nodes in Pp (i = 1 to k) .

Then (P-j ,P29• ••»P|̂ } is a partition which minimizes the number of

cross arcs subject to the constraint jP^I £n +e.

If c is relatively large then it will take significantly more

space to store the graph G' than it takes to store G. We can
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eliminate this problem, and probably speed up the execution time some

what, by eliminating the dummy nodes, and substituting in their place

a counter for each set which indicates how many nodes con

tains. Moving a dummy node from P. to P^ is performed by decre
menting P.'s counter by one, and adding one to P.'s counter.

1

We now show how to convert the General Partition Problem (men

tioned in Chapter 2) into a k-Partition Problem. We are given a graph

G and a constant W. Apartition {P-j ,P2>-• • of G is feasible

if |P^-1 for i =1 to Jl. The number of sets allowed in a feasible
partition is arbitrary, and they are not necessarily of equal size.

VJe seek among all feasible partitions of G one which minimizes the

number of cross arcs.

For convenience assume that G has n nodes and that W divides

n evenly (we can always add some dummy nodes to G to insure that W

evenly divides the total number of nodes). Set k=^. Let
{p^jp^,...,P^} be a feasible partition of G. If there exist sets
P. and P. (i f j) such that \P.\ + |P.| < W then we can combine

1 j • j

these two sets into one to form a new feasible partition of smaller

cardinality. Given any feasible partition of G, there is one with

the same number of cross arcs and cardinality at most 2k - 1. Our

problem has become "find a partition »P2»* **♦'^2k-l^ ^

|P |̂ <W(for i =1 to 2k-l) which minimizes the number of cross arcs".
At the beginning of this section we showed how to solve this version

of the problem. Hence, our k-partition algorithms can be employed to

solve the General Partitioning Problem.
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6.3 More Complex Cost Functions

In this section we show how to modify the definition of A.^ in

the implementations of our k-partition algorithms to solve a variety

of other problems.

Let us assign a cost c.„, to each arc (u,v) of a graph G, and
uv

define c^^ =0 if arc (u,v) isn't present in G. Instead of mini
mizing the number of cross arcs in a k-partition, some problems ask for

a k-partition of G which minimizes the sum ^ c .
{u,v) is a
cross arc

We can accommodate this change by redefining our ^

node u G define

A..|(u) = I c - I c .
vep^ vep.

Our k-partition algorithms now are defined exactly as before, except

that they utilize this new objective function in place of the old one.

Assume that the arc costs are non-negative integers, and let

t = y c . -The number of exchanges made by our algorithms is bounded
h uv

UfV

above by some polynomial P(n,t). On any class of graphs for which t

grows exponentially with the size of n we have no proof that our

algorithms will run in polynomial time. It is an open problem to show

that Algorithm S, say, runs in time polynomial in n, regardless of

the value of t.

From the field of Design Automation comes the problem of parti

tioning elements of electrical circuits so as to minimize the number

of electrical connections made between different sets of the partition

(see Lawler [23] or Kodres [19]). We abstract this problem by using a

node to reoresent an element of the circuit. The elements are
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interconnected by signal nets. Anet connecting elements u-, ,Up,... ,u
It ^

is denoted in our abstracted problem by the set {ui,Up,...,u }. This
It ^

collection of nodes and sets defines a hypergraph (see Lawler [24]).

Let S^,S2,...,S^ be the signal nets in our problem. With respect

to a partition (P-, ,P2,... ,P,^} of the nodes define

fl If S.-'r.

lO if S.

1 if np^ is non-null

S* empty

The cost function we wish to minimize is

t k

X J ®ij (6.1)1=1 J=1 ^

All of our k-partition algorithms can be adapted to solve this

problem. We set = "the decrease in the cost function (6.1)

when node u in P^. is moved to py. Schweikert and Kernighan discuss
their experience with this model in [33].

An additional constraint is often found associated with this

problem. Let E(i) denote the number of signal nets which contain

both nodes in P^ and nodes not in P^. We require E(i) <p, for
all 1 and some p — where p corresponds to the maximum number of

external connections, or pins, allowed each set of the partition. See

[11,19,23] for discussions on this aspect of the problem. We suggest
adding a penalty function to the objective function A., which encpu-
rages exchanges that lower the values of the larger E(i)*s, in the

same spirit as the use of the penalty function d, (|PJ-|P. |-1) by
I 3

Algorithm M.

129



6.4 Adding Weights to the Nodes

If we are handed a partitioning problem in which the elements to

be partitioned are of different sizes (assuming a one-dimensional

metric) then we must alter our abstract model by associating a weight

with each node u. We also specify a capacity W and require that

our partitions satisfy ^ i = 1 to k. If the differ-
1 uep "

ence W-ttXo) is too small the problem becomes a packing problem as
K U

well as a partitioning problem. To avoid this we will assume that the

difference is large enough so that given any partition {P-j ,P2»• ••

for which a set P. is too heavy {\P.\ > W), there exists a node

u E p. and a set P. such that |P.| +a) < W.
1 j j ^

If we wish to partition our graph into only two sets, the problem

of node weights can be dealt with without much difficulty. Define
= I bi . Suppose we have a starting partition {L,R} with

^ UGp. ^
w(L) > to(R).^ Algorithm S or Kmoves a node from L to R, and con

tinues to move nodes from L to R until w(R) ^ a)(L). Next a node

is moved from R to L, and more nodes follow it until a)(L) ^u)(R).

This pattern is repeated until the algorithm arrives at a final parti

tion. Algorithm Muses a different strategy, which we shall look at

presently.

The chipping and splitting methods of finding partitions of car

dinality k can be applied to graphs with node weights using the

approach just outlined. However, the cyclic method used by Algorithms

S-C and K-C on graphs with unit node weights doesn't seem to adapt to

the problem of finding k-way partitions of graphs having different

sized weights.
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It is fortunate that Algorithm Mcomes to our rescue. If r

unit-weight nodes are moved one-by-one from P. to Pj, the sum of

the penalties incurred (using M's original penalty function) is

d,[(|Pi|-lPj|-l) +(|Pi|-|Pjl-3) +--- +{lPi|-|Pj|-2'"+3)]
=d^CKlPil-lPjD-r^J

Hence we suggest that the objective function y^j(u) for a node u
with weight be

y.. =d^[o)JlPj-|Pj|)-V +d2A..{u) (6.2)

On first glance it appeared to us that the function

di[|P |̂-lPj|-"J +d2iij(")

might be a better objective function than (6.2), because it doesn't

exaggerate the importance attached to moving heavy nodes as much, and

therefore would tend to let the heavy nodes move more freely. However,

a simple example was found where an infinite sequence of moves could

be made such that the objective function (6.3) was positive for each

move, i.e. cycling can occur. Thus, (6.3) isn't usable.

The penalty incurred when a set P. exceeds the maximum weight

allowable should be greater than when a set if underweight. If some

unit-weight dummy nodes are added, they will migrate to the sets having

the lowest total weight, effectively reducing the penalty placed upon

nodes which seek to exit from those sets.

We conclude that the k-partition algorithms can be easily adapted

to solve a variety of more complex problems.
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CHAPTER 7

PARTITIONING OF GfWHS WITH SPECIAL STRUCTURE

7.1 Worst-Case 2-Partitioninq of Graphs with Bounded Node Degree

Let d = d(G) denote the maximum degree of any node in a graph G.

In section 3.2 we proved that, if G has Narcs, then m*_<|-+o(N),
where m* is the number of cross arcs in an optimal 2-partition of G.

