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ABSTRACT

Arithmetic tests for Astability* A[ot]-stdbility, and stiff-

stability are presented as special cases of a general stability test

for numerical integration methods. The test evolves from extracted

properties of the characteristic polynomial (in two variables) of

the numerical method applied to the prototype scalar ordinary

differential equation x = qx9 Re{q} < 0. The several steps of the

test impose root clustering conditions — such as being Eurwitz — on

a polynomial of one variable.
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INTRODUCTION

A-stabllity [4] and its weaker associates A[a]-stability [17]

and stiff-stability [6], have become generally accepted as appropriate

properties of numerical methods suitable for solving a stiff initial

value problem, as described by a first order vector ordinary differential

equation

x(t) = f[x(t),t] (la)

with initial condition

x(tQ) - xQ. (lb)

We shall develop herein a test for a general stability property,

which includes those above as special cases. This test is a generalization

within a new framework of that reported by Rubin [14] for A-stability.

As invoked to test for A[a]-stability or stiff-stability it is

simpler than that elsewhere reported by Bickart and Rubin [3].

STABILITY CONDITION

The archtypical initial value problem by which the foregoing

stability properties are given definition is that in which (la)

is the scalar, linear equation

i(t) = qx(t), (2a)

subject to the constraint Re{q} < 0, and, correspondingly, (lb) is

x(t0} ° V <2b>

Note: The solution to the archtypical initial value problem is

asymptotic to the origin.
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Our concern is with those methods defining with (2) a linear

difference equation for x (n .= 0,1,2,...) — a unique approximation

of x(t) at t - nh + tQ (n = 0,1,2,...) — and having a real

(with integer coefficients) characteristic polynomial P in two variables,

X = hq and 5, such that {x } is asymptotic to the origin if and only

if P(X,C) - 0 implies |c| < 1. Such methods include multistep methods [9],

wherein P is of degree 1 in X, and include block one-step methods [15]

and Runge-Kutta methods [7], wherein P is of degree 1 in C. Methods

for which there is no a priori limit on the degree in X or £ include

multistep-multiderivative methods [7,13], which as a class subsume

the multistep methods as special cases, composite multistep

methods [14,16], which as a class subsume the multistep methods and

the block one-step methods as special cases, and multistep-multiderivative-

multistage methods [8], which subsume all the thusfar noted methods.

+

We are now in a position to present

DEFINITION 1: LetJ^ denote a simply connected open region of the

extended complex plane Q, 9 such that df — the boundary of T* — is

piecewise regular. Then* a method is said to be stable with respect

tof^if

{ xej"'} a {p(x,s) = 0} =*ce=q) , (3)

where^Odenotes the open unit disk, or3 equivalently, if

{ AGf}A{ c€E<Dc} =>P(X,C) * 0, (4)

where ^-uc is the complement of^[)in Q, .

4*

The closure of a set will be denoted by a "-" overscore of the set
symbol; the complement, by a superscript "c"; and the boundary by an
anticedent "3". Though specifically noted in this definition, such
will not subsequently be the case.
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Our principal result will be a test by which to validate (4).

This test will evolve from the intimate relationship between the

polynomial P and the transformed polynomial Q defined as

Q(X,z) =(z-lA P(X,|^), (5)
where m denotes the degree of P in c. Correspondingly, we let mq

denote the degree of Q in z. The intermediate result we next need is

expressed in

THEOREM 1: The implication (4) is valid if and only if m = m and

{ Xe^-} A{ zG S£c} => Q(x,z) * 0, (6)

where Qis the open left half plane.

PROOF: [only if] By (4), P(-,l) is not the zero function; therefore,

by (5) the degree of Q with respect to z must be m . That is,

niq ° m . Furthermore, (5) follows as a consequence of (4). [if] The ,

inverse relationship to that in (5) is

p(a,c) - £r)mp q<x.£j> =£r)*q Q(*,f!£> . (7)
The second equality follows from the fact that m = m . The implication

(4) is now an immediate consequence of the implication (6). n

STABILITY TEST

The transition from the stability condition as manifested in (6)

to the stability test is by way of the result embodied in

THEOREM 2: The implication (6) is valid if and only if

{xef} a{Z=z0 e §£c> =* Q(x,z) ^ 0, (8a)
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{xeaf n {x: q(x,-) *-p}> a {z g2c} =* Q(X,z) ?* 0, (8b)

and

{ z e 3^2} =>Q(.,z) t 0. (8c)

PROOF: [orcZz/ if] Since zQ e§£c implies zQ eC£c, (8a) is rather
Immediately a consequence of (6). The logical equivalent of (6)

