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1. Introduction

The basic problem that we shall consider in this paper is the

estimation of a two-parameter Gaussian random field in the presence of

an additive independent white Gaussian noise. Specifically, consider an

observation equation of the form

(1) CC^.t^ =•x(t1,t2)+n(t1,t2), (tx,t2) e T

where £ denotes the observation, x a Gaussian random field, r\ a Gaussian

random field independent of x and having a covariance function

(2) EnCt^.t^rKs^s^ = N^Ctj-s^&Ctg-sp

and T is a rectangle in the plane, say T = (a.,,b- )x(a2,b2) . Because x and

n are jointly Gaussian, the general estimator

(3) E[x(tl5t2) InCs^s^ e s]

is linear in r\ for any set S in T. Thus, the meaning of the word "linear"

in the title is clear.

For each t in T, denote by A the quadrant below and to the left

This research was supported by the U.S. Army Office Grant DAAG29-75-G-
0189 and by a Vinton Hayes Senior Fellowship at Harvard University.
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of t, i.e.,

(4) At= {(srs2>: s^ tr s2< t2}

We shall call A the past at t. Let Afc denote the boundary of At,

i.e.,

(5) 3At ={(s^): S;L £ t±} \J {(tlfs2>: s2 £ t2>

We shall call 3At the present at t. Denote

(6) x(t|s) - E(x(t)|n(T), t e Ag)

By the "causal" estimator we shall mean x(t|t), which is the estimator

of x(t) that uses only the past data at t.

By "recursive filtering" we shall refer to a means of suitably

embedding x(t|t) in a state X(") so that for t* > t (which means t^ > t±

and t1 ^ t2) X(tT) can be computed using X(t) and the observed data in the

area between Atand At- The results of [1] show that if x(t) has a

Markovian property (in the sense that tf > t implies the conditional

independence of x(tf) from the past of x at t given the present of x at t)

then recursive filtering is indeed possible and the state can be taken to

be

(7) X(t) = {x(s|t), s e 3At>

To model the dynamics of x(t), we shall take a class of partial

differential equations, which are often used as such in the literature

[2,3,4,5]. From these modeling equations, we shall derive the recursive

filtering equations and the generalized Riccati equation. The Riccati
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equation will be solved for one specific example, corresponding to the

case where x(t) is a homogeneous random field with a spectral density

function given by

K

WV =lUv^Kiv^)!*

The problem considered here is to be distinguished from the problem

of computing the estimation x(t_ ,tjt. ,T«) for a fixed T2 as t- changes.

The latter might be described as the one-sided-recursive half-plane-causal filtering

which has been considered in a recent paper by Wong and Tsui [6]. The

problem treated in this paper is considerably more complex, owing to the

inherently two-dimensional dynamics of information change. Whether the

results are more useful is arguable, but we think that aside from its

mathematical interest the two-dimensional recursive causal filter is

important for a number of reasons which include the following:

(1) It allows data to be added in eitjher or both directions,

and reduces to the one-sided filter as a degenerate limiting

case.

(2) The state X(t) as given by (7) plays a special role in the

computation of the likelihood ratio [7], which in turn is

essential in hypothesis testing and parameter estimation.

(3) One expects, and the results vindicate this, that the

dynamic of x(t|t) follows closely that of x(t) .

(4) Most importantly, the state X(t) = {x(s|t), s e 8A } plays

a generic role in recursive computation for all estimation

problems much as that played by the causal estimator in one

dimension. Thus, whether or not one is

-3-



V

interested in causal estimators per se, recursive computation

forces them to be considered.
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2. Wiener Process and Stochastic Integrals

As in the one-dimensional case, the pathology of white noise

can be avoided by dealing with its integral. Let W(A) be a Gaussian

random function parameterized by sets A in the plane such that EW(A) = 0

and

(2.1) EW(A)W(B) = Area(A^B)

We shall call W(A) a standard two-parameter Wiener process. Formally,

we can view W(A) as the integral over A of a Gaussian white noise with

spectral density equal to 1. We can now rewrite (1) in terms of a

standard Wiener process W as

f
(2.2) Z(t) = x(s)ds + vfiT W(A )

AAt

where A is the lower-left quadrant of T with tip at t as defined earlier,

and Z is now the observed field. The Wiener process W is independent for

nonoverlapping areas and this captures the independence property of white

noise.

