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1. Introduction.

After their introduction in 1960, by Cheney and Goldstein [1] and

Kelley [2], in the form of cutting plane methods, and, in 1966, by

Levitin and Polyak [3], who treated them in a more abstract setting,

outer approximations algorithms went through a decade of stagnation.

The reason for this was simple. These methods were intended to solve

problems of the form

P:min{f(x)|x ^ X} (1)

where X C had a very complicated description, e.g.,

X= {x|(j)(x,a)) j< 0, (D S Q}, with QC ]r™ a set of infinite cardinality

(i.e. X is defined by a continum of inequalities). The approach was to

substitute for P a sequence of approximating problems

P^:min{f (x) |x £ Xj^}, k = 0,1,2,..., (2)

where XC!XqCIx^C}{^C.,, and the Xj^ had relatively simple

descriptions, e.g. by a finite set of inequalities, X^^ = {x|<()(x,a)) _< 0,
0) ^ C £2} with a discrete set. Itader certain rules defining the

properties of the Xj^, one could then show that the accumulation points of the
A

sequence of solutions "Cx, }, of the problems Pj^, were solutions of P.

Unfortunately, in all the specific schemes, the complexity of the

description of the Xj^ (i.e. the number of inequalities involved) grew

rapidly with k and quite quickly the problems Pj^ became almost as

difficult as the original problem P.

The first breakthrough came when Topkis [4,5] and Eaves and

Zangwill [6] proposed constraint dropping schemes which broke the

monotonic growth of the descriptions of the Xj^. The Eaves and Zangwill
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theory In terms of cut set maps Is particularly elegant. An interesting

further generalization was given by Hogan [7]. Although from a

theoretical point of view the work in [4,6,7] was of great importance,

it still had several drawbacks from a practical point of view. These

are easiest to explain in the Eaves-Zangwill framework, using a simple

problem, e.g.

P:min{f (x) I(t>(x,a)) £ 0, o) € (3)

where f and (|> are both differentiable and xG]R^, The

Eaves-Zangwill theory requires that we solve, exactly, two problems at

each iteration.

Pj^:min{f (x) I<t)(x,a)) , u S (4)

where is a discrete subset of A, to obtain a solution x^^ and

then

max{(|>(Xj^,a)) |(i) S n} (5)

to produce a point Now, in the abscence of convexity and since only

a finite number of iterations of a program for solving (4) and (5) can

be used, the best one can hope to achieve is to find an approximation to a

stationary point for Pj^ (rather than to a solution and, perhaps,

an approximation to cu^. The Eaves-Zangwill theory does not apply to

this situation. Second, the constraint dropping schemes (i*e., the

dropping of points from is determined by the rate of growth of

the -cost sequence {f(xj^)} relative to the constraint violation sequence

{<l>(Xj^,Wj^)}. As a result, unless a problem is extremely well-scaled,

their constraint dropping scheme may fail to operate. The third objection

to the early constraint dropping schemes is that when constraint dropping
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is In operation, only the subsequence of at which constraints were

dropped can be shown to have accumulation points which are solutions of P.

The first two of the above described drawbacks were overcome by

Mayne, Polak and Trahan [7] In the framework of an algorithm for computer

aided design. The present paper generalizes the work In [8] and eliminates

the last objection to the early constraint dropping schemes. In particular,

we show In this paper that to be useable In an outer approximations

algorithm Incorporating approximate evaluations of stationary points and
*t*ffiqy type operators, an optlmallty function must have certain properties.

We prove that a number of existing optlmallty functions have this

property. Also, we present a number of constraint dropping schemes which

do not depend on the growh of the cost sequence {f(xj^)} and which have

the novel property that any; accumulation point of the sequence {Xj^} Is a

stationary point for the original problem.

2. New Classes of Outer Approximations Algorithms

The algorithms which we shall present are Intended for the solution

of problems of the form

P :mln{f(x) 1g^ (x) ^ 0, j = l»2,...,)l;

<j)^(x,w^) ^ ^ ^ » k = 1,2,... ,m}

where the functions f(0, g^(') and (|)^(',0 are continuously dlfferentlable
and on IR^ x respectively, and ^ Is a compact subset of

tt

on

^We say that 0:IR'̂ -»• ]R^ Is an optlmallty function Is 0(x) = 0 for
all X solving P and 0(x) £ 0. for all x ^

^^Differentiability In o) Is not required by our proofs, but Is stipulated
as an assumption which Is usually required by algorithms which compute
approximate solutions to max{<I> (x,u)) [to ^ }.

,k
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]R k « The symbol is used to denote x..,x n .

The problem form (7) is particularly important because many engineering

design problems can be transcribed into it.

We shall approximate the problem by a sequence of simpler problems

of the form (with i = 1,2,3,...)

