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Abstract

The simple Lanczos process Is very effective for finding a few extreme

eigenvalues of a large symmetric matrix along with the associated eigen

vectors. Unfortunately the process computes redundant copies of the

outermost eigenvectors and has to be used with some skill. In this paper

it is shown how a modification called implicit deflation stifles the forma

tion of duplicate eigenvectors without increasing the cost of a Lanczos

step significantly. The degree of linear independence among the Lanczos

vectors is controlled without the costly process of reorthogonalization.
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1. INTRODUCTION

The Lanczos method is well suited to the task of computing a few (p)

eigenvalues and eigenvectors of a large (nxn) synmetric matrix A. The

wanted eigenvalues may be at either, or both, ends of the spectrum. Typical

values are p = 4 and n = 1000; in a typical application A will be

positive definite and the smallest eigenvalues will correspond to the natural

frequencies which can be excited in some structure after it is perturbed

away from equilibrium.

It seems appropriate to give a brief review of the history of the

method. Simple processes, like the Power Method, require, in principle, an

infinite number of matrix-vector products to converge to an eigenvector.

On the other hand, the method of Minimized Iterations, which Lanczos announced

in 1950, expands each eigenvector in a convergent series with at most n

terms.^ However Lanczos' method was promptly switched to a different channel.

It was used as a process for computing a tridiagonal matrix T orthogonally

congruent to A; T=Q*AQ, Q=(q^,q2,...,q^)> Q* =Q\
Despite its theoretical attractions the Lanczos process was soon dis

placed by the Givens (1954) and Householder (1958) methods which employ

explicit similarity transformations on A. To compete in accuracy the

Lanczos process has to be supplemented with the explicit orthogonalization

of the Lanczos vectors {q^.} whfch, in exact arithmetic, would be ortho
gonal automatically.

In 1970 C. Paige showed that the simple Lanczos procedure, without

orthogonalization, was very effective for finding a few of the extreme

eigenvalues and their matching eigenvectors.

^Convergence is usually very quick for eigenvectors belonging to extreme
eigenvalues.



In part this is because the only way A enters the Lanczos algorithm

is through a subprogram which computes Ax for any given vector x. The

user is free to exploit sparseness and compact storage of A in the coding

of this subprogram. Equally important is the fact that the algorithm need

not go the whole way. It builds up = (qi»...,qj) and = QjAQj by
step j and can often be stopped at values of j as small as 2i/n. Paige

showed [Paige 1976] that loss of orthogonality among the Lanczos vectors

^ necessary and sufficient condition, in finite precision

arithmetic, for convergence of at least one of T.'s eigenvalues to one of
J

A's eigenvalues.

This left the Lanczos algorithm as a very powerful tool in the hands

of an experienced user. However, it did not provide a black box program

which could be used "off the shelf" in the same way as eigenvalue programs

for small matrices. There are several rather technical reasons for this.

For one thing suitable criteria for accepting good approximations, reject

ing spurious approximations, or stopping were all rather elusive. Left to

itself a simple Lanczos program will run forever, doggedly finding more and

more copies of the outer eigenvalues for each new inner eigenvalue it dis

covers. This uncertainty about the amount of storage which is needed

prompted the suggestion, by Golub and others, that the Lanczos method be

used iteratively. That is, after k steps the best approximation to an

eigenvector is computed and it, or some modification of it, is used as a

new starting vector. With this approach the old difficulties take on new

forms: how to choose k and how to select the new starting vector.

Another variation which has been used with success is the block form

of the Lanczos method. Each step becomes more costly but fewer are

needed and this seemed to be the only way to find small clusters of close



or multiple eigenvalues. However the user has to make the difficult choice

of the block size.

The remainder of this article describes an inexpensive modification of

the simple algorithm (we call it Lanczos with occasional implicit deflation)

which permits the simple Lanczos process to be run as originally envisaged.

Moreover,

1. There are no redundant copies of eigenvectors.

2. A posteriori error bounds and estimates cost almost nothing and

are used in order to stop the program as soon as possible.

3. Multiple eigenvalues, and their eigenvectors, are found naturally,

thanks to roundoff error.

