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1. Introduction

A triangular matrix reveals its eigenvalues on the main diagonal. By
Schur's lemma any square matrix is unitarily similar to an upper triangular
matrix with the eigenvalues arranged in any desired order along the diagonal.
In practice the QR algorithm in real arithmetic produces a block triangular
matrix in which the eigenvalues are likely to be in monotone decreasing
order by absolute value down the diagonal. However this monotonicity
cannot be guaranteed and for some purposes the ordering by absolute value
is not what is wanted.

The problem which we address here is to find some simple orthogonal
similarity transformations which have the effect of exchanging two diagonal
elements (or blocks) while preserving block triangular form. Actually we
will show only how to swap adjacent blocks and so the exchange of distant
blocks must be accomplished by a succession of adjacent swaps.

Although the cost of such a swap is small it is not negligible; in an
nxn mtrix (p+q)2n multiplications are needed to swap adjacent diagonal

blocks of orders p and q.

2. Ruhe's Trick

For any real © and s = sin 8, c = cos 6 the symmetric matrix
-s C
is an orthogonal matrix representing a reflection of the plane.
c s
Observe that

-s C a] B -s C ] ) a152-85c+a202 s -a]sc—852+azsc
c S —a]sc+6c2+azsc . a]c2+Bsc+a252

0 0 c s
The new matrix is upper triangular if and only if

c[Bc-(a]-az)s] =0.
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The choice ¢ = 0 represents no change, the choice
tan 8 = s/c = B/(a]-az)
results in an exchange of ay and a,. The new (1,2) element is
-s[Bs + (a;-a,)c] = -s[Bs +gc?/s] = -8 .

Now suppose that o is the (j,j) element of an nxn upper triangular
matrix. The plane reflection indicated above, effected in the (j,j+1)
coordinate plane, will swap o and Og- Postmultiplication affects
columns j and j+1 while premultiplication affects rows j and j+1.
This requires 4(n-2) multiplications. To keep the angle 8 in

(-m/2,m/2) we define

- T a2
d-= /(ot.l az) + 8%,
c= |a]-azl/d ’

s =8B sign(al-az)/d .

Note that when B = 0 the transformation merely exchanges the two rows and

the corresponding pair of columns.

3. The General Case

Consider the reduced matrix

[ A, B ] A, is pxp,

0 A2

A, is qxq.
We seek an orthogonal similarity transformation which swaps A] and Az.
In general this is not possible; fortunately we can achieve a form which

is as useful as exchanging A] and AZ' We denote by ZT the transpose

to



of any matrix Z. A partitioned matrix

T .
[-—S] Cz] C, ispxp,

Cy 52 Czisqxq,

is orthogonal if, and only if, the following relations hold:

(1) C,Cl +5,50 = - 5,5, +C1C;
(2) s{si-+czc; -1, - C3C, *+ 515, »
(3) - €S, +5,C) = . ,
(4) - S.C +Cls, =0

172 “1°2 ~ “q,p

Note that if C¥ = Cl’ C; = C2 then we can take S1 =

is not always advantageous.

52, however this

We seek an orthogonal matrix of the form shown above such that

T 5N T
C] 52 0 A2 0 A.I 01
On equating the (2,1) and (2,2) blocks on each side of

- K T_ (T
(5) C,A; = AC,  (also AL, = CoA,)

~

(6) C.IB-I'SZA2 = A]Sz .

C, ]
52
the equation we find

?

When C.I is invertible (more on this below) then (6) can be rewritten as

=1 _
= A]C{]SZ , by (5) .



We now let the pxq matrix C']']S2 = X/¢, where £ 1is a positive constant

at our disposal, and substitute into the equation above to get

(7) A]X-XAZ =&B .

In order to obtain C] from X we pre- and post-multiply the first ortho-

gonality relation (1) appropriately and invert to find

1+ xx1/e8 = c"c;T

p 1
or

(8) (cy/e)T (e /6) = (1 g2+ X7 = wy

Using (3) we find that X/¢ also equals S]CQT and by using (2) we obtain

(9) (Co/E)T(Cp/E) = (124X = W, .

It is well known that an X satisfying (7) exists and is unique if
and only if A1 and A2 have no eigenvalues in common. In practice only
such cases interest us but we want the algorithm to be robust in the face
of some perverse or extreme requests. Clearly if A1 = A2 we want the
algorithm to do nothing rather than to fail. In such a case C] = C2 =0
which is far from invertible. By taking & = 0 and setting C]/E = CZ/E =
= X =1 the algorithm will work. When the eigenvalues of A1 and A2
are close, in some sense, then & will be chosen so that
max{&,0Xl} = 1 approximately.

There are infinitely many C's satisfying (8) and (9) and any of them
will do. In the absence of other constraints the symmetric solutions are
the natural ones; if C; = C], C; = C2 then S] = S,, but this fact is
not obvious. In this algorithm, however, we prefer to choose C.l and C2

so that ﬁ] and RZ have a convenient form for most applications.

v



It is not necessary to compute S1 and 52 explicitly. Write

E] = C]/S, the scaled version of C]. Then

-s1 €, ¢, 0" &
(10) P = = 2
C-I 52 0 1 £l X
and P is best applied in this factored form. In practice the orthogonality
of P is completely determined by the accuracy with which the C's satisfy
(8) and (9).