P. :min{f (x) |g^ (x) £ 0, j « 1,2,...,£.;
i

(|)^(x,u)^) 0, m G k = l,2,...,m} (8)

where C Our aim is to approximate feasible stationary points of

Pj^, i.e., points x ^ 3R such that

g^(x) £ 0 , j = 1-Jl; max <|)^(x,a)) _< 0, k = 1-m (9)
ojSJ

and, with SA{b ^ K^l |h |̂ ^ If i = lf2,... ,n}

min max{( 7f(x) ,h) ; g^(x) + ^Vg^(x),h) , j = l,2,...,il;
h^

♦''(x.a)) + e k - 1,2,...,m} = 0 (10)

we recognize (10) as the Topkis-Veinott [9] multiplier free form of the

F. John condition for P^ (see, p.8 and p.182 in [10]).

Definition; We shall say that a point S: ^ is desirable if (9)

and (10) are satisfied at x. We shall denote the set of all desirable

points in ]R^ by A. n

We assume that we can "solve" the problems approximately, to
i

the extent of finding a point x^ for which the value of an appropriate

optimality function 0^ (x^) is small. The superscript is
introduced to allow for the possible use of penalty functions. The

theory we are about to present is based on our knowledge of phase I~

Phase II type methods of feasible directions [11,12] and penalty functions
0.

We write j = 1-A to denote j = 1,2,...,it, etc.
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[10], all of which utilize real valued optimality functions
««

n k* kdefined on IR for discrete subsets C n , and k = l,2,...,ni, and

all positive integers i. All of these functions have the property

that 6^, (x) _< 0 for all xG]R^ and that if x* is optimal for
then lim 0^,(x*) =0. Some of these optimality functions are continuous

i-x»

while others are not. Early examples of such optimality functions can

be found in [10], see p. 182. Not all the existing optimality functions

can be used in our outer approximations algorithms. Only the ones

satisfying Assumptions 1 and 2 are acceptable. We need the following

definition. For any stibset IR ^ is defined by

(x) 4 max{0;g^(x), j = l,2,...,f;

<J)^(x,a)^), 0) ^ k = l,2,...,m} (11)

Assumption 1: Consider the family of optimality ftjnctions

with a discrete subset of and i a positive integer. For all x ^ IR^,

X ^ A , there exist y>0,p>0, N>0 and 6 € (0,1) (possibly depending

on x), such that for all x' € B(x,p) 4 |Ilx-x'tl _< p} and all discrete

subsets 0*^ C k =l,2,...,m, satisfying (x) ^ 6i|̂ jj(x), we have

Qqi (x*) 1 -VI for all i > N (12)
H

We shall later devote a separate section to showing that a number of

common optimality functions satisfy Assumption 1. In the present section

we <shall only consider its consequences.

Our outer approximations algorithms are of the form of the model

below. They differ from one another only by the manner in which the

discrete sets k = l,2,...,m, are constructed. They all require

that we have an algorithm for solving the problem , with 0^^ a
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discrete set, and another one for approximating the values of the functions

^ ]R^ defined by
n*

, (x) 4 It ® (13)
n* k

Ic Ic ^ 1
with S2* G Q . To complete our notation, we define i(; :]R IR by

4 max{g^(x) ,g^(x),... ,g^(x) } (13a)

Algorithm Model 1.

00 i
Parameters: An infinite sequence ^i ^ ^i ^

is a family of optimality functions)•

k k
Data; Discrete sets C £2 , k = 1,2,...,m.

Step 0: Set i = 0.

♦•Ko A1 anr'ai-a oot-e
k

Step 1: Construct the discrete sets $2., k « l,2,...,m.

Step 2: Coiiq>ute an such that

Step 3: Set i = i+1 and go to step 1. jj

Although all of our methods are summarized in the one to be treated

in Theorem 3, it is easier to understand our methods by considering three

progressively more sophisticated schemes for constructing the The

first scheme which does not drop any constraints will be treated in

Theorem 1. However, before we can prove this theorem, we need the

following proposition.

00 n

Proposition 1: Let be converging sequence in 3R with

+ 4

For example, 3^ ®e6 , for 6 G (0,1), or 3^ ®e/i.
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A k k
X as i -»• « and let C , i = 1,2,be any sequence of coiiq>act

sets contained in ^2 . Then

IJ^Cx.) - ^\(x) I •> 0 as 1 CO (14)

Proof; Suppose that (14) does not hold. There exists a 6 > 0 and a

siibsequence indexed by K C {1,2,...} such that

|i\(x ) - ii»\(x) I ^ 6 for all i Gk (15)

