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ABSTRACT

This paper presents a new class of outer approximations algorithms
which incorporate constaint dropping schemes. The algorithms are based
on the use of certain types of optimality functions, which are commonly

used in minimization algorithms, for defining approximations to stationary

points.
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1. Introduction

After their introduction in 1960, by Cheney and Goldstein [1] and
Kelley [2], in the form of cutting plane methods, and, in 1966, by
Levitin and Polyak [3], who treated them in a more abstract setting,
outer approximations algorithms went through a decade of stagnation.
The reason for this was simple. These methods were intended to solve

problems of the form
P:min{f(x) |x € X} (1)

where X C R™ had a very complicated description, e.g.,
X = {x|¢(x,w) <0, w €Q}, with Q@ CR™ a set of infinite cardinality
(i.e. X is defined by a continum of inequalities). The approach was to

substitute for P a sequence of approximating problems

P :min{f(x)|x € X}, k = 0,1,2,..., (2)

k
where X C X5 C X C X, C ... and the X had relatively simple

descriptions, e.g. by a finite set of inequalities, Xk = {x]|¢(x,w) < O,

w € Q C Q} with Q_ a discrete set. Under certain rules defining the
properties of the Xk, one could then show that the accumulation points of the
sequence of solutions {§k}, of the problems Pk’ were solutions of P.
Unfortunately, in all the specific schemes, the complexity of the
description of the Xk (i.e. the number of inequalities involved) grew

rapidly with k and quite quickly the problems P, became almost as

k
difficult as the original problem P.

The first breakthrough came when Topkis [4,5] and Eaves and
Zangwill [¢] proposed constraint dropping schemes which broke the

monotonic growth of the descriptions of the Xk. The Eaves and Zangwill



theory in terms of cut set maps is particularly elegant. An interesting
further generalization was given by Hogan [7]. Although from a
theoretical point of view the work in [4,6,7] was of great importance,
it still had several drawbacks from a practical point of view. These
are easiest to explain in the Eaves~Zangwlill framework, using a simple

problem, e.g.
P:min{£(x) |¢(x,w) < 0, w € Q} (3

where f and ¢ are both differentiable and x € ]Rn, QCR™ The
Eaves~Zangwill theory requires that we solve, exactly, two problems at

each iteration.

Pk:min{f(x)|¢(x,w), w € Qk} (4)

where Qk is a discrete subset of Q, to obtain a solution X and

then
max{¢(xk,w)|m € q} (5)

to produce a point w - Now, in the abscence of convexity and since only
a finite number of iterations of a program for solving (4) and (5) can

be used, the best one can hope to achieve is to find an approximation to a
stationary point for Pk (rather than to a solution xk) and, perhaps,

an approximation to W - The Eaves-Zangwill theory does not apply to

this situation. Second, the constraint dropping schemes (i.e., the
dropping of points from ﬂk) is determined by thé rate of growth of

the cost sequence {f(xk)} relative to the constraint violation sequence
{¢(xk,wk)}. As a result, unless a problem is extremely well-scaled,

their constraint dropping scheme may fail to operate. The third objection

to the early constraint dropping schemes is that when constraint dropping



is in operation, only the subsequence of {xk} at which constraints were
dropped can be shown to have accumulation points which are solutions of P.
The first two of the above described drawbacks were overcome By
Mayne, Polak and Trahan [7] in the framework of an algorithm for computer
aided design. The present paper genmeralizes the wdrk in [8] and eliminafes
the last objection to the early constraint dropping schemes. In particular,
we shew iﬁ this paper that to be useable -in an outer approximations
algorithm incorporating approximate evaluations of stationary points and
max type operators, an optimality function+ must have certain properties.
We prove that a number of existing optimality functions have this
property. Also, we present a number of constraint dropping schemes which
do not depend on the growh of the cost sequence {f(xk)} and which have
the novel property that any accumulation point of the sequence {xk} is a

stationary point for the original problem.

2. New Classes of Outer Approximations Algorithms

The algorithms which we shall present are intended for the solution

of problems of the form

PQ:min{f(x)lgj(x) <0, §=1,2,...,2

Ko <0, €K k=1,2,...,n %)

' tt
where the functions f£(°), gj(-) and ¢k(°,~) are continuously differentiable

P
on R™ and on R® x R k, respectively, and Qk is a compact subset of

+We say that o:R"™ » BRl is an optimality function is 0(x) = 0 for
all x solving P and 8(x) < 0. for all x € R".
**Differentiability in w is not required by our proofs, but is stipulated
as an assumption which is usually re u%red by algorithms which compute
w

approximate solutions to mﬁf{¢k(x,w) € qk}.
w

b=



Py 1.2 n
R ,k=1,2,...,m. The symbol @ is used to denote Q7 x Q X...x Q.

The problem form (7) is particularly important because many engineering
design problems can be transcribed into it.
We shall approximate the problem PQ by a sequence of simpler problems

of the form (with 1 = 1,2,3,...)

