Copyright © 1964, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Electronics Research Laboratory
University of California
Berkeley, California
Internal Technical Memorandum M-77

A NOTE ON THE EVALUATION OF THE TOTAL SQUARE INTEGRAL*
by
E. I. Jury
*This work was supported by Air Force Office of Scientific Research Grant No. AF-AFOSR-292-64.

June 13, 1964

A NOTE ON THE EVALUATION OF THE TOTAL SQUARE INTEGRAL*

E. I. Jury**

The purpose of this note is (a) to show the general formulation of the total square integrals in discrete systems and (b) to show for such a formulation we need to expand only (n-l)-order determinant.

Recently a tabulation of the total square integrals which arise in discrete systems have been presented. ${ }^{1}$ This tabulation which was carried out for systems up to fourth order is based on the evaluation of the following determinants:

$$
I_{n}=\frac{|\Omega|}{a_{0}|\Omega|}=\frac{1}{2 \pi j} \oint_{\substack{\text { unife } \\ \text { circfe }}} \approx(z) \approx\left(z^{-1}\right) z^{-1} d z
$$

where Ω is the following matrix ${ }^{\dagger}$:

$$
\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \cdots \\
a_{1} & a_{0}+a_{2} & a_{1}+a_{3} & a_{3}+a_{4} & \cdots \cdots \\
a_{n-1} \\
a_{2} & a_{3} & a_{0}+a_{4} & a_{1}+a_{5} & \cdots \cdots \\
a_{n-2} \\
a_{n} & 0 & 0 & 0 &
\end{array} a_{0}\right]
$$

[^0]and Ω_{1} is the matrix formed from Ω by replacing the first column by

$\left[\begin{array}{c}\sum_{i=0}^{n} b_{i}^{2} \\ 2 \Sigma b_{i} b_{i+1} \\ 2 \Sigma b_{i} b_{i+2} \\ \cdot \\ 2 \Sigma b_{i} b_{i+n-1} \\ 2 b_{0} b_{n}\end{array}\right]$

The function $\bar{\sigma}(z)$ is given by
$\phi(z)=\frac{B(z)}{A(z)}$,
where
$A(z)=\sum_{r=0}^{n} \quad a_{r} z^{n-r}, \quad a_{0} \neq 0$
$B(z)=\sum_{r=0}^{n} \quad b_{r} z^{n-r}$.

To show the procedure of evaluation, a fifth-degree polynomial is first discussed and then the general results for the n-th degree is stated. For a fifth-degree polynomial the total square integral is given by:

$$
I_{5}=\frac{1}{2 \pi j} \oint_{\substack{\text { unit } \\ \text { circle }}} \frac{B(z)}{A(z)} \frac{B\left(z^{-1}\right)}{A\left(z^{-1}\right)} \quad z^{-1} d z
$$

where
\dagger For ease of calculation and to identify certain terms certain entries
in the matrix have been labeled as indicated above.

The numerator determinant is given by:

$$
\left|\Omega_{1}\right|=a_{0} B_{0} Q_{0}-a_{0} B_{1} Q_{1}+a_{0} B_{2} Q_{2}-a_{0} B_{3} Q_{3}+a_{0} B_{4} Q_{4}-B_{5} Q_{5}
$$

where the $Q_{r}^{\prime} s$ are given as follow:

$$
Q_{0}=\left|\begin{array}{llll}
e_{1} & e_{2} & e_{3} & e_{4} \\
a_{3} & f_{1} & f_{2} & a_{2} \\
a_{4} & a_{5} & a_{0} & a_{1} \\
a_{5} & 0 & 0 & a_{0}
\end{array}\right|, \quad Q_{1}=\left|\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{3} & f_{1} & f_{2} & a_{2} \\
a_{4} & a_{5} & a_{0} & a_{1} \\
a_{5} & 0 & 0 & a_{0}
\end{array}\right|,
$$