If d is held constant we can derive a stronger result:

Theorem 7.1. Given a graph G with N arcs and maximum node

degree d ^ 3,

m* <-^N +0(d^) .

For the case d = 3, Theorem 7.1 tells us that we can always find
N

a 2-partition with not more than about ^ cross arcs.

Proof. Assume we have a graph with 2n nodes, N arcs, and

maximum node degree d. Let {L,R} be an optimal 2-partition v/nich

contains m cross arcs.

A side arc is any arc which is not a cross arc. A side arc (u,v)

is considered to consist of two half arcs: one half arc leaves node u,

one leaves v, and they meet in the middle of the arc (u,v). We will

find it convenient to count the number of half arcs leaving nodes in L

(or R) and then to divide by two to find the number of side arcs.

This approach is based upon the fact that a node u which is incident

with c cross arcs must be incident with c-A(u) half arcs.
2Let H^ denote a subset of S (S =Lor R) which contains 2d

nodes having the highest A-values among nodes in S (ties are broken



arbitrarily). Define L' A L - and R* 4 Next define

MAX^, Amax{A(u)|u^S'}

2
for S' = L' or R'. For example, suppose 2d = 18, and L contains

10 nodes with A = 1, 30 with A = 0, and the rest have negative

A-values, Then MAX^^, = 0.

For definiteness assume MAX^, > MAX^^,. We start by showing that

MAX^, +MAXj^. <0 (7.1)

Choose u C: such that A(u) > MAX^^,. Choose any v e such
2

that u is not adjacent to v (since degree(u) < d and |Hj^l = 2d

this is always possible). Then A(v) > MAXj^,, and exchanging nodes

u and V produces a decrease of at least MAX^^i +MAX|̂ i cross arcs.

This is a contradiction unless (7.1) holds, since {L,R} is defined

to be an optimal 2-partition.

Given (7.1), we can prove our theorem by considering three

different cases. Throughout, we define

I = "the number of half arcs adjacent to nodes in L"

r = "the number of half arcs adjacent to nodes in R"
2

Assume that n > 4d".

Case 1. MAX^, +MAXj^. < -2.

For all nodes u e L, A(u) < -MAXj^,, and for all nodes v GR,

A(v) £ -MAX^, (otherwise an exchange exists which would improve the
partition {L,R}). At most 2d nodes in L (R) have A-vaiues

exceeding MAXj^, (MAXj^,). Hence
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and

implying

Then

>ID - (n-2d^)HAX. , -2d^MAX^,

r >tn - {n-2d^)MAX,,. - 2d^MAX. ,

H + r > 2m- 2n+8d .

N=m+|̂ S.+r) ^ 2m +n-4d^ . (7.2)
d—lA node vnth A-value £ -1 is incident with at most cross

arcs. If some node in R has A-value greater than 2 then all A-values
H 1for nodes in L are negative, implying m£ -^n. Otherwise all

A-values for nodes in R are 2 or less. Also MAX^^, £-1. Hence

m<^n+|(2d^). (7.3)
Now we have

®—2 ''y (^-2)
2m + n - 4d

n + 3d

< — by (7.3)
dn + 2d'̂

, d-r . 3d

J *1 n

Since N£ dn, m£-^n +0(d ) as desired.

Case 2. MAXj_, +MAXj^. = 0.

For clarity we will prove Case 2 assuming that MAXj^, = MAXj^, = 0,

but a proof analogous to ours goes through without using this

assumption.

A node u such that A(u) > 0 does not exist, or the 2-partition

could be improved. Let

Z 4 {ugL|a(u) =0} .
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Define to be the subgraph induced by the subset LUR-Z.

Consider the partition {L-Z,R} of G^. Let denote t

A-value of a node u with respect to this new partition.

Claim 7.1. For all u G L-Z,

Proof of Claim 7.1. Suppose that there exists w G L-Z such that

A^Cw) >0. Let c ^ A(w). By definition

A^Cw) - c > 0 . (7.4)

135

Let W= {uGH|̂ adjacent to w). Choose [W] nodes in such
that none are adjacent to nodes in the set {w}uW; call this new set

Y. (Note, 1W| £d and lHj |̂ =2d^, so such a set can always be
found.) Exchange the nodes in W with those in V. The number of

cross arcs will not increase as a result of this exchange. Now consider

the node w. With respect to the new partition formed by exchanging

W and Y, A(w) = c+2(A2(w)-c) >0 by (7.4). But there exists a

node V G - Y, not adjacent to w, such that A(v) = 0. Exchanging

w and V improves the 2-partition, a contradiction. Hence Claim 7.1

must be true.

We give an example of what happens when Claim 7.1 is not satis

fied. Here = 0, c = -2, t = 2:

A = -2 w A = +2

0 A = 0



Suppose z cross arcs are incident with nodes in Z, so m- z

cross arcs are incident with nodes in L-Z. Let |L-Z| = b. Then the

number of side arcs incident only with nodes in L-Z is at least

l(ni-z+b), by Claim 7.1.

Next, let be the set of side arcs incident with at least one

node in Z. None of the nodes in Z are adjacent, or a 2-partition

better than {L,R} would exist (arguing as for Claim 7.1). Hence

lA^l = z. Summing, we find that

£^2z+m-z+b = m+z + b .

We can similarly define V = {veRlA(v)=0} and find z' and b'

for R such that r^m +z'+b'. Assume for definiteness that

z + b < z* + b'. Then

We also know

Hence

N > 2m + z + b .

m £ z + b .

, . d-K
m . m ^ 2 ^ d-1
N — 2m+z+b - 3z + db - 2d '

which proves the theorem for Case 2.

Case 3. MAX|_, +MAXj^, = -1.

For clarity assume MAX^^, = 0, MAXj^, = -1. For the moment

assume further that a(u) < 0 for all u € L, and A(v) £ -1 for

all V e R.

Claim 7.2. Let u G L and suppose a(u) = -i. Then u is

adjacent to at most i+1 nodes v G L such that A(v) = 0.
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Claim 7.3. Let u G R and suppose A(u) = -1. Then u is

adjacent to at most i nodes v G R such that A(v) = -1.

We will prove Claim 7.3 here. The proof of Claim 7.2 is similar.

Suppose w G R, a(w) = -i, and at least i+1 A = -1 nodes in R

are adjacent to w. Choose i+1 of these nodes and call this set W.

Now choose i+1 A = 0 nodes in L which are not adjacent to nodes in

{w}uw, and call this set of nodes Y. Interchange the nodes in Y

with those in W. The number of cross arcs increases by at most i+1.

Now look at w. With respect to the new partition, A(w) = -i +2(i+l)

= i +2. Find a node y in L such that A(y) = 0 and y is not

adjacent to w. Exchanging y and w reduces the number of cross

arcs by i +2. Contradiction. Hence Claim 7.3 must be true.

Example for Claim 7.3 (i = 2):
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• 1 A ft ^ . 2(m-n)Claim 7.4. £ ^ m+

Om

Claim 7.5. i^^ni +n+j^ if d is even.
9m

r ^ m+ n + if d is odd.

We will prove Claim 7.5. Claim 7.4 is proved in a similar fashion,

but makes use of Claim 7.2 rather than Claim 7.3 in its proof. Define

T {veR|A(v) <-1}

and

t. = l{veR|A(v) =-i}l .