Now, ~<l>(x^,w^) and 'i'̂ j^(x) =<j)(x,a)^) for some oi^ in
R^

Without loss of generality, we may assume, therefore, that

^^(x^,a)^) ^ <i>^(x,a>^) +6 for all i ^ K (16)
1c Ic ^Now, since R^ C , a compact set, and x^ x, there exists an i^

stich that

♦''(i.ob > - S/2 for all i e Kj^ ^
^k k k

But (17) and (16) show that ca^ is not a maximizer of (x,a) ) over
v

R^ which is a contradiction. Hence the proposition is true,
i n

^IcCorollary: The functions ip j^(') are continuous, uniformly in
k

R' C

>s II

Proof: To obtain a contradiction, suppose that x ^ ]R is such that

given a 6 > 0 there is no e > 0 such that

1^^ l.(x) - i,(x)| <6
R*'̂ R'

for all Xe {x|Iix-xil <e}, for all R'̂ C But then there must exist
a sequence x^ x and set R^ Clfl ^ i =1,2,..., such that

k^k(Xi) - 'I'l^kCx)! 16 for i =1,2,...
i
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But this contradicts (14) and hence we are done.
n

Our three schemes define the operations to be performed In step 1

of the algorithm Model.

Constraint Construction Scheme 1

k kGiven (1) confute € 0 by approximately evaluating
k k

max (|> (x ,u) )); (11) set

4|q(x^) 4inax{0,i(.°(x^); , k =1,2 m} (18)

(ill) if > 0, Include In for all j > 1, for all

k€ {l,2,...,m} such that

I-qCXi) = (19)
H

In effect in its most economical form, the constraint Construction

Scheme 1only requires that given the sets a^, k=1,2,...,m,

"l+l ^"l^ ^"l and i/»^(x^) >0, and =0^
otherwise; I.e., the approximating constraint sets are augmented

only for those functional Inequalities (max 4>^(x,a)) < 0) that have

been most violated.

Apart from this specified restriction, the construction of the

a^ is arbitrary in the sense that any other points u C S2, not

specifically covered by the scheme can be added (or subtracted) from

the sets The relevance of this Is that the most economical form of

the Constraint Construction Scheme 1 Is not always the best computationally.

Theorem 1: Consider a sequence constructed by the Algorithm

Model 1, using the Constraint Construction Scheme 1. Suppose that
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(1) |<|>^(x.,A - iij\(x.)| ^ 0 as i ^ ®, for k=1,2,...,m
IX 1

(I.e. that ^(x^) - ^qCx^)! ">• 0 as i -• «») (±±) the optimality

functions used in the Algorithm Model 1 satisfy Assumption 1.

Then any accumulation point of the sequence {x^}^", is in A.
i i«l

Proof; To obtain a contradiction, suppose that x^ 5 i, where
K ^ {1,2,3,...}, and x ^ A. We consider the various possibilities.

(i) Suppose that = 0, i.e. x is feasible for Let

6 S (0,1), p > 0, N > 0 and y > 0 be as specified in Assumption 1 for x.

Then, since (x) ^ 0 for all x and any 0^ C n,

^ A A

Consequently, there exists an integer i^ ^ N such that x^ G B(x,p) for

i > i , i e K and
— o'

0^ (x.) <-y <-B for all i ^ i , i ^ K (21)
1 — — 1 — o

which contradicts the construction in Step 2 of Algorithm Model 1.

(ii) Suppose that > 0 aud there exists an infinite subsequence

^*i^iQC* * ^ such that =5°(x^) for all i ^ K'. Then,
since continuous and ~ I 0» as i -• ®, by assumption,

—o K' ^we have that (x^) -> as i ®. But since

K* "and hence i|;- (x.) -»• ip^Cx), as i Making use of Proposition 1, we
jL

now conclude that (x) ^ as i Let 6 € (0,1), N > 0,

y > 0 be as specified in Assunq>tion 1, then there exists an i^ ^ N

such that

A A

(x) ^ i € K', i ^ ij^ (23)

and hence
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(^i) 1"^ 1 1 € K', ^

which contradicts the construction in step 2 of the Algorithm Model,

(iii) Suppose that 'l'jj(x) > 0 ^nd there exists a k G{l,2,...,m}

and an infinite siibsequence ^ such that for all i ^ K",
1 k k

0 < ipt(x.) = <|> (x.,a)j). Then, because ^^C') is continuous and
0 1 11 M •

|i|;^(Xi) - I 0by assunq>tion, we find that

<i)^(Xj^,a)^) 5 as i -»• " (25)
Since 0 is coiiq>act, we must have

U (x^,wp - rCx^.mp 1 0 as i -> «, i,j e K", j >i (26)
k kNow, 0)^ G0^ for all i ^ K", j > i by construction. Hence we obtain

that

1 1<l»^(Xj.a>^) (27)
for all i,j € K", j > i. Taking (25) and (26) into account, we conclude

that

^ ^0^*^ as j " (28)
"kHence, since ^^^^(x^) ^ il'jj (x^) ^ t|> k(*i^» conclude that

^ ^i
'I'o (*4^ •*• rest of the proof is exactly as for case (ii) and96^ X 90

can therefore be omitted.