Not surprisingly the idea of deflating Ritz vectors did not come out of

the blue. Cullum and Donath [Cullum &Donath 1974] found it necessary to remove

converged Ritz vectors from their blocks, Lewis [Lewis 1977] found that some

deflation helped in a difficult calculation of interior eigenvalues, and

Underwood [Underwood 1975] removed such vectors from his blocks when

restarting the iterative version of Lanczos. However we do not regard

deflation as an aid in adversity but as a tool for producing orthogonal

Ritz vectors and thus our deflation is independent of convergence and may

occur beforehand, especially when the user wants high accuracy.



2. NOTATIONAL CONVENTIONS

Integers— i, j, k, £, m, n, p

Scalars -- small Greek letters

(Column) Vectors — small roman letters x,y,... (except for the

integers)

Matrices -- capital roman letters

Identity matrix —I = (e^,e2,..•»e^)

Diagonal matrices — capital Greek letters

SYMMETRIC (non diagonal) MATRICES — SYMMETRIC LETTERS A, H, M, U, V, W, X

Tridiagonal matrices —

T. =
3

o

o

"j-1
3-- 1 a.
j-1 "J

All vectors are n-dimensional unless the contrary is stated. All

square matrices are nxn unless the contrary is stated.

A-^ is written for A-CI.

Span (b,,...,b.) denotes the subspace generated by b,
I J i

X* is the transpose of x.

11x11 = /x*x, the Euclidean norm.

[M] —the i^*^ eigenvalue of M (from the left).

Eigenvalue Orderinging: ^
Lx 2—^ 1

ilMll = max |X.[M]| = max IIMvll/llvll, v ^ 0.
i '

(j) — a formula in the current section

(k.j) — a formula in section k

<X.

.b..



3. LANCZOS IN EXACT ARITHMETIC

A can be reduced to tridiagonal form T^ in many different ways. Let

(1) Q>Q« =^n n n

be one such reduction, where = (q^,...,q^) is orthogonal. If the off-

diagonal elements i l,...,n-l of T^ are positive then, in fact

T^ and are completely determined by q^ or by q^. Let us write (1)
in the form AQ^ =Q^T^ and see what it says about the nxj submatrix
Q. - (g*!9j)> j n.

(2)

The last column on the right is r^ =

compactly as

(3)

X

X

0

X

X

q.^3.. Now (2) can be written
3 ^ 3

•= 3-
J

where = (0,
J

of Q follows
n

,0,1) has 3 elements and 3^ =0. From the orthogonality

(4) qTq. = 1
^3^3



whereas Q.Q* is an orthogonal projector onto span Q..
J J ^

Note that if $. (= llrj) = 0 then span Q. is an invariant subspace
J ~ J >J

(hurrah!) and T. is the restriction of A to it. In genuine applications
J

3. = 0 never happens (even for j > n, in finite precision)!
J

The Lanczos algorithm builds up Q. and T. one column per step. Some
J \J

important relations follow from (3) and (4) and are independent of the

specific implementation of the algorithm.

Orthogonality. Since r. is a multiple of it must be ortho

gonal to all previous q., i = l,...,j. In fact this property can be

deduced from (3) and (4) without invoking (1).

LEMMA 1. Let Q. be any matrix satisfying (3) and (4). Then
J

Q'J_,r. =0 and, if a. = q'jAq. then Q^r. = 0 too.

A proof is given in [Kahan & Parlett 1974].

The Lanczos algorithm proceeds from to by forcing qtr^ =0
via the choice of and then normalizing r^ to get 3j and ''j+l •
What could be simpler? Note that is not forced to vanish because,

J i J

in exact arithmetic, the lemma guarantees it. From (3)

(5) '•j =

Observe that q.|,...,q^. 2 are not needed for the computation of a^,
r., 3., q. , (i.e. the j step) and so may be put out to a secondary

J J J '

storage medium. This is a very attractive feature of the method.



Suppose that the Lanczos algorithm pauses at the j step and makes a

subsidiary computation of some, or all, of the eigenvalues and eigenvectors

of T.. Let
si

(6) T. = s.e.st
j j j j

where S. = (s,,...,s.) is jxj and orthogonal and 0. = diag{0,,...,e.)
J I J J ' J

has the eigenvalues of T.. Since T. = Q'̂ AQ. the values 0. and the
J J J si

vectors y. = Q.s. are the (optimal) Rayleigh Ritz approximations to A
1 J ^

from the information on hand, i.e. from span(Q.). Note that

(7)

How good are these optimal approximations?