$\dagger_{\text {See note page } 3 .}$

$$
\begin{aligned}
& Q_{2}=\left|\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
e_{1} & e_{2} & e_{3} & e_{4} \\
a_{4} & a_{5} & a_{0} & a_{1} \\
a_{5} & 0 & 0 & a_{0}
\end{array}\right| \quad Q_{3}=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
e_{1} & a_{2} \\
a_{3} & e_{3} & e_{4} \\
a_{5} & f_{2} & a_{2} \\
a_{2} & 0 & a_{0}
\end{array}\right| \\
& Q_{4}=\left|\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
e_{1} & e_{2} & e_{3} & e_{4} \\
a_{3} & f_{1} & f_{2} & a_{2} \\
a_{4} & a_{5} & a_{0} & a_{1}
\end{array}\right| \quad\left|\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
e_{1} & e_{2} & a_{3} & e_{4} \\
a_{4} & a_{4} \\
a_{3} & f_{1} & f_{2} & a_{2} \\
a_{4} & a_{3} \\
a_{5} & a_{0} & a_{1} & a_{2} \\
a_{5} & 0 & 0 & a_{0} \\
a_{1}
\end{array}\right|
\end{aligned}
$$

It is noticed from Q_{5} that one has to expand a fifth-order determinant; however, the following relationship exists which reduces the order.
Expanding Q_{5} along the last column,
$Q_{5}=a_{5}\left|\begin{array}{llll:l}e_{1} & e_{2} & e_{3} & e_{4} \\ a_{3} & f_{1} & f_{1} & a_{2} & -a_{4} \\ a_{4} & a_{5} & a_{0} & a_{1} & \\ a_{5} & 0 & 0 & a_{0} & \end{array}\right|+\ldots$ so on.
one obtains
$Q_{5}^{\dagger}=a_{5} Q_{0}-a_{4} Q_{1}+a_{3} Q_{2}-a_{2} Q_{3}+a_{1} Q_{4}$
and hence,

[^1]\[

$$
\begin{aligned}
|\Omega|= & \left(a_{0} B_{0}-a_{5} B_{5}\right) Q_{0}-\left(a_{0} B_{1}-a_{4} B_{5}\right) Q_{1} \\
& +\left(a_{0} B_{0}-a_{3} B_{5}\right) Q_{2}-\left(a_{0} B_{3}-a_{2} B_{5}\right) Q_{3} \\
& +\left(a_{0} B_{4}-a_{1} B_{5}\right) Q_{4}
\end{aligned}
$$
\]

by replacing B's by a's in $|\Omega|$, one obtains

$$
\begin{aligned}
|\Omega| & =\left(a_{0}^{2}-a_{5}^{2}\right) Q_{0}-\left(a_{0} a_{1}-a_{4} a_{5}\right) Q_{1}+\left(a_{0} a_{2}-a_{3} a_{5}\right) Q_{2} \\
& -\left(a_{0} a_{3}-a_{2} a_{5}\right) Q_{3}+\left(a_{0} a_{4}-a_{1} a_{5}\right) Q_{4} .
\end{aligned}
$$

Hence,

$$
\begin{array}{r}
\left(a_{0} B_{0}-a_{5} B_{5}\right) Q_{0}-\left(a_{0} B_{1}-a_{4} B_{5}\right) Q_{1}+\left(a_{0} B_{2}-a_{3} B_{5}\right) Q_{2} \\
I_{5}=\frac{-\left(a_{0} B_{3}-a_{2} B_{5}\right) Q_{3}+\left(a_{0} B_{4}-a_{1} B_{5}\right) Q_{4}}{a_{0}\left[\left(a_{0}{ }^{2}-a_{5}{ }^{2}\right) Q_{0}-\left(a_{0} a_{1}-a_{4} a_{5}\right) Q_{1}+\left(a_{0} a_{2}-a_{3} a_{5}\right) Q_{2}\right.} \\
\left.-\left(a_{0} a_{3}-a_{2} a_{5}\right) Q_{3}+\left(a_{0} a_{4}-a_{1} a_{5}\right) Q_{4}\right]
\end{array}
$$