It is not necessary to compute §1, RZ’ or B explicitly since they

will emerge when the similarity transformation

A, B
(1) P[ 1 ]PT
0 A,

is effected. For completeness we give the formulas

= yRT =
s, = X&) s Sy = Eix :
= o o] T _ o ,Ta-1
s w Tl (Teeli L Ty T Ty -1



A, B
4. The Algorithm for SNAP A = | |
0 A,

1. Clear the (2,1) block of A.
2. Solve A]X'-XA2 = gB for X and £ wusing subroutine TXMXT.
£ 1is chosen so that [(X[I = 1

3. If £=0 then exit.
4., Solve 6161 = (52+XXT)'] = N] for E] using CTCEQW.
5. Solve Cit, = (€%X'X)7! = W, for €, using CTCEQM.
6. Premultiply A by P using NEWCOL.
7.  Postmultiply PA by P' using NEWROW.
8. Update the matrix of orthogonal transformations using NEWROW.
9. Force the diagonal elements in the new blocks K] and 32 to
be equal.
Name Executable Statements | Count for 2x2 Case
SWAP 17 32n multiplications
TXMXT 52 42 multiplications
CTCEQW 17 32 multiplications,
4 square roots
NEWCOL 22 16 multiplications
per column
NEWROW 22 16 multiplications
per row
5. Solving A]X--XA2 = B
o, B. -
When Ai = [ T M. 4i=1,2, the linear equations which determine X
Y. O
R

can be solved stably in closed form. Let ¢ = Ay =Oo s then the equations

may be written as



X b
¢ BIIZ x]1 bn
(1) x=bi x=|%2], b=|"2
Ml ¢ X1 by
X22 by
where
2
§ -y §“+B,Y =28y
(2) C = { 2 ] , CZ - [ 2'2 ) 2 ] )
'82 6 '2662 6 +62Y2

Multiply (1) as indicated in order to make the coefficient matrix block

diagonal,
2
C -B,Y 0 cC -B
0 C™-Byvy v, €
Now Tet
- T 28y
G = (CZ'B]Y]) ! = 2 ]/d
2682 T
where
_ 2 _ 2
(4) T=24 +82Y2 - B]Y] ’ d=r1 - (2582)(26Y2) N

and premultiply (3) diag(G,G) to find

(6 0)[ C -8,
b
\ 0 G J L -'Y-l C

8byy - Yobqp - Bybyy
(610 )| -Babyy + 8byy - B1byp

5 = --s -] ]
) Loia )| ™MPn + 8bayy = Yabo

! - Yqbyp - Babyy + by
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2 -
, $8byq + (267-T)Ybyp - by - 287pByPyp
_ | (287-m)epbyq + ¢8byp - 2684Bpby - B2z |
A L TR P PR 08y + (26°-1)y,by
2
- 28v1B5byy - by (267-1)Bobyy + ¢5bp

y/d

defining y, where

“

- _ o2
=1 '2Y282 =§ - (B]Y]+82Y2) >0,

Y= 262-1 = 62+-(3]y]-3272) .

Inevitably (5) is Cramer's rule and d = det(A]®I ~I®A2) so that d = 0
if and only if Ay = Qs Bivy = ByYo-
Among all the coefficients in the linear combinations of the elements
of B which are given above only T and ¢ involve genuine subtractions
and possible loss of information through cancellation. However by rewriting
them in a more complicated form all unnecessary loss can be avoided. From
(4) = 624-8272-31y] and if either of & or -ByY is tiny compared
with the other two terms we want to add it in last. Similarly for ¢. Thus
we use
~ 2 : o2 ,
(6) Y = (B1Y1'+max{6 "BZYZ}) + min{$ ,-Bzyz} s ..
T = (8272-*max{62,-8171}) + min{Gz,-B]Y]}
Here is an example for a machine with a relative precision of 8 decimals,
i.e. the floating point result f1(108-9) is 10% whereas f1(108-10) is
8 2 _ _ 8 i 8
]0 - 9, B]Y] = -(]0 "IO), 62Y2 = -]0

-10 = 10(107-1). Let & then

8

£1(£1(9-10%) +108-10) = -10,
£(F1(-10%+ (108-10) +9) = -1 .

from (4), computing from the left, =

from (6), computing from the left, =
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3

If we are given a matrix M with eigenvalues near *10”i and are evaluating

exp(10M) then values like the ones given above will occur.

Normalization

The important matrix in effecting the orthogonal transformations is

ﬁzo U
[0 51” £ X]

and we want our formulas to be accurate right out to both extremes:

-1 0 0 I
and
01 10
An appropriate way to achieve this is to choose & so that

max{g,1X0} % 1 .

Equation (6) above yields y so that the corresponding 2 x2 matrix Y

~

satisfies

A'IY - YA2 = dB

where d 1is given in (4). Toget x and £ let n = Iyl then
y/d, &=1.
=y/mn, & =d/n.

