Copyright © 1977, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

A PROGRAM TO SWAP DIAGONAL BLOCKS

by
B. N. Parlett

Memorandum No. UCB/ERL M77/66
3 November 1977

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley
94720

A Program to swap diagonal blocks*
by
B.N. Parlett

Department of Mathematics and
Computer Science Division Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory University of California at Berkeley

Berkeley, CA 94720

[^0]
A PROGRAM TO SHAP DIAGONAL BLOCKS

Contents

1. Introduction
2. Ruhe's Trick
3. The General Case
4. The Algorithm for SWAP
5. Solving $A_{1} X-X A_{2}=\xi B$
6. Solving $C^{\top} C=W$
7. Performing the Similarity Transformation
8. Gaussian Elimination for Solving $A_{1} X-X A_{2}=B$
9. Swapping Large Blocks
10. Test Results
11. Program Listing References

Acknowledgment

The author is grateful to Mr. Allan McCurdy for testing the programs and helping to improve them.

1. Introduction

A triangular matrix reveals its eigenvalues on the main diagonal. By Schur's lemma any square matrix is unitarily similar to an upper triangular matrix with the eigenvalues arranged in any desired order along the diagonal. In practice the $Q R$ algorithm in real arithmetic produces a block triangular matrix in which the eigenvalues are likely to be in monotone decreasing order by absolute value down the diagonal. However this monotonicity cannot be guaranteed and for some purposes the ordering by absolute value is not what is wanted.

The problem which we address here is to find some simple orthogonal similarity transformations which have the effect of exchanging two diagonal elements (or blocks) while preserving block triangular form. Actually we will show only how to swap adjacent blocks and so the exchange of distant blocks must be accomplished by a succession of adjacent swaps.

Although the cost of such a swap is small it is not negligible; in an $n \times n$ matrix $(p+q)^{2} n$ multiplications are needed to swap adjacent diagonal blocks of orders p and q.

2. Ruhe's Trick

For any real θ and $s=\sin \theta, c=\cos \theta$ the symmetric matrix $\left(\begin{array}{cc}-s & c \\ c & s\end{array}\right)^{\text {For }}$ is an orthogonal matrix representing a reflection of the plane.
Observe that

$$
\left(\begin{array}{cc}
-s & c \\
c & s
\end{array}\right)\left(\begin{array}{cc}
\alpha_{1} & \beta \\
0 & \alpha_{2}
\end{array}\right)\left(\begin{array}{cc}
-s & c \\
c & s
\end{array}\right)=\left(\begin{array}{lll}
\alpha_{1} s^{2}-\beta s c+\alpha_{2} c^{2} & , & -\alpha_{1} s c-\beta s^{2}+\alpha_{2} s c \\
-\alpha_{1} s c+\beta c^{2}+\alpha_{2} s c & , & \alpha_{1} c^{2}+\beta s c+\alpha_{2} s^{2}
\end{array}\right)
$$

The new matrix is upper triangular if and only if

$$
c\left[\beta c-\left(\alpha_{1}-\alpha_{2}\right) s\right]=0
$$

The choice $c=0$ represents no change, the choice

$$
\tan \theta=s / c=\beta /\left(\alpha_{1}-\alpha_{2}\right)
$$

results in an exchange of α_{1} and α_{2}. The new (1,2) element is

$$
-s\left[\beta s+\left(\alpha_{1}-\alpha_{2}\right) c\right]=-s\left[\beta s+\beta c^{2} / s\right]=-\beta .
$$

Now suppose that α_{1} is the (j, j) element of an $n \times n$ upper triangular matrix. The plane reflection indicated above, effected in the ($j, j+1$) coordinate plane, will swap α_{1} and α_{2}. Postmultiplication affects columns j and $j+1$ while premultiplication affects rows j and $j+1$. This requires $4(n-2)$ multiplications. To keep the angle θ in $(-\pi / 2, \pi / 2)$ we define

$$
\begin{aligned}
& d=\sqrt{\left(\alpha_{1}-\alpha_{2}\right)^{2}+\beta^{2}} \\
& c=\left|\alpha_{1}-\alpha_{2}\right| / d \\
& s=\beta \operatorname{sign}\left(\alpha_{1}-\alpha_{2}\right) / d
\end{aligned}
$$

Note that when $\beta=0$ the transformation merely exchanges the two rows and the corresponding pair of columns.