THEOREM 1. There are j eigenvalues of A, call them

A proof is given in [Kahan 1967]. See also [Kahan &Parlett 1976].

The bound covers all the 6^. and does not discriminate between them. We
^ w

can do better. Let s.. denote the bottom (j ) element of T.'s eigen-
J

vector s..

THEOREM 2. To each i there is a corresponding eigenvalue

of A, call it ,, such that
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A proof is given in [Kahan &Parlett 1976]. The quantity

J*
3.^ =ll(A-0^)y^.||, the i^^ residual.

THEOREMS. Let Az.,=z^,X.,, let be the angle between z!
and its Ritz vector y. e Qs., and let the gap y. = min IX.-eJ1 j 1 ^ k^V ^ ^
Then, for i = 1,... ,j,

x.,-e.| < .

tan < Bj/Y^ .

Proofs are given in [Davis & Kahan 1970].

In principle is unknown and these bounds are not computable.

However 6. = min 10k±3.^-6.-| can be used in place of y. to give an
1 kjii ^ 1

estimate.

The following result, proved in [Kahan 1967], shows that the previous

bounds fail gracefully when Q. is not orthonormal. Specifically the
0

2
bounds must be multiplied by where is the smallest eigenvalue

Of Q*Qj.

THEOREM 4. Given A nxn, Q nxm, H mxm with X^. [H] = 0^.,

i = l,...,m. There are m of A's eigenvalues, call them X^.,,

so that for i = 1,...,m.

X.,-0.| < /2IIAQ-QHll/a^(Q)

where = X^[Q*Q]

The Kaniel-Paige theory [Kaniel 1966] shows that it is the extreme

(leftmost and rightmost) eigenvalues which are most likely to be approximated
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by some of the 0^. Moreover the rapidity of convergence, as j increases,

depends on the (unknown) gaps between A's eigenvalues. Cases have occurred

in which an unusual distribution of eigenvalues coupled with special q^'s

have caused interior eigenvalues to come out first. See [Cline, Golub &

Platzman 1976].

In principle, then, the Lanczos algorithm should be continued, with

periodic pauses, until, and only until, adequate approximations to the wanted

eigenvalues and eigenvectors are in hand. This sometimes happens for values

of j as small as 2»/n; another attraction of the method.

In practice things are not this simple. With finite precision compu

tation convergence goes hand in hand with loss of linear independence among

the q^. and so the error bounds cease to be valid by the time the first of
the 9^ converges.

Before leaving the context of exact arithmetic we want to emphasize

the value of the bounds 0... They show why the absence of small 6- does
J

not impede convergence of some of the 6^ to eigenvalues and the compu

table numbers s.. show which of the 6. are converging. There are
J ^

extensions of Theorem 3 which allow a bunch of close 8's and their y's to

be treated simultaneously, the gap then becomes the distance of the cluster

from eigenvalues not associated with the cluster.
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4. ORTHOGONALITY VERSUS CONVERGENCE

The use of finite precision arithmetic provokes significant departures

from the exact version of the Lanczos algorithm described above. In order

to examine these effects we turn our backs on the quantities which would be

produced by use of exact arithmetic and make a standard change of notation.

The symbols Q., T., a., 6- from now on denote the computed quantities
J <3 J J

stored in the computer under these names. We shall not try to compare them

with their Platonic counterparts but instead we will seek the (more compli

cated) relations which do hold between the objects on hand.

The fundamental equation (3.3) becomes

0)

where F. accounts for the round off effects. Paige has shown that if the
J

algorithm is implemented correctly, F. is harmless, satisfying an inequality
J

of the form IIF.II £ (j)(n)ellAII for some almost linear function [Paige

1972, 1976]. The orthogonality relation (3.4) fails and in its place we

wri te

(2) "^-Qj^j" 1 •

In the next section we give an expression for but here we focus on the

more special and more important issue of orthogonality loss among the vectors

y. = Q.S., i = l,...,j, which we continue to call Ritz vectors despite
I J ^

the fact that the optimality with which they approximate eigenvectors of A

departs hand in hand with Q.'s orthogonality.
s)