P, :min{f(x)lgj(x) <0, §=1,2,...,%

i
q’k(xswk) <0, wk € 95’ k =1,2,...,m} (8)
where Qﬁ Cc Qk. Our aim is to approximate feasible stationary points of
Pg, i.e., points x € R® such that1-
Joo - k,~
gl(®) <0, j=1-2; max ¢ (x,0) <0, k = 1-m (9)
1)

and, with s A {h € R®||n}| <1, 1 = 1,2,...,n}

miésn max{{VE(D), 0 3 gl + (vl (0,0, § = 1,2,...,%
h

oK (x,0) + <vx¢k(§,wk) W, o€k k=1,2,...,u} = 0 (10)

we recognize (10) as the Topkis-Veinott [9] multiplier free form of the

F. John condition for PQ (see, p.8 and p.182 in [10]).

Definition: We shall say that a point & € R" is desirable if (9)
and (10) are satisfied at X. We shall denote the set of all desirable

points in y by A. » o

We assume that we can "solve" the problems Pg approximately, to
i
the extent of finding a point Xy for which the value of an appropriate

optimality function 63 (xi) is small. The superscript is
i
introduced to allow for the possible use of penalty functionms. The

theory we are about to present is based on our knowledge of phase I-

Phase II type methods of feasible directions [11,12] and penalty functions
.'.

We write j = 1-2 to denote j = 1,2,...,%, etc.
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[10], all of which utilize real valued optimality functions 63,(-),
defined on R"™ for discrete subsets Qk' - Qk, and k = 1,2,...,m, and
all positive integers i. All of these functions have the property
that 9;, (x) < 0 for all x € R" and that if x' is optimal for Poys
then 1-:{).2 e:‘z. (x') = 0. Some of these optimality functions are continuous
whileiothers are not. Early examples of such optimality functions can
be found in [10], see p. 182. Not all the existing optimality functions
can be used in our outer approximations algorithms. Only the onés
satisfying Assumptions 1 and 2 are acceptable. We need the following

definition. For any subset Q' € Q, th,:]Rn > IRl is defined by
bor () A maxf05gd (), 3= 1,2,...,5
xS, wek, k=1,2,...,m} (11)

Assumption 1l: Consider the family of optimality functions {6;,(0)},

with ' a discrete subset of Q and i a positive integer. For all x € ]Rn,
x A, there exist u >0, p > 0, N> 0 and § € (0,1) (possibly depending
on x), such that for all x' € B(x,p) A {x' |“x—x'ﬂ < pl and all discrete

subsets Q'k c Qk, k=1,2,...,m, satisfying !!)Q, (x) > thn(x), we have

9:’2,(x') <=y for all i >N (12)
"

We shall later devote a separate section to showing that a number of
common optimality functions satisfy Assumption 1. In the present section
we 'shall only consider its consequences.

Our outer approximations algorithms are of the form of the model
below. They differ from one another only by the manner in which the
discrete sets Qi, k=1,2,...,m, are constructed. They all require

that we have an algorithm for solving the problem PQ , with ;@
i



discrete set, and another one for approximating the values of the functions

Evk k:Z[Rn - ]Rl defined by
o
ik k(x) A max ¢k(x,wk), k=1,2,...,m (13)
e’ otk
ko~ ok -0 1
with Q' € Q. To complete our notation, we define y :IR - R™ by

-ﬂ;o(x) A max{gl(x) ,gz (%) 5o ,gz(x)} (13a)

Algorithm Model 1.

Parameters: An infinite sequence {81 i:]_, B; > o, 81 »0." (6;.(0
is a family of optimality functions).
Data: Discrete sets 916 - Qk, k=1,2,...,m
Step 0: Set 1 = 0.
Step 1: Construct the discrete sets Ql:, k=1,2,...,m. \
Step 2: Compute an X such that
e;i(xiﬂ) > -8, (13b)
Step 3: Set i = i+l and go to step 1. -

Although all of our methods are summarized in the one to be treated
in Theorem 3, it is easier to understand our methods by considering three

progressively more sophisticated schemes for constructing the Qlic The
first scheme which does not drop any constraintswill be treated in
Theorem 1. However, before we can prove this theorem, we need the

following proposition.

Proposition 1: Let {xi} 1:1 be any converging sequence in R® with

+For example, B, = 861, for 6 € (0,1), or Bi = gfi.

i
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LA k k
X, > xas i+ » and let Qi cQ’, 1 =1,2,..., be any sequence of compact

sets contained in Qk. Then
-k -k .~
lwgk(xp -3, (D] +0as i+ T (14)

1 &y

Proof: Suppose that (14) does not hold. There exists a § >0and a

subsequence indexed by K C {1,2,...} such that

-k “k .~ A
9, (xp) - ¥, ®| > 8 for all 1 €K (15)
Q 1)
i i
=k k =k ,~ A A A
Now, ¢gk(xi) = ¢(xi,wi) and wzk(x) = ¢(x,m§) for some m?, wi in Qﬁ.
i i
Without loss of generality, we may assume, therefore, that
(e p08) > (ka0 +§ for all 1 €K (16)
k k -
Now, since Qi CQ", a compact set, and xy + x, there exists an 10
such that
k~ k k k "
) (x,mi) > ¢ (xi,mi) - &§/2 for all 1 € Kl i 3_10 a”n

But (17) and (16) show that &E is not a maximizer of ¢k(§,wk) over

Qﬁ which is a contradiction. Hence the proposition is true.
-§

Corollary: The functions Ek'k(°) are continuous, uniformly in
Q

Q' C ok,

Proof: To obtain a contradiction, suppose that x € R™ is such that
given a & > 0 there is no € > O such that
k k - “
I‘b k(x) - ‘l’ k(x)l <$§
Q' Q'

for all x € {x|lx-xl < €}, for all a'® c o¥. But then there must exist

a sequence X, > ; and set 9& c Qk, i=1,2,..., such that

|¢§k(xi) - w;:(:“:)l 33 for 1 = 1,2,...