3. The General Case

Consider the reduced matrix

$$
\left(\begin{array}{cc}
A_{1} & B \\
0 & A_{2}
\end{array}\right), \begin{array}{lll}
A_{1} & \text { is } & p \times p \\
A_{2} & \text { is } & q \times q
\end{array}
$$

We seek an orthogonal similarity transformation which swaps A_{1} and A_{2}. In general this is not possible; fortunately we can achieve a form which is as useful as exchanging A_{1} and A_{2}. We denote by Z^{\top} the transpose
of any matrix 2 . A partitioned matrix

$$
\left(\begin{array}{rr}
-S_{1}^{\top} & C_{2} \\
C_{1} & S_{2}
\end{array}\right), \begin{aligned}
& C_{1} \text { is } p \times p \\
& C_{2} \text { is } q \times q
\end{aligned}
$$

is orthogonal if, and only if, the following relations hold:

$$
\begin{align*}
C_{1} C_{1}^{\top}+S_{2} S_{2}^{\top} & =I_{p}=S_{1} S_{1}^{\top}+C_{1}^{T} C_{1}, \tag{1}\\
S_{1}^{\top} S_{1}+C_{2} C_{2}^{\top} & =I_{q}=C_{2}^{T} C_{2}+S_{2}^{T} S_{2}, \tag{2}\\
-C_{1} S_{1}+S_{2} C_{2}^{T} & =0_{p, q} \tag{3}\\
-S_{1} C_{2}+C_{1}^{T} S_{2} & =0_{q, p}
\end{align*}
$$

Note that if $C_{1}^{\top}=C_{1}, \quad C_{2}^{\top}=C_{2}$ then we can take $S_{1}=S_{2}$, however this is not always advantageous.

We seek an orthogonal matrix of the form shown above such that

$$
\left(\begin{array}{cc}
-S_{1}^{\top} & C_{2} \\
C_{1} & S_{2}
\end{array}\right)\left(\begin{array}{cc}
A_{1} & B \\
0 & A_{2}
\end{array}\right)=\left(\begin{array}{cc}
\tilde{A}_{2} & \tilde{B} \\
0 & \tilde{A}_{1}
\end{array}\right)\left(\begin{array}{cc}
-S_{1}^{\top} & C_{2} \\
C_{1} & S_{2}
\end{array}\right)
$$

On equating the $(2,1)$ and $(2,2)$ blocks on each side of the equation we find

$$
\begin{equation*}
C_{1} A_{1}=\tilde{A}_{1} C_{1} \quad \text { (also } \quad A_{2} C_{2}^{T}=C_{2}^{T} \tilde{A}_{2} \text {), } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
C_{1} B+S_{2} A_{2}=\tilde{A}_{1} S_{2} \tag{6}
\end{equation*}
$$

When C_{1} is invertible (more on this below) then (6) can be rewritten as

$$
\begin{aligned}
B+C_{1}^{-1} S_{2} A_{2} & =C_{1}^{-1} \tilde{A}_{1} S_{2} \\
& =A_{1} C_{1}^{-1} S_{2}, \text { by }(5)
\end{aligned}
$$

We now let the $p \times q$ matrix $c_{1}^{-1} S_{2}=X / \xi$, where ξ is a positive constant at our disposal, and substitute into the equation above to get

$$
\begin{equation*}
A_{1} X-X A_{2}=\xi B . \tag{7}
\end{equation*}
$$

In order to obtain C_{1} from X we pre- and post-multiply the first orthogonality relation (1) appropriately and invert to find

$$
I_{p}+X x^{\top} / \xi^{2}=c_{1}^{-1} c_{1}^{-T}
$$

or

$$
\begin{equation*}
\left(C_{1} / \xi\right)^{\top}\left(C_{1} / \xi\right)=\left(I_{p} \xi^{2}+x x^{\top}\right)^{-1} \equiv W_{1} . \tag{8}
\end{equation*}
$$

Using (3) we find that X / ξ also equals $S_{1} C_{2}^{-\top}$ and by using (2) we obtain

$$
\begin{equation*}
\left(C_{2} / \xi\right)^{\top}\left(C_{2} / \xi\right)=\left(I_{q} \xi^{2}+x^{\top} x\right)^{-1} \equiv W_{2} . \tag{9}
\end{equation*}
$$