Case 1: n <d, take

X
1}

Case 2: n > d, take

X
[}
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The Algorithm for TXMXT

We solve A]X -XA2 = £B when A] and A2 are 2 x2 standardized

matrices as follows:

2
5=a]'(12, qu=5 ’

mEEM s T B

e = ¢6 = 8§(8sq - ('rr.|+1r2))

f.l =y = (n] +max{6$q,-1r2}) + min{asq,-nz} .
f,= 1= (1r2+max{ssq,-1r1}) + min{ésq,-m} ,
g = 26Y2 > h = 2682 .

d= fz-qh

At this point y can be evaluated from (5). Then

n leﬂw ’

X

~

gy/max(d,n) ,
new £ = £-d/max(d,n) .

t
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I

6. Solving C'C = W

In some applications the Ai’ i=1,2, have the special form

- i
A “ilz"[Y. 0]’ Biv; <0
and we want Ri to have the same standardized form (equal diagonal elements).

Because Ai is similar to Ai we must have

This requirement fixes the matrices C] and C2 of the previous section.
A straightforward way to derive formulas for C1 and C2 is to obtain a
particular solution to (8) via the Choleski decomposition and then to
standardize the resulting diagonal blocks.

Let R] and R2 be upper triangular and satisfy

To _ oy = (22 Ty-1
R]R1 = N] = (g IZ-PXX )
T, - - (.2 Tyy-1

where X solves (7), A]X--XA2 = gB. Next define

-1 A -

A = op=Ts oT

Now let J] and J2 be the unique plane rotation matrices which stan-

dardize ﬁ] and ﬁz, j.e. both

< T
Ay = 9,R0 >

~ T ~ _ ~

have equal diagonal elements. The appropriate C] and C2 are therefore

e _ _ ) = T =
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Let us drop the subscript and dot from C] and A]. The condition

T

c'c = = (71, +xx")!

imposes three quadratic relations on the four elements of C. If
A = [ $ g ] then the requirement that cAc™!  have equal diagonal

elements (both o) imposes another quadratic constraint, namely

BCy1C21 = YC12€95 o
which suffices to determine C. However the direct solution of these
nonlinear equations is far from obvious. Instead we shall derive the

solution in a straightforward but lengthy manner via the Choleski factori-

zation of W. The final algorithm is however very compact. Let

2

d® = det(£21,4xxT) = €% + EZ(ZZIXijIZ) + (det X)2 .

Then define M by

2 2 2
W= W s _12_[5 + X571 + X ';xﬂ;ZHx;zXzz)]
d7L -(xqyXaytxypXop) 5+ + Xy,

and note that

R=%{ﬁﬁ WﬂMﬁJ

0 d/»/'mn

is the Choleski factor of W. Note that det M = d2. The next step is to

form
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Now let J

JAJ

>
1]

where

be the plane rotation which standardizes A.

RAR

v M2 1[0 B 22 M2 ] -1 o
0 0 0 "11ro2 *
L T2 JLY B}

15

-1

i 2 2
g (Briy-vryp)/ry, ]r-l

+ al
n 2
L Y22 2
[ & a
12 + al, .
3., -6 2
Ly

[ ¢ -5 6§ a c s
) 12 +al, ,
| s ¢ dypy -6 s C

2 2

~ ~ 2 2
I 265c-—a]zs +dyC -5(c-s“) + 24sc

a= (a]2+a2])/2 .

The proper choice of ¢ = cos 6 is therefore given by

So

o 2 2 ~ 2 ~
6(c™-s“) - 2asc 255c-+a12c -d,y8

a12 .

2
] + a12 .

tan 20 = 2sc/(c?-s%) = &8/3 .
2¢2 = 1+cos 20 = 1+4/v ,
v=/82+4% ,
c = /(1+[a[/v)/2 , to keep |6] < m/2,
s = sin 20/2cos® = § sign(&)/2cv .
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Finally
c - [c “SH‘”H ‘”12] i} ["11 .°‘”12‘5"22]
s ¢ 0 oo ST sr]2+cr22
Our object now is to get rid of the intermediate quantities and

express C in terms of d and M. So

2 2 2
(Bryy - ¥Iryp-rapl)/2ryyry,
2 2 2
v[d -(m]z-8m1]/Y)1/2m11d ,
YC/ml] , defining ¢,

)
n [t}

§ = yryp/ryy = Ymp/myy s

|y|¢/m1] where ¢ = «tz-km%2 .

<
]

Since By < 0 the expression

2_ 2 2
myp = Bmyy /Y

w
is positive.

At the cost of an extra square root the important quantity ¢ can be

written in a form which is attractive for finite precision computation
- 42 2 2 _
¢ = [d°- (m], - Bn];/v)]1/2d = (d-w)(d+w)/2d .

Having computed d, M, £, and ¢ we obtain the desired formulas:

_ 2
g = m-”/Zd ’
Cjq =€y = Jo(1+[2]/9) »
- _ .2 . A s
Co1 = STy = ™ 651gn(a)/2v(cr]1) = S1gn(£)om]2/¢c]] .