-8~



But this contradicts (14) and hence we are done.
=1

Our three schemes define the operations to be performed in step 1
of the algorithm Model.
Constraint Construction Scheme 1
Given X5 (1) compute wk’e Qk by approximately gvaluating
max.. ¢k(xi,wk)); (11) set
" _

Ve b max(0,4°(x)5 ¢ e, k= 1,2, m (18)

(111) 4if w;(xi) > 0, include w? in n§ for all j > i, for all

k € {1,2,...,mn} such that

i,. k k
In effect in its most economical form, the constraint Construction

k

Scheme 1 only requires that given the sets Qi’ k=1,2,...,m
k Ky (K k k i i .k k
91+1 = {wi} v 91 if ¢ (xi,wi) = wg(xi) and wﬂ(xi) > 0, and Qi+1 = Qi

otherwise; i.e., the approximating constraint sets Q: are augmented
only'for those functional inequalit1é§ (max ¢k(x,w) < 0) that have
4 wea®

been most violated.

Apart from this specifie& restriction, the construction of the
ﬂf is arbitrary in the semse that any other points wk CQ, not
specifically covered by the scheme can be added (or subtracted) from
thé sets 9:. The relevance of this is that the most economical form of
the Constraint Construction Scheme 1 is not always the bést computationally.

Theorem 1: Consider a sequence {xi}i:l constructed by the Algorithm

. Model 1, using the Constraint Construction Scheme 1. Suppose that

9=



k k -k -
(1) |¢ (xi,w ) - ~k(x1)| +0agil+= fork=1,2,...,m
(i.e. that |¢* i(x) - V(% )| +0 as 1 > ») (ii) the optimality
functions 99.( ) used in the Algorithm Model 1 satisfy Assumption 1.

Then any accumulation point of the sequence {xi} is in A.

i=1

Proof: To obtain a contradiction, suppose that Xy ¢ ﬁ, where

K C{1,2,3,...}, and x € A. We consider the various possibilities.
(1) Suppose that wn(i) =0, i.e. x is feasible for Pg. Let
s € (0,1), p > o, N >0 and n >0 be as specified in Assumption 1 for X.

Then, since wg (x) > 0 for all x and any Q, C @,

1 - i
vy (%) > 8 (%) for all 1 ' (20)
1 8 '
Consequently, there exists an integer iO Z_ﬁ such ‘that X, € B(%,S) for
121,141 € K and
i ~ -
0 (x) <-u<-B, foralli>1,1i €K . (21)

i
which contradicts the construction in Step 2 of Algorithm Model 1.

(ii) Suppose that wQ(i) > 0 and there exists an infinite subsequence
{x,},qer» with K' CK, such that tbg(x ) = 3°(x,) for all 1 €X'. Then,
since w9(°) is continuous and |w9(xi - wg(xi)[ + 0, as 1 + », by assumption,

- v .
we have that wo(xi) LS wg(x) as 1 + », But since Qi cq

Yo (x)) 3_¢91(xi) 3.¢°(xi) for all i | (22)

' -

and hence wn (x ) ¢ wg(x), as 1 » », Making use of Proposition 1, we
i ~

now conclude that wg (%) > wg(x), as 1 +», Llet § € (0,1); N> 0,

n >0 be as specified in Assumption 1, then there exists an il 3.ﬁ

such that

by (B > 8 (@) for all LEK', 121 (23)

1 1

and hence
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ol (x.) < -} < -8, for all 1 €K', 1 > 1 (24)
g, () =7H 278y 4

1
which contradicts the construction in step 2 of the Algorithm Model.
(1ii) Suppose that ‘tbn(;:) > 0 and there exists a k € {1,2,...,m}

and an infinite subsequence {xi} Jegm K" C K, such that for all i € K",
0 < w:’z(xi) = ¢E(x1,wE). Then, because w9(°) is contingous and

|¢;(xi) - %(xi)l + 0 by assumption, we find that

i "
k) K

¢ xp 00 $y (0 as 1> = (25)

Since Q is compact, we must have

|65Ceg o) - ¢ Gagup | >0 a8 4>, 1,5 €KY, 5> 1 (26)
Now, wE € 91; for all 1 €EK", j > i by construction. Hence we obtain
that
-k k k
balxp) 2 Tgxp) > 6 Gepup) @27
Q
h|
for all 1,§ €K", j > i. Taking (25) and (26) into account, we conclude
that
-k " -
2x) 5 9 () as 3 > = (28)
Q
i -
Hence, since wn(xi) > wn (xi) > Eki(xi), for all i, we conclude that
i Q
i

Yo (xi) > q:n(;;). The rest of the proof is exactly as for case (ii) and
i
can therefore be omitted.
Since (1), (ii) and (iii) are the only possibilities, we conclude

that the theorem holds. n

The next approximating constraint construction scheme is similar to

the first, in the sense that once a point mli is added to the set Qi]-:l

~11-



it has to be retained in all subsequent Qiﬁﬁ’ j=212,... . However,
it uses a considerably milder test and hence augments the QE considerably
less frequently. In fact, a skillful choice of the parameters {ei}

in this scheme can result in very few augmentations, indeed.