It is well known that an X satisfying (7) exists and is unique if and only if A_{1} and A_{2} have no eigenvalues in common. In practice only such cases interest us but we want the algorithm to be robust in the face of some perverse or extreme requests. Clearly if $A_{1}=A_{2}$ we want the algorithm to do nothing rather than to fail. In such a case $C_{1}=C_{2}=0$ which is far from invertible. By taking $\xi=0$ and setting $C_{1} / \xi=C_{2} / \xi=$ $=X=I$ the algorithm will work. When the eigenvalues of A_{1} and A_{2} are close, in some sense, then ξ will be chosen so that $\max \{\xi,\|X\|\}=1$ approximately.

There are infinitely many C's satisfying (8) and (9) and any of them will do. In the absence of other constraints the symmetric solutions are the natural ones; if $c_{1}^{\top}=c_{1}, c_{2}^{\top}=c_{2}$ then $S_{1}=S_{2}$, but this fact is not obvious. In this algorithm, however, we prefer to choose c_{1} and C_{2} so that \tilde{A}_{1} and \tilde{A}_{2} have a convenient form for most applications.

It is not necessary to compute S_{1} and S_{2} explicitly. Write $\mathcal{C}_{1}=C_{1} / \xi$, the scaled version of C_{1}. Then

$$
P=\left(\begin{array}{cc}
-S_{1}^{\top} & C_{2} \tag{10}\\
C_{1} & S_{2}
\end{array}\right)=\left(\begin{array}{cc}
\dot{C}_{2} & 0 \\
0 & \AA_{1}
\end{array}\right)\left(\begin{array}{cc}
-x^{\top} & \xi I \\
\xi I & x
\end{array}\right)
$$

and P is best applied in this factored form. In practice the orthogonality of P is completely determined by the accuracy with which the C's satisfy (8) and (9).

It is not necessary to compute $\tilde{A}_{1}, \tilde{A}_{2}$, or \tilde{B} explicitly since they will emerge when the similarity transformation

$$
P\left(\begin{array}{cc}
A_{1} & B \tag{11}\\
0 & A_{2}
\end{array}\right) p^{\top}
$$

is effected. For completeness we give the formulas

$$
\begin{align*}
& S_{1}=X C_{2}^{T}, \quad S_{2}=C_{1} x \\
& \tilde{A}_{1}=C_{1}^{Q} A_{1} C_{1}^{-1}, \quad \tilde{A}_{2}^{T}=C_{2} A_{2}^{T} C_{2}^{-1} \tag{12}\\
& \tilde{B}=\tilde{A}_{2} C_{2}^{-T} S_{2}^{T}-S_{1}^{T} C_{1}^{-1} \tilde{A}_{1}=C_{2}^{-T} A_{2} S_{2}^{T}-S_{1}^{T} A_{1} C_{1}^{-1}
\end{align*}
$$

4. The Algorithm for SWAP $\quad A=\left[\begin{array}{ll}A_{1} & B \\ 0 & A_{2}\end{array}\right]$
5. Clear the $(2,1)$ block of A.
6. Solve $A_{1} X-X A_{2}=\xi B$ for X and ξ using subroutine TXMXT. ξ is chosen so that $\|X\| \div 1$
7. If $\xi=0$ then exit.
8. Solve ${ }_{\mathrm{C}}^{1} \mathrm{C}_{1}^{\top} \mathrm{C}_{1}=\left(\xi^{2}+X X^{\top}\right)^{-1} \equiv W_{1}$ for ${ }_{\mathrm{C}}^{1}{ }_{1}$ using CTCEOTH.
9. Solve $\stackrel{\circ}{C}_{2}^{\top}{ }^{\circ}{ }_{2}=\left(\xi^{2}+X^{\top} x\right)^{-1} \equiv W_{2}$ for $\stackrel{\circ}{C}_{2}$ using CTCEQIN.
10. Premultiply A by P using NEWCOL.
11. Postmultiply $P A$ by P^{\top} using NENROW.
12. Update the matrix of orthogonal transformations using NEWROW.
13. Force the diagonal elements in the new blocks \hat{A}_{1} and \hat{A}_{2} to be equal.

