

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A NEW MODEL FOR THE RECOGNITION OF STRINGS OF SYMBOLS

by

Keiichi Abe

Memorandum No. UCB/ERL M78/10

6 February 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A long paper

A NEW MODEL FOR THE RECOGNITION OF STRINGS OF SYMBOLS

Keiichi Abe1*
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT

In this paper the author proposes a new model for the recognition

of strings of symbols, which is named Penalty Finite State Automaton

(PFSA). The relations between PFSA and some of the models which have

already been proposed, that is, finite state automaton (FSA), error-

correcting parser for a finite state automaton (ECFSA), stochastic

finite state automaton (SFSA), and fuzzy finite state automaton (FFSA)

are discussed. Firstly, it is shown that our model PFSA is a generalization

of ECFSA. Secondly, there is an interesting analogy among SFSA, PFSA

and FFSA, and as a result, PFSA can be looked upon as an intermediate

model between SFSA and FFSA. Therefore, we can expect that PFSA should

be simpler than SFSA while it should be more powerful than FFSA, at least

in some applications.

Parsing algorithms and grammatical inference of PFSA are also

investigated. An application to the recognition of strings of symbols

extracted from chromosome data shows the possible effectiveness of this

model, though its performance must be further studied.

Research sponsored by the National Science Foundation Grant ENG76-84522.

+Qn leave from the Department of Information Science, Shizuoka University,
Japan.

-1-

1. Introduction

In syntactic or linguistic pattern recognition, a pattern may be

represented by a string, a tree, or a graph of pattern primitives. We confine

our interest to a string of symbols. There have been studied many models

for the recognition of strings of symbols [1-10]. For the sake of

simplicity, we will discuss only at finite state language level, though

the discussion might be hopefully generalized to context-free or context-

sensitive language level.

The simplest model for the recognition of strings of symbols is a

finite state automaton (FSA). However, FSA seems to be too rigid fbr

the application to pattern recognition. It behaves on the all-or-nothing

basis. For the purpose of pattern recognition it is desirable to introduce

some real-valued measure in the model. One way for accomplishing that

is to introduce error transformations between symbols. This leads us

to the second model, an error-correcting parser for finite state

automation (ECFSA) [8]. Two other important models for definining a

real-valued measure on the space of symbol strings are stochastic finite

state automaton (SFSA) and fuzzy finite state automaton (FFSA).

We will describe those models which have been already proposed

in the next section. Then we will propose a new model named Penalty

Finite State Automaton (PFSA) in Section 3. The relations between PFSA

and other models will be discussed in Section 4. Parsing and

grammatical inference of PFSA and its application to the recognition

of chromosomes are discussed in Sections 5 and 6.

2. Some Former Models for the Recognition of Strings of Symbols

Let us start with the definition of a finte state automaton (FSA).

-2-

/*

Definition 1 A non-deterministic finite state automaton is a

5-tuple

A= (K,Z,6,So,F) (1)

where K is a set of states;

Z is a set of input symbols;

6 is a mapping from Kx£ to 2 ;

S £ K is the initial state;
o

F C K is the set of final states.

A FSA defines a dichotomy on the symbol string space E*. Given

an input string £= ^1?2*,,?n G E*^i e 2 for !1 i1 n)» if a sequence

of states t ,t„,...,t satisfying the following equation is found,
o 1 n

t = s , t € F
o o n

<5(t, -,?.) 3 t, for i = l,...,n (2)
i—l i •*•-

then we can classify K into the positive class; otherwise into the

negative class.

The set of string 5's to be classified in the positive class is

called the language accepted by FSA A and denoted, by L(A). The family

of L(A)fs for all FSAfs is the well-known family of the finite state

languages (FSLfs).

By introducing three types of error transformations between

sybmols we get the second model, an error correcting parser for

FSA (ECFSA) [8].

+

We will follow the common notations in automata theory,

-3-

Definition 2 For any string C £ E*, we assume that we can apply

any of the following three error transformations:

(1) substitution T
s

T

^a^l §—5b?2 for any q,^ e E* and any a,b € E(a^b) (3)

(2) deletion T

T

CxaC2l — S^ for any ^ ^2 e E* and any aG E (4)

(3) insertion T

TT
5152' ^ia?2 f°r any 51* 52 € S* and any aG E (5)

Here the notation CI n means that %can be transformed into n.