{xef} a {Q(x,z) = 0} =>z e££

implies, by continuity properties of the algebraic function z - <j)(X) defined

by Q(X,z) =0onC* - (X:Q(X,«) =0},

{XSf fl {x: Q(X,-) £ 0}} A{Q(X,z) =0 =>z e 9J. (9)

But, as {X:{X 6 3f } A {Q(X,«) t 0} C {X:{X ef*} A {Q(X,0 i 0}, it

follows that

{ X€ 33T O {x: Q(X,-) * 0}} A {Q(X,z) - 0} => z€ g>, (10)

The implication (8b) is the logical equivalent of this in (10).

As a92cS2C and as Q(X,z) t 0=>Q(X,«) t 0, (8c) follows directly

from (6). [if] Let the definition of the algebraic function be extended

to the (finite, discrete) set of p.oints {X:Q(X, •) =0} such that it is an .

algebraic function on C . Then it maps 3tT^into a finite number

of points — the set of points {z:Q(»,z) = 0} — and a finite number

of piecewise regular, simple closed curves. The complement of the

union of these points and curves is a finite set of connected, disjoint

open regions — called components — ofC • By (8b) and continuity

of the extended algebraic function z » <J>(X) we know that 9l is

contained in one of the components. By (8a) we know that the preimage

of zQ £ Sl cannot be a subset of T*; it must be a subset of 7~c.
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It then follows, because the components are connected and because the

prelmages of their boundaries, exclusive of the set of points

{z:Q(«,z) = 0}, are subsets of ST* , that the preimage of every

point of Sl is a subset of T* . Therefore,

{ ze c£c> a{q(x, z) = 0} •* xer°, (11)

which by continuity of the extended algebraic function z « ^(X)^ implies

{z€= S£c Ufc:{z6aS£} A{Q(.,z) i 0}}} A{Q(X,z) - 0} => X€T*C.

(12)

But, by (8c), the set of points {z:{z e 3<£} A {Q(X,z) = 0} is the

empty set; hence, we have that

{z€ S£c} A{Q(X,z) = 0} => XErC. (13)

This implication is the logical equivalent of (6). „

When zQ is real, Q(X,zQ) of (8a) is a real polynomial in X.

This means that the implication (8a) can be validated by a root

clustering test — roots all in ^c, in this case — for a real
t

polynomial. Fortunately, such tests — with integer arithmetic being

sufficient — are known for such regions T*as are associated with

A-stability, A[a]-stability, and stiff-stability. Note: When, in

particular, zq = 1 (andm = m as required by Theorem 1) that the

root clustering test can be applied, equivalently, to the easily

Note: When the set of points {X:{X € 3^} A {Q(X,«) = 0}} is empty,
(8a) together with (8b), in which zQ is taken to be the value of z,
imply the roots must all be in7"*c.
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+

evaluated real polynomial P(•,«). This is also noteworthy because

/»—»c
clustering of the roots in T is essentially the condition needed to

guarantee the existence of a unique {x }.

Now let us examine the implication (8b). Let 3T^ be parametrized

by the continuous one-to-one complex valued function 3 mapping a,

not necessarily finite, interval orof the extended real line into the

extended complex plane; that is 3:or"*"C • witn X =» 3(u) we find

Q[3(u),z] is a complex polynomial in z which, if (8b) is valid,

must be Hurwitz for all p £ v9 except the preimages by of the points

in {X:{X € 3JT"} A (Q(X,») 5 0}. Let A denote this set of preimages.

Let A. (u) (i - l,2,...,m ) be the set of inners determinants — real

functions of y^J)— associated with this polynomial. [10,p. 20]
+++Assume Am (•) 2 0. It then follows that A (•) $ 0 (i » l,...,m -1).

mq 3 q
Let ^denote the finite set of (discrete) values of u such that

A. (u) - 0 for some 1 £ {1,... ,m }. Note At-yi. Then, we can state
i q

[10,i>.20]: Q[3(y),z] is Hurwitz — in fact, strictiy Hurwitz — for

+
The characteristic equation P(X,s) = 0 defines the algebraic function
C = <f>(X) which exhibits a pole for those X for which P(X,») = 0.
That is, for those X which are the zeros of the polynomial coefficient
of the highest degree term in C* We shall mean that polynomial
(coefficient) in X when writing P(»,»).