Name	Executable Statements	Count for 2×2 Case
SWAP	17	$32 n$ multiplications
TXMXT	52	42 multiplications
CTCEQW	17	32 multiplications 4 square roots NEWCOL
NEWROW	22	16 multiplications per column 16 multiplications per row

When $A_{i}=\left(\begin{array}{ll}\alpha_{i} & B_{i} \\ \gamma_{i} & \alpha_{i}\end{array}\right), \quad \begin{aligned} & \text { Solving } A_{1} X-X A_{2}=B \\ & i=1,2, \\ & \text { the linear equations which determine } \quad X\end{aligned}$ can be solved stably in closed form. Let $\delta=\alpha_{1}-\alpha_{2}$, then the equations may be written as
(1) $\left(\begin{array}{cc}c & \beta_{1} I_{2} \\ \gamma_{1} I_{2} & c\end{array}\right) \underset{\sim}{x}=\underset{\sim}{b} ; \quad \underset{\sim}{x}=\left(\begin{array}{l}x_{11} \\ x_{12} \\ x_{21} \\ x_{22}\end{array}\right), \quad \underset{\sim}{b}=\left(\begin{array}{l}b_{11} \\ b_{12} \\ b_{21} \\ b_{22}\end{array}\right)$
where
(2) $\quad C=\left(\begin{array}{cc}\delta & -\gamma_{2} \\ -\beta_{2} & \delta\end{array}\right), \quad C^{2}=\left(\begin{array}{cc}\delta^{2}+\beta_{2} \gamma_{2} & -2 \delta \gamma_{2} \\ -2 \delta \beta_{2} & \delta^{2}+\beta_{2} \gamma_{2}\end{array}\right)$.

Multiply (1) as indicated in order to make the coefficient matrix block diagonal,
(3)

$$
\left(\begin{array}{cc}
c^{2}-\beta_{1} \gamma_{1} & 0 \\
0 & c^{2}-\beta_{1} \gamma_{1}
\end{array}\right)_{\sim}^{x}=\left(\begin{array}{cc}
c & -\beta_{1} \\
-\gamma_{1} & c
\end{array}\right)_{\sim}^{b} .
$$

Now let

$$
G=\left(C^{2}-\beta_{1} \gamma_{1}\right)^{-1}=\left(\begin{array}{cc}
\tau & 2 \delta \gamma_{2} \\
2 \delta \beta_{2} & \tau
\end{array}\right) / d
$$

where

$$
\begin{equation*}
\tau=\delta^{2}+\beta_{2} \gamma_{2}-\beta_{1} \gamma_{1}, \quad d=\tau^{2}-\left(2 \delta \beta_{2}\right)\left(2 \delta \gamma_{2}\right), \tag{4}
\end{equation*}
$$

and premultiply (3) $\operatorname{diag}(G, G)$ to find

$$
\begin{align*}
x & =\left(\begin{array}{ll}
G & 0 \\
0 & G
\end{array}\right)\left(\begin{array}{cc}
C & -\beta_{1} \\
-\gamma_{1} & C
\end{array}\right) \underset{\sim}{b} \\
& =\left(\begin{array}{c:c}
G & 0 \\
\hdashline 0 & G
\end{array}\right)\left(\begin{array}{cc}
\delta b_{11}-\gamma_{2} b_{12}-\beta_{1} b_{21} \\
-\beta_{2} b_{11}+\delta b_{12} & -\beta_{1} b_{22} \\
-\gamma_{1} b_{11} & +\delta b_{21}-\gamma_{2} b_{22} \\
0 & -\gamma_{1} b_{12}-\beta_{2} b_{21}+\delta b_{22}
\end{array}\right), \tag{5}
\end{align*}
$$

$$
=\left[\begin{array}{rrrr}
\phi \delta b_{11}+\left(2 \delta^{2}-\tau\right) \gamma_{2} b_{12}- & \tau \beta_{1} b_{21}- & 2 \delta \gamma_{2} \beta_{1} b_{22} \\
\left(2 \delta^{2}-\tau\right) \beta_{2} b_{11}+ & \phi \delta b_{12}- & 2 \delta \beta_{1} \beta_{2} b_{21}- & \tau \beta_{1} b_{22} \\
-\tau \gamma_{1} b_{11}- & 2 \delta \gamma_{1} \gamma_{2} b_{12}+ & \phi \delta b_{21}+\left(2 \delta^{2}-\tau\right) \gamma_{2} b_{22} \\
-2 \delta \gamma_{1} \beta_{2} b_{11}- & \tau \gamma_{1} b_{12}+\left(2 \delta^{2}-\tau\right) \beta_{2} b_{21}+ & \phi \delta b_{22}
\end{array}\right] / \mathrm{d},
$$