Since (i), (ii) and (ill) are the only possibilities, we conclude

that the theorem holds. ^

The next approximating constraint construction scheme is similar to

k kthe first, in the sense that once a point a>^ is added to the set
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k
it has to be retained in all subsequent j 1,2,... . However,

it uses a considerably milder test and hence augments the considerably

less frequently. In fact, a skillful choice of the parameters {e^}

in this scheme can result in very few augmentations, indeed.

Constraint Construction Scheme 2.

00 r\ •

(a) Specify a decreasing sequence ^^th > 0 and 0 as i

(e.g. c. = e /I, or e. = 6 ^ (0,1), etc), (b) Given x,,
i o 1 o

(i) Coii5>ute 0)^ G k=l,2,...,m, by approximately evaluating
max <|>^(x^,u)^), (ii) Set as in (18), (iii) If

0)W
include (Ou in ^ for all j > i, for all k ^ {l,2,...,m} satisfying (19).

^ n

Theorem 2; Consider a sequence constructed by the Algorithm

Model 1, using the Constraint Construction Scheme 2. Suppose

(i) |(|)''(x.,A - i\(x )I -• 0 as i +» for k =1,2i 1 jjK 1

(i.e. + 0 as 1 + »).

(11) The optlmallty functions 6qi(*) ^ b**® Algorithm Model 1
satisfy Assumption 1.

00

Then any accumulation point of the sequence is in A.

K

Proof: To obtain a contradiction, suppose that x^ x, where

K C {1,2,3,... } and X ^ A.

As in the proof of Theorem 1, we consider three possibilities,

(i) Suppose that i^^(i) = 0. Then we get a contradiction exactly as
in the corresponding case of Theorem 1.
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(ii) Suppose that 'I'q(x) > 0 there exists an infinite subsequence

{x^}^^, , K' CK, such that for all i SK'. Then,
again, we get a contradiction exactly as the corresponding case of

Theorem 1.

(iii) Suppose that 'I'jjCx) >0 aad there exists an infinite subsequence

^*i^iQC" » ^ and a k e {l,2,...,m} such that

° 1- ^

Then (28) can be established as in case (iii) of Theorem 1 and the rest

of the proof by contradiction is exactly the same as for Theorem 1.
o

Our third approximating constraint construction scheme is a

generalization of the ones proposed by Eaves and Zangwill [6] and by

Mayne, Trahan and Polak [8], Like those schemes, it will retain a

particular constraint for a certain number of approximating problems,

and then drop it. However, it stores more information than the schemes

in [6] and [8] and therefore leads both to better computational behavior

and to a more interesting convergence theorem.

Constra^nt Construction Scheme 3.

00

(a) Specify a double indexed sequence that (i) > 0

for all i, j > i; (ii) as i ®, uniformly in j ; and (iii)

e. >e.. for i ^ j,and e. 0 as j ®. (For example, e.. =6^-6^,
J ij J

with 6 e (0,1), or where + 0).

(b) Given x^; (i) coiiq>ute ^ 0 >k =* l,2,...,m, by approximately
evaluating max 4>^(x^»w^) and store it. (ii) Set

0)^
(18) and store it. (iii) For all j ^ {1,2,...,i} such that
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i k k(Xj) > include in k^ {1,2,... ,m} satisfying

CIS).

For a comparison with the Eaves-Zangwill scheme [6], we set

Af(x^) - f(xj), i ^ j- Their rule is to store only the last
kij^jj^Cxj), ojj and f(Xj) at which constraints were dropped and to include

all 0)^ in j £ Jl <i for all k€ {l,2,...,m} satisfying (19) (at i),
whenever ^ £44- The Mayne-Polak-Trahan scheme [8] is similar to

" ^ f(x^)-f(x,)+ii6^
the Eaves-Zangwill one, except that it sets e.. 4

t(1-3 )

where 3 ^ (0,1) and t > 0, y > 0. Thus, the schemes in [6] and in [8],

slowly accumulate constraints (i.e. ^j)> then drop them in mass then

accumulate them again. This type of oscillatory behavior results in

poor computational properties. Also, since only one 'I'jjCXj) is stored

at any time, convergence properties in [6], [8] can only be established

for the subsequence at which constraints were dropped, rather than for

the whole sequence. Our Constraint Construction Scheme 3 does not lead

to the type of oscillatory behavior mentioned above and does permit to

establish convergence properties for the entire sequence {x^}. It

does share, with the schemes in [6;8] the property that it retains a

certain in until i-j has become sufficiently large for £ ^ij

to take place, and then drop it.