In [Paige 1971] can be found the following remarkable results in which

the bottom elements s.. (= ets.) of T.'s eigenvectors s. appear again.
J I J 1 O '
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THEOREM 5. Consider the j step of the simple Lanczos algorithm

and drop the index j on which all the quantities depend. The com

puted approximate eigenpairs (0^.,y.)» i = l>...>j satisfy

where G and F are round off matrices; IIGII t IIFII ? ev'nIITII,

where e is the relative precision of the arithmetic. Moreover

y*q •.1 = Q•-/B •• = Q•-/(B• Is ..1) , i =1,...,j .-^i^j+l jv'

The bottom elements of the s. appear in a special way. With any good
j 2

program S will be orthonormal (to working accuracy) so that ~

If

(3) ISjkM ISjiM . 16.-8,^1 > IITO/lOO

then the error bounds (Theorems 3 and 4) on 0^. and 0|̂ indicate that they

are poor eigenvalue approximations while Theorem 5 shows that y. and yj^
_3

are orthogonal to working accuracy. Conversely, if |Sj.| <10 , say,
then 0^ (if isolated) is a good eigenvalue approximation, y. is good
too, and y. will not be orthogonal to any unconverged y^ (indicated by

s.. = Since S is orthogonal to working accuracy it is
J ^

which must have lost orthonormality. The better the approximations 0^.

and y. the greater the departure of Q. from orthogonality.
1 J

A further analysis [Paige 1971] shows that

J < iiy,«12

provided that the 0's are not too close. What this means in practice is

that Ritz vectors y^ cannot shrink alarmingly unless there are two or more

0's approximating a single eigenvalue X. Our deflation forestalls this

calamity.
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As the Lanczos algorithm proceeds, as j increases, the pattern of

orthogonality loss among the Lanczos vectors q. is widespread and has no

obvious structure. On the other hand the unconverged Ritz vectors remain

mutually orthogonal (to working accuracy) except for strong components in

the directions of those Ritz vectors which have converged. The orthogonality

of the Lanczos vectors {q.} is also destroyed solely by the addition of

significant components of the converged Ritz vectors.



15

Example of Loss of Orthogonality

n = 6

A = diag(0., .00025, .0005, .00075, .001, 10.)

Unit round off # 10"^^
Simple Lanczos was run for six steps. ^6 = Ve-

QIQ6'^6

.lOE+01 .75E-14 -.30E-10 .25E-06 .97E-02 .41E+00

.75E-14 .lOE+01 .33E-10 .55E-06 .22E-01 .91E+00

-.30E-10 .33E-10 .lOE+01 -.97E-10 .19E-05 .79E-04

.25E-06 .55E-06 -.97E-10 .lOE+01 .llE-09 .23E-08

.97E-02 .22E-01 .19E-05 .llE-09 .lOE+01 -.12E-12

.41E+00 .91E+00 .79E-04 .23E-08 -.12E-12 .lOE+01

1

.62E-05 .32E-03

i
.62E-05 .lOE+01 .53E-10

.32E-03 .53E-10 .lOE+01

.68E-03 .18E-10 .39E-14

.99E-03 .16E-13 -.18E-10

.lOE+02 -.12E-12 -.93E-13

.lOE+02 -.41E-08 -.98E-08

68E-03

*

^6^6
,18E-10

.39E-14

.lOE+01

.53E-10

.78E-13

.98E-08

99E-03

16E-13

,18E-10

.53E-10

,10E+01

.13E-12

.41E-08

.lOE+02

12E-12

93E-13

78E-13

,13E-12

OE+01

lOE+01

.lOE+02

41E-08

,98E-08

,98E-08

,41E-08

lOE+01

lOE+01

Note that the general loss of orthogonality seen in Q*Qg is represented
in as the second copy of the eigenvector associated with the eigen-

D 0

value 10.
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5. IMPLICIT DEFLATION

One way to restore orthogonality to Q. is to use the modified Gram-
J

Schmidt process in order to force q^^-j to be orthogonal to all previous

q's. Besides the ever increasing expense in arithmetic operations this

reorthogonalization process requires the presence of all the q^ at each

step. Paige's result suggests that linear independence of the q's can be

maintained by merely orthogonalizing the q's against those few Ritz vectors

which have nearly converged. Now converged Ritz vectors are eigenvectors

and so the orthogonalized q's are precisely what would be obtained from the

Lanczos algorithm using A after deflation of the known eigenvectors. Hence

the name of our algorithm.