$$
\equiv \underset{\sim}{y} / \mathrm{d}
$$

defining $\underset{\sim}{y}$, where

$$
\begin{aligned}
& \phi=\tau-2 \gamma_{2} \beta_{2}=\delta^{2}-\left(\beta_{1} \gamma_{1}+\beta_{2} \gamma_{2}\right)>0, \\
& \psi=2 \delta^{2}-\tau=\delta^{2}+\left(\beta_{1} \gamma_{1}-\beta_{2} \gamma_{2}\right) .
\end{aligned}
$$

Inevitably (5) is Cramer's rule and $d=\operatorname{det}\left(A_{1} \otimes I-I \otimes A_{2}\right)$ so that $d=0$ if and only if $\alpha_{1}=\alpha_{2}, \quad \beta_{1} \gamma_{1}=\beta_{2} \gamma_{2}$.

Among all the coefficients in the linear combinations of the elements of B which are given above only τ and ψ involve genuine subtractions and possible loss of information through cancellation. However by rewriting them in a more complicated form all unnecessary loss can be avoided. From (4) $\tau=\delta^{2}+\beta_{2} \gamma_{2}-\beta_{1} \gamma_{1}$ and if either of δ^{2} or $-\beta_{1} \gamma_{1}$ is tiny compared with the other two terms we want to add it in last. Similarly for ψ. Thus we use

$$
\begin{align*}
& \psi=\left(\beta_{1} \gamma_{1}+\max \left\{\delta^{2},-\beta_{2} \gamma_{2}\right\}\right)+\min \left\{\delta^{2},-\beta_{2} \gamma_{2}\right\}, \tag{6}\\
& \tau=\left(\beta_{2} \gamma_{2}+\max \left\{\delta^{2},-\beta_{1} \gamma_{1}\right\}\right)+\min \left\{\delta^{2},-\beta_{1} \gamma_{1}\right\} .
\end{align*}
$$

Here is an example for a machine with a relative precision of 8 decimals, i.e. the floating point result $\mathrm{ff}\left(10^{8}-9\right)$ is 10^{8} whereas $\mathrm{fl}\left(10^{8}-10\right)$ is $10^{8}-10=10\left(10^{7}-1\right)$. Let $\delta^{2}=9, \beta_{1} \gamma_{1}=-\left(10^{8}-10\right), \quad \beta_{2} \gamma_{2}=-10^{8}$ then from (4), computing from the left, $\tau=f l\left(f 1\left(9-10^{8}\right)+10^{8}-10\right)=-10$, from (6), computing from the left, $\tau=f l\left(f l\left(-10^{8}+\left(10^{8}-10\right)+9\right)=-1\right.$.

If we are given a matrix M with eigenvalues near $\pm 10^{3} \boldsymbol{i}$ and are evaluating $\exp (10 M)$ then values like the ones given above will occur.

Normalization

The important matrix in effecting the orthogonal transformations is

$$
\left(\begin{array}{cc}
\mathcal{C}_{2} & 0 \\
0 & \AA_{1}
\end{array}\right)\left(\begin{array}{cc}
-x^{\top} & \xi \\
\xi & x
\end{array}\right)
$$

and we want our formulas to be accurate right out to both extremes:

$$
\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

An appropriate way to achieve this is to choose ξ so that

$$
\max \{\xi,\|X\|\} \div 1 .
$$

Equation (6) above yields $\underset{\sim}{y}$ so that the corresponding 2×2 matrix Y satisfies

$$
A_{1} Y-Y A_{2}=d B
$$

where d is given in (4). To get $\underset{\sim}{x}$ and ξ let $\eta=\|\underset{\sim}{y}\|_{\infty}$ then
Case 1: $n \leq d$, take $\underset{\sim}{x}=\underset{\sim}{y} / d, \quad \xi=1$.
Case 2: $n>d$, take $\underset{\sim}{x}=\underset{\sim}{y} / n, \xi=d / n$.