Cip = Cryp = Sryy = (Cyymyp=Cyyd)/myy
SPyp *Cryy = (Cyymyptey d)/my, .
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For completeness we note that
Y 0 1 S22 LY 0L -Cy oy

2 2
= (Bc]]-Yclz)d ,
BY/B

so that

™
j

<
u

T

The matrix C is computed by the subprogram named CTCEQW (i.e. C'C = W).

Computation of C2

The subprogram which computes C] from d, X, B, Y can also be used

to compute C2. Recall from (9) that

T o Tyy-1

By symmetry d2 = det(I+XTX) = det(I+XXT). Moreover, from (12)

ST i Te-l

By transposing the data we can use the same formulas as given above for C].
The data is d, XT, Yoo 62 and the output will be CZ’ ?2, Bz. In other
words it is only the interpretation of the parameters which distinguishes

the computation of 02 from that of C].

7. Performing the Similarity Transformations

In practice A1 and A2 will be contiguous submatrices on the
diagonal of some big block triangular matrix. The similarity transformation
determined by P affects elements in the same row or column as those of

A, and A, as indicated in the figure.

1 2
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J1 JIHLT  JT+L1+L2

(A

NN

i %
_________________________ D7 7755

Figure 1
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Let those elements in a typical column which are altered by the premul-
tiplication by P be partitioned conformably with P as ( 3 ). They

will be transformed into

[u] (&, o] X7 51] u

p

v Lo & [gl X [v]
i ( EZ(EV-XTu) ]

| & utxv) |

Notice that the number of multiplications required to effect this is pq

T 2 and p2 for the application of 02

for each of X'u and Xv plus q
and C]. This is the same as for multiplication by the full, non-factored
version of P except for the (p+q) multiplications involving &£.

There is a surprising difficulty in writing a program to effect this.
The program must work for any values of p and q and this condition
prevents us from supplying the input data as values; they must be names or
references since the number of them, p+q, is not known at compile time.
In other words the subprogram is informed that elements m+1 through
mtp+q of an array Y are to be transformed.

The disadvantage of this constraint is that the same code cannot be
used for effecting the postmu]tiplicatidn by PT. More precisely, the
price of using the same code for both cases is a loss in elegance and
efficiency. The difficulty can be seen clearly by looking at the 1istings
of the subprograms NEWCOL and MEWROW. They differ only where a variable

Y[i,k] 1in NEWCOL corresponds to a variable Y[k,i] in NEWROW.
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8. Gaussian Elimination for SolvingﬁA]X -XA2 = B

The linear equations defining X can also be solved by block Gaussian
elimination in about half the time required by the algorithm just described.

Three different factorizations are appropriate (i.e. stable).

. 2
.Case 1: §° > max(-B1Y].-BzYz)

I, 04f¢ Bl 1 [ [ by _ | by
¢! 1|l o cogy,c! Tl | N by, | ° b2 - b,y
N 2 M X2 2

x

Case 2: |y | > |8] > max(Gz,-BzYZ)

I, 01(nl ¢ X b,
L 2 x, | | b

Case 3: [v,| > [B,] > max(sz,-B]Y1)

- - A x 2
'C'Yz Yz 0 C'BzYz 2 1

% = n %= *12 B, = by 6 = b1

<1 X9 ~2 X90 ~1 b21 ~2 b22
In each case X can be found with 16 multiplications and 4 divisions. Further
rearrangements should be made when |B,| > [y;| in Case 2, [B,] > |,

in Case 3.

The extra length of the code (100 statements versus 50) does not

appear to warrant a saving of 16 multiplications.
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9. Swapping Large Blocks

The algorithm we developed for swapping was quite general with A] pxp
and A2 gxq. However the individual subroutines TXMXT, CTCEQW, NEWCOL, and
NEWROW were specialized for p < 2, q < 2. Here we want to point out that
general versions of these programs are readily produced.

1. A]X--XA2 = B can be solved for X by the algorithm of Bartels

~ and Stewart [B and S, 1971]. In our case A] and A2 are already in real

Schur form and X can be partitioned to match A] and A2' If the equa-

tions defining X are taken in the proper order the system is triangular

and can be solved by

Dy _x al2) o g

D =1
1), ,* (2)
ke “ke " "kete” T Pke T E Agi X +i£]X ifig

j=k+1 ki "2 kiig

The proper order is k = p,p-1,...,1; & =1,2,...,q. Here p and q are

1 and AZ'

2. CTC = (£2+XXT)'1. The positive definite matrix 52-+XXT can be

formed explicitly and its Choleski factorization RTR computed in a standard

the block orders of A

manner. Then R! can be overwritten with its inverse to give a solution ¢.
3. The execution of the orthogonal similarity transformation, in

factored form

presents no difficulties.
We mention this possibility only to reject it. The rival method is
simply to swap A, and A2 subblock by subblock, using the programs which

1
we have presented here, that is by swapping many 1x1's and 2x2's. The
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operation - count for each method is approximately (p+q)2n multiplications
and additions but the general procedure sketched above would require signi-
ficantly more program statements.