Constraint Construction Scheme 2.

(a) Specify a decreasing sequence {ei}izl’ with ;> 0 and e, * Oas i+ =

i
(e.g. € = eoli, or g, = eOB , B € (0,1), etc). (b) Given Xy»

(1) Compute mi Etﬁk, k=1,2,...,m by approximately evaluating

max ¢k(x ,wk), (11) Set wi(x ) as in (18), (di1i) If ¢i(x ) > €,
1 Qi (9 R | i
kegk
w
include @E in Q? for all j > 1, for all k € {1,2,...,m} satisfying (19).

)=

Theorem 2: Consider a sequence {xi}izl constructed by the Algorithm
Model 1, using the Constraint Construction Scheme 2. Suppose

k,_ k, _ -k ~
1 ¢ (xi,mi) - ¢9k(xi)| +0as i+ = fork f 1,2,...,m,

(i.e. Iwé(xi) - wﬂ(xi)l + 0as 1+ ).

(11) The optimality functions 0;.(') used in the Algorithm Model 1
satisfy Assumption 1.

Then any accumulation point of the sequence {xi}i:1 is in A.

Proof: To obtain a contradiction, suppose that X, § ;, where
K C {1,2,3,...} and x € A.

As in the proof of Theorem 1, we consi&er three possibilities.
(1) Suppose that ¢Q(§) = 0. Then we get a contradiction exactly as

in the corresponding case of Theorem 1.

m12-



(i1) Suppose that wn(;) > 0 and there exists an infinite subsequence
{x:l}i + » K' €K, such that w;(xi) = 'q3°(xi) for all 1 €K'. Then,
again, we get a contradiction exactly as the corresponding case of
Theorem 1.

(11i) Suppose that ¢9(§) > 0 and there exists an infinite subsequence

‘{xi}i ws K" CK, and a k € {1,2,...,m} such that
wé(xi) = ¢k(xi,w§) > ey for all 1 €EK" (29)

Then (28) can be established as in case (i1i) of Theorem 1 and ;he rest

of the proof by contradiction is exactly the same as for Theorem 1.
x

Our third approximating constraint cqnstruction scheme 1s a
generalization of the ones proposed by Eaves and Zangwill t6] and by
Mayne, Trahan and Polak [8]. Like those scheﬁes, it will retain a
particular constraint for a certain number of approximating problems,
and then drop it. However, it stores more information than the schemes
in [6] and [8] and therefore leads both to better éomputational behavior

and to a more interesting convergence theorem.

Constraint Construction Scheme 3.

o ;
(a) Specify a double indexed sequence {eij}i=0 such that (1) eij >0
&

for all 1,j > 1; (i1) e, * €, as 1 + =, unifornly in j; and (1i1)

i3 3

for 1 > j,and €

3

13 = ej-ei, where €y + 0).
k

(b) Given X3 (1) compute w: €EQ,k=1,2,...,my, by approximately

- j 1
sj > e:l.j + 0 as j + ». (For example, eij = §-6 ,

with § € (0,1), or ¢

evaluating max ¢k(x1,wk) and store it. (ii) Set wé(xi) as in
o k
(18) and store it. (iii) For all j € {1,2,...,1i} such that

13-



in ﬂk for all k € {1,2,...,m} satisfying

¢é (33) > g,,, include w? 41

ij
(19).
For a comparison with the Eaves-Zangwill scheme [6], we set
€43 A f(xi) - f(xj), i > j. Their rule is to store only the last

wz(xj), m? and f(xj) at which constraints were dropped and to include
k

k
all wy in Qi, j <2 <1 for all k € {1,2,...,m} satisfying (19) (at %),
whenever ¥ .(x,) > €,.,. The Mayne-Polak-Trahan scheme [8] is similar to
VR | ij i
£(x,)~£ (x,) B
the Eaves-Zangwill one, except that it sets eij = n
t(1-87)

where 8 € (0,1) and t > 0, u > O. Thus, the schemes in [6] and in [8],
slowly accumulate constraints (i.e. m?), then drop them in mass then
accumulate them again.  This type of oscillatory behavior results in
poor computationgl properties. Also, since only one ¢Q(xj) is stored
at any time, convergence properties in [6], [8] can only be established
for the subsequence at which constraints were dropped, rather than for
the whole sequence. Our Constraint Construction Scheme 3 does not lead
to the type of oscillatory behavior mentioned above and does permit to
establish convergence properties for the entire sequence {xi}. It
does share, with the schemes in [6;8] the property that it retains a

k

certain m? in Qi until i-j has become sufficiently large for wé(xj) f-eij

to take place, and then drop it.