Set t = |T| = It.. If d is even, then at most cross arcs
1=2 ^ t(d-2)

are incident with nodes in T, so at least m—^^ cross arcs are

connected to nodes in R-T. Hence at least side arcs

cross from R-T to T, because at least m-^^+n-t half arcs
leave nodes in R-T, and by Claim 7.3 (i=l) all but n-t of these

half arcs connect to nodes with A < -1. Combining this result with

Claim 7.3 where i < 1, we find

2t„ +Stj +••• +dtj > m-

and hence

tp +2t, +••• +dtj m- - t .

We also have ^2 ^ ^3 ^ ^ ^d " ^

t^+ 2t2 +•••+(d-l)t^ 2 max{mt)
. 2m
- d+2 •

Hence

r >m +n+t2 +^t^ +. •• +(d-1 )t^
, . 2m

> m-Hn+y^2
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r ♦

as desired. If d is odd the proof of Claim 7.3 starts by observing

that at most cross arcs are incident with nodes in T. This

leads the slightly stronger lower bound on r. Thus, Claim 7.3 is

proved.

We now split the proof into four cases.

Case 3a. d = 3.

If a node u G R is connected to a cross arc then A(u) > -1.

Hence all m cross arcs connect to nodes in R-T, implying

2t2 +St^ > m.

Also, 2m half arcs leave the m nodes in R-T that are incident

to cross arcs. Putting these results together we have r > 3m. Also,

£ ^ m, so

N>^(Jl+r) +iii>3ni =>

Case 3b. m £ n, d £ 4.
OmBy Claim 7.5, rira +n+^. Also, H>m, so

M ^ . d+3 . nN>m+^2^ +2.

Hence

m m 2(cH-2)
N - 2d+5„ .n -- 5d + 12

— d > 4 .

Case 3c. d is even, d > 4, m > n.

By Claims 7.4 and 7.5
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and

Hence

„ ^ . 2(m-n) ^ „ . m-n

r > m+n +-:rr^ > m+n +
d+2 - - d-1 •

N +-^)+^(1 --j^) .

Because at most cross arcs are incident to any node in R when
A 0

d is even, we know ni£-^n. This implies

d-2

m^ 2 d:^
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N - d-2,2d-lx . 1 d-2 2d *
"T"^ d-r^ 2'd-l

Case 3d. d is odd, d >_ 5, m > n.

By Claims 7.4 and 7.5

o j . 4m-2n£ +r > 2m +n+-^+j~*

so

Ni»i(2+^)+t(i-alr) •
d" 1For d odd we know that m1"^-^, so

d-1

m ^ 2 &}:L
N- d-1 /2d+4N . 1 d£L " 2d+5

2 ^ d+1 ^ 2'd+l

< for d > 5 .
— 2a ~

Thus we have shown that Case 3 is true when all A-values in L are £0

and all A-values in R are < -1. By definition of MAX^, and MAXj^,
2

at most 2d^ nodes in L could have A= +1, and at most 2d nodes
2

in R have A = 0. This adds a term of size 0(d ) to our upper

bound on m. Hence Theorem 7.1 is proved. D



7.2 The Case of Very Sparse Graphs

Suppose we are given a graph G with n nodes and N arcs, with

N£ Then there are at least ^ singleton nodes in G, and hence
a 2-partition of G with zero cross arcs obviously exists. How big

can we make N and still guarantee that for all graphs G, m*(G) = 0?

Theorem 7.2. Given a graph G with n nodes and N arcs, if

N<^- then there exists a 2-partition of G having zero cross arcs.

Fix an even positive integer n, choose a positive integer

N£ n-1, and let

N= {v,,V2.....v^}
and

A={(v^,Vj)|l <j£N+l}

define a star graph G = (W,A). Here is an example of G when n = 8

and N =

An optimal 2-partition of G contains one cross arc. This construc

tion shows that the result in Theorem 7.2 is best possible. For

^ the best 2-partition of a star graph has N-^+1 cross arcs,
so if we fix the ratio s =-^ >-|- then the number of cross arcs grows
linearly with n.

Suppose v;e require that no node degree exceeds three. For this

case Theorem 7.1 finds an upper bound on m*(G) which grows linearly
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vvith n. The possibility remains that when s is small (but greater

than m*(G) can be bounded above by a function which grows slower

than linearly as n increases. Our next theorem indicates that this

is not the case.

1 3
Theorem 7.3. Given any s G there exists an e > 0 such

that given any ng, there is an ^ graph G with n
nodes and at most sn arcs such that the maximum degree of any node

is three, and m*(G) > eh.

We will now prove Theorems 7.2 and 7.3.

Proof of Theorem 7.2. We will prove a more general result for any

graph G such that N <

n

Claim 7.6. Given the graph G, fix a c ^ 2 such that — is

an integer. Then there exists a partition {S,S} of G with 1^1 =^
which has zero cross arcs.

Claim 7.6 is proved by induction on the number of components of

size at least two. Assume that G contains p components of size two

or greater.

Basis: p = 0, i.e. G has no arcs. For this case Claim 7.6

is obviously true.

Induction step: Assume that Claim 7.6 is true whenever G

contains exactly p-1 non-trivial components. We will show that the

claim must also be true if G contains p non-trivial components,

p > 1.
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Suppose G has p non-trivial components. Choose any non-

trivial component C. We know that

Id <N+1 <^+1 . (7.5)

We begin the construction of the sets S and S by assigning the

nodes of C to S. We must make sure that |C| £ |S|: Suppose n

is even. Then by (7.5), lC| £^£n(l-i), since c£ 2. Other
wise n is odd. Then because |S| and IC| are integers,

|Sl >^. and by (7.5) lC|<2^.
Let |C| = n^ and suppose that x cross arcs connect the nodes

in the component C. Let G' be the subgraph of G induced by N-C,

i.e. 6' contains all components of G except C. Then 6' has

n-nQ nodes, N-x arcs, and p-1 non-trivial components. Our

object now is to find a partition {S,S'} of G' with zero cross

arcs such that |S| =-^ and |S'| ""q "c* ^
partition, then setting S = S' UC proves Claim 7.6 and the theorem.

Such a partition {S,S'} must exist, according to the inductive hypo-
"-"othesis, if we can demonstrate that N-x < ~y—.

Because C is non-trivial and connected we know

X>n^ - 1 (7.6)
and

nQ>2. (7.7)

Suppose n is even. Then by (7.6)

N- X£ N- (nQ-1) 1 §-1""o ^^
"o

< ^scause > 0
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If n is odd then

N- X£ N- (oq-I)
.1= <-2^ by (7.7). •

The proof of Theorem 7.2 suggests a very simple algorithm for

finding a zero-cost cut when N<^. Assume is an integer and
c > 2.

Algorithm to find a partition {S,S} such that #(S;S) = 0 and [Sj =

1. Label the connected components of the graph C^jC^j.-.jCp

in such a way that [C-jl £ IC2I > *•* ^ Kpl*
2. S -f- 0; S •<" 0.

3. i = 1 to p do

if-- |Sl 1 (^)"- IS'I then S SUC.
else S -t- SUC^.

Proof of Theorem 7.3. A construction by G.A. Margulis in [30]

provides our starting point, which is

Lemma 7.1. There exists > 0 such that for every integer

m> 0 we can find a graph G-j such that
2i) G-j has 2m nodes;

ii) the degree of each node is at most 10;

iii) if {S,S} is a partition of the nodes of 6^ with

|Sl =f»2m^ <m^ then #(S;S) £ e^f'2m^.