Theorem 3: Consider a sequence constructed by the Algorithm

Model 1, using the Constraint Construction Scheme 2. Suppose that

(i) |<|>^(x ,0)^) - ^ . (x )I 0 as i for k = 2

(i.e. |ij^o (x.) - 0 as i -»• ®) (ii) The optimality functions

e^,(') used in the Algorithm Model 1 satisfy Assumption 1.
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00

Then any accumulation point of the sequence

Proof: We note that since for all i > j and all j, when
13 3 —

k
Scheme 3 is used, a point satisfying (19) is always included in

k 1
all i > j» whenever ^ Since the satisfy the

properties of the {e^^} specified in Scheme 2, theorem 3 follows directly

from Theorem 2.
n

It may sometimes be difficult to show that an optimality function

9^,(•) satisfies Assumption 1. In that case one can make use of
Assumption 2, below. It is satisfied by the optimality

fmctions used in [8].

Assumption 2; Consider the family of optimality functions

, OP
where the are discrete subsets of A. If ^ converging

11 A A ^sequence in IR , with •> x , withi/j^^Cx) « 0, and 0^ (x^) ^ 0 as
A ^

i -»• ®, then x ^ A.

When Assumption 2 is in force, we must use a different algorithm

model.

Algorithm Model 2

00

Parameters: An infinite sequence ^i ^ ^i ^
kData: Discrete sets (2^, k » l,2,...,m contained in Q.

Step 0: Set 1=0.

Step 1: Construct the discrete sets k = 1,2,...,m.

Step 2: Coiiq>ute an x^ such that

0i 6^ (x^) > and ^ (k^) <6^ (30)
i i
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Step 3; Set i = i+1 and go to step 1. ^

Theorem 4: Consider a sequence constructed by Algorithm Model 2,

using the Constrain Construction Scheme 1, 2, or 3. Suppose that

(i) |<|)^(x^,w^) - 0as i ->- « for k=1,2,...,m,
(i.e., that I ^ 0 as i -»- «);

(ii) the optimality functions 0^. (•) used in the Algorithm Model 2
Q

satisfy Assumption 2.

00

Then any accumulation point of the sequence

Proof; We only need to prove this theorem for the case where the

Constraint Construction Scheme 2 is used, since both Scheme 1 and

Scheme 3 can be seen to be special cases of it.
jr ^

Thus, suppose that x, with K C {1,2,3,...} sind that

X̂ A. First, suppose that ^fj(x) « 0. Since 0^ (x^) 0as i ~
^ A

by construction, it follows from Assumption 2 that x ^ A and we get a

contradiction.

^ K ^

Therefore, suppose that 'i'̂ Cx) > 0. Then, since

by continuity and I 0 as i •> ", by assun^tion, we

must have 'I'iCx.) ^ Therefore, since e 0 as i -> », there
AS 1 i

exists an integer > 0 such that 'I'q(x^) > for all i ^ i^,
k ki GK, and consequently, o)^ ^ ^2^ for all j > i, i ^ Kand k ^ {l,2,...,m}

such that (19) holds. We now distinguish between two possibilities,

(i) there is an infinite subsequence, with K* C k, such

that i|;^(x^) « ^)°(Xj^) for all i GK*.
In this case, we get that

♦q ° all 1 e K' (31)
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But ^ hence there exists an 1^^ ^ 0 such that
(x^) ^ i|;^^(x)/2 > 3^ for all i >, i S K. But this contradicts

(30). Hence, consider the second alternative, (ii) There exists an

infinite subsequoice > with K" C k and a k € {l,2,...,m}
i ' ksuch that 'I'qCxj') = "I* > ^or all 1 ^ K". Then, because we are

using Constraint Construction Scheme 2, we obtain that

♦q all 1 > J i io' ^ ^

k kSince ^ 0^, by construction, in this case. Now, because 0 is compact,

U^(x^,w^) - (|>^(Xj ,a>j) I 0 (33)
i k k K"as i,j ^ ", i,j e K", i > j. Since *q(x^) « ^

j oa, we obtain from (33) that

<|>^(x^»Wj)
as i,j ", i,j S K", i > j. Hence, there exists an i^ ^ i^ such that,

by (32),

^ ^i all i > ij, i e K" (35)

But this contradicts (30) and hence we are done.
n

3. Opftmfllitv Functions for Outer Approximations Algorithms

We shall now present a few optimality functions which satisfy

Assuiiq>tions 1 and 2. First we show that any family of optimality functions

satisfying Assumption 1 must also satisfy Assumption 2.