Theorem 3: Consider a sequence {xi}izl constructed by the Algorithm

Model 1, using the Constraint Construction Scheme 2. Suppose that
k k -
D ¢ xu) -9 () > 0as i e, fork=2,...,m,
2
(i.e. |¢; (x,) - wﬂ(xi)l +0asi+w® (i1) The optimality functioms
i

63.(') used in the Algorithm Model 1 satisfy Assumption 1.
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Then any accumulation point of the sequence {ki} i:1 is in A.

Proof: We note that since e, . > Ej for all 1 > j and all j, when

1]
Scheme 3 is used, a point wl;s'atisfying (19) is always included in

all 91;, i > 3j, whenever w;(xj) > € 3 Since the Ej satisfy the

properties of the {¢ i} specified in Scheme 2, theorem 3 follows directly

from Thedrem 2.
n

It may sometimes be difficult to show that an optimality function
9;. (*) satisfies Assumption 1. In that case one can make use of
Assumption 2, below. It is satisfied by the optimality

functions used in [8].

Assumption 2: Consider the family of optimality functions {e;. ()},

where the Qi are discrete subsets of Q. If {xi} i=1

sequence in ]Rn, with X > x ’ with\pﬂ(;:) = 0, and 9:‘2 (xi) + 0 as
. i

is a converging

i + =, then x € A.
=4

When Assumption 2 is in force, we must use a different algorithm
model.

Algorithm Model 2

Parameters: An infinite sequence {31}120’ By > 0, B, + 0.
Data: Discrete sets Ql(;, k= 1,2,...,11; contained in Q.
Step 0: Set i = 0.

Step 1: Construct the discrete sets Ql;, k=12,...,m.
Step 2: Compute an %, such that

i
0> egi(xi) > -8, and q)gi(xi) < By (30)

~15-



Step 3: Set i = i+l and go to step 1. n

Theorem 4: Consider a sequence {xi} i:O constructed by Algorithm Model 2,
using the Constrain Construction Scheme 1, 2, or 3. Suppose that

(¢H) |¢k(xi,w§) -9 k(xi)l +0as i+« fork=12,...,m,

(i.e., that lwé(xi)n— wn(xi)l +0as i > x);

(i1) the optimality functions eii(-) used in the Algorithm Model 2

Q
satisfy Assumption 2.

Then any accumulation point of the sequence {xi} i: is in A.

1
Proof: We only need to prove this theorem for the case where the
Constraint Construction Scheme 2 is used, since both Scheme 1 and
Scheme 3 can be seen to be special cases of it.

Thus, suppose that x, LS Xs witﬁ K C {1,2,3,...} and that
x & A. First, suppose that tpﬂ(i) = 0. Since 63 (xi) +0ag i+«
by construction, it follows from Assumption 2 that x € A and we get a
conﬁradiction. |

Therefore, suppose that !bn(;:) > 0. Then, since wn(xi) LS tpn(;c)
by continuity and lwé(xi) - ;pg(xi)l + 0 as 1 + =, by assumption, we

must have ¢;(xi) LS WQ(;:). Therefore, since ¢, + 0 as 1 > =, there

i
exists an integer io > 0 such that wé(xi) > ey for all 1 > io,

i € K, and consequently, wl; € Q;c for all j > i, 1 €K and k € {1,2,...,m}
such that (19) holds. We now distinguish between two possibilities.

(1) there is an infinite subsequence, {xi}i ¢» with K' CK, such

that w;(xi) = @o(xi) for all 1 €K'.

In this case, we get that

by (x) 2 Plx) = vg(x,) for all 1 EX' | (31)
i
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But wz(xi) 5 wg(;) and hence there exists an il > 0 such that

Y (x,) > ¢ (;:)/2 >B, for all 1 >1., 1 €K. But this contradicts
Q1" = st i’ -71

(30). Hence, consider the second alternative. (ii) There exists an
infinite subsequence {1-::'_}i w s with K" CK and a k € {1,2,...,m}
such that w;('xi) = ¢k(xi,w§) >.¢, for all i €K". Then, ‘because we are

i
using Constraint Construction Scheme 2, we obtain that

(x ) > ¢ (xi,mj) for all 1 > j > i, j €EK" (32)

Since w € Qk by construction, in this case. Now, because § is compact,

lt-a-mu-

¢ (xi,wj> o (CIT ol +0 (33)

as 1,§ +=, 1,] EK", 1 > §. Since chx) - o5 (x ,m;.‘) " 4o ae

j + =, we obtain from (33) that
¢ (x 4294 ) > wQ(x) (34)

as 1,j > =, 1,J €K", 1 > j. Hence, there exists an 12 > 10 such that,

by (32),
¥y (%) 2 ¥ (/2 > B, for all 1 > 1), 1 €K" (35)
i
But this contradicts (30) and hence we are done.

3. ggtimalitx Functions for Outer Approximations Algorithms

We shall now present a few optimality functions which satisfy
Assumptions 1 and 2. First we show that any family of optimality functions

satisfying Assumption 1 must also satisfy Assumption 2.