Our experience with one-parameter processes suggests that in dealing

with a Wiener process and its transformations a stochastic calculus is

necessary and such a calculus must be closely related to a theory of

martingales. These considerations motivated Wong and Zakai [8,9] and

Cairoli and Walsh [10] to undertake a systematic study of martingales with

a two-dimensional parameter and their associated stochastic calculus. These

results will be briefly summarized in this section.
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We begin with some notations and terminology. For two points t

and s on the plane t>s will mean t- £ s. and t2 * s2. Let T be a

rectangle. A family of a-fields { JT 9t e T} is said to be increasing

if t > s implies that ,* D^. A random field {M(t), t e T> is said
to*

to be adapted to { & , t e T> if for each t in T M(t) is ^-measurable,

and a martingale with respect to { & , t e T> If t > s implies that

(2.3) E(M(t).| &T) = M(s) almost surely

To be brief, we shall say M(t') is an iT-martingale or {M(t) , ,•£}

is a martingale.

Let { ^., t e T} be an increasing family of a-fields. Let W

be a standard Wiener process such that W(A) is ^-measurable if A C A

and ^.-independent if A and Afc are disjoint. Then {W(A ) , 3", t e T}

is a martingale and we shall investigate stochastic integrals with respect

to W. The first stochastic integral to be introduced, and it is an

obvious generalization of the Ito integral, is of the form

(2.4) M = <j>(s)W(ds)
T

where <}> is an 3£-adapted random field and satisfies

(2.5) E<j) (s)ds < «>

This integral can be defined as the quadratic-mean limit of a sequence

of approximating sums, i.e.,

(2.6) M=lim in q.m J ♦(tJ°)W(AJ?))
n-*» i,j 1J 1J
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where for each n {tj. } is a rectangular partition of T,

^ -^ij+i-'Sl-'ij+i^ "Dd{tS)> -*" —-
n -*• °°. So defined, M has the martingale property that

(2.7) E(M| <*T) = (J)(s)W(ds)
A,

t

In [8] Wong and Zakai raised the question as to whether every

square-integrable functional of a Wiener process is expressible in the

form of (2.4). While the answer for the one-parameter case is affirmative,

the answer for a parameter space of dimension two or more is no. For a

two-parameter Wiener process every square-integrable functional is of

the form

(2.8) M=[ cf>(s)W(ds) +J iKs,sf)W(ds)W(dsf)

The second integral on (2.8), to be defined shortly, will be called a

multiple stochastic integral. Cairoli and Walsh [-10] introduced a class

of mixed integrals, which slightly modified were found to be required for

a complete stochastic calculus in the plane [9,11].

Multiple stochastic integrals and mixed integrals can all be

expressed as

iKsjs'WdsWds1)
•'TXT

where X and Y are either the Wiener process W or the Lebesgue measure.

Let sAs* denote the fact that s- < sJ and s2 > sX. Then for \fj which

satisfy the condition
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(a) iKs,sf) is measurable with respect to &(* _ \
\&~>s«y

f o 1 l
Eij; (s.s^dsds1 < «>

and

(b)
sas1

the integral is defined by

(2.9) iKs^^XUs^ds1) = lim in q.m. \ ^(s,sf)X(As)Y(Asl)
JTxT n -*• °° sas*

s,s'eT
n

where T is a sequence of partitions of T which refine to zero and As
n

stands for the forward incremental area

As « (s1+61,s24^2)-(s1-HS1,s2)-(s1,s2+ S2)+(s1,s2)

In [11] it was shown that if a random field X(t) is defined by

(2.10) X(t) <Ks)W(ds) +

JV*t
a(s,s,)W(ds)W(dsf)

3(s,sl)W(ds)dsf + Y(s,sf)dsW(dsf)

AtXAt 'AtxAt

6(s)ds

then F(X(t)) for a suitably differentiable function F is again expressible

as the sum of integrals of the same types.

It is tempting to write the multiple stochastic integral and the

mixed integrals as iterated integrals. This can be done as follows:

Suppose that T is an increasing path connecting the minimal point and

the maximal point of the rectangle T. For any point s in T we define

s(f) as the smallest point on T which dominates s, i.e.,

-8t



(2.11) s(r) = min{t: t e F, t > s}

Let <j>(s) be a random function and let V be an increasing path such

that <j>(s) is JT ..-measurable for each s. We shall say <f> is T-adapted.