We may attach a cost to each of the error transformations. In

general, such a cost may be dependent on the transformed symbols a and

b. Therefore, in case (1) the cost would be represented by C (a,b),

in case (2) by C (a), and case (3) by C (a). We assume that those costs

are all-positive and Cg(a,b) <CD(a) + C^b).

We can transform any string £ £ z* to any other string n G E*

by applying the above transformations repeatedly. In this process we

assume that the cost of transforming £ to n is the sum of the costs of

the individual transformations.

Definition 3 The distance between two strings £, n £ E*, denoted

by d(£,n), is defined as the smallest cost of the transformations which

derive n from £.

Note that if C_(a,b) = 1 for all a,b e Z and CD(a) = C].(a) =1

for all a G z, then d(£,n) is defined as the smallest number of error

transformations required to derive n from £.

-4-

Suppose we are given a FSA A and the error transformations with their

costs as defined above. Then they define a metric on the string space

+ + t
E*, that is, a mapping from E* to R , where R denotes [O,00]. This

is called the distance between £ and the language L(A), namely,

d(£,L(A)) = min d(€,n) (6)
n^L(A)

Of course for a string £ £ L(A), d(£,L(A)) = 0. An efficient way of

computing d(£,L(A)) for a given input string £ is called error-correcting

parser for the FSA (ECFSA).

Another model for defining a metric over the string space E* is

a stochastic finite state automaton (SFSA).

Definition 4 A stochastic finite state automaton is a 6-tuple

A = (K,E,6,Y,F,8) (7)

where K is a set of states;

E is a set of input symbols;

6 is a mapping from KxKxE to [0,1];

Y is a mapping from K to [0,1];

F C k is the set of final states;

6 is a threshold value in [0,1].

Y represents an initial probability distribution among the

states in K and 6(S,Sf,o) is the transition probability from state S to

state Sf by reading input symbol a. Then after reading a given input

string £ = ££...£ , the probability of that the state of the automaton A

t
We look upon » as a mere symbol. In practice, it should be interpreted
as a sufficiently large value.

-5-

is one of the states in F is

v^ nP(0 = Z) E Y(tn) n 6(t T.t.,5.) (8)
'»* W—Vi1* i=1

In order to classify £ into one of two classes, we should compare P(£)

with the threshold 9. If P(£) >, 9 then we decide that £ belongs to the

positive class, otherwise to the negative class.

We can make a simplification assuming a unit probability distribution

for the initial state probabilities y, that is, Y(SQ) = 1 for some

S € K and y(S) =0 for any S i SQ in K. Then (8) reduces to

POO £ Z n *<Vl»W (9)
t €=F t.,...,t -QC i=l X L
n 1 n-1

where tQ = SQ.

We may consider 6(t. ,,t.,£.) in (9) not as a probability but as
i-l i i

a possibility according to what L. A. Zadeh has proposed [11]. Then

E and IT in (9) are substituted by max and min, and we have-

P'(C) = max max min 6l ^i-i^i'6^ (10)
t€Ft-,...,t ,QC {i|i=l,...,n}
n 1 n-1 '

where trt = Srt, 6*(t. ^t.,^.) is a transition possibility from state
0 0 i-l 11

t. to state t. by reading an input symbol £., and P'(C) is the final

possibility of the acceptance of input string £. This model is called

fuzzy finite state automaton (FFSA).

3. Penalty Finite State Automation

In this section a new model for the recognition of strings of symbols

is proposed. This model is named Penalty Finite State Automaton (PFSA).

"in fact, Zadeh's proposal is to consider 6 not as a single valued
function but as a fuzzy function (of Type 2). However, in order to
keep valid the analogy between the models that will be discussed later,
we consider 6 as single valued here.