Proposition 2: Suppose {6?’z ()} ﬂi C @, is a sequence of optimality functions
i

satisfying Assumption 1. Then it also satisfies Assumption 2.
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Proof:v.Suppose that X, * X as 1 + o, with w(;) = 0,and that eé (xi) +0
i

as 1 + w, Then x € A, for otherwise, by Assumption 1 (since wg (%) 3.3¢9(§)
-~ ~ i

for any § € (0,1) and all i) there exists a p > 0 and an i, such that

eé (xi) 5_-§ for all 1 3_10 which contradicts e;(xi) >0 as i+ =,

i
H

The first two optimality functions that we consider are independent
of the superscript i and hence we shall drop it for these cases. These
optimality conditions are normally used in methods of feasible directions
(see [101,[111,[12]) for computing descert directions.A Since, as we should
show this satisfy Assumption 1, we conclude that methods of feasible
directions based on these functions are suitable for solving problems
Pqre

Consider the functions, with 9'k c Qk, introduced in [13] by Pironneau

and Polak,r

eg(x) gmin{%ﬂhllz + max{{ VE(x),W ; gj(x) + (ng(x),h> s 3= 1,2,0..,03
h

$Ge,0) + €7 05,0, 0, W €%, k= 1,2,...,m} -y, ()
(37)

Since (37) is an extremely messy expression, we shall show (without loss
of generality) that it satisfies Assumption 1 by considering only the
special case where m = 1 and 2 = 0, i.e., no gj(-) constraints. For

this case superscripts can be dropped, PQ, becomes min{f(x) |¢(x,w) <0,

w € Q'} and (37) simplifies to
0ge (0 = minfGIhl? + maxl(V£G,1 5 6(x) + (T _o(x,u), 1),
n

w € Q} -ng(X) (38)
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Assumption 3: For every x € IRn, 0 ? co V ¢(x,w), where
wER () x
2 () A {v € alotxw) = 4G} (39)

and co denotes the convex hull of the set in question.

Theorem 5: Suppose that Assumption 3 is satisfied. Then family
of optimality functions defined by (37) satisfies Assumption 1.
Proof: We shall only give a proof for the special case (38). It is
quite easy to see that 4 = {x] eg(x) = Q, 'JIQ(X) = 0}. Since by
assumptionro & co dei(x,w) for all x € R™®, it is easy to see

SR, ()

that 6.(x) < 0 for all x € R® such that IDQ(x) > 0 and hence

qf
s = {x|e,(x) = 0} (40)

Now, suppose that % € A; therefore 69(;:) < 0. Then, for any

Q' CQ, we get, from (38)
81 (B = 8,(R) + (@ - ¥ W] (41)
Since 69(-) is continuous and by the Corollary to.Proposition 1,

Y.y (*) is continuous uniformly in Q', there exist § € (0,1) and
Q ’ ;

p > 0 such that

Bug () 2 ¥R+ 8, (42)
eQ(x) 5_-% 69(;:) for all x € B(;:,S) (43)

and for any @' C 2 such that xpg.(i) > 3\99(%),
bor (0 2 ¥ + 1 6.(x) for all x € B(x,p) (44)
Hence, from (41) and (44), for all x € B(X,p)»
6, () < 6.(x) - 26 (0 <+ 0, A-u : (45)
o''\® 2 9% 2 %(®) =27 %q'® & |

which completes our proof.
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Next, continuing in the simplified framework of the problem
PQ:mih{f(x)|¢(x,w) < 0, w € @}, which results in no loss of generality, we
define a new optimality function, which we obtain from the test in
Polak's method of feasible directions [10], as follows. For any € > O,

Q' CQ and x € R", 1let
2 (x) A {w€a'[o(x,0) > Yo (%) - €} (46)
and let

’Y;' (x) = min max{ V£ (x) ’h> - ¢Q| (x); (v ¢ (x,w) ah> y W €Qq (x)}
hec x €
47

with ¢ = {h € m“llh’il <1, 1=1,2,...,n}. Let B € (0,1), p > O be

given. Then we define
k € k
8¢ (%) A min{-B plyg (x) < =&, € = B9, k =0,1,2,3,...}  (48)
k
It is easy to show (see [10]) that
n 0
A={x€ER lyncx) =0, Yo(x) = 0} (49)

Since yé(x) 3_yg(x) for all € > 0 and O 3'y§(x) always holds, we must
have also that

A= {x€ m“|eg(x) = 0, yo(x) = 0} (50)
If we assume that Assumption 3 holds, i.e. that 0 & co Vx¢(x,w)

mEQO(x)
for all x € BRn, then ¢Q(x) = 0 can be removed from (50), since, in that case,

Yg(x) < 0 for all x such that wg(x) > 0.

Lemma 1: Suppose that Assumption 3 is satisfied and let Q' C Q

be any compact set. Under these assumptions,
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a) If x is optimal for P, then 69. (x) = 0. Furthermore,

Q'
b= {x€R"e,(x) = 0} (s1)

b) For any x € R™ such that en. (;:) < 0, there exist p < 0 and
€ > 0 such that 8 (x) < —¢ for all x € B(X,0) - ‘ ’
¢) If x is such that 8., (X) = 0 and @' is finite, then 0., (+) is

continuous of x.