If <{> is T-adapted for some T then the stochastic integral

(2.12) M = <j)(s)W(ds)

can again be defined. We note that if <j)(s) is J*"-measurable then
s

it is & ,„,>-measurable for any increasing F. Hence, the definition

of (2.12) represents a considerable generalization over (2.4) . If <t> is

r-adapted then the integral

\-l <Ks)W(ds)

is a martingale (one-parameter) on the path t £ T. With this generalization

we can now express the multiple stochastic integral and the mixed integrals

as interated integrals, i.e.,

Ws9a')X(ds)Y{ds')
TxT

[
T J

[
T J

KsAs^TKs.sOX^Wds1)

I(sAs')^(s,s')Y(ds,)]X(ds)

where I(sAs1) denotes the indicator function of the set in TxT of

(s,s*) which satisfy sAs1 and the inner and outer integrals are either

a Lebesgue integral or a stochastic integral in the sense of (2.12). For
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example, let Tbe the rectangle {s :a * s1 *b ,a2 £ s2 £b }

Then

^(s,st)dsW(dsl)
TxT

KsAsWs.s^dsMds')

where the integrand I(sAs')^(s,s')d8 of the outer integral is adapted

to the path 1^ ={(a^s^, a2 £ s2 £b2> + {(s^b^, a± £s £b^

Figure 1; The path T

It follows that

Mt =
AtxAt

♦(s,s')dsW(ds')

is a one-parameter martingale with respect to { S£^ , \, a, £ t, £ b.}
12

Similarly,

M

* JV*t
\|;(s,sf)W(ds)dst
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is a martingale with respect to { #b t y a2 £ t2 £ b2>. We shall call
a random, field {M., t e T> an adapted { &'} 1-martingale (2-martingale)

t *-

if M is. 3f -measurable for each t and is a one-parameter martingale

with respect to ^^ (wop. .^^j). .
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3. Filtering Equations

Once again, consider the observation equation

(3.1) Z(t) = x(s)ds + •STw(t)

Let &t denote the a-field generated by (x(s),W(s), s < t} and let

&t denote the a-field generated by (Z(s), s < t}. Let x(s|t) denote

the conditional expectation

(3.2) x(s|t) =E[x(s)| *rt]

A generalization of the innovations representation in one dimension is

that if M(t) is an adapted ^T 1-martingale (2-martingale) then it

must be of the form

(3.3-1) M(tl,t2) =MQ +j1| 2k(t2,Sl,s2)[A(ds1ds2)-x(s1,s2|s1,t^ds1ds2]
al a2

respectively

(3.3-2) M(t1,t2) =Mq + f^

ll a2

k(t1,s1,s2)[Z(ds1ds2)-x(s1,s2 t1,s2)ds1ds2]

We note that the only difference between these two representations is the

term involving x.

Equation (3.3) can usefully be rewritten in a differential form as

(3.4-1) M(dtl,t2) oJ2k(t2,t1,s2)[A(dt1ds2)-x(t1,s2 t^t^dt^]
a2

respectively

(3.4-2) M(trdt2) =
ft.

k(t1,s1,t2)[Z(ds1dt2)-x(s1,t2 t1,t2)ds1dtg]

-12-



These forms suggest certain limitations on the recursion of the causal

timation x(t|t). For example, consider an incremental change
es

*i " H+dti

(3.5) d^. x(t|t)-E[d x(t)| &] = M(dtx,t2)
cl 1

where M(t), & is a martingale in t± for each t2- Therefore,

»t«(3.6) dJ(t|t)-E[d x(t)| JTJ = 2k(t2,t1,s2)]Z(dt1ds2)-x(t1,s2|t1,t2)dt1ds2]
H Zl Ja2

and this means that no matter what the dynamics of x is, the best recursion

that can be hoped for in t± is for the line {xO^s^t^t^), a2 Ss2 £ t£).
A similar conclusion follows in the t2 direction.

The foregoing also suggests that for a line-by-line recursive

filtering to be possible in both directions; an appropriate model for

the dynamics of x is given by

•t

(3.7) i(dt,t2) =a^.t^x^t^dt-j+dt^ j f1(t1,t2;s2)x(t1,s2)ds2
a2

2hi(ti't2;s2)V(dtlds2)
ft.

:(t ,dt )=o2(t1,t2)x(t1,t2)dt2_dt2 JXf2(trt2;s1)x(s1,t2)ds1
al

'* h2(t1,t2;s1)V(ds1dt2)
ll

where V is a standard Wiener process independent of the observation noise

Wand a , f., h. are deterministic functions. Naturally, since

d x(dt1,t ) = d x(t ,dt ), the function o±> f±, h± must be interrelated.
fc2 1

It is easy to verify that subject to some obvious differentiability
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conditions on the kernels, a sufficient condition for x to satisfy (3.7)

is that it should satisfy the symmetric equation

(3.8) x(dt1dt2) = a1(t1,t2)dt1x(t1,dt2)+a2(t1,t2)dt2x(dt ,t2)