-6-

Definition 5 A PFSA is a 6-tuple

A = (K,E,o),S0,F,9) (11)

where K is a set of states;

E is a set of input symbols;

a) is a mapping from KxRxE to [0,«];

S0 £ K is the initial state;

F C k is the set of final states;

9 is a threshold value in [0,»].

We call u)(S,S',a) "penalty associated with the transition from

state S to state S? by reading input symbol a". Note that the

transitions are defined as non-deterministic. Given an input string

£=£,...£ we can define the minimal sum of penalties required for
1 n

taking the automaton from the initial state S. to one of final states

in F by reading the whole string £. This can be expressed as

n

W(£) = min min £ "^i i^..^.) (12)
t^F tn,...,t -QC i=l X 1
n 1 n-1

where tn = S . Again we will have a dichotomy of the string space

E* by comparing W(£) with the threshold 9: if W(£) 4 9 then we put

5 into the positive class, otherwise into the negative class. We refer

to the set of strings in the positive class as "the language accepted by

PFSA A".

If we exclude the threshold 9 from definition 5, we have a

transformer which assigns a value W(£) to each input string £ £ E*.

Let us call it a Penalty Finite State Transformer (PFST).

-7-

Example 1 Suppose K={S^S^}, E={a,b}, F= {S2>,

6(SQ,S0,a) =1, 6(SQ,S1,b) =0, fi^^b) =2, 6(S1>S2,a) =0,

6(8^^,82^) = 1, 6(S2,S2,a) = 0, and 5(S,S',a) =« for any other

combinations of S, S', a. This defines a PFST shown in Fig. 1, where

the transitions with infinite penalty are omitted.

If we apply a threshold, say 9 = 2, we have a PFSA. It is easily

seen that its positive class consists of such strings that

£ C £ £ £{aabaa , abaa", abba , baa , bba |£ = 0,1,...}

PFST (and analogous transformers derived from SFSA and FFSA) can

be used in multi-class pattern classification. Let us assume there are

m pattern classes. We can construct m PFST's A.,A0,...,A , one for
1 2 m.

each class. By putting a given input string £ in all PFST's simultaneously,

we get m minimal penalties Wn (£), W0(£),...,W (£) calculated by (12).
1 l m

By finding the smallest value of them, say W,*(€), we then decide that

the input string £ belongs to class k* (Fig. 2).

4. Relations between PFSA and other models

4.1 PFSA versus FSA and ECFSA models

We will show that (1) the capability of PFSA is the same as that

of FSA from the theoretical point of view and that (2) PFST is a

generalization of ECFSA. We will not present the proofs here.

Theorem 1 The family of the languages accepted by PFSA's is the

same as the family of FSL's.

This fact does not imply that the performances of PFSA and FSA are

the same in practice. A minimum-state FSA equivalent to the PFSA in

example 1 has seven states. In fact, we can expect that in general a PFSA

should have fewer states than an equivalent FSA.

-8-

Theorem 2 The family of ECFSA's is a proper subset of the family

of PFST's.

This theorem states the following: supposing we are given an

arbitrary ECFSA, we can construct an equivalent PFST in the sense that

the PFST defines the same metric on E* - {X} as the given ECFSA does.

On the other hand, we cannot always construct an equivalent ECFSA to an

arbitrarily given PFST. Roughly speaking, the reason for that is the

fact that the costs of error transformations are defined as position-

independent (i.e. independent of the index i of a symbol ^ in an

input string £). On the other hand, the penalties of a PFST can be

dependent not only on the position of an input symbol but also on the

whole history of the input string read so far.

There is another interpretation of the difference of performances

between PFST and ECFSA. In ECFSA the costs of error transformations

are defined on E'xE1, where E' denotes E U {X}, while in PFST the

penalties are defined on KxE. If we consider a FSA as a grammar, the

cost of ECFSA are defined on a pair of terminal symbols, while the

penalties of PFST are defined on the nonterminal-terminal symbol pair.

It is easy to reconstruct a finite state grammar into an equivalent

grammar in which each terminal symbol is derived from exactly one

nonterminal symbol. This gives us an informal proof of one side of

theorem 2, that is, of the fact that the family of PFST's includes the

family of ECFSA's, though we stiill need some trick to deal with the

empty string X.