The degrees of the nodes in a graph G^ provided by the lemma are too

large for our purposes, so we will alter G^ so that each node has

degree three or less:
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Define an r-cycle to be the graph (W^,A^) where

N = {u^.U2....,u }
and

A = {(u. ,u. .T j )11 < i < r} .
r 1+1 mod r" - -

Assume r > 10. Replace each of the original nodes u in by an

r-cycle, assigning each of the arcs in G-j originally incident v/ith

u to a different node of the r-cycle. Call this new larger graph G2

Example (r = 5):
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7 2 2Our graph G^ has n2 = 2m r nodes, at most 2m r +lOm arcs, and
2

contains 2m embedded r-cycles.

2

Claim 7.7. If {S,S} is a partition of G2 with \S\ = fr\^ <m r
^1then #(S;S) 1 2r ^"2*

The proof of Claim 7.7 follows this proof of Theorem 7.3.
^ arcs 3

Suppose we set r = 10. Then for the graph G2> ^ nodes " ^ - 2^*
e.

If we set e = particular value of s we have proved

Theorem 7.3. To make the theorem valid for all s in the interval

^ reduce the average degree of each node still

further. We will do this by adding qn2 singleton nodes to G2, for

a suitable q < 1. We will show that there is an e > 0 such that

any 2-partition of this new graph must have at least en cross arcs

(assuming n nodes).
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1 (1 1 1Q_
Define 6 =s- let q = f i +2S^n: ®"'' •" " '""P

(fxl denotes the smallest integer not less than x). Our final graph

G is constructed by finding a graph , embedding r-cycles in it

(for r =f-^) to form 62, and then adding q singleton nodes.
G is constructed so that

? .1^+5
y/ arcs _ 2m (r-t-5) 6 ^ 1+x - c
# nodes - 2,„2r(i+q) 2

Every 2-partition of G must contain at least n2(^-q) ="22
nodes of the subgraph G2 in each half of the partition (n2 -• 2m r)
Hence we can apply Claim 7.7 with f = to find that the number

of cross arcs in any 2-partition of G is at least

02(1-6)
n,e,(l-q) Vl^^ " I 1+26 V12^1 VI -HJ ^ ' I . C.U 112

"2®1^^T+26^ "n^^
- 40T46

Yi62-1
- 44(1+267

ne,6
> for n large enough and because
~ 6 < 1.

4r

e-,6

Setting e = proves the theorem. •



In [30] Margulis gives a construction for a graph he calls a

^0 1(1 -2)-concentrator. For any m> 0 he finds a graph such that
2

i) there are 2m nodes, divided equally into sets A and B;

ii) each arc connects a node in A with a node in B, and the

degree of each node is at most five;
2

iii) let X be any subset of A such that |X| £ and let

t(X) be the set of nodes in B adjacent to nodes in X.

Then there exists a constant Eq > 0 independent of m

such that 1t(X)| £ IXKl +y).

To build the graph mentioned in Lemma 7.1 we start with a concentrator

Gq = (Wq>Aq). Label the nodes in A and B:

A = {u,,u«,...,u y} ,
' m

B= {v,jVp,...,v 2> •
m

Then define

Aq ={(v^,Uj)|(u^,Vj)eAQ} .

Then the graph G-j = (WqjAqUAq) meets the requirements of Lemma 7.1,

where

Proof of Claim 7.7. Given a graph G2 and a partition {S,S}
1 - ^1of G such that |S| £ fn2> "^ £ ^ show that #(S;S)

Suppose there are p r-cycles which are split by the partition

{S,S}, i.e. for each of the p r-cycles, some of its nodes are in S,

"2^and some are in S. If p£ 2(r-l)"

n^f n^fe,
#(s;s) >-pri" >(e^<i).
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n.f _i V
Otherwise P—2(r 1p least (112^ -p(<^~l)^^ "2?" i^"Cycles
are wholly contained in S. By Lemma 7.1 ^f(S;S) ^ —2'p--. D

7.3 The Case of Trees

We now restrict our attention to the partitioning of those graphs

G which are trees. A star graph having n nodes and N = n-1 arcs

(defined in section 7.2) provides an example of a tree whose optimal

2-partition has nodes. Theorem 7.1 produced the upper bound

on m*(G) for graphs having node degrees at most d.

For the case of trees with bounded node degree we can find an even

lov/er upper bound on m*.

Theorem 7.4. Given a tree with n nodes and maximum node degree

d, the number of cross arcs for an optimal 2~partition of the tree

is at most

j+ 2log^ n if d G{3,4}
T(d,n) ^

^-2-+^logc|n if d>5

This result provides a striking contrast to the result in

Theorem 7.3, where we proved the existence of n-node graphs which are

sparser than trees and have maximum node degree three, but whose best

2-partitions have at least cn cross arcs, for some e > 0.

We will describe an algorithm -- the Tree Coloring Algorithm --

which can 2-partition a tree so that at most T(d,n) cross arcs exist,

We also have an algorithm for k-partitioning trees which finds parti-

tions having at most (k-1)(d-l)log2j.3 +-p cross arcs. For the
case d = 4 we have an example of a tree whose optimal 2-partition
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has log^n cross arcs, indicating that for this case Theorem 7.4's

bound cannot be improved by more than a factor of two.

Dynamic programming techniques can be effectively applied to find

2-partitions of trees. We present an algorithm which finds an optimal
3

2-partition of a tree in time 0(n ).

Our Tree Coloring Algorithm commences by "coloring" all of the

nodes of a tree white. It then goes about changing the color of more

and more nodes, coloring them red, until half of the nodes are red and

half are white. This defines a 2-partition, where all red nodes are

understood to make up one set, and all white nodes the other.

During the execution of our algorithm there will always be some

node which is distinguished, and is labelled "u". With respect to the

distinguished node u, we define u^,U2>...»u^ to be the i nodes

adjacent to u. sub(u^) denotes the subtree containing u^ and all

nodes v such that u^ is on the (unique) path from u to v.

bal (u^.) is defined to be "(the number of white nodes) - (the number of
red nodes) in sub(u^)." For convenience we will assume that the u '̂s

are always labelled so that

bal(u^) > bal(u2) 1 ••• 1 bal(u^)

Changing the distinguished node u causes a redefinition of the nodes

u^, and hence alters the sub(u.)'s and bal(u^)'s.
Let b = (# white nodes) - (# red nodes) for the entire tree. The

algorithm distinguishes a node u such that

bal(u.) <I (7.8)

for i = 1 to If at any time the distinguished node fails to have

149



property (7.B), then a new node is chosen to be distinguished which

does have it. We will prove that such a node u always exists. Here

is the algorithm:

Tree Coloring Algorithm

1. Color all nodes white; b •<- n.

2. Choose any node x. Assign u <- x.

3. If there exists a u^ such that bal(u^.) > assign
u •<- u. and repeat Step 3.

^ 3 b
4. Let j denote the largest index obeying ^ bal(u^) < -2.

3 1=1
Set B 5] bal(u.).

"i "1

5. If (|-B) >{B +ba1(Uj^^)-|) set B--B +baUuj^p and
j j+1 •

6. Complement all nodes in u sub(u.): White nodes are

colored red, red become white.

7. b -f- b-2B. If b < 0 complement every node and set b -b.

8. If b > 2 go to Step 3. Otherwise stop (half of the nodes

are red, half are white).

Let us verify that Step 3 will always terminate, and hence find

a node obeying (7.8). Here is an abstracted tree (see Fig. 7.1).