In the language of computer science we are recommending the recursive

swapping of big blocks.
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10. Test Results

(a) 6x6 Matrix (Separated Eigenvalues)*
1. Original Matrix

[ 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 ]
-1.0000 2.0000 5.0000 6.0000 7.0000 8.0000
6.0000 7.0000 8.0000 9.0000

8.0000 9.0000 10.0000

12.0000 11.0000

-1.0000 12.0000

2. Swap Ist and 2nd blocks, 2 x1 case

- 6.0000 -4.2583  -4.6036  9.6667 11.328  12.990
2.2x100"%  2.0000  3.2930 -3.8212 -4.3070 -4.7929
~0.91103  2.0000 -1.3978 -1.4569 -1.5161
8.0000  9.0000 10.0000
12.0000 11.0000
-1.0000 12.0000

3. Swap 3rd and 4th blocks, 1x2 case

" 6.0000 -4.2583  -4.6036 13.192 -13.265 6.3656 ]
2.2x10°'%  2.0000  3.2930 -4.8713 5.1785 ~2.3615
-0.91103  2.0000 -1.5437 1.8492 ~0.75651
12..0000 0.69449 5.5837
~15.839 12.000 -4.5244

i 8.2x1071%  Z1.3x1071% 8.0000

*Computations performed on 14 digit machine, results rounded to 5 figures
for display.
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4. Swap 2nd and 3rd blocks, 2x2 case.

[ 6.0000 13.402 -14.062 -1.3625
2.2x10°1% 12000 0.63866 ~3.6006
17.224 12.000 -0.21201
1.0x10783  aex107' 2.0000
4.7x10°% 2.5x107M% 1.0720

i 4.2x10

-3.1781

14

(b) 6x6 Matrix (Close Eigenvalues)*

1. Original Matrix

-4

[ 6.0000 10 4.0000 5.0000 6
-1.0000 6.0000 5.0000 6.0000 7
6.0000 7.0000 8

6.0001 9

6

2. Swap 1st and 2nd blocks, 2x1 case

" 6.0000  0.99984 -4.9995 -5.9992
6.0000 4.0006  5.0010
~2.4996x10"°  6.0000  7.0000
6.0001

i

.0000
.0000
.0000
.0000
.0001
.0000

A © 0O O

7.0000 |
8.0000
9.0000
10.000
-4

6.0001 _

10

.9990
.001
.0000
.0000
.0001
.0000

0.39991
0.40812
2.7985
2.0000

1.3x10"14

~7.9989
7.0013
9.0000

10.000

107

6.0001

6.3656
5.3584
-5.1223
-1.6498
-0.35352
8.0000 |

*Computations performed on 14 digit machine, results rounded to 5 figures

for display.
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3. Swap 3rd and 4th blocks, 1x2 case

T6.0000  0.99984 -4.9995 - 7.9996 5.9992 6.9983 |
6.0000 4.0006  7.0019 -5.0010 -6.0004
-2.4996x10™°  6.0000  9.0008 -7.0000 ~7.9991
6.000]1 9.9992x107%  0.99992
-10.001 6.0001 8.9991
i 3.9x10718  _4.3x107"?  6.0001
4, Swap 2nd and 3rd blocks, 2x2 case
"6.0000 -4.9997 -0.99972 -5.9991 ~7.9995 6.9983 ]
6.0001 2.4995x10™°  7.0000 9.0008 -7.9992
-4.0008 6.0001 -5.0011 -7.0020 6.0006
2.1x10°8  _6.6x107% 6.0000 10.001 -8.9989
8.9x1072%  _3.8x10%  _9.9994x10"® 6.0000 1.0000
i 3.9x10718  _4.3x107"7  6.0001 |
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Program Listing

SUHFnUfINf SWAPR(NMyNeT9pPyJlyL1,L2)
DIMENG ISR T (MY N, O (1M, N)
BEAL X(2., 9L...c1.(2,.41;c2_1241) Y(248) .

EXCHANGE ADJACENT DIAGONAL BLCCKS T

COUIVALENCE (X1, l)'Y(lgl)),(Cl(l,l)'Y(l'3)) (CZ2 (1 a1V ,¥ (1,5

(2] 2XRXR]

TRIANGULAR FORM NF T, nLCCK

L "Y L1, T2 IS L2 Y L2,
J3=TJ+L)

J2=J43 -1

5))

g 1 AND T2 S9EGINNING IN 20w Jl 8Y
ORTHOGONAL SIMNARITY TOAMZFORMATICNG, @ anapld IN P, NEISFRVING THE
T1 Is L1

Ja=J2+L 2 : - o . e e s e o

Z = 10

C
Coksnn oniddkok kCLEAR THE (2,1) BLOCK.