Thus we can expect that PFST should be a more powerful model than

ECFSA for the recognition of strings of symbols and that we could have

more flexibility in the design of such recognizers.

-9-

Example 2 Suppose we are given a set of symbols E = {a,b},

a FSA shown in Fig. 3(a), and the costs of error transformations

Cg(x,y) = 1 for any x,y € E and C (x) = C (x) = 1 for any x € E. Then

we can construct an equivalent PFST with X-transitions as shown in

Fig. 3(b). Next we can eliminate the X-transitions and obtain an

equivalent PFST shown in Fig. 3(c). On the other hand, PFST shown in

Fig. 1 has no equivalent ECFSA.

4.2 PFSA versus SFSA and FFSA models

No explicit result has been found about the relation among the

PFSA, SFSA, and FFSA models. Nevertheless, eqs. (9), (10), (12) show

an interesting analogy among them. By substituting E for II and min

for E in (9) of SFSA, we obtain (12) of PFSA. If we substitute max for

min and min for E in (12) of PFSA, we obtain (10) of FFSA. This analogy

can be interpreted as follows. Equation (9) says that we have to calculate

first the products of transition probabilities 6(t .,t.,£.) along the

paths tQ, t ,...,t starting with the initial state tQ - SQ and ending

at one of the final states t £ F. Then we have to sum up those
n

products over all possible such paths. If we would pay attention only

to the path with the largest products of transition probabilities and

neglect all the other paths, then this would be equivalent to having E

in (9) substituted by max. On this assumption (9) and (12)

are equivalent to each other by putting

ft,(ti-i,ti,ci) ="log P(ti-rti,^i) (13)

W(£) = -log P(0 (14)

In other words, using PFSA as a recognizer is equivalent to picking up

only the most dominant transition path in SFSA and neglecting all

-10-

the other paths. The choice of summation rather than multiplication

in PFSA was merely for making the calculations simpler.

The analogy between PFSA and FFSA can be interpreted in a similar

way. A FFSA does not calculate the sum of penalties w(t. .. ,t ,£) as

in PFSA but pays attention only to the largest penalty value (note that

we have to negate the values in order to substitute max for min).

These analogies show that PFSA is an intermediate model between

SFSA and FFSA. It is simpler than SFSA; yet more powerful than FFSA.

The simplicity of PFSA compared with SFSA yields two advantages: faster

parsing algorithms and easier grammatical inference. A PFSA can be

used as a recognizer model in such cases that SFSA is too complicated

to apply (especially in grammatical inference) and FFSA is too simple

to obtain a good result unless the transition possibilities

S'(t. -,t.,£.) are generalized to fuzzy functions.

5. Parsing and Grammatical Inference of PFSA

5.1 Parsing for PFSA

Parsing for a PFSA means the process of computing the minimum sum

of penalties W(£) in (12) for a given input string £ and finding the

correspondent sequence of states t_, t-,...,t . We will propose

here three different mehtods for such a computation: (1) dynamic

programming method, (2) table lookup method, and (3) heuristic search

method.

5.1.1 Dynamic Programming Method

We can compute W(£), for a given £ = €-£_...£ , by starting with

initial conditions ••

Y(0,S) = 0
° (15)

Y(0,S) = » for any S ^ S in K

-11-

and using the following recurrence relation:

Y(i,S) = min [Y(i-l,S')+o)(S' ,S,£.)] (i = l,...,n) (16)
S'QC 1

Calculating Y(i,S) for all S G K and sequentially for i = l,...,n, we

finally get

W(£) = min Y(n,S) (17)
S^F

We can easily decide the sequence of states which corresponds to W(£)

by tracing the above steps backward and picking up the states which yield

the minimum value in each step.

This computation process can be looked upon as a solution for the

optimization problem (12) using dynamic programming. In general, the

dyanmic programming method is simple to describe but it requires large

memory and a lot of computation time. The latter defect might be

avoided by using a special-purpose hardware perhaps with the ability

of parallel computations.