Proof: a) Referring to [10], we éee that Yg,(fz) = 0 if X is optimal for Poy
and hence, since Yg' €9) < y;. (;) for all € > 0, it follows from (48)

that eg. (X) = 0. The fact that (51) holds follows from (50) and Assumption 3 
which guarantees that Yg(x) < 0 for all x such that 'PQ-(X) > 0.

b) Suppose that 09, (i) <0 (1.e. Yo (;:) < 0). Our first observation

is that the map (x,e) > 9(_':(8) is u.s.c., i.e., given % and § > 0, there

exist Eo > 0 and 80 > 0 such that

2!(x) C Nz(%) for all ¢ € [0,¢ ], x € B(x,p_) - (52)
where

N3 (® A {0 € RP[Bu-u'l < §, for some o' € 0J(%)} (53)

i.e. Ns(;:) ) Q(')(;:). Let & > 0 be such that, with Ns(;z) defined by

(53), and
7?2'(1!) é_.mm max{<Vf(x),h) = q’ﬂl (X); (V ¢(X,(ﬂ),h> » W € Ng(;{)}
hec x
we have _ (54)
-3 ~ 0 ~ .
Yo(®) < vqi(%)/2 ‘ (55)

Note that ?g.(-) is a continuous function.
Now, let Eo > 0, 30; > 0 be such that (52) holds and let p € ‘(0,601 be

A

such that *?g, x) < ch (;:) /4 for all x € B(;:,S). Then, for all
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e € [O,EO] and for all x € B(x,0),

s 0,
Yor (@ < ¥ () < v (/4
where the first inequality holds because (x) C Nz (). Let k >0
be any integer such that yg. (x)/4 < -ka A -¢ and € € (0,201. Then,

for all x € B(x,p)

Y;(X) < -e (36)

and therefore, by definitionm, 69. (x) < -¢ for all x € B(X,p).
c) Now suppose that eg. (x) = 0, and for the sake of contradiction,
suppose that ., (x) is not continuous at X. Then there exists a

sequence X, +Xas 1+« and a § > 0 such that

99' (x) < -6 <0 for all 1 (57)

Since Q' is discrete, there exists a p > 0 such that
Q:S/Z(x) o Q(') (;:) for all x € B(;:,S). Hence, by continuity of
?%.(0) (8 = 0 in (54)), there exists an io > 0 such that

8§ _=-o §/2
-7 <Y (%) < vgr (x,) for all 1 > 1, (58)

But this implies that 6, (x) 2 -8/2 for all 1 > 1  which contradicts

(57). This completes our proof.
H

Theorem 5: Suppose that Assumption 3 is satisfied, then the optimality
functions BQ. (¢) defined by (48) satisfy Assumption 1.
Proof: Suppose X & A. Then, by Lemma 1, 69(2) < 0 and there exist

p1>0and§>08uchthat

eg(x) < -¢ for all x € B(;c,pl) (59)
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Let 3 € (0,1) be such that
(X > bo(x) - €/4 | - (60)
Since 9 is compact, ¢(°*,w) is continuous, uniformly in v € @, and

hence there exists a ;; € (O,pll such that for any finite subset

Q' C 0 and for all x € B(x,p)

Vo (0 = Yo, (@ 2 6(x,0) = $(x,0) > -£/8 (61)
where o € arg mménx' ¢(;-,m), and also (by continuity of gpg(-))

Vo (8) < Yo (x) +E/8 (62)
Now suppose that Q' C Q is a finite set satisfying

Ve (B > Sy () > () -2/ (63)

and suppose that x € B(x,S). Then, making use of (61) and (62) and

(63), we obtain
Ugr (B 2 Vo1 () =€/8 > Y (X) - /8 = E/4 > 4o (x) - E/2 (65)

Therefore, since Qé /z(x) c Qé (x) C ﬂg(x) always holds, for all

x € B(;-:,a), we obtain

vl - min max{(VEGO, 1) - g (0; (7 o(x,), 0, w €0z ()}
< min max{{V£(x),b - tpg(x) + ;/2; el2 + (de;(x,w),h) s
hec .
W€ (R} = yo(x) +€/2 <~ E/2 (65)

The last inequality follows because, with e(x) A -en(x), by (59) and

(48), for all x € B(x,p),

-~

Yg(x) (x) < -e(x) < =€ (66)
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which implies that N < e(x) for all x € B(ﬁ,a) and therefore,
Y;(x) < Y;(x) (x) i-é for all x € B(x,p) (67)

It now follows from (48) and (65) that
81 (%) < -€/2 A -l < 0, for all x € B(x,0) (68)

which completes our proof.
o

To conclude this section, we show that penalty functions can also
be used as subroutines for solving the problems Pﬂ. in our outer
approximations methods. We continue to restrict ourselves to the special

case where Pg is min{f(x)|¢(x,w) < 0, w € Q}, since there is no loss of

generality is doing so, but the notational simplification is great.