The Algorithm for TXMXT

We solve $A_{1} X-X A_{2}=\xi B$ when A_{1} and A_{2} are 2×2 standardized matrices as follows:

$$
\begin{aligned}
\delta & =\alpha_{1}-\alpha_{2}, \quad \delta s q=\delta^{2}, \\
\pi_{1} & =\beta_{1} \gamma_{1}, \quad \pi_{2}=\beta_{2} \gamma_{2}, \\
e & =\phi \delta=\delta\left(\delta s q-\left(\pi_{1}+\pi_{2}\right)\right) \\
f_{1} & =\psi=\left(\pi_{1}+\max \left\{\delta s q,-\pi_{2}\right\}\right)+\min \left\{\delta s q,-\pi_{2}\right\}, \\
f_{2} & =\tau=\left(\pi_{2}+\max \left\{\delta s q,-\pi_{1}\right\}\right)+\min \left\{\delta s q,-\pi_{1}\right\}, \\
g & =2 \delta \gamma_{2}, \quad h=2 \delta \beta_{2}, \\
d & =f_{2}-g h .
\end{aligned}
$$

At this point $\underset{\sim}{y}$ can be evaluated from (5). Then

$$
\begin{aligned}
\eta & =\|\underset{\sim}{y}\|_{\infty}, \\
\underset{\sim}{x} & =\underset{\sim}{y} / \max (d, \eta), \\
\text { new } \underset{\xi}{\xi} & =\underset{\xi}{\xi} \cdot d / \max (d, n) .
\end{aligned}
$$

6. Solving $C^{\top} C=W$

In some applications the $A_{i}, i=1,2$, have the special form

$$
A_{i}=\alpha_{i} I_{2}+\left(\begin{array}{cc}
0 & \beta_{i} \\
\gamma_{i} & 0
\end{array}\right), \quad \beta_{i} \gamma_{i}<0,
$$

and we want \tilde{A}_{i} to have the same standardized form (equal diagonal elements). Because $\tilde{A}_{\boldsymbol{i}}$ is similar to A_{i} we must have

$$
\tilde{A}_{i}=\alpha_{i} I_{2}+\left(\begin{array}{cc}
0 & \tilde{\beta}_{i} \\
\tilde{\gamma}_{i} & 0
\end{array}\right), \quad \tilde{\beta}_{i} \tilde{\gamma}_{i}=\beta_{i} \gamma_{i} .
$$

This requirement fixes the matrices C_{1} and C_{2} of the previous section. A straightforward way to derive formulas for C_{1} and C_{2} is to obtain a particular solution to (8) via the Choleski decomposition and then to standardize the resulting diagonal blocks.

Let R_{1} and R_{2} be upper triangular and satisfy

$$
\begin{aligned}
& R_{1}^{\top} R_{1}=W_{1} \equiv\left(\xi^{2} I_{2}+X x^{\top}\right)^{-1} \\
& R_{2}^{\top} R_{2}=W_{2} \equiv\left(\xi^{2} I_{2}+x^{\top} x\right)^{-1},
\end{aligned}
$$

where X solves (7), $A_{1} X-X A_{2}=\xi B$. Next define

$$
\hat{A}_{1} \equiv R_{1} A_{1} R_{1}^{-1}, \quad \hat{A}_{2} \equiv R_{2}^{-T} A_{2} R_{2}^{\top} .
$$

Now let J_{1} and J_{2} be the unique plane rotation matrices which standardize \hat{A}_{1} and \hat{A}_{2}, i.e. both

$$
\tilde{A}_{1} \equiv J_{1} \hat{A}_{1} J_{1}^{\top} \quad \text { and } \quad \tilde{A}_{2} \equiv J_{2} \hat{A}_{2} J_{2}^{\top}
$$

have equal diagonal elements. The appropriate C_{1} and C_{2} are therefore $\AA_{1}=\mathrm{C}_{1} / \xi=\mathrm{J}_{1} \mathrm{R}_{1}, \quad \AA_{2}=\mathrm{C}_{2}^{\top} / \xi=\mathrm{J}_{2} \mathrm{R}_{2}$.