5.1.2 Table Lookup Method

The dynamic programming method becomes very wasteful when most of

the penalties attached to state transitions are infinite. In this case

we can compute only the elements d(i,S)'s with finite value, put them

in a table, and look up the table when they are needed for the next

step of calculation. This method has been used by several authors [3,4,12]

5.1.3 Heuristic Search Method

Both dynamic programming method and table lookup method calculate

d(i,S)'s parallelwise for all necessary states S in K for a fixed i, and

then proceed to the next value of i (breadth-first search). Alternatively

we can proceed the calculation for the most prospective sequence of

-12-

d(i,S)'s incrementing i at once (depth-first search). If we fail

somewhere or get a feasible solution, then we have to backtrack. This

type of calculation is called heuristic search for shortest path

problem on a graph [13], or branch and bound method [14] in a more

general terminology.

A few comments are worth noting. For a ECFSA dynamic programming

method is not applicable as straight-forward as for a PFSA as shown

here. Heuristic search method cannot be applied to SFSA because in SFSA

the sum of the probabilities for all the transition paths must be

calculated. These facts show an advantage of PFSA over the other

models because in PFSA we can choose the fastest parsing algorithm

among the three types of methods.

5.2 Grammatical Inference of PFSA

Grammatical inference of PFSA means to construct a PFSA which

classifies correctly two given finite sets of sample strings — one to

be classified into the positive class, the other into the negative class.

This can be readily generalized to multi-class classification.

Grammatical inference of PFSA can be divided into two stages:

grammatical inference of FSA (PFSA with all zero penalties) and adjustment

of penalty values. The first stage, grammatical inference of FSA, is

identical with that of other models, ECFSA or SFSA. There have been

proposed several grammatical inference algorithms of FSA [2,9,10]. But

they don't seem to work well for sample sets of limited number of

relatively long strings, which are often the cas,e in pattern recognition

applications. Alternatively we can use a heuristic method of grammatical

inference of FSA. A schematic diagram of this method is shown in Fig. 4.

-13-

Its basic idea is (1) to find the minimum discrepancy (that is,

dissimilar substrings or, inversely, longest common subsequences [15])

between the new input string and a previous string and (2) to add the

necessary transitions to FSA or merge the existing states into one state

of FSA in order to make up the discrepancy. The distance between

strings d(£,n) is defined here by error transformations with the costs

C (x,y) = 2 for all x,y G E and C (x) = C (x) = 1 for all x G E.
D .Li/"

The second problem in grammatical inference of PFSA is how to

decide on the values of penalties. A few methods are possible:

(1) decision based on the distances between states (this leads

to almost the same results as error transformations)

(2) using statistics of sample strings and eq. (13)

(3) training similar to that used in Perceptron or so

(4) indications by human beings

These methods and their combinations are yet to be further studied.

6. An Application to Chromosome Data

Lee and Fu have tried to classify chromosome images by stochastic

context-free grammars [16,17]. In one of their experiments they used

29 chromosome samples. They first enhanced original digitized images

of microscopic pictures, encoded boundaries of images, smoothed derived

chain codes, and then extracted strings of primitive features. Those

strings are shown in Table 1. They used 12 samples (2 median, 7 submedian,

and 3 acrocentric chromosomes) for grammatical inference of stochastic

context-free grammars. Then they tried to classify the other 17

samples (3 median, 8 submedian, 6 accrocentric) into three classes.

-14-

The same set of training sample strings and the same of test

sample strings were applied to PFSA. The underlying FSA's were inferred

as described in the previous section. Then the values of penalties were

chosen based on a sort of distance between states of the FSA's. Training

of the penalties was not needed because the training samples were all

classified correctly with the penalties thus defined.

Both Lee-Fu's and the author's experiments and their results are

summarized in Table 2. The increase of errors of the current experiment

shown in the second row of the table seems to be caused by the scarcity

of the training samples and an unbalance of the numbers of them in the

three classes. For this reason, a simple weighting mechanism was

introduced: the sum of penalties W(£) for each class was weighted by

the reciprocal of the numbers of training samples in that class. The

result improved and became closer to Lee-Fu's result as shown in the third

row of the table.