+6(t1,t2)x(t1,t2)dt1dt2+Y(t1,t2)V(dt1dt2)

from which the functions f. and h can be found to be expressible as
i i

f^t;^) = [3(t)+a1(t)a2(t)-~-a1(t)]exp[ La^t^t^dT^
ft

2

2

fa
^^iV8!* = WCO-fa^Oc^O:)- -~-a2(t)]exp[

h (t-.t ;s2) =y(ti,t2)exp[ 2a2(tlfT2)dT2]
2

1 0^(1^, t^dT^]
S2

ft.

h^t^t^s^ = Y(tlSt2)exp[
sl

sl
(3.9)

At any t the state of the filtering equation is X(t) = {x(s|t),

s e 9A }. The first set of filtering equations will exhibit the change i

these quantities as t- -*• t.+dt, or as t2 -> t2+dt2, one at a time. These

equations would be "partial differential" equations similar to (3.7).

Since only t- or t« changes, these are basically one-dimensional equations

and the only aspect of their derivation which is two dimensional is the ••

innovations representation (c.f. (3.6)). Generally, let 0(t1>t2) be

any random function and^ let 9(t|t) denote E[9(t)|t]. Then, the same line of

reasoning leading to (3.6) will also yield the representation

in

-14-



dt 9(t|t) =E[dt 0(t)| &zt] + 2k1(t,s2)Z(dt1ds2|t)

fa "dt 9(t|t) =E[d 6(t) | ,*zt\ + xk2(t,s1)Z(ds1dt2|t)
2 2 •'a,

where Z(ds|t) denotes the "innovations

(3.10) Z(ds|t) = Z(ds)-x(s|t)ds = [x(s)-x(s|t)]ds + ^ W(ds)

Now, consider a point on the boundary 3A , say (TjftO w*tn

T_ £ t-. Since d^ x(t, ,0 = 6 . x(dt-,t0) (6 =1 if a=b, = 0 otherwise) we have
11 t. 1 2 Titi • 1 • 2 ab .

(3.11) dt a(Tlft2|t) - <ST t E[X(dtrt2)| &zt]
11

ft,

k(T1,t2;t1,s2)Z(dt1ds2|t)

Using (3.7), we get

rt.

(3.12) E[x(dtrt2)| jr ] =dt1[a1(t)x(t|t)+ z f1(t;s2)x(t1,s2|t)ds2]

Therefore,

(3.13) dt i(Tlft2|t) =6T t dtx[0^(0*0:11)+ j 2f1(t;s2)x(t1,s2|t)ds2]
1 11 ^a«

ft.

+ k(T1,t2;tjL,s2)Z(dt1ds2|t)

The gain function k can be computed by noting that for T2 £ t2

E{dt [ft(Tlft2|t)Z(tlfT2|t)| 9t} = Z(t1,T2|t)E[dt ft(Trt2|t)| &zt]

+x(Tlft2|t)E[Z(dtlfT2|t)| ^t]+N0 j *k(T1,t2;t1,s2)dt1ds2
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On the other hand, since W and V are independent Wiener processes, we

have

E(dt [x(T1,t2)Z(t:L,T2|t)]| &zt} =ZC^.TjjIOEld^ x(T1,t2)| «*Tt]

+E[x(TjL,t2)Z(t]L,T2|t)| 3?zt\

Because

we have

N,

E[dt $iTvt2\t)\ J?zJ =E[dt x(Trt2)| 4t]

k(T1,t2;t1,s2)ds2dt1

=E[e(T1,t2|t)Z(dt1,T2|t)| &zt]

=|2E[e(T1,t2|t)e(t1,s2|t)| ^Ms^
a2

where e(s|t) denotes the estimation error x(s)-x(s|t). Therefore,

(3.14) k(T1,t2;t1,T2) =y~ p(T1,t2;t1,T2|t)

where p denotes the conditional covariance function

(3.15) p(s,x|t) = E[e(s|t)e(T|t)| ^"zt]

The filtering equation (3.13) can now be written as:

ft,

d -xOr-.tJt) = 6T t dtAcxAtn(t\t)+ f1(t;s2)x(t1,s2|t)ds2]
'l L L Tl 1 Ja0

N,
p(T1,t2;t1,s2|t)Z(dt1ds2|t)
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Similarly, we can derive the equations for d x(T..,t?|t) andt£ x

d x(t-,T9|t). These can all be expressed in a generic form as follows:

For any point x on the boundary 3A , we can write

d„ x(x|t) = 6T ^ dt1[a1(T)x(x|t)+ z Mtjs )x(t ,s2|t)ds2]
h Vl X X Ja2 1 2 X

, ft„

(3.16).
N,

p(T;t1,s2\t)Z(dt1ds2|t)

dfc x(x|t) =6T t dt2[a2(T)x(T|t)+ x f2(T;s1)x(s1,t2|t)ds1]
al

1 p(T;s1,t2|t)Z(ds1dt2|t)

2 2

0 J

Equation (3.16) represents the basic filtering equation for the two-dimensional

problem, even though other forms derived by it may be more useful. Before

deriving the alternative forms, however, we shall first find the generalized

Riccati equation which is satisfied by the covariance function p.