-

Let {si}i=1 be an infinite sequence such that 8y > 0 and 8y * 0

as 1 + = (e.g. 8y = soli, or g, = Bi, with B € (0,1)), and let

Q' C Q be any finite set, with cardinality v Then we define,

Q'
pg,:IRn > RY and, for 1 = 1,2,3,..., f;,:m“ > RY by
1 Z 2
Po () A v ' [max{0, ¢(x,w) }] (69)
Q
and
i 1
£ (x) A £(x) + - Py (%) . (70)
i .
We then define the optimality functions 6:'2. (*) by
i lvel (0ll, @' Cgq, 1 =1,2
egc (%) A - va| (x)h, @ ’ = 1,2,3,... (71)

with Q' always a finite subset of Q. A standard assumption in penalty

i

function methods is that for any x such that ‘J’g' (x) > 0, VP (x) # 0

(see [10]) or the somewhat stronger assumption that 0 € co Vé(x,w) s
w=Q"’
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where co denotes the convex hull of the set specified. When extended

to the problem Pn, the latter assumption becomes 0 & :oa2 V¢(x,w) for

all x such that wQ(x) > 0. This, in turn, leads to the followiné
assumption which we shall need to show that the optimality functions (71)

satisfy Assumption 1.

Assumption 4: For every ¢ > 0, there exists an n > 0 such that for

any x € R®, any @' C Q finite, if Yor (x) > €, then “Vpg,(x)“ > n.
i’

Theorem 7: Suppose Assumption 4 is satisfied. Then the family of
optimality functions defined by (72) satisfies Assumption 1.
Proof: Let x € R" be such that x € A.

a) Suppose that ‘I’Q(;(). =0 a!.ld that ﬁhe Bé, () do ;ﬁ:t satisfy

Assumption 1 at X. Then, since xpm(x) > 31119(;:) for any § > 0 and

i=

are discrete subsets of 2, u 1 > 0 and u 1 + 0

Q' C 9, we can construct sequences {xi}i:]_, {Qi} 1’ {“1}1:1’ such that

xif*:'ias i o, Qi

as 1 + », such that

0, (x,) = -EVf(xi) + 2 E -simx{o,cb(x,m)}vxﬂxi,m)}ﬂ > -uy
8,1 Vo wSl, 5t
(72)
If there exists an infinte subsequence {Qi}iel(’ K C{1,2,...} such that
R, = ¢ for all 1 €K, then (72) implies that VE(x,) KDasi+®and
hence that V£(x) = 0. But this is impossible since x & A. Hence no

such subsequence satisfying (72) can exist. Now, let vy = Vg and let

i
L 2 73
A & o max{0,é(xuw)V ¢(xw) (73)
i oS, A
1
Then, from (72)
ba 0 < Bve(x )l + g, 1= 1,2,3,... (74)
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. which shows that the ﬂwi“ are bounded. - Consequently, there exists a bound

M, such that, because of Caratheodory's theorem [14],
El Akv¢( %500y Ky 4=1,2,3,... (75)

with (nk €Q, and 0 < 7\1;_ < M. Since Q is compact, there must exist an

infinite subset K' C {1,2,3,...} such that w; kK' ok oy oo1,2,...,p4,

k

as 1 > », and >‘:l > ik >0, k= 1,2,...,p%l, as 1 > =, Substituting into

(72) and taking limits, we get that

. p+l ~ Ak
VE(X) + kgl A‘i‘vxux,m ) =0 ;76)

But this shows that x satisfies the Kuhn-Tucker conditions and hence
% € A (which only requires the F. John condition) and hence we get a
contradiction. Thus, the eé.(-) satisfy Assumption 1 at any xEA
such that wg(;c) = Q.

b) Now suppose that {pa(;:) > 0. Let § > 0 be arbitrary. Then, by
Assumptibn 4, there exists a fn > 0 such that “Vpg,(x) “?_ ﬁ for all x € R®
Q' C @ finite, such that ¥, (x) > %¢Q(§).

Since the 1[;9, (+) functions are continuous, uniformly in Q' (see Corollary
to Proposition 1), there exists a 6 > 0 such that if Q' € Q is finite and
if 'ng(x) > thg(x), then ¥, (x) > 6¢Q(x) for all x € B(x,p) and
consequently “Vpg. (x)ll > u for all x € B(x,p). Hence, if zpn.(x) > 6¢9(x)

and x € B(%,0) »

ot = -IvE() +sli g, (o < - -:: Ivpg, (I + 19EG0) D
<-La+n (an
i

where M = max{IvE(x)!|x € B(x,0)}. Since s; >0 as i, there exists
an N such that -(-;1- ﬁ+M) < -n for all i > N and hence we see that Assumption 1
i

holds at x. This completes our proof. n
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Conclusion

The algérithms described in this paper are directly implementable,
gince all the required computations can be carried out by a finite number
of operations. They differ from the earlier versions of outer approximations
algorithms in four respects. They require more storage (scheme 3), but
they have better convergence properties, they are implementable, and -
they have more parameters to be specified by the user, The last property
may be considered to be undesirable by some. However, we feel that this
freedom to select parameters is very important, since it can be exploited
constructively in interactive computing schemes utilizing a graphic

display terminal.
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