The modification of the simple Lanczos process is as follows. At each

pause T. is diagonalized and the bounds on the as-yet-uncomputed Ritz
J

vectors are inspected. Those Ritz vectors with error bounds less than some

tolerance are declared good, are computed, and then stored in the fast

memory. From that point until the next pause all future q's are kept

orthogonal to these directions.

It might appear to be necessary to orthogonalize only q^^-j and q^^g

against these good y's. It follows from (3.5) that all subsequent q's would

remain orthogonal to them. In finite precision however the error vector in

each computation of Aqj^ will bring back small multiples of all A's

eigenvectors. Fortunately it is not necessary to orthogonalize r. against
J

the y's at every step as Section 7 reveals.

The purpose of implicit deflation is to prevent the computation of

many unwanted copies of the well separated outer eigenvectors. This reduces

the number of Lanczos steps required to compute the wanted eigenvalues and

eigenvectors and so keeps the number of calls on the large matrix A as



17

low as possible. The algorithm must compute and store good Ritz vectors

even if some of them are not wanted by the user. For example, if the three

eigenvectors at the left end of the spectrum are wanted the algorithm may

well have computed three or more eigenvectors at the right end as well, should

they happen to be better separated from the rest of the spectrum than are the

ones we want.
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Example of Implicit Deflation

n = 6

A = diag(0., .00025, .0005, .00075, .001, 10.)

Unit Round off t 10"

Simple Lanczos was run for six steps.

.lOE+01

.75E-14

-.30E-10

.25E-06

.75E-14

.lOE+01

.33E-10

.55E-06

.97E-02 .22E-01

.41E+00 .91E+00

^6^6

-.30E-10 .25E-06

.33E-10

.lOE+01

-.97E-10

.19E-05

.79E-04

.55E-06

-.97E-10

.lOE+01

.llE-09

.23E-08

.97E-02

.22E-01

.19E-05

.llE-09

.lOE+01

-.12E-12

,41E+00

.91E+00

79E-04

23E-08

,12E-12

,10E+01

The Lanczos algorithm with implicit deflation was run for six steps. It
paused after four steps and computed a good Ritz vector for the eigenvalue
10. It then took two more steps orthogonalizing against this vector.

Q*Qg for Implicit Deflation

.lOE+01 .75E-14 -.30E-10 .25E-06 -.llE-09 .92E-10

.75E-14 .lOE+01 .33E-10 .55E-06 .51E-10 -.36E-10

-.30E-10 .33E-10 .lOE+01 -.97E-10 -.44E-10 -.37E-07

.25E-06 .55E-06 -.97E-10 .lOE+01 .24E-07 -.64E-03

-.llE-09 .51E-10 -.44E-10 .24E-07 .lOE+01 .lOE-13

.92E-10 -.36E-10 -.37E-07 -.64E-03 .lOE-13 .lOE+01

Note that the leading 4x4 principal minor is the same in both matrices.
Note that robust linear independence has been maintained by the implicit
deflation scheme.
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6. WHEN TO PAUSE

There are four possible strategies for deciding when to pause. The

simplest (and cheapest) is to pause every m steps where m is some con

stant, possibly depending on n = dim(A) but independent of all other

characteristics of A. Such a plan is completely insensitive to the loss of

orthogonality of Q. and is unsatisfactory in practice.

Paige and others have suggested keeping in fast store and computing

qtq. as a measure of the loss of orthogonality. This is not cheap since it

requires the storage of an n-vector as well as the computation of a vector

inner product at each step. This scheme usually works very well. However

this estimate is a lower bound rather than an upper bound on

Therefore, on occasion, the pause may come too late and disastrous failures

of this kind are possible in practice. Furthermore it is not clear how to

apply this scheme, after the first pause, for deciding when to pause again.

Kahan and Parlett [1974, 1976] have described two different schemes

for bounding 1II-Q*Q.11, the scoreboard and the kappa bound. Since the
J <3

program uses the kappa bound it will be described in more detail.