For T, T1 e 3A we have two distinct situations. Either T and

T1 are on the same segment of 3A or they are on different segments.

We shall first consider p(T,Tf |t) for T and T1 on the same segment of

3At, say P^i »T2;ti»T2 ^' Usin8 <3*7) and (3-16) we have

fT2(3.17) dt e(tvT2\t) =dt1[a1(t1,z2)e(t1,T2|t)+ f^t^T^s^e^.s^Ods^

fT2+ h^.x,,;
S

-±- [ 2p(t1,T2;t1,s2|t)[e(t1,s2|t)dt1ds2+y^W(dt1ds2)]
0 ^a,,

s2)V(dt1ds2)
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It follows that

dt PCVW1^0 =E{dt Cs(tl,T2lt)6:(t:l,Z2lt]

= E{e(tvi'2 t)dt e(tvT2\t)-^UvT2\t)dt e(tltTj|t)

rmin(T2,T2)
h1(t1,z2;s2)h1(t1,z^;s2)ds2dt1

ft,

N,
0 Ja

p(ti,T2;t1,s2|t)p(t1,T^;t1,s2|t)ds2dt1

which yields

(3.18) -£- p(t1,T2;t1,T |̂t) =[a1(t1,x2)4a1(t1,Tpp(t1,T2;t1,T |̂t)

fa f1(t1,T2;s2p(t1,T^;t1,s2|t)ds2

fa f1(t1,T^;s2)p(t1,T2;t1,s2|t)ds2

•min(T2,T2)
h1(t1,T2;s2)h1(tx,T^;s2)ds2

fa

N
0

p(t1,T,2;t1,s2|t)p(t1,T^;t1,s2|t)ds2

This is seen to be a quadratic differential-integer equation for the

quantity

Pt (•) = (p(t1,T2;t1,T |̂t); T2,T^e[a2,t2]}

Both (3.17) and (3.18) can be expressed more simply if we agree to

the convention
-18-



fjXt^) = 0, h^sp = 0 for s2 > t2

f2(t;S;L) = 0, h2(t;Sl) = 0 for s± > t±

Adopting this convention, we have the following equations for p(T,Tf|t)

when T and T1 are on the same segment of 3At.

(3.19) -gf-pCW^.TjIt) =[a^^.T^+a^^.Tpip^,^;^,^^)

fa' [f1(t1,T2;s2)p(t1,T^;t1,s2|t)
I

+ f1(t1,T£;s2)p(t1,T2;t1,s2|t)]ds2

h1(t1,T2;s2)h1(t1,T^;s2)ds2

- ~- ' 2p(tl9T2;t1,s2|t)p(t1,T^;t1,s2|t)ds

(3.20) -—- p(Tlft2;Tj,t2|t) - [a2(Tvt2)^2{Tyt2)MTl9t2;T'vt2\t)

1 [f2(T1,t2;s1)p(x;[,t2;s1,t2|t)
1

+ f2(T^,t2;s1)p(T1,t2;s1,t2|t)]ds1

h2(T1,t2;s1)h2(T|,t2;s1)ds1

♦4
1 p(T1,t2;s1,t2|t)p(T^,t2;s1,t2|t)ds1

Now for x and T' on opposite legs of 3A , p(t,t'|t) has the form

p(T1,t2;t1,T2|t). To find -^- P^t^t^*^ |t) we first write for ^ < t±

-19-



(3.21) dt e(Tlft2|t) =-dt xOr^t It)

ft,

N,
p(T1,t2;t1,s2|t)[e(t1,s2|t)dt1ds2+^ W(dt][ds2)

We can now use (3.17) and (3.21) to get

(3.22) dfc p(t1,T2;T1,t2|t) =E{dt [e(tvT2\t)e(Tl9t2\t)]\ &J

=E{e(t1,T2|t)dt e(x1,t2|t)4€(T1,t2|t)dt e(tlfx2|t)

+~- 2p(T1,t2;t1,s2|t)p(t1,T2;t1,s2|t)ds2dt1}
0 ^a„

= dt1{a1(t1,T2)p(t1,T2;T1,t2|t)

^2 f1(t2,^2;s2)p(t1s2;T1,t2|t)ds2

ft
i ri— p(t1,T2;t1,s2|t)p(t1,s2;T1,t2|t)ds2}
0 ' an

We observe that if p^.T ;t.,,s2|t) is determined by solving (3.19)

then (3.22) is a linear equation for the function p(t;L,T2;T1,t2| t) .