For evaluating I_{5}, it appears that one has to evaluate the determinants $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, and Q_{4}. However by using the following artifice, one need only to evaluate the last one, i.e., Q_{4}. All the others can be readily obtained by a certain substitution as follows:

1. Expand Q_{4} by labeling its entries as follows.

$$
Q_{4}^{\prime}=\left|\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
d_{3} & f_{1} & f_{2} & d_{2} \\
k_{4} & k_{5} & k_{0} & k_{1}
\end{array}\right|
$$

From Q_{4}^{\prime}, one obtains Q_{3}^{\prime} by using the following substitution as noticed from Q_{3},

$$
k_{4}=a_{5}, \quad k_{5}=0, \quad k_{0}=0, \quad k_{1}=a_{0}
$$

From $Q^{\prime} 3^{\prime}$, one obtains $Q^{\prime}{ }_{2}$ as follows:
let, $d_{3}=a_{4}, f_{1}=a_{5}, f_{2}=a_{0}, d_{2}=a_{1}$.
Similarly Q_{1}^{\prime} is obtained from Q_{2}^{\prime} as follows,

$$
c_{1}=a_{3}, \quad c_{2}=f_{1}, \quad c_{3}=f_{2}, \quad c_{4}=a_{2}
$$

Finally, Q_{0} is obtained from Q_{1}^{\prime} by letting

$$
b_{1}=e_{1}, b_{2}=e_{2}, b_{3}=e_{3}, b_{4}=e_{4}
$$

2. By relabeling the entries of Q_{r}^{\prime} to coincide with Q_{r} one obtains all the required $Q_{r}{ }^{\prime} s$.

This process can be readily generalized for any order system which requires the evaluation of only one ($n-1$)-order determinant. Generalizing the above procedure, to obtain

$$
\begin{gathered}
{\left[\left(a_{0} B_{0}-a_{n} B_{n}\right) Q_{0}-\left(a_{0} B_{1}-a_{n-1} B_{n}\right) Q_{1}+\cdots\right.} \\
a_{0} I_{n}=\frac{\left.+(-1)^{n-1}\left(a_{0} B_{n-1}-a_{1} B_{n}\right) Q_{n-1}\right]}{\left[\left(a_{0}^{2}-a_{n}^{2}\right) Q_{0}-\left(a_{0} a_{1}-a_{n-1} a_{n}\right) Q_{1}+\left(a_{0} a_{2}-a_{n-2} a_{n}\right)+\cdots\right.} \\
\left.+(-n)^{n-1}\left(a_{0} a_{n-1}-a_{1} a_{n}\right) Q_{n-1}\right]
\end{gathered}
$$

where

$$
B_{0}=\sum_{i=0}^{n} b_{i}^{2}
$$

and

$$
B_{r}=2 \sum_{i=0}^{n} b_{i} b_{i+r} \quad r=1,2, \ldots \ldots n .
$$

Furthermore, the $Q_{r}{ }^{\prime} s$ for $r=0, \ldots,(n-1)$ are $(n-1)$ by $(n-1)$ determinants, obtained as follows:

By deleting the r-th row and the n-th row and by deleting the first and n-th columns, the remaining rows and columns give ($n-1$)order, Q_{r}, determinant.

As shown for the fifth-order case, we can obtain all the $Q_{r}{ }^{\prime}$ s by expanding only the matrix of the $Q_{n-\frac{1}{}}$. Therefore, for obtaining the value of I_{n} we need to expand only one ($n-1$)-order determinant. If the coefficients are given in numerical value, then we have to calculate all the Q_{r} 's.

REFERENCE

1. E. I. Jury, Theory and Application of the z-transform method, John Wiley and Sons, Inc., Now York, 1964., Ch. 4 and Table III.

[^0]: This work was supported by Air Force Office of Scientific Research Grant No. AF-AFOSR-292-64. **

 Electronics Research Laboratory, University of California, Berkeley, California
 circle, this determinant never vanishes.

[^1]: † The author is grateful to Dr. Paul LeFevre of Paris, France, for pointing this relationship for the fourth and third order cases, which can be generalized to any order. For numerical calculation the above relationship is quite useful.