1*1*
These inners determinants are the Hurwitz determinants of Q[3(u),z]

[5,pp.248-250]; only their anticedent arrays differ— by an even
row-permutation. Furthermore, if the imaginary part of Q[3(y),°°] is
identically zero, then the inners determinants are to be those of
jQ[3(y),z].

ttt
The restriction of this assumption can be removed at the expense

of further complicating the now evolving stability test. The (numerical
integration) methods excluded by this assumption are few and, to the
authors, appear to be of little consequence. Therefore, we have
relegated the treatment of the special case A (•) = 0 to Appendix I.

mq
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all y•= $ ~% if and only if

{i€= {l,...,mq}} A{y e^-^ => A±(y) >0. (14)

That is, (14) implies and is implied by

{y ^-^} a{Q[3(y),z] -= 0}=>zeS£. (15)

By continuity of A.(y) (i = l,...,m ) and of zs <J>[3(y)] with respect

to y we find that

{±e {l,...,mq}} A{y E&} =>^(]i) >0 (16)

implies and is implied by

{y e&-A} a {Q[3(y),z] = 0} => ze ££. (17)

This last expression is the statement that Q[3(y),z] is Hurwitz — not

necessarily, strictly Hurwitz — for all y £or-*/Z. This, however,

is equivalent to (8b). Note: For such regions T*as are associated

with A-stability, A[a]-stability, and stiff-stability there exist

tests — with integer arithmetic being sufficient — by which to

validate (16).

Because Q is a real polynomial, if {z £ 37"} A {z^O} implies

Q(*,z) 2 0, then such is also true of z*, the conjugate of z. Hence,

any z for which Q(*,z) = 0 is true must be a zero of an even or an

odd factor of Q in the single variable z. The assumption A (•) t 0
m

t q
precludes such a factor. Therefore, (8c) is trivially true under this

assumption.

+

This fact is brought out in the treatment of the special case
A (•) = 0 in Appendix I.

mq
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The foregoing discussion, together with Theorems 1 and 2,

validates the

GENERAL STABILITY TEST: A method for which A (•) t 0 is stable
m

q

with respect to f*if and only if

(a) the zeros of the real polynomial P(•,«>) are (clustered)

(b) m « m , and
q P

(c) A. (y) >_ 0 for all y£$ ^^ 1= 1,... ,m .

A-STABILITY

Let us now specialize this result. Suppose J^= y£, which corresponds

becomes the closed

right-half plane. Furthermore, 37", being the imaginary axis, can

be parametrized by the function X s jy, defined on the entire

extended real axis. Thus, A.(y) (i = l,...,m ) is a real — and,

as is easily shown — even polynomial in y. As a consequence,

in (c), A.(y),.:> 0 for all y €:or becomes A. (») > 0 and A. (•) has no

positive real zeros of odd multiplicity. Taken together we have

t
the1

A-STABILITY TEST: A method for which A (•) M is A-stable if
mq

and only if

t
Inclusion of the precondition P has no factors in one variable alone

would validate item (b) and would, because {X:{X G df} A {Q(X,«) = 0}}
would then be the empty set, allow "closed?1 in item (a) to be
replaced by "open". (See the footnote on page 6.) The resulting
test would then be equivalent to that given by Genin [7,pp.7-12].
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(a) the zeros of the real polynomial P(•,«>) are in the closed

right-half plane,

(b) mq = mp,

(c,) A.(») > 0 for all 1 = l,...,m , and

(c«) A.(«) for all 1 = l,...,m has no positive real zeros of

odd multiplicity.

Validation of items (b) and (c-) is a trivial task, so we turn

to items (a) and (c„). The zeros of P(X,») are in the closed right-

half plane, if and only if those of P(-X,«) are in the close left-half

plane. Thus, P(-X,») must be a Hurwitz polynomial. This property — hence,

t
item (a) also — can be verified by known methods, using only integer

arithmetic. Of course, if P(-X,») is strictly Hurwitz — an easier

property to verify [10,pp.22-23] — it is Hurwitz as well. There is

also a method [10,pp.156-158] extending the classical results of

Sturm, for which integer arithmetic is sufficient and by which to

verify that a real polynomial has no positive real zeros of odd

multiplicity. Of course, if a polynomial has no positive real

zeros — an easier condition to verify — it has none of odd multiplicity.

In this way (c„) can be verified. Do keep in mind the fact that these

noted stronger properties are not necessary for items (a) and (c«)

and that their violation does not imply a method is not A-stable.