By symmetry, we also have

(3.23) ~- p(t1,T2;T1,t2|t) - a2(T1,t2)p(t1,T2;T1,t2|t)

1 f2(T1,t2;s1)p(t1,T1;s1,t2|t)ds1

- ~ I1 p(T1,t2;s2,t2|t)p(t1,T2;sI,t2|t)
0 J a.
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Equations (3.19), (3.20), (3.22) and (3.23) provide us with a complete

set of equations which determines p(T,Tf|t), t,t* e 3Afc.

Equation (3.16) represents the filtering counterpart of the state

equation (3.7). The question arises as to what is the filtering counter

part of (3.8). After some tedious but routine manipulations, we find

that for any T e 3At, x(T|t) satisfies

(3.24) dt dt S(T|t)-6T>t{aL(t)dt1dt x(t|t)-m2(t)dt^dtix(t|t)+B(t)x(t|t)dt1dt2}
12 *•

Idt p(T;t1,s2|t)]Z(dt1ds2|t)ffc2

a2 ^

+t
[dt p(T;s1,t2|t)]Z(ds1dt2|t)

al X

+^- p(T;t|t)Z(dt|t)
^0

If we denote the left hand side by M(dt;T) then for each T e 3At

M is a "weak martingale" in the sense that

E[M(dt;T)| &zt\ =0

Thus, in this sense M(dt;T) might be considered to be "white". We

should compare the filtering equation:

(3.25) d d £(t|t) =oh(t)d d x(t|t)+a9(t)d d x(t|t)+3(t)x(t|t)dt+M(dt;t)
h z2 1 h *2 Z2 Cl

where M is a weak martingale with the state equation (3.8)

d d x(t) = CL(t)d^ d_ x(t)+ct9(t)d. d x(t)+$(t)x(t)dt+y(t)V(dt)
H t2 L h Z2 2 zl

where V is a Wiener process. This is a direct generalization of the filtering

equation in one dimension and as simple a generalization as could have been

hoped for. -21-



4. An Example

Possibly the simplest nontrivial example is the so-called

"separable-covariance" model which has been used by a number of authors

[4,5]. This corresponds to the special case of (3.8) with a-(t) = -c.,

a2(t) = -c2, 8(t) = ~cic2 anc* Y(t) = 1. It also corresponds to the case

where the state x(t) is a homogeneous Gaussian random field with a

spectral density function given by

(4.1) S(v,,v0) =

It follows that

(4.3)

1 2 Kiv^Kiv^)!2

We shall attempt to solve for P in the infinite-past case, i.e. a- = a9 = -°°.

Consider (3.19). For this example f- = 0, and

-c9(t«-s9)
(4.2) h1(t1,T2;s2) = e 1<VS2) (1 = UD±t Step)

ft2 x -c2IVT2h1(t1,T2;s2)h1(t1,T^;s2)ds2 = j- e
a2 2

Furthermore, it is clear that with an infinite past in the t- direction

p(t1,T9;t.,t*|t) cannot depend on t. and its dependence on the remaining

variables t«, t,, t' is only as a function of t9-x« and t2-T2. We shall

define the function

(4.4) r^u.v) = p(t1,t2-u;t1,t2-v|t)

and use it to rewrite (3.19) in the form

-22-



-c2|u-v|

0 = -2Vl(u'v) +2cTe

' n1" I r1<u»y)r1(v»y)dy» °•* u» v < oo

"0 Jo
or

f» NQ -C2|u-v|
r1(n,y)r1(rjy)dy+2c1N0r1(u,v) = j^- e , 0 £ u, v <

0 2
(4.5)

Equation (4.5) can be solved by using the "Karhunen-Loeve expansion"

N0 ~°2I^—v|
for «— e on 0 £ u, v < °°. Actually, it is a degenerate2c2

expansion since because the interval is infinite in length the spectrum

will no longer be discrete. In any event, if we represent

N0 ~C2'U"VI"fir e - I X(v)(J)(v,u)(()(v,v)dV , 0 £ u, v < ~,
zc2 *0

where <j) satisfies the orthonormality condition

f°°

'♦(v.yWv1 ,y)dy - 6(v-v*)
Jo

then the-solution of (4.5) can be expressed as

r;L(u,v) =j [Jc^+XM -c1NQJ(J)(v,u)(J)(v,v)dV

The function <J>(v,u) and X(v) can be obtained by solving the

integral equation

•:

N« -c2|u-v|
e 4>(v)dv = X<j)(u), 0 £ u < °°.r _!o

J0 2c2

which in turn can be converted into a differential equation (see e.g. [13,14])

2d2
X(c2 - -—• )(J)(u) = N0<j>(u), 0 < u < *

du

with the initial condition

-23-



$<o) = c2<K0)

and a boundedness condition on <|>(u) as u + ». Properly normalized,

the solutions are

HT 1<f>(v,u) = j— j-k—=m- [c2sin Vu + v cos Vu]
7c9+v

N,

X(v) =
0

2 2

Therefore, the solution for r. (u,v) is given by

:iM =fcic2No Lf/T7 -i

N0c2c2(l+v2) (1+v2)

[sin c9Vu+V cos c2Vu] [sin c2\)v+V cos c2Vv]dv

It is clear that by symmetry we can define

r2(u,v) = p(t][-u,t2; t1-v,t2|t)

and r2 must be given by

r2(u,v) =- Clc2N0 j
r r

o

i + N0c2c2(l+v2) -1

1+v

[sin c.Vu+V cos c-Vu] [sin c^v+V cos c^vjdv

Since ^(0,0) and r2(0,0) are both equal to p(t|t), they must be the
same. It is easy to verify that the expressions we have obtained for

r- and r9 are consistent with this requirement.

The solutions r- and r2 give us p(t,t*|t) for T,Tf on the same

leg of 3A . To complete the solution of the filtering problem, we still

-24-



need p(t].,T2;T ,t2|t), which must satisfy (3.22) and (3.23). We note

that for the case at hand p(t-,T2;T ,t2|t) depends only on t^-T^ and

t2-T2. Therefore, it is convenient to define q(T ,T2) =p^^-T^t^-T^t^Jt)

and rewrite (3.22) and (3.23) as

^- qC^,^) - -ciq(TrT2) -i J^ r1(T2,s2)q(T1,s2)ds2

#oo

q(T1,T2) =-c^T^xp - ~ I r2(T1,s1)q(s1,T2)ds13T2

Consistency requires that

^V Lr1(T2,S2)q(T1,s2)ds2 -tft-^f r2(T1,s1)q(s1,T2)ds1
which is assured provided that q(T ,s2) = f(c-T ,c2s2) and f is a symmetric

function.

We can solve for q("1,s9) by assuming it to be of the form

q(T1,s2) =j A(v1c1t1)0(v1c2s2)idV
" 1' L' JQ L 1 L L Z. L

where

6(v,t) =J- j y (sinVT +v cos vt)

is orthonormalized so that
<»

e(v,T)e(v',T)dT = 6(V-Vf)

Since r1(r2,s2) is given by

r1(x2,s2) =Cj^c^q j K(v)0(v,c2t2)6(v,c2s2)

-25-
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with

•>

K(V) = ft + y-± =- -1

we have

•g|- A(v,c1T1)+c1[l+K(v)]A(V,c1T1) =0

or

A(V»C1T1) = A(v>°)e

A(V,0) can be found by noting that q(0,T2)=r1(0,T2) so that

f A(V,0)6(v,c2T2)dv =Clc2N0 j K(v)e(v,0)6(v,c2T2)dV
or

A(V,0) = Clc2N0K(v)e(v,0)

Therefore,

q(T1,T2) = Clc2N0
f» -[1+K(V)]C T

K(v)e •Le(v,0)6(V,c2T2)dv
0

Symmetry dictates that q must also be expressible as

q(TrT2) = Clc2N0
f*> -[1+K(V)]C9T9

K(v)e Z(()(v,0)(|)(v,c1T1)dv
0

This is indeed true and we can write q in a symmetric form as

-[1+K(v)]c2t2
q

E-Ll-hBAv; JC9l9
K(v)e 4>(V,0)(J)(v,c1T1)dV

This is indeed true and we can write q in a symmetric form as

c. c„N,,T T) _f f °1C2N0 . 0(v,O)e(y,O)e(v,c1T1)e(u,c2T2)Av<lM
V 2 h Jo [c?c2Nn(l+V2)(l+U2)+l]

12 0
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Finally, we can use the solution p to obtain the transfer

function of the one-quadrant causal Wiener filter. Take the first

equation of (3.16) and write it formally for the present example as

3 *

at.
X(t1,T2|t1,t2) =-CjfcCt^Tjtj^)