DC 5 J=1,11 -

DO & 1=1,L2 - oo o T )
g T(J2+71,J14J-1)=00 i
c
Crkkk kRt RERIOERSOIVE FOR X IN TI*X=X2T2=7%T12, WHENRT T12 IS L1 BY L2 :
CALL TXMXT (NMoN, T, J1,J3,0L14L 29 T474X) ¥
IF (7+5Qo Ne) PNFTURN :
c
 CRREVCRRRAARKEARCOMPUTE €1 WHERE _CITHCL = (ZSQXT + XEXT)xx=y)
: CHr H AR N RRE R RAND C2 wHIET C2TRCZ = (7.-0%1 + XTrEX)k%k=1,
; CALL ¢TchW(7gX(1'1)‘X(Zyl)c’((1,2’.7(?0?)'7‘,l’J?)oT( J24J1),C1,L1) :
, CALL CTOmAWIZ 9% (1 31 ) X {1 32 ) 4X(241),X(2,2):7T0J8,03),T(J3,J8),C24L.2)
: [ . I -
i CRRR AR AP AR R REPERFORM TP ANS FOSMAT TON ON COLUMNS AND ROWS OOF T, ;
i Cexafved ok kxR AR UPDA TE  Pa
; CALL NEWVEC (Zyl.19L29YesTyNMyNeJ1,41) :
: CALL NEWVEC (Ly__!.__g_L?_g___g‘L_'\”y JAa g JY g NMY e e
' c CALL NFWVFC (ZoL 1oL 297 45 JNW,Ny JT,NM)
% C st ok kR XA EPOF GEPVE £ NUALTTY CF DI AGCNAL FLEMENTS IN RLOCKS. .
i IF (L2 oFQqe 2) T(J1 J_2=’fJlflLJJ+l’=LZLJ14J11tILAJ!laJlfl)’laa, d
| - TF (L1 oEQe 2) T(JA=1,48=-1)=T(Js,J04)=(T(J4~ 2 Ja=1)+T (J8,J4))72. :
i RETURN :
: END
_ — O . e o e o o e wr wh 4 veom ¢ # e - 4
SURROUTIMNE CTOFAW(Z ¢X114X21 ¢X12,X22 ,AFTA, GAM,C,yL)
DIMFNSICN C(2,2)
c e ]
C FIND AN ADOROPRIATE §5LUTION C TO CTHC = W = (ZSO®I + X&EXT)#&k-] Vi
72SC=2%2 4
IF (L «GTa 1) GO TC 10 i

Cl1,1)=10/SQRT(ZSO+X 112X+ X21 % X214+ X1 2%X12)

10

R TURN

EMll= 2SS0 4+ X21%%2 4+ ¥X227%2

ENM12==(X11%X21+X12%X22)
D=EMLII%(ZSO+ X] 1 ¥%24X]12%%2 ) -FM]I2**2 e e e e e e e

RTD=5QRT{D)
EGA = SQRT (EM]12%%2 - SJETAXEM] 1%*%2/GAM)

ZETA = (PTD ~ EGA)&(RTD + FGA) /(24 V%ETD)
PHI=SART (ZET AKX +EM | 2% %2 ) e e — -
FAC=SM11/(2e0¥%N)
C(l,1)=SQ=?TfFQC*(!o +ARS(ZTT8) /PHI)
C(241)=SIGN(160y2FTAYXEMI22XFAC/(PHIXC (1,1))
C1a2)=CCC1 1 ¥ MI2=C 2ol )ETDY/EMI L
- C(2,2)=(C(?, 1$*¢M12*C(1.1)*FTO)/EMIX
i RE TURN

————ien Ct e mamammame i s e e —————— e = et —— s s ¢ s seemem e e e




SUBRDYITINE TXMXT (MM Ny T,y J1y J2y
DINOINSIONMN T(NM, N),F’(P\M.N)'
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‘alaZelt

SOLVE FOR L1 BY L2 MATRIX X IN Tix
T1 AND T2 S8EGIN IN ECUWS I 1
BUT ON EXTT Z 1S CHANGFD TO ENSURE NOR

L
(242
X

AND J2, Z

Tx%T2
s GI
M( X)

X0 41) =X(2,1)=X(1,2)=2X(2s2)2C0o .

TF(7e"NelCe) FETUPN
PEL=T(J16J1)=-T(J2,37)

=PEL141.2=2

IE (D71 aNE s o

oLl o K

L

Ta. 1)

C

Cxuemsk ko tk ik TY AND T2 HAVE THE

SL. T

1sL29RyZyX)
)

‘= 7%¥Re
VEN CN ENTRY
olFaln

c =

SAME FIGENVALUES,, RETURN

SCLUTICN Xe

a X(141)=X(2+2)=10
Z2=Ca
FETUPN
c
Comrmexkukhikihkx)T TERMINE DI MENSICNS 0OF
s GO _TO (10,20, 3C,40),K
C .
CosokaeopkndikaikxkT] 1S 1 AY 1y, T2 IS 1 BY 1o
10 XMAX=ABS (R{J1,92))

D=ABSIDEL )

50 T2 76

Chedededeiodeo deegevededeskT 1 1S

1 Y 1, T2 1S 2 8Y 2o

Z=D e

X{1,1)= Q(JI.JZ)*(7/AMAX1(X“AV,)))*'lGM(looDrl)

20

DO=DELX#¥2=T(J2 4J241)%T(J2+1,J2)