Proposition 2: Suppose {0^ (•)}»0_, C is a sequence of optimality functions
i

satisfying Assumption 1. Then it also satisfies Assumption 2.
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Proof: Suppose that x as i with i|>(x) = 0, and that 0 (x ) -»- 0

as i Then x e a, for otherwise, by Assumption 1 (since tp (x) ^ Srp (x)
•2^ $2

for any 6 ^ (0,1) and all i) there exists a Ji > 0 and an i such that
o

i 1
0o (*4^ all i > i which contradicts 8^(x^) •> 0 as i -»• «.1 — — o S2 i

n

The first two optimality functions that we consider are independent

of the superscript i and hence we shall drop it for these cases. These

optimality conditions are normally used in methods of feasible directions

(see [10],[11],[12J) for computing descent directions. Since, as we should

show this satisfy Assimiption 1, we conclude that methods of feasible

directions based on these functions are suitable for solving problems

"a'*
Ic IcConsider the functions, with 0* C , introduced in [13] by Pironneau

and Polak,

0 (x) 4 min{-|-Ohll^ +max{<7f(x),h) ; g^(x) +<Vg^(x),h>, j =1,2,
" h

({»^(x,(i)^) + 4>^(x,w^),h) , € 0'^, k « l,2,...,m} (x)
X 00

(37)

Since (37) is an extremely messy expression, we shall show (without loss

of generality) that it satisfies Assunq>tion 1 by considering only the

special case where m= 1 and Z= 0, i.e., no g^(') constraints. For

this case superscripts can be dropped, becomes min{f(x) |<|)(x,a)) £ 0,

w ^ } and (37) simplifies to

0JJ, (x) =min{-^IIhll^ +max{< Vf (x) ,h) ; 4>(x,a)) +<7^(|)(x,a)) ,h),
n

(D G Q} (x) (38)
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Assuinotlon 3; Tor every x £ e", 0 ^ co where
(.^o(x)

a (x) 4 {u e a|iti(x,u) =*(j(x)} (35)
0 n

and CO denotes the convex hull of the set In question.

Theorem 5; Suppose that Assumption 3 is satisfied. Then family

of optimality functions defined by (37) satisfies Assuiiq)tion 1.

Proof: We shall only give a proof for the special case (38). It is

quite easy to see that A« {x|ej^(x) = 0, Since by

assumption 0 ^ co V 6(x,a)) for all x G it is easy to see
a]Q3fv(x)

that 0„(x) < 0 for all x € m such that i|/jj(x) > 0 and hence
• B

1 - {x|ejj(x) =0) (^0)

Now, suppose that x A; therefore < 0. Then, for any

n' C n, we get, from (38)

(x) » 0jj(x) + (x) ]

Since 0 (•) is continuous and by the Ctorollary to Proposition 1,

,(•) is continuous uniformly in ft', there exist 6 G (0,1) and

p > 0 such that

i <'a(i) +J 9a(^>
0 (x) <-^ OjjCx) for all Xe B(x,p) (^3)

A A A

and for aiiy ft* Gft such that i|<jj,(x) ^ '̂{'̂ (x),

♦jji (*) i 1 ^ 3(*»p)

Hence, from (41) and (44), for all xG B(x,p),

e„. (X) <e„(x) - i e„(x) <f 4-i («>
which completes our proof.
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Next, continuing In the sliq)llfled framework of the problem

*mln{f (x) |<ti(x,u)) 0, w^ ft}, which results In no loss of generality, we

define a new optlmallty function, which we obtain from the test In

Polak's method of feasible directions [10], as follows. For any e ^ 0,

ft' C and X € let

A {w ^ ft' |<|>(x,a)) ^ (^6)

and let

Ynf (x) = mln max{7f(x) ,h) - (x); (v (J)(x,a)) ,h) , o) ^ ft (x)}
" h6c « X e

(47)

with C= {h € |h^ I £ 1, 1 = 1,2,... ,n}. Let 3 ^ (0,1), p > 0 be

given. Then we define

ej2t(x) Amln{-3^p Iy^i (x) £-e» ^=3%, k=0,1,2,3,...} (48)
k

It Is easy to show (see [10]) that

A={x ^ ]R |̂y^(x) =0, ~
0 0 £Since 2l ^ft^*^ e ^ 0 and 0 ^ Yq(x) always holds, we must

have also that

A= {x G]R |̂0^(x) = 0, ^q(x) = 0} (50)

If we assume that Assumption 3 holds. I.e. that 0 ^ co V (f>(x,(ji))
(O^q(x) *

for all XGIR^, then '/'̂ ^(x) = 0 can be removed from (50), since. In that case,
Y^(x) <0for all xsuch that ^q(x) >
Lemmfl 1; Suppose that Assumption 3 Is satisfied and let ft' C ft

be any compact set. Ikider these assumptions.
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a) If X is optimal for then (x) = 0. Furthermore,

A= {x S ]R'̂ |e^(x) « 0} (51)
A m ^ ^

b) For any x S K. such that (x) < 0, there exist p < 0 and

e > 0 such that f. ^ B(x,p).

c) If Xis such that 0qi (x) ®0 ^nd J2' is finite, then ©qiC') is
A

continuous of x.