N- f2 r1(t2-T2,t2-s2)[?(t1,s2)-x(t1,s2|t1,t2)]ds2
iNfJ J-co

where £ represents the observed field in the original white noise form

(c.f. (1.1)). The stationarity inherent in the present example suggests

that we can write

f\ fa
x(t1,t2-T2|t1,t2) =

_oo J —CO

hl(T2;trSl,t2"S2)^(sl,S2)d8lds2

If we define H-Ct^V-.vJ as the Fourier transform of t^, i.e.,

-KV^+V^)H1(T2;v1,v2) =Jo JQ h1(T2;s1,s2)e dslds2

then H.. must satisfy the equation

*" r1(T2,32)H1(82;v1,v2)ds2 =̂ r^.v.,)(1VC1)H1(T2;V1'V2) +̂ j
where

•r1(T2,v2) =
foo -iV2S2

0

e r(T2,s2)ds2

H- can be obtained by assuming it to be of the form

H1(t2;v1,v2) =j A1(v;v1,v2)0(v,c2T2)dv

The coefficient A. is easily shown to be given by

-27-



Vv;v ,v2) = K(v)

i(—)+[l+K(v)]
cl

0(v,— )

where.K(V) =[(l+[N0c2c2(l+V2)3"1)172 -1] and

0(v,u) =
f00

0(v,T)e""lyTdT

A more explicit expression for H-^T^v^V^ can be obtained by carrying

out the necessary integration for 0 to yield

H1(t2;v1,v2) =

v2-iK(-^)
c2

sin V2T+ (—)cos v2t

V2,..A
V,

[l+K^+K-^)] L l-i(T")
c2 cl

V iVc?T2K(v)[l+i(-^)](iv)e

i. v1 2 V2 2
[l*(v)4iR](1-iv) [vz-(—)l

cl c2

dv

when the integral is to be interpreted as a Cauchy principal-value integral

By setting t2 -0in H^T^V^) we get the transfer function

for the Wiener filter for x(t|t). Symmetry dictates that the transfer

function

H(vrV2) =H1(0;V1,V2)

tbe asymmetric function of (~) and (-%. This symmetry is far from
cl c2

obvious in the integral representation for H^T^v^^. To obtain a

symmetric expression for H^CO;^^), write

mus
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HjO^Vj.Vj) =j A1(v;v1,v2)6(v,0)dv

• - r K<?e(v>°> e(v, ^>dv
in v9 c90' [i(-l)+mc(v)3

c2

A comparison with the expression previously obtained for q(x ,T9), viz.,

j- -[l+K(v)]cT
q(T1,T1) =^2% j K(v)e •L0(V,O)0(V,c2T2)dV

yields a symmetric expression for H-(0;V-,v«)

roo r«> -i(V t +V T2)

V°'W =t Jo Jo e *<VVdTidT2

=( I [l+c2c9^n(lV)(lV)r1e(y,O)0(y,O)0(v,-^)0(v,-^-)dvdy
in in L z u • ci c2

The relationship between q and H implies that we can write

rt2 q(t -s1,t2-s2)C(s1,s2)ds1ds2
—00

xtlft2|tlft2> =^f^

i lh •t2
. , p(t1,s2;s1,t2|t)?(s1,s2)ds1ds2

Q J_oo J—oo

Thus far, we have not been able to determine the degree of generality

of this relationship.
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5. Discussion

We have chosen to derive the main filtering equation (3.24)

by considering the partial differentials in each direction. In effect,

we took the path of successive differentiation. A more elegant and a

more easily generalized alternative derivation is the following:

(a) If we define M(x,dt) to be the left hand side of (3.24)

then we can show that M must be a weak martingale.

(b) An innovations representation for df -weak martingales

can be derived which shows that M must be of the form

M(T,t) = 0(T,s)Z(ds|s)+ i|;(T;s,s,)[Z(ds|sVsl)Z(dsl |svs')
Ja Ja xA

t t t -pCs.s'lsvs'Jdsds']

VAt
$ (T^.s^ds^ds* |svsf)

f ^ .
+ (J>2(x;s,s,)Z(ds|svs,)dst

JVAt
(c) Since M must be linear in Z the second integral must vanish,

and what remains yields the general form of (3.24).

This derivation suffers from the disadvantage of not readily yielding

the gain functions as by-products. Hence we chose a more direct approach.

Let t > T. The problem of determining x(x|t) might be termed

a smoothing problem. We note that the difference between x(*r|t) and x(t|t)

lies entirely in the observation. Using (3.24), we can recursively compute

x(T|t) as t changes by again using X(t) = (x(s|t), s e 3At>, justifying in

part our remark in the introduction that X(t) plays a generic role in all

estimation problems.
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