Considering that our model is finite state while Lee-Fu's model is

context-free and that Lee-Fu also used structural information

(indication of substrings which should be considered as a subunit) for

the purpose of grammatical inference of their model, the overall result

is very favorable to our current model (PFSA). Though this experiment

is too small to draw a definite conclusion, it has, at least, shown a

good performance of PFSA.

7. Conclusions

A new model for recognition of strings of symbols has been proposed.

The study of relations between this model PFSA and other models suggests

the possible usefulness of the model. An application for recognition

-15-

of strings of primitives derived from chromosome data supports this

presumption. However, it seems necessary to make experiments with

more large sample sets and to study grammatical inference of PFSA

further.

Acknowledgement

Part of this study was made at Advanced Automation Research

Laboratory of Purdue University. The author is grateful to

Professor K. S. Fu who suggested him to use Dr* H. C. Lee's preprocessed

chromosome data and gave him helpful suggestions and discussions.

-16-

References

[1] K. S. Fu, Syntatic Methods in Pattern Recognition, Academic Press,

New York, 1974.

[2] K. S. Fu and T. L. Booth, "Grammatical inference: introduction and

survey," Part I, IEEE Trans, on Systems, Man, and Cyber.,

Vol. SMC-5, No. 1, pp. 95-111 and Part II, ibid., No. 4, pp. 409-422,

1975.

[3] A. V. Aho and T. G. Peterson, "A minimum distance error-correcting

parser for context-free languages," SIAM J. Comput., Vol. 1,

No. 4, pp. 305-312, 1972.

[4] E. Persoon and K. S. Fu, "Sequential classification of strings

generated by SCFG's," Intern'1 J. of Comp. and Inform. Sciences,

Vol. 4, No. 3, pp. 205-217, 1975.

[5] P. H. Swain and K. S. Fu, "Stochastic programmed grammars for

syntactic pattern recognition," Pattern Recognition, Vol. 4,

pp. 83-100, 1972.

[6] T. Huang and K. S. Fu, "Stochastic syntactic analysis for programmed

grammars and syntactic pattern recognition," Computer Graphics and

Image Processing, Vol. 1, pp. 257-283, 1972.

[7] E. Tahaka and K. S. Fu, "Error-correcting parsers for formal

languages," Tech. Rept. TR-EE 76-7, School of Elec. Engrg., Purdue

Univ., March 1976.

[8] K. S. Fu and S. Y. Lu, "A clustering procedure for syntactic

patterns," IEEE Trans, on Systems, Man, and Cyber., Vol. SMC-7,

No. 10, pp. 734-742, 1977.

-17-

[9] A. W. Bierman and J. A. Feldman, "On the synthesis of finite

state machines from samples of their behavior," IEEE Trans.

on Comput. Vol. C-21, No. 6, pp. 592-597, 1971.

[10] H. Enomoto, E. Tomita and S. Doshita, "Synthesis of automata that

recognize given strings and characterization of automata by

representative sets of strings," 1-st USA-Japan Computer Conf.

Proc. p. 21, 1972.

[11] L. A. Zadeh, "Fuzzy sets and their relation to pattern classification

and cluster analysis," Memorandum No. ERL-M607, Electronic Research

Lab., College of Engrg., Univ. of California, Berkeley, October 1976.

[12] S. Y. Lu and K. S. Fu, "Error-correcting syntax analysis for tree

languages," Tech. Rept., TR-EE 76-24, School of Elec. Engrg.,

Purdue Univ., July 1976.

[13] N. J. Nilsson, Problem Solving Methods in Artificial Intelligence,

Chap. 3, McGraw-Hill, New York,1971.

[14] E. L. Lawler and D. E. Wood, "Branch and bound methods, a survey,"

Oper. Res., Vol. 149, No. 4, 1966.

[15] R. A. Wagner and M. J. Fisher, "The string-to-string correction

problem," J. ACM, Vol. 21, No. 1, pp. 168-173, 1974.

[16] H. C. Lee and K. S. Fu, "Stochastic linguistics for picture

recognition," Tech. Rept., TR-EE 72-17, School of Elec. Engrg.,

Purdue Univ., June 1972.