Proof! a) Referring to [10], we see that Y°i(x) =0 if x is optimal for P^^,
0 A eand hence, since Yqi (x) £ Yqi (x) for all e ^ 0, it follows from (48)

that (x) = 0. The fact that (51) holds follows from (50) and Assiomption 3

which guarantees that Y^(x) <0for all xsuch that ^
A A

b) Suppose that ®^i(x) < 0 (i.e. Yqi(x) < 0). Our first observation
A A

is that the map (x,e) 0*(x) is u.s.c., i.e., given x and 6 > 0, there
A A

exist e >0 and p >0 such that
o o

0*(x) C Nj(x) for all e S [0,e ], x € B(x,p ) (52)
e 0 o o

where

Ng(x) 4 ^ IR |̂0cu-a)'fl £ for some w* € Oq(x)} (53)

i.e. N.(x) ^0*(x). Let 5 > 0 be such that, with N^(x) defined by
o 0 "

(53), and

A

Yqi(x) 4 mln iBax{<7f(x),b) - <V^<Kx,(i)),h> , uENjCx)}
^ (54)

we have
A

Yq(x) 1 Yqi (x)/2 (55)
A

"6Note that YQt(*) Is a continuous function.

Now, let e > 0, p > 0 be such that (52) holds and let p ^ (0,p ] be
o^ o o

such that Y^, (x) f. Y^i(x)/4 for all x€ B(x,p). Then, for all
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e £ [0,G ] and for all x ^ B(x,p),
o

VW i V(x) <Y°,(i)/4
A A

where the first inequality holds because S2^(x) C N^(x). Let k ^ 0
0 A A ^ ^

be any integer such that ^ P ^ ^ ^ Then,

for all X G B(x,p)

and therefore, by definition, 0^^, (x) j< -e for all x ^ B(x,p).
A

c) Now suppose that 8^., (x) = 0, and for the sake of contradiction,
do

A ^

suppose that 0^1(x) Is ^ot continuous at x. Then there exists a
do

sequence x^ x as i ->• « and a 6 > 0 such that

0 , (x) _< -6 < 0 for all i (57)
•o

Since R* is discrete, there exists a p > 0 such that

J2l/«(x) I>n'(x) for all x ^ B(x,p). Hence, by continuity of
6/2^ 0

^i(') (6 = 0 in (54)), there exists an i ^0 such that

- I ^^a' ^
But this implies that 0^^, (x^ ^ -6/2 for all 1 1 which contradicts

(57). This completes our proof. ^

Theorem 5: Suppose that Assumption 3 is satisfied, then the optimality

functions 0^1(*) defined by (48) satisfy Assumption 1.
do

Proof; Suppose x ^ A. Then, by Lemma 1, 0jj(z) < 0 there exist

p^ > 0 and e > 0 such that

9 (x) £ -e for all x ^ B(x,p^) (59)
oo
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Let 6 € (0»1) be such that

1 - e/4 (60)

Since Q is compact, <^(*,0)) is continuous, uniformly in a> ^ Q, and
A

hence there exists a p ^ (0,p^] such that for any finite subset

0' C Q and for all x € B(x,p)

(x) - - <|)(XfW) >, -e/8 (61)

where o) ^ arg max (ti(x-,a)), and also (by continuity of
ajen» "

Now suppose that £2* ^ Si ±8 a finite set satisfying

^ A

and suppose that x € B(x,p). Then, making use of (61) and (62) aiid

(63), we obtain

1 1 ~

Therefore, since ^ ^g(x) ^ Oa(x) always holds, for all

X € B(x,p), we obtain

A

Y^{^(x) =min max{< Vf (x) ,h) - (x); (V (|>(x,a)),h> , cu ^
h^C

min max{(Vf(x),h) - +(V i|>(x,a)),li) ,
ha . " *
0) € 0-(x)} =Y^(x) + e/2 <^ - e/2 (65)

The last inequality follows because, with e(x) A -0jj(x), by (59) and

(48), for all x ^ B(x,p),

Yq^*^(x) £-e(x) _< -e (66)
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which implies that e f_ e(x) for all x S B(x,p) and therefore,

Y^(x) 1Y^^*^(x) <.-e for all x€B(x,p) (67)
It now follows from (48) and (65) that

(x) ± -e/2 A -U < 0, for all x ^ B(x,p) (68)

which completes our proof.
n

To conclude this section, we show that penalty functions can also

be used as subroutines for solving the problems in our outer

approximations methods. We continue to restrict ourselves to the special

case where is min{f(x) |<(>(x,aj) £ 0, w ^ J2}, since there is no loss of

generality is doing so, but the notational simplification is great.