Only violation of the weaker properties, requiring rather sophisticated

verification methods, can do that.

t
A procedure to follow in using these methods to verify that a real
polynomial is Hurwitz is given in Appendix II.
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Let us examine an illustration of the results thusfar by applying

the A-stability test to the (A-stable) composite multistep method,

elsewhere reported by Sloate and Bickart [16], having

P(X,G) - [1 .X.X2] "•

as its characteristic polynomial. We first observe that

P(X,») = -48+35X-9X2 =-(48-35X+9X2)

and, hence, that

P(-X,«>) » -(48+35X+9X2).

By inspection P(-X,») is seen to have both its roots in the open

left-half plane. Thus, it is strictly Hurwitz and, perforce, item

(a) is verified. By (5) we determine that

"0 48 -48- "1 -

5 8 35 C

.3 0 -9 _ U2J

Q(X,z) = [1 X X"] -96 -96 0

32 60 48

L-6 -24 -6 J

1-1.

z

2
_z_

Clearly m =» 2 equals m » 2; hence, item (b) is verified. To determine

the inners determinants associated with Q(X,z) on the boundary ofthe

left-half plane — parametrized by X = jy t- we must first write

Q(jy>jz) as a complex polynomial in z. After some trivial complex

algebra it is found that

2 ,„ .2
Q(jy,jz) « [1 j] r-96+6y* -60y

L 32y -96+24y:

-11-
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It now follows that the sought inners determinants A^-) and A2(«)

are the determinants of the following two bordered arrays — one nested

within the other [10,p.20]:

-48y

0

Al
0

-6u2 -

96+24y2 32y 0

-48y -96+24y2

-6y2 -60y

32y

-96+6y2

60y -96+6y2 0

Upon evaluation of these two determinants, we obtain

Ax(y) =2304y2 +144y4 =144y2(16+y2)

and

A2(y) =184320y6 +20736y8 -2304y6(8Of9y2).

AsA (•)ssAo(*)^0, the precondition of the A-stability test is

mq 2
satisfied. Obviously A1(») > 0 and A2(») > 0; therefore, item (O

is verified. Also, by inspection A..(*) and A«(*) have no positive

real zeros — thence, none of odd multiplicity; so, item (c«) is

verified. It now follows — all items of the test being verified — that,

as claimed, the method is A-stable.

A[ct]-STABILITY

For ae (0,tt/2], letQX/a =U: |arg{-X}| <a}. Set 9^=0^/ ,
which corresponds to the method being A[a]-stable. Note:^-U/ is

the open wedge, within the left-half plane and symmetric with respect

to the real axis, depicted in Fig. 1. Of course, J"'0-^/0* tne

complement of this wedge.

To the authors' knowledge there is no reported method by which

to verify that a polynomial has all its zeros in such a region.
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So we digress to develop one possible method. Observe: C[\) is the

union, over all y e (O,00), of the open disks ^0 = (X:|X+y| < p,

p = Y sin o, y > 0) as depicted in Fig. 2. Therefore, item (a) is

equivalent to: For all y e (O,00) the zeros of the real polynomial

P(•,») are in the complement of the open disk H) • This condition
cx,y

can be converted to the requirement that a polynomial be Hurwitz.

The bilinear function

x - - <t-pWt+p) (18)

maps the closed left-half plane onto the complement of the open disk

<£„,.,. Set

Da>Y(n) =(n+Dn P[- (T-PWr+P?, .] , a9)

where n is the degree of P(•,»). Clearly, item (a) is now equivalent

to: For all y e (0,») the zeros of the real polynomial D (•) are
oi,Y

in the closed left-half plane — D (•) is Hurwitz. As previously

noted, there exist methods by which to verify that a polynomial is

Hurwitz. To do so for all Y adds some complications to be considered

shortly.

The boundary dT*9 which consists of two rays from the origin, can

be parametrized by the continuous function

X = ay + jby (y<0)

= -ay + jby (y>0), (20)

defined on the entire extended real axis. The relationship between

the parameter a and the parameters a and b is sin a » b/(a 4-b2)1 .

Thus, A. (y) (i - 1,... ,m ) is a real — and, as is easily shown — even
l q

function in y, which is a polynomial on each of the two semi-infinite
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intervals y <. 0 and y >_ 0. As a consequence, item (c) separates

into the same two parts as for A-stability. Taken together we have

the

A[a]-STABILITY TEST: Amethod for which Am (•) $ 0 is A[a]-stable
q

if and only if

(a) for all y e (0,°°) the real polynomial D (•) is a
(*,Y

Hurwitz polynomial,

(b) mq = mp,

(c-) A.(«) > 0 for all i = l,...,m , and

(c2) A.(-) for all 1 = l,...,m has no positive real zeros of

odd multiplicity.