Some error is made in normalizing any n-vector. Thus

(1) n - Oq^ll^l < for all 1 ,

where k, depends on the arithmetic unit, the square root routine and other

details of the program. Also let

(2) i •

More attention will be given to below. For i = 1,2,... we define

^i+i



(3) •^i+l

Ki Ci

L?i <^1

20

= [k.+K^+^(k^-k^)^+4c^]/2

(4) LEMMA 2. If m-QjQjll 1 <j then "^•'̂ j+rj+l" - '̂ j+1

Proof.

'-QjQj' •

The vector is obtained by dividing Tj of (4.1) by Bj. Hence

(5) OQ;Villl«Q;»-jO/6j +IIQ;gjll . Ogyi <e .

In order to update k. we must first update i;.. A bound for IIQ-r-ll
J J \J J

depends on an Interesting relation holding among the quantities satisfying

(4.1), namely

(6)

where

(7) LEMMA 3. Q*r.= [(l-QjQj)Tj - (1-6^6^1^(1-Q*Qj)]ej
- F*q. + (qTAq.-a.)6. + Q*f. .

j' J J

The proof is given in [Kahan & Parlett 1974]. Please note that the

result shows exactly how all the steps in the algorithm contribute to the

loss of orthogonality. In exact arithmetic (Lemma 1) only the term

(q*Aq.-a.)6. appeared and this was made zero by the definition of a..
J J J J 3

None of the terms in the expression need be small relative to the divisor

3. and this is how orthogonality leaks away. The specific algorithm for
3
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C- is relegated to the category of fine detail. The fact is that can
<j J

be computed with about 10 arithmetic operations, independent of j and n.

With K. in hand it is possible to implement the natural policy to run
J

Lanczos until the q's begin to lose orthogonality, then pause, do a Rayleigh-

Ritz approximation and see what the situation is. The right moment to pause

is the first j at which a Ritz vector is good (that is, worth deflating

against). It is not crucial to find the right j, but it is important to

pause before a spurious second copy of an eigenvalue appears. The program

pauses as soon as

(8) k.>TOLKAP.
J

The current value of TOLKAP is .9.

After the Rayleigh-Ritz approximation is made there is enough informa

tion to estimate I11-Q*Q.II quite accurately. This allows the k recurrence
J <3

to be reset accurately so that k can be used to determine when to make the

next pause. This is another reason why the program uses the k bound.
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7. MONITORING THE RETURN OF BANISHED RITZ VECTORS

Let y be a good normalized Ritz vector and let t. be a bound on
J

|y*qj, the unwanted component of y in q.. There is a simple three term
^ j

recurrence governing the t's. We have

(1) Ay= 0y +r (r is not to be confused with r.) .
3

The quantities computed in the j step of the Lanczos algorithm satisfy

where fj accounts for the round off and i|fj[| £ veil All for some constant
V which depends on A but not on j. Hence

(3) =y*Aq. -y*qja. -y*qj.iBj.i +y*fj •

Because |y*qj|<Tj., (1) and (2) yield

(4) I1 [|e-aj|Tj. +llrll +vellAII]/Bj. = .

Since v and IIAII are not readily available, the program sets v = 1 and

uses a bound on instead. Each time that a pair of q's are explicitly

orthogonalized against y the corresponding t's are set to ellT.II. Then
3

the recurrence is updated by (4) at each step and tested. As soon as t.
3

again exceeds the tolerance y is explicitly deflated out of q. and q. ,
J ^j+1*

The tolerance is not critical (1/n seems to be an appropriate value).

Along with each computed Ritz vector is stored the associated eigenvalue

0^, the residual norm estimate cells for the current and previous

T-values. The cost of updating this information is negligible. Thus x

may be thought of as a two rowed array of length equal to the number of good

Ritz vectors.
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8. FLOWCHART I

Lanczos with implicit deflation, ample storage and no multiple eigenvalues

Initialize.
Permits input of .

Take a Lar
Update T.
Deflate if
Update K.

iczos step,

necessary.

fis k>toli<ap^
Yes

Compute partial
Eigensystem of T and
test the

\J '

( Enough acceptably
V vectors? J

Compute and store
good Ritz vectors.
Initialize x-vector.

Store Ritz values.
Reset K

Compute and store
accepted vectors.
Store Ritz values.

Return
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Notes on Flowchart I

Note 1. K monitors loss of orthogonality and is described in Section 5,

Note 2. T monitors the components of the current Lanczos vector in the

directions of the good Ritz vectors. See Section 7.