Suppose that, in Fig. 7.1, node u^ was originally a distinguished

node, but did not obey (7.8) because the subtree of the node now

labelled u has a balance exceeding Step 3 will select u to be

the new distinguished node. If (7.8) is true for this node u then

Step 3 terminates here. If not, then bal(u.) > for at least one

of the nodes {u-j,U29U2»u^}. bal(ug) must be less than implying
that it won't be chosen to be distinguished. Hence, the succession
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balance < -7

balance >

Fig. 7.1



of nodes chosen to be distinguished as Step 3 iterates forms a simple

path. Since such a path is finite, the search for a node obeying

(7.8) must terminate, and hence will succeed.
I

For any node u, I bal(u.) = b±l (depending on whether u is
i=l ^

white or red)". If (7.8) holds for u then we conclude

I bal(u.)>^^ (7.9)
i=l ^

(7.9) implies that the number of subtrees whose nodes are complemented

in Step 6 does not exceed during one iteration of Steps 2-8.

We have argued that the Tree Coloring Algorithm is correct and

will always terminate. It remains to prove that its 2-partitions have

at most T(d,n) cross arcs.

Proof of Theorem 7.4. Proof is by induction on the balance b.

We will show that when the algorithm is applied to a tree with overall

balance b, it will create at most T(d,b) new cross arcs as it

proceeds to color various nodes.

Basis: b < d (use b £ 3 for the basis if d G {3,4}). New

cross arcs are only created at Step 6: if u and u^ are the same

color initially, and sub(u^) is complemented, then (u,u^) becomes
a cross arc. Upon entering Step 6, bal(u^.) £ 1 for i £ jj implying

that j £|, meaning that at most new cross arcs will be created.
Here is an elementary fact about the logarithm function:

For r £ 2 and 1 £ x < r,

iog^x>^ (7.10)
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For the case d ^ 5 we find

b . d+1 b-1 ^1

<^logj,b +l by (7.10)
= T(d,b)

For d G {3,4} we calculate

I=< 21093 b+i ^ •

Induction Step: The balance is b > d (for d G {3,4} assume

b > 3).

Suppose that one iteration of the algorithm results in a new

coloring with balance b* (b' < b). Our indi^ctive hypothesis states

that succeeding iterations will produce at most T(d,b') new cross

arcs.

b' <

Claim 7.8. Let p denote the value of j at Step 6. Then
b

2p-r

Proof. Using the value for j upon entering Step 5 define

X =

J , ,
I bal(u^-) and w= bal(u.^^) .

i=l

The algorithm is constructed so that at Step 7

b' •<- lb-2Bi <2(|) =w (7.11)

(because x < Z and I > b-1 we know w > 0). Returning to
h bStep 5, if x+-^->^ then p=j, so that pw £ x <^, implying
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with {7.11) that b' 1^p- Otherwise T^^en p=j+1, so
lb b

{p~2)vi ±2' b' £ ^:;y, proving Claim 7.8.

Claim 7.9. For d £ 5 define

f(p.d) ^ p- --2—logj(2p-l) .

Then f{-'̂ -^,cl) >f(p,d) for all pe [2,^^].
M rm

Proof. —is positive for p g [2,-^], so f(p,d) must
Bp

reach a maximum on the interval [2,-^] at one of the endpoints, 2

or f(^,d) = 0. f(2.d) =2-ii^log^,3. We will
show that f(2,d) £ f(2,5) < 0:

Define g(d) ^

In d- i- 1g.(d)=_d_ (7.12)
In'^d

For d > 1, the quantity lnd--j increases as d increases. Hence,

the numerator of (7.12) will always exceed In 5-^^0.4 > 0, implying

that for d £ 5, g'(d) is positive and g(d) > g(5). Therefore

f(2,d) £ f(2,5) « -0.05 < 0.

Now we apply the inductive hypothesis. Suppose p subtrees

sub(u^) were complemented in Step 6. We claim that

pe {1,2} => b' <I (7.12a)
bal(u«) .

If p=1 then bal(u^)+ 2""^ - 2' bal(u^)>3-,
implying b' £•^* Claim 7.8 verifies (7.12) for p=2.



If d e {3,4} then (7.12) and the inductive hypothesis imply that

the number of new cross arcs is at most

2+210936' +1 <2+21093!+^ =2+210936+1= T(d,6) .

Now suppose d > 5. The inductive hypothesis guarantees that the

number of new cross arcs is at most

p+^llog^6'+l (7.13)

If p ^ 2 then by Claim 7.8

(7.13) <p+^log,^^+l (7.14)
=f(p,cl) +^logj6+l
< +-'̂ 1o9j,6+y 6y Claim 7.9
=~lo9j 6+^ =T(d,6) .

If p=1 then (7.13) <1+-^109^1+1 <2+̂^-109^,1+1 which
is the value of (7.14) when p = 2. ^

By modifying some of the steps of the Tree Coloring Algorithm we

can produce an algorithm v/hich finds a partition {S,S} such that
|5| = for any k > 2 which divides n. Steps 1, 2, 3 and 8 are

changed to become:

2n
1. Color all nodes white; b -j^.

2. Choose any node x. Assign u x. If bal(u^) _< 2'

i = 1 to go to Step 4.

3. Put a check mark on node u. Find a node u^ such that
K

bal(u^.) > 2 set u u^..
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3.1. Exactly one of the u.'s is checked; call it u^. If t > t

then do:

TEMP u^;

for i = t to £-1 do u. -t- u. ;— — — 1

^ TEMP;

Step 3.1 insures that a checked node will not be referenced

by Steps 4, 5, or 6.

3.2. If all of the u^.'s which are unchecked satisfy bal(u.)

then go to Step 4. Otherwise go to Step 3.

8. Erase all check marks. If b ^ 2 go to Step 2. Otherwise

stop (-^ of the nodes are red).

Theorem 7.5. Given a tree with n nodes and maximum node degree

d, the Modified Tree Coloring Algorithm (above) can find a partition

{S,S} vnth |S| =•^- having at most

9n 1

(d-l) log2jj_3-Y"^^ cross arcs .

Proof. The correctness of the modified algorithm and the upper

bound on the number of cross arcs can be verified in much the same

manner as was done for the Tree Coloring Algorithm. Steps 2 and 3

(including 3.1 and 3.2) have been constructed to guarantee that

I bal(u.) >-^ (7.15)
i=1 ^

This inequality implies that the proof of Claim 7.8 is still valid,

and hence that Claim 7.8 holds for the modified algorithm as well.

Another implication of (7.15) is that P £ d-1, where p is the
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value of j at Step 6. This inequality is weaker than the. inequality
j , *1

p < implied by (7-8). Hence our upper bound in Theorem 7.5 is

weaker than that derived for Theorem 7.4. •

Corollary 7.1. Given a tree with n nodes and maximum degree d,

we can find a k-partition having at most

{k-1)[-2-+(d-l) cross arcs .

Proof. We use the chipping method described in Chapter 6. The

Modified Tree Coloring Algorithm is applied k-1 times. Each time

that a set of ^ nodes has been colored red, we set those nodes aside,
set n -f n-^ and k •<- k-1, and apply our algorithm to the remaining

white nodes. If those white nodes form a forest which is not connected

we add artificial arcs where needed to form a tree. •

The splitting method can be used in place of the chipping method.

The resultant upper bound on the number of cross arcs is asymptotically

the same as that in Corollary 7.1, but is not quite as good. It is not

hard to show that the Tree Coloring Algorithm runs in time O(nlogn)

on an n-node tree. Hence we can use our Modified Tree Coloring

Algorithm to find a k-partition of a tree in time (}(knlogn).