As before, validation of items (b) and (c,) is a trivial task.

Verification of (c2) can be accomplished by following the guidelines

given in the discussion of the A-stability test. We turn our

attention, therefore, to item (a). Let 6.(y) (i " 1 n) be

the set of inners determinants — real polynomials in y ^ (0,«) — associated

with the real polynomial D Y("). Assume 6 (•) t 0. Then, 6.(#) t 0

for 1 - l,...,n-l. By arguments similar to those advanced when (c)

of the general stability test was established and, in the last section,

1*
separated into two parts it can be established (when 6 (•) t 0) that

item (a) is equivalent to (a,) S.(«) > 0 for all 1 =» l,...,n and (a«)

6.(«) for all 1 = l,...,n has no positive real zero of odd multiplicity.

Verification of (a1) is a trivial task. Verification of (a2), though

not trivial can be accomplished, as previously noted, by a known

f
This restriction can be removed by the methods presented in Appendix I.
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method. [10,pp.156-158]. Also, as previously noted, it is sufficient

in verifying (a2) to show that 6.(0 for all 1* l,...,n has no

positive real zero. Since the underlying condition (a) — see the
c

general stability test — is that the zeros of P(X,») be all in^U/a
and since Ml/ contains the open right-half plane, it is evident that

a

another property, sufficient for item (a), is: P(-X,«) is a

strictly Hurwitz polynomial.

If the validating methods are to be invoked with just integer — possibly,

quadratic Integer — arithmetic, we assume that the value of a is

determined subsequent to specification of a and b, as integers.

As an illustration of these results on A[a]-stability, consider

the characteristic polynomial

P(X,C) - [1 XX2 X3] 6
—

-6

6 12

2 -11

0 6

a

of an A[88.8°]-stable block one-step method elsewhere reported by

Bickart and Picel. [2] Note: The method is not A[89.0°]-stable.

Observe that

P(X,«) = -6 + 12X - 11X2 + 6X3 = -(6-12X+llX2-6X3)

and, hence, that

P(-X,«) - -(6+12X+llX2+6X3).

By the Lienard-Chipart criterion [10,pp.22-23] P(-X,») is strictly

Hurwitz. Hence, item (a) is verified. In the interest of illustrating

the general method of verifying item (a), let us evaluate D (O as
<x,y

in (19) for a = 2 and b = 95, corresponding to which, a * 88.8°. The

result Is

-15-



DOQ Qo (n) = {[(216624v-20583840)Y3 + (198594v-18870610)y
oo.o ,y

+ (108348v-10293060)y + 54174v]n3

+ [(72v-6840)y3 + (198682v-18870610)y2

+ (325044v-10293060)y + 162522v]n2

+ [(72v+6840)y3 + (198682v+18870610)y2

+ (325044v+10293060) + 162522v]n

+ [(216624v+20583840)Y3 + (198594v+18870610)y2

+ (108348v+10293060)y + 54174v]}/9029v,

»———— *
where v = /9029. For convenience, set

D888ojY(n) =d3(Y)n3 +d2(Y)n2 +d1(Y)n +dQ(Y).

The sought inners determinants ^(y)* ^(t)* and &$W are the determinants

of the following three bordered arrays:

-d3(Y)

0

0

620 z

0

0

0 dx(Y) 0 0 0

-d3(Y)

0

0 x

0

0 dx(Y) 0 0

0

dQ(Y)

0

-d3(Y)

0

0

-d2(Y)

dx(Y)

0

-d2(Y) 0 dQ(Y)

-d2(Y) 0 dQ(Y) 0 0

Evaluation of these determinants yields

^(Y) =d2(Y)d3(Y), .

62W =d2^)d3(Y)[dl(Y)d2(Y)-d0(Y)d3(Y)],
As a matter of convenience, the polynomial Dg8 g0 (n) is derived from
the polynomial -P(-X,«) — not P(-X,«). * ,Y
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and

63(Y) -d0(Y)d3(Y)[d1(Y)d2(Y)-d0(Y)d3(Y)]2.

Examination of the expressions for d±(Y) (1 = 1,2,3,4) discloses that

each is a real polynomial in y with positive coefficients. Furthermore,

evaluation of d1(Y)d2(Y)-dQ(Y)d3(Y) discloses that the same is true

of it. Therefore, each of the inners is a real polynomial in y with

positive coefficients. It follows that, for each 1 = 1,2,3,

6. (») > 0 and 6.(0 has no positive real zeros. This validates item

(a).