Let {s.be an infinite sequence such that s. > 0 and s. ^ 0
i 1=»1 1 ^

as i ^ " (e.g. s^ =s^/i, or s^ =B^, with 3€ (0,1)), and let
0* C be any finite set, with cardinality . Then we define,

p^, :]R^ and, for i =1,2,3,..., f :1R^ •> IR ^by

Pof(x)A-^ ]C [max{0,<|)(x,a)) }]^ (69)

and

f^^t(x) Af(x) +-^ Pj^,(x) (70)
We then define the optimality functions

0^,(x) A-tlVf^.(x)0, 0* i= 1,2,3,... (71)

with always a finite subset of 0. A standard assumption in penalty

function methods is that for any x such that (x) > 0, Vp^^, (x) 0

(see [10]) or the somewhat stronger assumption that 0 ^ co V<|)(x,a))
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where co denotes the convex hull of the set specified. When extended

to the problem the latter assunq;>tlon becomes 0 ^ co V<f>(x,a)) for

all X such that > 0. This, In turn, leads to the following

assunqptlon which we shall need to show that the optlmallty functions (71)

satisfy Assumption 1.

Ass^^^tlon 4: For every e > 0, there exists an n > 0 such that for

any XG any C finite. If (x) 1 then llVp^,(x)II > n.
n

Theorem 7; Suppose Assumption 4 Is satisfied. Then the family of

optlmallty functions defined by (72) satisfies Assumption 1.

Proof: Let x ^ be such that x ^ A.

a) Suppose that ^ that the 6^,(«) do not satisfy
Assumption 1 at x. Then, since 'l'j^f (x) 1 any 3 > 0 and

C Q, we can construct sequences ^^1^1=1* ^^1^1=1*

X -> X as 1 0®, ft. are discrete subsets of ft, y. > 0 and 0
11

as 1 «®, such that

0 (x^) = -Bvf(x.) +-7- 2 max{0,(|>(x,(D)}VJ>(x^,a))}ll ^-y^
"i i ^ ^ft ®1

(72)

If there exists an Inflnte subsequence ^ C {1,2,...} such that

ft = ({. for all 1€K, then (72) Inplles that Vf (x^) 5 0as 1 « and
hence that 7f (x) « 0. But this Is Impossible since x ^ A. Hence no

such subsequence satisfying (72) can exist. Now, let and let

IT A 2 ~ max{0,4»(x>w)V 4>(x»w)1 == V. ^5. s. X
1 1

Then, from (72)

£ Bvf(x^)l + y^, 1 ®l»2,3j

-25-
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which shows that the are bounded. Consequently, there exists a bound

M, such that, because of Caratheodory's theorem [14],
p+1 V k

IT. = ^ X^(j)(x. ,01.), i = 1»2,3,... (75)

with (of e n, and 0 < < M. Since S2 is coi.5)act, there must exist an

infinite subset K' C{1,2,3,...} such that ^ u , k = 1,2,....p+l,
as i and X^ -»• x'̂ >0, k=1,2,...,p+l. as i - Substituting into
(72) and taking limits, we get that

Vf(i) +f x^ =0 (76)
But this shows that i satisfies the Kuhn-Tucker conditions and hence

X£ A (which only requires the F. John condition) and hence we get a

contradiction. Thus, the 0^,(-) satisfy Assumption 1at any xf A
such that = 0.

b) Now suppose that <|»jj(i) >0. Let 6 >0 be arbitrary. Then, by
Asstimption 4, there exists a p >0 such that Bvpjj,(x)ii p for all x ^ IR

A

6 /s
C finite, such that ipjji (x) > ^ -

Since the ij) ,(•) functions are continuous, uniformly in (see Corollary

to Proposition 1), there exists a p > 0 such that if C is finite and

if l-jj. (i) 1fifsjCx). then (x) >| 6{'j,(x) for all xeB(i,5) and
consequently Ovp^j, (x)ll >pfor all xe B(x,p). Hence, if '(ifjt(x) 1 6i|rjj(x)
and X G B(x,p) ,

9i,(x) =-lvf(x) +^ Vpjj,(x)ll 1--^ I'7Pqi(x)I' +llvf(x)«
<-^p+M (")
_ ®i

where M= max{«Vf (x)!1 |x e B(x,p)}. Since s^ h- 0 as i ^ there exists

an N such that -(— y+M) < -y for all i ^ Nand hence we see that Assumption 1
®i

holds at X. This completes our proof. h

»^26—



Conclusion

The algorithms described In this paper are directly Implementable,

since all the required confutations can be carried out by a finite number

of operations. They differ from the earlier versions of outer approximations

algorithms In four respects. They require more storage (scheme 3), but

they have better convergence properties, they are Implementable, and

they have more parameters to be specified by the user. The last property

may be considered to be undesirable by some. However, we feel that this

freedom to select parameters Is very Important, since It can be exploited

constructively In Interactive computing schemes utilizing a graphic

display terminal.
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