Acomplete ternary tree on n =—^— nodes (assume ^ is a posi

tive even integer) provides an example of a tree for which the number

of cross arcs in an optimal 2-partition, m*, is log^n. For this

tree d = 4, indicating that for the case d = 4 the upper bound

T(4,n) on m* cannot be improved by more than a factor of two.

Fig. 7.2 is an example of our ternary tree for the instance = 4.
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Fig. 7.2

For convenience we have labelled the root v-j, and defined ^+1

to be node v^.'s middle son, for i =1 to £-1. We define to be
the left son of v^, for i =1 to ^<-1. We claim

Theorem 7.6. An optimal 2-partition of a complete ternary tree

on

%P = nodes has at least flog^nl - [10931093"! cross arcs

Proof. Suppose the nodes of our tree have been colored either

black or white so as to define an optimal 2-partition. On each level,

if a white node is to the right of a black node, complement the colors

of both nodes, until on any level all black nodes will be to the right

of all white nodes. This recoloring preserves the optimality of the

induced 2-partition, since on a given level the new arrangement maxi

mizes both the number of black nodes which have black fathers, and

the number of black sons of black nodes. For definiteness v/e will

assume that more than half of the leaves are black (there are an odd

number of leaves).

Claim 7.10. Mo white node of our tree has three black sons, and

no black node has three white sons.
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If Claim 7.10 is false we can improve our 2-partition: Suppose

a white node has three black sons. Color the white node black, and

color some black leaf in the tree white. This reduces the total

number of cross arcs by at least one. Claim 7.10 implies that all

nodes to the right of the v.'s in our tree are black. Also, must

be black. This leaves only 1 black nodes unaccounted for (Fig. 7.2

illustrates what such a coloring looks like).

If all of the leaves of a subtree rooted at s^ are white, for

2 £ i _< £-1, then by Claim 7.10, s^. must also be white. All of
£

the leaves to the left of v^, except for up to of them, must

be white. This means that the nodes white, for
0 3^-1

any i obeying 2" ^ 5. "2—* '̂once

"at least (t- nog3,()!.-l)l -l) of the nodes labelled s^ are white"
(7.16)

For every white s. there is a corresponding cross arc, because the
0

right son of node v^ -j is black. There is also at least one cross
arc connecting a pair of nodes along the path v-j ,V2,. ••sV^. Hence

(7.16) implies that

m* > £- nog3(^-'l)l
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> [10930! - riog3log2nl .

This proves Theorem 7.6. ^

Note that if we color everything to the right of the v/s black,

color V ,Vjj ,..., and v« black, and color all other nodes white
1+1 1+2 ^ ...

then the induced 2-partition has i cross arcs, implying

m* £ logo(2n+l) .



Our Tree Coloring Algorithm may produce a 2-partition which is far

from optimal. Consider, the tree represented in Fig. 7.3.

'1

(ternary)

a"'-!

/ ^2 \ \
(ternary)\ r\ • r\

2 4 4

Fig. 7.3

a '̂-i
Here we assume that T, and Tg are complete ternary trees on -j-

3^ 1
nodes, and and are any trees having nodes each (P. is

even). Asolution v;hich colors T.| and white, and T2 and
red, will have three cross arcs.

% 3
When the Tree Coloring Algorithm commences, b = n = (3 -1)^+2,

and u is the distinguished node. Our algorithm will first complement

sub(u-j), and then either U2 or will become the distinguished
node. Suppose for definiteness that u^ is distinguished. The
balance of all nodes not in the subtree T2 is zero, so our algorithm
from this point on will never attempt to alter the colors of nodes

outside of T2» except to complement them as a group. Hence it is
forced to 2-partition the ternary tree T2, requiring at least

p,- nog3p'-ii cross arcs.

Amore detailed analysis reveals that the Tree Coloring Algorithm

finds a 2-partition of an P-level ternary tree which has 2P, - 2 cross
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arcs. Thus, while the optimal solution to the tree in Fig. 7.3 has

three or fewer cross arcs, our algorithm's solution had about 21og2n

cross arcs.

We now outline a dynamic programming algorithm which will find an

optimal 2-partition of a tree. Our abstracted tree (in Fig. 7.4) con

sists of a root r and d subtrees ,$29.••»S^, where we let

denote both a subtree and the nodes of that subtree.

Fig. 7.4

We define r^ to be the root of the subtree , and let n^ =jS^],
so that n = I n. +l. Our algorithm will always assign the indices

i=l

of our labels so that n-j < n2 < l"d-

Given an n-node tree T, for a node r in the tree and each j

such that 0 £ j < n we define V*(r,j) to be the set of partitions

{S,S} of T which minimize the number of cross arcs subject to

|Sl = j and r GS. Next define a complete set pjf partitions of an
n-node tree rooted at r to be any set (with cardinality n) contain

ing one partition from each V*(r,j), for j = 0 to n-1.

The dynamic programming algorithm starts by choosing any node r

and making it the root, as in Fig. 7.4. It then finds a complete set

of partitions for each of the subtrees rooted at r^. Next it
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computes a complete set of partitions for the subtree u{r} noted

at r. One-by-one more subtrees are added: we find the complete set

of partitions of the subtree S-j U{r} rooted at r, for

i = 2 to d. The last complete set of partitions computed includes an

optimal 2-partition of the tree.

Now let us define the algorithm more formally. Let an optimal

partition denote a partition with a minimum number of cross arcs among

all admissible partitions. For all pairs of integers i and j such

that 1 < i < d and 0 < j < n.-l define

="an optimal partition of S^, given that |L^1 =j
j IIand r^ € R;:

= "an optimal partition of the nodes in S^u{r},
given that |U |̂ =j and r GV"?"

i

For integers i and j such that 1 i d and 0 ^ j ^
I

define

{X^,Y"i} ^ "an optimal partition of the nodes in u SpU{r},
11" . . = 1 to i

given that \y?^\ =j and r GY"?"

Finally, define for 0 < j <. n-1,

a! partition or tne cree, given uiai,

and r G R

{L'̂ jR"^} ^ "an optimal partition of the tree, given that iL'̂ l'̂ j
j II
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Our algorithm is designed to produce the set of partitions {L"^,R"^}
and scalars c^, for j = 0 to n-1. The definitions imply that

= X '̂ for all j, and that is an optimal 2-partition
d

of the tree. Here is the algorithm:



Algorithm D

Assume n > 1, guaranteeing that r has at least one subtree.

1. "label the nodes adjacent to r so that n^ .1 ••• £ n^."

for i = 1 t_o d ^0 begin

rf n^ =1 then begin

0; ••• c9 0;
end

eUe "make a recursive call to algorithm Dto generate L-j,
R"? and c^ for 0£ j £ n^.-l"

2♦ for i = 1 to d ^ begin
n.

for j = 0 £q n. ^
i "i'^

if c. < c. +1 then begin
— I — 1 —

U"? L"j; V"^ R^U{r}; w"| c^;
e^id_

else begin
n.-j . n.-j

u9 <- R ^ L.^ u{r};
i "i"jw:| c^ +1;

end

end

3- for j = 0 to n do begin

X-j ; Y'j V-j; z-j ;
end

for i 2 to d do
"i

for j = 0 t_o I n d£i begin
•• £=1 k j-k« u

"find a k^ such that +w. = min {z. , };
1 k. ^ j-k. . '-L ' j-kn 0£k£j
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j k j-k

ejid

for j = 0 n-1 k^^Jl

-e- X^; Yjj; z"^;
end

The proof that algorithm D is correct consists of straightforward

verification that the partitions built in Steps 2 and 3 actually con-

form to our previous definitions of them, and that = #(L".iRp,

=#(U'|;V^), and z^ =#(X^;Yp.