By (5) we now find that

Q(X,z) - [1 X X2 X3] -12 0

6 18

-13 -9

_ 6 6

(3-

Obviously m = 1 equals m = 1; so, item (b) is verified. To determine

the inners determinants associated with Q(X,z) on the boundary of

^lA/gg go, — parametrized by (20) with a =» 2 and b= 95 — we must

first write Q(-2y+j95y,jz) as a complex polynomial in z. After some

trivial, but tedious complex algebra it is found that

Q(-2u+j95u,jz) » [1 j] r*-12-12u+117273y2+324852y3
L570y+4940y2+5137410y3

-1710y-3420y2-5137410y3
-36y+81189y2+324852y3 K-

The sought inner determinant A-(•) is the determinant of the following

bordered array:
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•36u+81189u2+324852y3 570y+4940y2+5137410y3
-1710u-3420y2-5137410y3 -12-12y+117273y2+324852y3

The evaluation of that determinant yields

A1(y) =432y +864y2 +13 02480y3 +212358 74301y4
+ 10 74195 25224y5 + 2649 85103 30004y6.

As A (•) = A,(0 t 0, the precondition of the A[a]-stability test
q

is satisfied. Clearly A-(«») > 0; therefore, item (c-) is verified.

Since A,(y)/y posses only positive coefficients, A.(0 can have

no positive real zeros — item (c«) is verified. It now follows — all

items of the test being verified — that the method is A[88.8°]-stable.

STIFF-STABILITY

A method exhibits the stiff-stability property if the region

J^is such that it contains the open half-plane {X: Re{X} < -6}

for some 6 >_ 0 and has the origin as a boundary point. Little can

be done to specialize the general stability result in this case

because 1*is not completely defined. However, for specifically

selected regions conforming to the above conditions, more can

often be said. This we will illustrate be selecting a particular region.

Letkji§ denote the above noted open half-plane. Then, suppose

7 =J^^MA^s as illustrated in Fig. 3. The wedge truncated to
the left at Re X»-6 is covered by 4^/q yfDa Y» where

Y" 6/cos2a [- 5(l+b2/a2)], wnich Is in T*. Thus, ^ =̂ -j* U{U_. ~(T) },
6 TF(0>Y)'1-,a,Y

f
Stiff-stability characterized in this manner conforms in its essential

?ttributes to Gear's definition [6;p.213].
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Let us first consider item (a) of the test. The zeros of P(*,»)

will be clustered in 9"C if and only if (i) for all y g (0,y) they

are in the complement of <T) and (ii) they are in the complement
^ <*»Y

of^.. The former can be handled as was done for A[a]-stability,

with y here confined to a finite interval. The latter is easily

disposed of. The function

.X=*-n-6, (2D

maps the closed left-half plane onto the complement of the open-half-

plane^g. Set

H6(n) = P(-n-6,»). (22)

Clearly, the zeros of ?(•,») are contained in*^. if and only if

Hx(0 is a Hurwitz polynomial. Let us next consider item (c) of
o

the test. The boundary 3j" , consisting of four line segments, can

be parametrized by the continuous function

X - -6 + jy (]i<r\i)

= ay+jby (-y<y<0)

= -ay+jby (0<y<jj)

- -«+jp (Pfy), (23)

where y - 6tan a [» 6(b/a)]. Thus, A.(y) (i « 1,...,m ) is a

real — and, as is easily shown — even function in y which is

a polynomial on each of the four segments. And, item (c) can be

separated into two parts, as before. Taken together we obtain a
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STIFF-STABILITY TEST: A method for which A (O i 0 is stiffly
q

stable if (or is stable with respect to(xH& uQA/ if and only if)

(a..) the real polynomial H«(0 io & Hurwitz polynomial,

(a2) for all y •= (0,y) the real polynomial D (•) is a

Hurwitz polynomial,

_<b) mq a V
(c ) A («) > 0 for all i =» l,..,m , and

(c2) A.(0 for all 1= 1,...,m has no positive real zeros of

odd mulbiplicity.

Note: If a is determined by specifying a and b as integers and if

6 is given as a rational number, then verification of each of the

items of this test can be accomplished with just integer — possibly

quadratic integer — arithmetic.

An an illustration of this result on stiff-stability we will

consider the method of the previous illustration. It is known [12]

to be stiffly stable for 6 « 1/50; on the other hand it is not

stiffly stable for 6 = 1/100.