[17] H. C. Lee and K. S. Fu, "A stochastic syntax analysis procedure

and its application to pattern classification," IEEE Trans, on Comp.,

Vol. C-21, No. 7, pp. 660-666, 1972.

-18-

Table 1. Strings derived from chromosome data by Lee and Fu.

String

FBBBBEBBBBHBBEBHBBEBBBB

FBBBABBBGBABBGBABGBBBABBB

FBBBBEBBHBBBBEBBGBBEBBBBB

FBBAHBABBGBABKBBABBHBBBBABB

FBBABKABGBABBGBABBGBABBBB

FBABBBBHBABBHBBBBABB

FBBBABBBGBABGBABGBBBABBBB

FBBBABBBGBBAGABBBBBBGBAB

FBBBBBABBGBBABBHBABBGBBBABBBB

Training Manual Lee-Fu's Abe's

Sample Classification result result

X A A A

X S S S

X A A A

M X* M

M X* X*

A A S*

S S s

M S* X*

S S s

FBBABBBGBBABBGBBABBGBBBABBB x

FBBBBBBBEBBBBHBBBEKBBEBHBBBBEBBBBBBB

FBBBBBEKEBBBBGBBBEGEBB x

FBBBBBABBBBGBBBABGBBBBABBB

FBBBBABBBHBBBAHBABHBBBB^BBB

FBABBBGBBBBABBBBBBGBBAB x

FBBBABBGBBBABGBABGBBBABB x

FBBBABBBGBAHBABGBBBABBB

FBBBBABBBBBBGBABGBBBBBBBBABBBB x

FBBBABBBBGBABHABGBBBBBABBB x

FBBABBBBGBABGBABGBBBBABB

M M M

A A A

S S S

S S S

A s* M*

S S S

S S S

S S S

S S s

S s s

S s s

Table 1 (continuted)

String

FBBBBABBBGBBABGBBBABBB

FBBBBBABBHBBBBBBABBBGBBABBBBB

FBBBBABBGBBAGABGBBBBABBBB

FBAKBABHBBBBBBBBBABBB

FBBBABBHBBBBABHBBBBABB

FBBBBABBBBGBABHBABGBBBBABBBB

FBBABBBGBABGBABBHBBBBABB

FBBBBABBGBABBBGBBABGBBAB

FBBBABBBBHAGABGBBBBABBBB

Key

S: submedian

M: median

A: acrocentric

X: rejection

*: recognition error

Training Manual Lee-Fu's Abe's

Sample classification result result

S S S

A A S*

S S S

A S* s*

X A A A

X S S S

S S S

X M M M

A S* S*

Table 2. Summary of the Methods and Results

Method Automata

(Grammars)

Metric Additional

information

No. of

errors

No. of

rejections

Recognition

rate

Lee

and

Fu

Push-down

(Context-free)
Probability Structural

information

Weighting
4 2 64%

Abe Finite-state Penalty
None 9 0 47%

Weighting 5 2 58%

b/0

a/I a/0

input symbol/ penalty

final state

Figure 1. An example of PFST

—»>
PFST W,(«

w2(C)
input

string PFST

T2£ L —*" minimum

selecter

output

•

r-^-

^ class

i*

Wm(0

k

PFST

Figure 2. Multi-class recognizer using PFS^s.

a

(a) A FSA.

a/0 b/0

a,b/l

(c) An equivalent PFST

a

a.b

a,b/0

b,X/l a,X/l X/l

(b) An equivalent PFST with X-transitions.

b/0

Figure 3. An example of a PFST which is equivalent to an ECFSA

CSTART ")

Construct a FSA for £ (i)

j = 2

31
Find

d(ClJXU(j))=min d(C(JU(j))
l< i<j-l

t

Find dissimilar parts between C

and t{U)

Add new transitions or merge the

existing states for each dissimilar

substring of £(j) to that of C(lx)

no

(ST0P)

Sk: sample set for class k
vk : number of samples in Sk
^(j): the j-th sample in Sk

Figure 4. A method for grammatical inference of FSA.

	Copyright notice 1978
	ERL-78-10