Theorem 7.7. Algorithm D finds an optimal 2-partition of an
3

n-node tree in time 0(n ).

Proof. We will find an upper bound on the number of elementary

steps performed by algorithm Dj v/here an elementary step is defined to

be any operation which can be executed in constant time. We assume

that the set operation S" SUS* can be performed in time

C'dSl +IS'I), where S, S', and S" are subsets of the n nodes.

(This can be accomplished by using an ordered linked-list representa

tion for the sets.)
^2 2 .

Step 2 can be performed in time 0( In.) = C>((n-1) ) (using
d 1=1
^ n. = n_l and n > 2). Step 3 takes not more than

i=l ^
d o 9 ,

4 y (n, +no+ ••• +n.) +0((n-l) ) elementary steps. Hence there
i=l ^

exists a constant C2 >0 such that Steps 2 and 3 together use at most

^ i=l

2
c I (n.j +0^+ •••+n.) steps . (7.17)
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At Step 1, if n^. = 1 we process in constant time c^.

Otherwise we assume inductively that for some c-j ^ max{c-j ,02), a
o

recursive call for subtree takes time at most Hence we can

infer that Step 1 uses at most

c, y n. steps . (7.18)
^ i=i ^

From (7.17) and (7.18) we can bound the total running time by

d

c 3 + c. y (n,+n.+ --+nj'^ (7.19)1 + ^2

We will show that (7.19) cannot exceed c.|n , thus justifying

the inductive assumption and proving our theorem. By definition and

design ^
0 < n, < n« < ••• < n. and I n. = n- 1 (7.20)

- 1 -- 2 ~ ~ ci .^1 1

Let (n^,n2,...,n^) be a vector satisfying (7.20). Assume that only
the last k+1 n^.'s are non-zero, for 0<k£ d-1. For any fixed k
the term (7.18) is maximized when r\^_^ = = ••• = =1 and
n = n-k. The term (7.17) is maximized when n. . = "d-k+l "

Q

(7.19) < max (c,[(n-k-1)^+k]+c„(k+l)(n-1)^} (7.21)
0<k£d-l

Claim 7.11. (7.21) < n
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P^q^f. Fix m > 1 and for k G [0,ni-l] define

f(k) = (m-k)^ +k+c^Ck+l )ni^ .

Then f"(k) = 6c^(m-k) > 0, implying

f(k) = max{f(0),f(n-1)}
3 2 3= max{Cim +C2ni , Cim+C2m }

3 2= c^m +C2m because ^ C2 .

Then we have

(7.21) <c^(n-l)^ +C2(n-l)^ <c.,n^ .

This proves the claim and the theorem. ^

Dynamic programming can also be used to find k-partitions of trees

for k > 2, but generalizing the approach used here produces an

algorithm which is quite slow for all but the smallest values oF k.

For example, a generalized version of Step 1 must produce on the order
3 3

of n*^"^ different partitions analogous to the n-1 {L.,R^}'s

algorithm D generates.

The problem of finding a general partition (defined in Chapter 2)

of a tree is apparently much easier to solve. Kundu and Mistra [22]

show how to find a general partition of an n-node tree in time 0(n).

7.4 The Case of Planar Graphs

Although the Simple Max Cut Problem (section 2.2) is NP-complete

for general graphs, a polynomial-time algorithm exists for solving

Simple Max Cut on planar graphs (see [10]). Whether or not there is

166



167

a polynomial-time algorithm to find an optimal 2-partition of a planar

graph is an open problem. Hov/ever, for the case of an n-node planar

graph G where the maximum node degree is held below a fixed bound,

a fast algorithm is available which finds quite good 2-partitions of G,

in the sense that m*(G) = o(n).

A star graph with n-1 arcs (defined in section 7.2) provides an

example of a planar graph for which m* ^ Hence we conclude that

bounding the maximum degree of any node is necessary if we are to derive

a sub-linear upper bound on m*. In [26] Lipton and Tarjan have

provided us with the means for partitioning planar graphs. Their

result is:

Let G be any n-vertex planar graph. The vertices

of G can be partitioned into three sets A, B, C,

such that no edge joins a vertex in A with a vertex
•u 2n

in B, neither A nor B contains more than -y

vertices, and C contains no more than 2t^>/n

vertices.

Lipton and Tarjan have an algorithm which finds the desired sets A, B,

and C in linear time. We have an immediate corollary:

Corollary 7.2. Let G be an n-node planar graph with maximum

node degree d. Alinear-time algorithm exists which finds a partition

{S,S} of G such that |S|<|S|<~ and #(S;S) < 2V^ dv^.

Proof. Given G, find A, B, and C, and suppose lA| < iBj.

Assign S<-k and S^ B. If |Sl +lC|lf set S^-SUC. Otherwise
choose any |S| nodes in C and add them to S. Then add the

remaining nodes of C to S. ^



We need an algorithm which can partition a planar graph into

equal-sized sets. Here is an algorithm v/hich utilizes the above

algorithm as a subroutine to find a 2-partition of a planar graph. Its

running time is O(nlogn).

Algorithm P

1. 0; R -t- W (the set of all nodes).

2. Find a partition {S,S} of R such that |S| £ |Sl £

and #(S;S) £ 2/2 d|R|.

3- 1^11 1 1^2' ^1 ^
else P^

4. rf |P-, I =^ or IP2I =-^ then b^in
11 iP-j I < IP2I ^1
else, P2 P2

£tq£;

d

5. R S

6. Go to Step 2.

To make it obvious that algorithm P is correct v/e note that at the

beginning of Step 3, n-(|Pi| + lp2l) ifnplying that

|Sl+min{|P-| I, IP^I} £-^^ Hence, the cardinalities of P-j and P^
never exceed

Theorem 7.8. Let G be an n-node planar graph with maximum node

degree d. Algorithm P finds a 2-partition of G having at most

16d/n cross arcs.

168



Proof. First note that the size of the set R shrinks by at

least a third after each iteration of Steps 2-5. Hence the number of

cross arcs generated during Step 2 on the i iteration is at most

iJi (7.22)

2 t -1After t = 0093/2"! iterations |R| £ n(^) n*n =1, so at most
0{log n) iterations of Steps 2-5 can occur. From (7.22) we know that

the total number of cross arcs in the final 2-partition

most

Z-H d^y /nclr <2.^ dy^ y/I
i=0 ^ 1=0 ^

= iJZ d/n(l

£ 16d»^ . ^

Ak-partition of a planar graph having o(n) cross arcs can be

found by combining algorithm P with the splitting method (described in

Chapter 6). Suppose k is a power of 2. Using Theorem 7.8, it is

easy to calculate a limit on the number of cross arcs which are

produced by this method. There will be at most

IGdC^n +2/^+
_n 1 log«k-l

= 16d/T[>^ +/2"^ +•••+»/? ]

=16d^[-''^]
y^-1

= ()(d7kn) cross arcs
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7.5 Concluding Remarks

A person in possession of a real-life k-partition problem would be

for the most part encouraged by the results we have obtained in this

chapter. .Our random-graph analysis in Chapter 4 indicated that for

values of k much over two almost all of the arcs in a k-partition

will be cross arcs. However, we have shown that for certain graphs

with special structure, k-partitions with relatively few cross-arcs

exist.