By the results established in the previous illustration we know

1/2
that D (O with a = arcsin[95/(9029) ] is a Hurwitz polynomial for

ot,Y

all y e (0,»); hence, for all y e (0,y) where y • 6(9029/4). Thus,

to complete the validation of item (a2)» it remains only to consider

(ax). Evaluated as in (22) with 6 » 1/50

H1/t.n(n) = ^r (195 139+388 975n+355 000n2+187 500n3).
/D 4x50J

By the Lienard-Chipart criterion, Hi/c0(O is strictly Hurwitz.

Hence, item (a^) is validated. The verification of item (a) is now

complete. (We of course knew it was valid, because as we had
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previously shown, P(-X,°°) is a Hurwitz polynomial — this being

sufficient to verify item (a).)

By the previous evaluation of Q(X,z) we know that m = m ,

so item (b) is verified. Thus, only item (c) remains. On the segment

(0,y] of the positive real-axis, with y - 95/100 we know by results

established in the previous illustration that item (c«) is valid,

thus we must consider just item (c2) on the remaining part of the

positive real-axis and item (c1). To establish the inners determinants

on this remaining segment of the boundary of TT— parametrized by

the last entry in (23) — we must first write Q(-l/5CH-jy,jz) as a

complex polynomial in z. This we find after some complex algebra is

Q(-l/50+jy,jz) =-3 [1 j] T-15 15656+16 70000y2
50 ' I8 15900y-7 50000y3

-22 95900y+7 50000y3"|pf|
-45456+11 7000y2 JLzJ

The sought inner determinant A.,(0 is the determinant of the following

bordered array, diminished by the multiplicative factor 1/50

-45456+11 7000y2 8 15900y-7 50000y3
-22 95900y+7 50000y3 -15 15656+16 70000y2
M^—— •• I.M • I I I II 1 ••!•• I '• ^^—^» •••••• ————^^^

Evaluation of that determinant yields

Ai M a-\ (688956 59136+2 39957 70000y2
50

-37 99500 00000y4+56 25000 OOOOOy6)

By the classical procedure due to Sturm [5,pp.173-176] this polynomial

has no (positive real) zeros for y > y. This completes the validation

t
An alternate procedure invokes evaluation of a set of inners determinants
associated with the polynomial A1(y-y). [10,pp.48-49]
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of item (c2). As A-(») > 0, item (c^ is also valid♦ With item (c)

verified it follows that the method is stiffly stable with 6 » 1/50.

CONCLUDING DISCUSSION

We have established a test for stability of a numerical integration

method of the class considered relative to an arbitrary region

3^C C • We then particularized that test to three cases: A-stability,

A[a]-stability, and stiff-stability. In each case we gave an

illustrative application of the test. It is of particular importance

to note that only integer — possibly quadratic integer — arithmetic

is required. However, to secure a definitive — no ambiguity — verification

of the items of any of these tests, extended precision (sometimes called

infinite precision) arithmetic must be used. This can be costly in

arithmetic processing time and in data storage space on a computer.
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APPENDIX I

In this appendix we consider, the procedure to follow in the

event A (•) = 0. To continue the discussion, suppose m is the

greatest value of 1 such that A.(0 i 0. Then there exists a real

polynomial F in X and z of degree m - m in z such that

F(X,jz) or jF(X,jz) is also a real polynomial and

Q(X,z) =» F(X,z)Q(X,z) (AI-1)

and such that Q possesses no similar real factor.

Clearly any factor of Q in the single variable X must be a

factor of F. Therefore, the implication of (8b) is equivalent to

{Xe 3?" n U: F(X,0 f 0}} A {z G §gc} => Q(X,z) * 0 (AIr2a)

and

{X€3^ O {X: F(X,.) j 0} A{z€^C> *H(\9z) + 0. (AI-2b)

Now, (AI-2a) can be validated by treating Q as was Q in arriving at

item (c) of the general stability test. The one, altered developmental

fact is: {X:Q(X,0> • {X:F(X,0> may not be the empty set. However

continuity of the A.(0 can be invoked to leave item (c) intact. Thus,

we need yet consider only (AI-2b).

Because F(X,z)L e^ is real and F(X,jz)L ear or

jF(X,jz)L e yj, is real, the zeros of F(X,z)| e ^ have quadrantial
symmetry in C • Therefore, (AI-2b) is valid if and only if

{xea-T n{x: f(x,o t 0} a{z eg&j SEC} *> f(x,z) ^o (ai-3)
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Let us combine this implication with that of (8c) which, because

A (O ~ 0, is no longer trivially true. As observed in the development
q

of the general stability test, any z for which Q(«,z) = 0 must be

a zero of an even or odd factor of Q in the single variable z. That

factor must clearly be a factor of F. Thus, (8c) can be replaced by

{z e 39b «* F(*,z) t 0. (AI-4)

By (AI-3), F can have only Imaginary zeros in z, but by (AI-4)

they must not be such that F(*,z) = 0. This implies that F must

have no factor in the variable z alone. Thus we have

{^z eaSfe f(.,z) =0} a{{ xeatT n {x: f(x,o t o}}

a {f(x,z) - o} => z ea S£}. (m-5)

Validation of this implication is carried out as follows: Trudi's

procedure [l,p.33] is invoked to determine the greatest common polynomial

factor of the polynomial coefficients of F as a polynomial in z.