Note 3. A good Ritz vector need not be one which is wanted. It may not

be quite accurate enough to be accepted yet or it may belong to the

wrong end of the spectrum.

Note 4. Good Ritz vectors will be recomputed at each pause.
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9. RUNNING OUT OF STORAGE

Information is always lost when the Lanczos process is restarted.

Since our algorithm maintains robust linear independence among the q-vectors

at a modest cost, the usual reason for restarting is not present. However

since the available storage may be quite limited on some computer systems,

the program must be capable of restarting when necessary and as much infor

mation as possible should be retained.

Every time that storage has been exhausted, the program calculates and

permanently stores all acceptable wanted R-vectors and all good vectors not

among those desired. It also stores the corresponding Ritz values and

sorts all the permanently stored Ritz vectors by increasing Ritz value.

There remains the question of what the starting vector should be. The

new q-j is currently taken to be a linear combination of some of the Ritz
vectors which are not acceptable. The one with smallest residual is

always used as well as any others which have converged to an accuracy of

/fOL. The weights for the linear combination are the reciprocals of the

6... Other choices for the restart vector could be made. Before restarting

q^ is orthogonalized against all the permanent vectors and the x-vector

(see section 7) is initialized.
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10. MULTIPLE EIGENVALUES

Since the Lanczos algorithm only examines the subspace spanned by the

vectors (q-, ,Aq^ ,A^q^,... ,A'̂ q^), it is unable to detect any eigenvector
which is orthogonal to q^. In particular, it is incapable of finding

multiple eigenvalues. If V is the eigenspace of a multiple eigenvalue X,

then the Lanczos algorithm will find only the single eigenvector in the

direction of the projection of q^ onto V.

Despite this, the program finds multiple eigenvalues quite naturally.

Rounding errors introduce components in all directions. After one eigen-

direction of a multiple eigenvalue has been found the components in ortho

gonal directions will persist after deflation. These components will grow

as the algorithm continues until a second eigenvector, orthogonal to the

first, has been found.

Since multiple eigenvalues are found sequentially instead of simul

taneously, a more sophisticated termination criterion is needed. For

example, if A has a double eigenvalue at zero, a simple eigenvalue at 1,

and the rest of the spectrum larger than 2, then the program will find an

eigenvector of 0 and the eigenvector of 1 at about the same time. There

fore if the program finds enough acceptable vectors it must decide whether

to start over again to test for undisclosed multiplicities. Currently the

program makes a test run if, at the last pause, more than one acceptable

eigenvalue is found, or if the only one found is in the convex hull of the rest

of the acceptable eigenvalues found so far. This strategy is rather conser

vative and will often make test runs which are unnecessary. However with

this criterion multiple eigenvalues will always be correctly unearthed.
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n. CAN LOW ACCURACY BE ACHIEVED SAFELY?

Yes.

The user specifies the desired accuracy with the input parameter TOL.

The only time this parameter is used is in determining which of the desired

vectors should be made permanent when the process is restarted. A simple

perturbation argument shows that any eigenvalue found after a restart is

perturbed by no more than the maximum of the norms of the residuals of the

permanent vectors. Consequently eigenvalues found on a second pass will

be of the same order of accuracy as those found earlier.
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12. FLOWCHART II

Motifications of Flowchart I to cope with limited storage and multiple

eigenvalues.

Initialize variables,
q-j may be specified.
Some R-veotors may be specified.

Key

elements of Flowchart I

modifications to Flowchart I
in italics

Take a Lanczos step.
Update T-vector.
Deflate when indicated by t.
Update K.

No k>TOLKAP

ov out of storage!

Yes

Calculate Eigensystem of T.

Is this a test?

No

Enough acceptable vectors?
ov out of storaget

No

Compute and store good
R-vectors and R-values
Initialize T-vector.
Reset K.

control path in Flowchart I

References

T-vector

K

test

TOLKAP, good

acceptable

Section 7

Section 5

Section 10

defined in program

user specified

»( Pass?) Return

Sort, compute, and store
good and acceptable R-
vectors and R-values.

(!Enough vectors'.

No

q2^ smallest
unaccepted vector

Yes
Need a test?

q2 = random
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