Looking at Chapter 1, we find several applications which might

exhibit the special structure we are looking for. A graph which repre

sents the flow-of-control of a computer program might be expected to

be tree-like, if we neglect those branches to basic system subroutines

(e.g. to sin( ), abs( ), time-of-day( ), etc.). The accessing paths

for some database applications form a tree. A large electrical network

which must be broken into pieces for analysis may correspond to a

nearly planar graph. Finally, if no other structure is apparent, the

maximum node degree of the graph to be partitioned may be small. The

notion that a small maximum node degree often implies the existence of

a k-partition with relatively few cross arcs has pervaded this chapter.

While graphs exhibiting special structure are often more tractable

with respect to partitioning than unstructured graphs, it appears that

only specially-tailored partitioning algorithms can exploit this struc

ture. Recall that Theorem 3.2 indicates that the performance of an

iterative-improvement algorithm is very poor on certain trees. It

would be an interesting experiment to test the performance of such an

algorithm on a variety of trees and planar graphs.

170



171

Given an n-node graph G, let us label the class of all k-parti-

tions of G EQ(^), and let be the class of partitions
{Pt >p95... jPo) arbitrary I) such that |P^1 for i =1 to Z.
EQ(-) corresponds to the solution space for the k-Partition Problem;

k

LE(-) represents the partitions which are feasible for a Generalk n n
Partition Problem (defined in section 2.1) with W=

properly contained in LE(^-) when n>k, and an optimal k-partition
of G may have many more cross arcs than a corresponding optimal

general partition. For many applications the problem to be solved
more closely resembles the General Partition Problem than the k-Parti-

tion Problem.

The two problems are similar enough that all of the iterative-

improvement algorithms for partitioning a graph which have been dis

covered can be adapted to solve either problem (in section 6.2 we show

how to convert all of our k-partition algorithms so that they produce

general partitions). We predict as a consequence that on most graphs
the solutions found by an iterative-improvement algorithm working from

the whole space LE(~) will be little better than those found by an

algorithm which only considers partitions in EQ(^-).
The k-Partition and General Partition Problems lose their simi

larity when the only graphs to be partitioned are trees. The algorithm
developed in [22] to find an optimal general partition of a tree in

linear time apparently can't be adapted to find k-partitions. Further

more, it can be easily shown that if the maximum degree of our tree is

d, then an optimal general partition (from the space LE(-j^)) always

has fewer than kd cross arcs in its solution. This bound is substan

tially lov/er than the O(dlogn) bound for k-partitions of a tree.



172

Biblioqraphy

[1] Aho, A., Hopcroft,.J.E. and Ullman, J.D., The Design and Analysis
of Computer Algorithms, Addison-Wesley (1974), 372-374.

[2] Angluin, D. and Valiant, L., "Fast Probabilistic Algorithms for
Hamiltonian Circuits and Matchings," Ninth Annual Symposium on
Theory of Computing (May 1977).

[3] Brown, J.A. et al., "Design Automation and the Wrap System," Proc.
K Fifth Design Automation Workshop (1968).

[4] Edmonds, J. and Karp, R., "Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems," JACM (April 1972).

[5] Erdds, P. and Renyi, A., "On Random Graphs, I," Publications
Mathematicae 6 (1959), 290-297.

[6] Even, S. and Shiloah, Y., "NP-Completeness of Several Arrangement
Problems," Tech. Report #43, Department of Computer Science,
Technion, I.I.I., Haifa, Israel (June 1975).

[7] Garey, M.R. et al., "Some Simplified NP-Complete Problems," Proc.
Sixth Annual ACM Symp. on Theory of Computing (1974), 47-63.

[8] George, J.A., "Nested Dissection of a Regular Finite Element Mesh,"
SIAM J. Numerical Analysis (1973), 345-363.

[9] Grimmett, G.R. and McDiarmid, C., "On Coloring Random Graphs,"
Math. Proc. Cambridge Phil. Soc. 77. (1975), 313-324.

[10] Hadlock, F., "Finding a Maximum Cut of a Planar Graph in Polynomial
Time," SIAM J. Computing 4, 3 (September 1975), 221-225.

[11] Hanan, M. et al., "Iterative-Interactive Technique for Logic
Partitioning," - Research &Development (July 1974), 328-337.

H [12] Hoel, P., Port, S. and Stone, C., Introduction to Probability
Theory, Houghton Mifflin Co., Boston (1971)^

[13] Johnson, D.S., "Approximation Algorithms for Combinatorial
^ Problems," ^C_SS 9 (1974), 256-278.

[14] Karp, R.M., "Reducibility Among Combinatorial Problems," in
Complexity of Computer Computations (eds. R.E. Miller and J.W.
Thatcher), Plenum Press (1972), 85-103.

[15] , "The Probabilistic Analysis of Some Combinatorial Search
Algorithms," Memo No. ERL-M581, University of California, Berkeley
(1976).



173

[16] Kernighan, B., "Some Graph Partitioning Problems Related to
Program Segmentation," Ph.D. Thesis, Princeton University
(January 1969).

[17] Kernighan, B. and Lin, S., "An Efficient Heuristic Procedure for
Partitioning Graphs," Bell Sys. Tech. 49, 2 (February 1970),
291-307.

[18] Knuth, D.E., The Art of Computer Programming, Vol. Ill, Addison-
Wesley (1973), 99.

[19] Kodres, U., "Partitioning and Card Selection," Chapter 4 of Design
Automation of Digital Systems: Theory and Techniques (ed. M.A.
Breuer), Prentice Hall, Vol. 1 Ti972).

[20] Kozyrev, V. and Korshunov, A., "On the Size of a Cut in a Random
Graph," Problemy Kibernet. ^ (1974), 27-62 (Russian).

[21] Krai, J., "To the Problem of Segmentation of a Program," Infor
mation Processing Machines (1965), 140-149.

[22] Kundu, S. and Misra, J., "A Linear Tree Partitioning Algorithm,"
SIAM J. Computing 6, 1 (March 1977), 151-154.

[23] Lawler, E.L., "Electrical Assemblies with a Minimum Number of
Interconnections," IEEE Trans. Electronic Computers (correspondence),
EC-11, 1 (February 1962), 86-88.

[24] , "Cutsets and Partitions of Hypergraphs," Networks 3 (1973).

[25] Lin, S., "Computer Solutions to the Travelling Salesman Problem,"
BSTJ 44, 10 (December 1965), 2245-2270.

[26] Lipton, R. and Tarjan, R., "Applications of a Planar Separator
Theorem," Eighteenth Annual Symp. w Foundations jji Computer
Science (August 1977).

[27] Lukes, J.A., "Combinatorial Solutions to Partitioning Problems,"
Ph.D. Thesis, Stanford University (1972).

[28] , "Efficient Algorithm for the Partitioning of Trees,"
IBM J. Research & Development 18, 3 (1974), 217.

[29] , "Combinatorial Solution to the Partitioning of General
Graphs," IBM Research &Development (1975), 170.

[30] Margulis, G.A., "Explicit Construction of Concentrators," Problemy
Peredachi Informatsii 9, 1 (1973), 71-80 (Russian).

[31] Olver, F.J.W., As.ymptotics and Special Functions, Academic Press
(1974), 180.



[32] Sahni, S. and Gonzalez, T., "P-Complete Approximation Problems,"
JACM 23 (1976), 555-565.

[33] Schweikert, D. and Kernighan, B., "A Proper Model for the Parti
tioning of Electrical Circuits," Proc. Eleventh Design Automation
Workshop (1974), 57-62. ^

174


	Copyright notice 1978
	ERL-78-14