The result is a factorization of F as the product of polynomials

F(X,z) - g(X) F(X,z) (AI-6)

Note: {X:F(X,0 = 0} » (X:g(X) = 0}. Trudi's procedure is again

invoked, this time to determine the greatest common polynomial factor

oftine polynomial coefficients of F as a polynomial in X. The

result is a factorization of F and further factorization of F. Thus,

F can be expressed as

As an alternative to Trudi's procedure, a double triangularization
on the Sylvester matrix associated with pairs of polynomials can be
employed. [11]
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F(X,z) •* g(A)g(z)G(X,z) (AI-7)

Note: If g(z) is not a constant, then the implication (AI~5)

cannot possibly be true. Next, Trudi's procedure is Invoked to

determine any greatest common polynomial factor of G and <^,

the derivative of G with respect to z, as polynomials In z. Let G

denote the polynomial remaining when this factor is extracted from G.

Then for almost all X G 3*j" the zeros of G(X,0 have unit

multiplicity. For such a polynomial we have necessary and sufficient

conditions for all its zeros to be imaginary. Let

G(X,z) «YA(X)z2£ +Yil_1U)z2*"2+...+Y0(X) (AI-8a)

or

G(X,z) -Y^a)z2i+1 +YH(^)z2H+...+y0(A)z. (AI-8b)

and let v^v) (1 « 1,...,&) denote the determinants of the inners — nested

bordered arrays —

az Vi a*-2 * ' . . . •

•

•

0

0 0

Vl ' ' . •»

aA . .

ai a0 0

a2 al ao

. Vi . V2

3a3

2a2

al

2a2

al

0

al

0

0

0

0

0

*aA

ut . . • .

•

•

•

•

(A"1)aM * * . .

lal (Jw)Vi U-2)a£-2 . . * . •
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Then [10,p.36], for almost all X *= XT the zeros of G(X,0 are imaginary

if and only if y±(\) >0 [alternatively, y^(\) < 0] (i - 0,...,£)

and v.(X) > 0 (1 =» 1,...,£)• By continuity we extend this result to: for all
1

X^ XT' the zeros of G(X,0 are imaginary if and only if y±M >. 0

[alternatively, Y±U) £0] (i » 0 %) and v±(X) >. 0

(1 = 1,...,&)• Collecting these several results we have

SUPPLEMENTAL TEST I: The implication (AI-2b) is valid if and only

if for all X € aX""

(a) degree {g(z)} « 0,

(b^ Y±W £.0 [alternatively, y.M ± 0] for 1 =*• 0,...,£, and

(b2) v(X) >_0 for 1 = 1,...,A.

It remains in validating (8b) only to consider the determination of F of

(AI-1). This factor is a serendipitous result of evaluation of the inners

determinants A.(•) by a somewhat modified double trlangularization

[10,pp.217-224] of the outermost array — associated with A (•).

APPENDIX II

Let E(X) denote a real polynomial of degree k in X. Furthermore,

let k.( 1 = l...,k) denote the inners determinants associated with E.

Suppose k is the largest 1 such that k. ^ 0. Then there exists a

factorization of E as

E(X) - B(X)C(X), (AII-1)

where B is an even or odd real polynomial (of degree k-k).

Now, C is a Hurwitz — in fact, strictly Hurwitz — polynomial

if and only if k^ > 0 (i = 1,...,R). Thus, we must yet just consider B.

Being an even or odd real polynomial, its zeros must have quadrantial
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symmetry. Thus, B is a Hurwitz polynomial if and only if all its zeros

are Imaginary, We procede as we did with G of (AI-5). By Trudi's procedure we

determine the greatest common factor of B and B. — the derivative
x

of B — and extract it from B to obtain B. It is now necessary to show

that the distinct zeros of B are, all of them, imaginary. This is

the case if and only if all its coefficients are of the same sign — positive

or negative — and all the inners determinants associated with B,

evaluated as were those associated with G of (AI-8), are positive.
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