X(1,1)3(P(J14J2I%DEL4R(J1,J2+1)%T(J2+1,J2))
X(142)=(R{J1 yJ2)%T(JI2yJ2+1)+R(J
XMAX=AMAXI(ARSCX(1,1)) 4AHSCX

1,J24+1 Y *DEL )
(e2dd) o

C
Ok ¥ o e ok Ak Y Rk T

2N

G TN S¢e

D=0y %2 T ()

X{1,1)=(DELXN
X(2y1)=(=-T ()
XMAX=AMAX] ( Af]
GG T S0

m-—“""‘bﬁ

C

C sz de e b e dek ek T

ar

HET1=T (J1
GAMI=T( .11

1 1
rJ14
£1 41
"BET2=T(J2,J2+
+14J4

M1

GAMZ =T ( J2
P1=AET1I%GA
P2=RET2UGAMD

DeQ=NT =2

E=CTLE(DSA=-(P14P2))

Fa=(p M

H=20 0 *DEL ¥*UFT2
G-?oO*PuL*GAMQ

F1=(P1 +AMAX]1 (DSQ,=-P2))+AMINLI(DSQy=P2)
S{P2+AMAXI(D SO 4=FC

“01))I+AMINI (DSQ,=P1)

D EF -Gk

IF (D oboo Cc) GZ TN &

R11=R(J1 ,J2)

212=RP(J1,J2+1)

R21=R{(J1+1,J2)

R22=Q(J1+1,J2+1)

X({ly1)=2RI1UE 4R 12RGAMRXF =R 21*RET1%F 2=-R22%BF T1%G
X(L42)=RlI*RFT?*F1+PI?*f~P?l*FET!*H—R?“*PFYI*F? B
XU Te 1)V =T VIVGAMINT P ERGAMI NG+ RZ21“F +022Y T RPN
X(2y2)==011%GAM Y H~ RIZ*’AMI*FZ+p9lfﬂV’2*F!+°?R*r
XMAX=AMAX]YI (ARS (X (1 4,1)) JAES(X (1,2

C
CREKF RERRRCRERLENSURE NORM(X) € 1o

80

E=Z/AMA X { XMA X 4D

VYA (X (Pl )),yA

=145L1
£0 X(T,J)=X(T,J)%F
! IF (XMAXoGToD) 7=7%D/XMAX
RE TURN

B (x({2,2)))
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SUBRPOUTTINE NEWVEC (FaNLyN2e 7Y NM N ML, INC)

DIMENSION Y(1),7(2,6) 40 (4)

wlITH Ml
(M1=11(NM4+Y),

N THE N1+N2 ROWS STAPTING
Ny (M1=-1,M1) M= 14(M1=1) %N
WHE N I NC=NM,

PERFORM BLOCK & XCHANGE TRANSFOEMAT N FIRST M ROWS DF Y .

J=NM,

LR =M1,

nnrwﬁnrmWﬁnruWn

e 1B =SNM=T 4]

ION
TN THE N1 +N2 COLUMNS STARTING WITH COLUMN Ml,
NY = (1,M1=-1) 14(M1=2)%NM (M] =] ) &NN+L =KW,
1= INC

LR=1, J=1.

IF (1 oLTa J)Y LD=M1
NY= (ML =1 )M+ P=1
L=N1+2%N2=2

GQR_TO (IOQZC'QJQQQO)QL

c .
Coedesese e ke xNi=1,

19 DC 15 K=LB,yN
wil) Y(NY+2*I)*F-Z(1 1 )IEY (NY#1)

NEZ=1le

WOZ)=Y(NY+TI#F +Z({ 1,1 )%Y(NY+2"])
YINY+I)Y=Z(1,5)xW(1)
Y(NY+2%T1)=Z(1,3)%w(2)

15 AY=NY +.4

C
i C**.*###*******‘#N! =2

RF TURN
Naalé

RDECTARN HLOCK EXCHANGE TP ANSFOEMATIONM PN _CIOLUMNS ML_TO N OF Y

COMPUTE Co%(FxY = XT*U) = NCWU oClLX(F*U _+ X%y ) = NEWV —
"TMHERE C1 IS N1 BY N1,C2 IS N2 8Y N2,AND (U,V) =(Y(M]1),Y Y{MI+1)y000)o

THE MATC‘IC"S X 4C1,C2 ARF STOPEN IN Ze F IS SCALING FACTGR FOR Xe

WwHEN  INC

"‘Q.I

20 DO 23 K=L8 N ‘ ,
w(l)= Y(NY+3*I)*F-7(lol)*V(NY+!) =702, 1) *Y(NY+2%T)
W(P2)SY(NY+T)IRF+Z(1 41 )Y (RNY +$3%] )
| W(3)=Y(NY4PXRT)XF 4$Z(2,1) % Y(NY+3%])
Y(NY+I1)=Z(1 S)¥w(1) ;
YINY42%XT)=2( 1, 3)%W(2)+2Z(1 ,4)%w(3) }
i YINY43%T)=Z(2, 3)%W(2)42(2,8)%W(3) :
i 25 NYZNY+ J :
| RETURN IR —_— y
r.. 1]
Cretr R p kNNl =l, N2=74
30 DC 35 K=LR,N
u(])_x(uY+2*1) FeZ(1 1 )%Y(NY+]) ROV P
WC2ISY(NY+3BTIRF=Z (1 y2)®Y(NY+1)
W3)SYINY+TIIRF4Z(1, 1 IRV (NY 425101 47(1, 2)%Y(NY+3%T)
! YINY+I)2Z01,S)I%WC1)+2Z(1,°)%W(2)
; YINY $221)=Z(2,S) %W (1)+Z( 2., €)*w(2) e e e e e
= YONY+2HT)=2(1 43)%w(3)
| 35 MYSNY 4
; RETURN
H C -
CRIRRAFRTRARKERN =2, N2=20 e
_AC  DC_4E _K=LB,N . e
WL SV (NY#3ET)RF =71 g1 )Y (NY#T ) =2(2,1)%Y (NY+2%T)
W(2)SY(NY 44X T IR =Z (1, 2)*Y(NY+])=Z(2,2)%Y(NY+2%T)
R{3)SY(NY+TIDIEF+Z(1,1)RY (NY +43%] Y4Z(1 ,2 )Y (NY #4%T1)
W(S)=YINY+2HT)RE 4202431 ) *Y(NY#3I#T)+2C2,2)Y(NY®OXT) . .
YINY+1)=2(1,5)%W (1 )4Z(14F)*W(2)
YINY+2ET ) =Z(2,5)%W(1)+7(2,6)%W(2)
YONY#3:T)=Z (1, 3)%W(3)¢Z( 1, 8)*w(a)
Y(NY+4%T V=702 3)AW(3)¢7(2,8) W (&) .- e e e
35 NY=NY+J
RETUPRPN

ZMND
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Alternative, but less efficient, version of NEWVEC which better illustrates

the co]umn and row operations.

'———-..——

L

C WHERE Ci

SUBROUTINE NFWCCL(F yNL N2 47 3 Y JAV N VT )
D IMENS ION Y(NM,N),Z(?,&)'b(d)

—C PERFORM BLOCK EXCHANGE TRANSFCRMATICN ON CCLUNNS ML TC N CF.Y .
' C IN THE N14N2 ROWS STARTING WITH M1,
C COMPUTE C2%(F%xV - XT%L) = NEWU 9(1*(F*U + X¥V) = NEwWV

M=M1~-1
DU 50 K=M1,N
DN 10 J=1,N2

W(Jt) = Y{M&EN] ¢4 ,K)%*F e e e e e e

) hy

10

DO 10 L=1,N1L
WIJI=W(II-Z(L yJ)XY(MEL 4K)
00 20 J=14N1
_WIN2+JD) = Y(M¥J,KYIXF =

20

DD 20 L=1,N2
WIN2+J)SWIN2H+ID+Z2(JyL )XY (NEN]L 4L 4K)
NO 35S J=1,N2

S=0a .- - U OO

30
35

DO 30 L=1,4N2
S=S+Z(JyL ¢4 )%w(L)
Y{N+J,yK) =S

DO 48 J= daNY e

40

_Y(MEN
50 CONTINUE

S=0.
DN 40 L=1,N1 '
S=S+Z(JyL+2)XW(N2+L )

RETURN
END

—~——

SUBROUT INE NEWROW(F NT1oN29ZsYyNM,NyML,1)

DIMENSICN Y(AMIN) »Z(296)9W(4)

S ; e et o e

IS N1 BY N1,C2 IS N2 BY N2,AND (LyVv)=C(Y(M]L) yY(MLI+1)yoee)e

| .C_THE MATRICES X4Cl,C2 ARF STOREG IN Z. F 1S SCALING FACTOR FOR X

C
——C PEEFORM _BLUOCK EXCHANCE TRANSFORMAT ION. .ON.FIRST. . I ROWS DF Y
C IN THE N1+N2 COLUMNS STARTING wWITH CCGLUMN M1,

C COMPUTE C2%(F*V — XT2U) = NEWU ,CLI¥(F%xU + X*V)

= NEwV

C WHERE C1 IS NI RAY N1,C2 IS N2 BY N2,AND (UyVIS(Y(M1)yY(ML41)yeeo)e

—-C THE MATRICES X,Cl,C2 ARE. STORED IN.Z.

A 10

. 20

30
35

M=M1~1
DO S0 K=1,1
DO 10 J=1,yN?
—= YUK MEDNLFIIEE o o L
DO 10 L=1yN1
WO =W(I)-ZILy J)IFY (K, M4L)
DO 20 J=1,4N1

—— e WAIN24J) = YAK MAIIRFE

DO 20 L=1,N2
WIN2#I)=WINPHIDI4Z( Iy L) HY(KyMENLHL)
D0 35 J=1,N2

e S B e e e e e e O

D0 30 L=1,N2
S=S+Z(JyL+4)%xn(L)
Y{KyM+J)=S

D045 _Jd=1 ,N1.. .. e o e

40
—— 8
50

S=0.
DO 40 L=1,N1
S=S+Z(JyL+2)*n(N2+L)

CCNTINUE
RETURN
END

1=S e e o e

F IS SCALING.FACTOR FOR X
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