Let us drop the subscript and dot from C_{1} and A_{1}. The condition

$$
c^{\top} C=W \equiv\left(\xi^{2} I_{2}+x x^{\top}\right)^{-1}
$$

imposes three quadratic relations on the four elements of C. If $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \alpha\end{array}\right)$ then the requirement that CAC^{-1} have equal diagonal elements (both α) imposes another quadratic constraint, namely

$$
B c_{11} c_{21}=\gamma c_{12} c_{22},
$$

which suffices to determine C. However the direct solution of these nonlinear equations is far from obvious. Instead we shall derive the solution in a straightforward but lengthy manner via the Choleski factorization of W. The final algorithm is however very compact. Let

$$
d^{2}=\operatorname{det}\left(\xi^{2} I_{2}+x x^{\top}\right)=\xi^{4}+\xi^{2}\left(\Sigma \Sigma\left|x_{i j}\right|^{2}\right)+(\operatorname{det} x)^{2}
$$

Then define M by

$$
W=M / d^{2} \equiv \frac{1}{d^{2}}\left[\begin{array}{ll}
\xi^{2}+x_{21}^{2}+x_{22}^{2} & -\left(x_{11} x_{21}+x_{12} x_{22}\right) \\
-\left(x_{11} x_{21}+x_{12} x_{22}\right) & \xi^{2}+x_{11}^{2}+x_{12}^{2}
\end{array}\right]
$$

and note that

$$
R=\frac{1}{d}\left[\begin{array}{cc}
\sqrt{m_{11}} & m_{12} / \sqrt{m_{11}} \\
0 & d / \sqrt{m_{11}}
\end{array}\right]
$$

is the Choleski factor of W. Note that $\operatorname{det} M=d^{2}$. The next step is to form

$$
\begin{aligned}
\hat{A} & =\operatorname{RAR}^{-1} \\
& =\left[\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right]\left[\begin{array}{cc}
0 & \beta \\
\gamma & 0
\end{array}\right]\left[\begin{array}{cc}
r_{22} & -r_{12} \\
0 & r_{11}
\end{array}\right] r_{11}^{-1} r_{22}^{-1}+\alpha I_{2}, \\
& =\left[\begin{array}{cc}
\gamma r_{12} & \left(\beta r_{11}^{2}-\gamma r_{12}^{2}\right) / r_{22} \\
\gamma r_{22} & -\gamma r_{12}
\end{array}\right] r_{11}^{-1}+\alpha I_{2}, \\
& \equiv\left[\begin{array}{cc}
\delta & \hat{a}_{12} \\
\hat{a}_{21} & -\delta
\end{array}\right]+\alpha I_{2} .
\end{aligned}
$$

Now let J be the plane rotation which standardizes \hat{A}.

$$
\begin{aligned}
\tilde{A}=J \hat{A} J^{\top} & =\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]\left[\begin{array}{cc}
\delta & \hat{a}_{12} \\
\hat{a}_{21} & -\delta
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]+\alpha I_{2}, \\
& =\left[\begin{array}{ll}
\delta\left(c^{2}-s^{2}\right)-2 \hat{a} s c & 2 \delta s c+\hat{a}_{12} c^{2}-\hat{a}_{21} s^{2} \\
2 \delta s c-\hat{a}_{12} s^{2}+\hat{a}_{21} c^{2} & -\delta\left(c^{2}-s^{2}\right)+2 \hat{a} s c
\end{array}\right]+\alpha I_{2},
\end{aligned}
$$

where

$$
\hat{a}=\left(\hat{a}_{12}+\hat{a}_{21}\right) / 2 .
$$

The proper choice of $c=\cos \theta$ is therefore given by

$$
\tan 2 \theta=2 s c /\left(c^{2}-s^{2}\right)=\delta / \hat{a} .
$$

So

$$
\begin{aligned}
2 c^{2} & =1+\cos 2 \theta=1+\hat{a} / v, \\
v & =\sqrt{\delta^{2}+\hat{a}^{2}}, \\
c & =\sqrt{(1+|\hat{a}| / v) / 2}, \text { to keep }|\theta|<\pi / 2, \\
s & =\sin 2 \theta / 2 \cos \theta=\delta \operatorname{sign}(\hat{a}) / 2 c v .
\end{aligned}
$$

Finally

$$
c=\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]\left[\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right]=\left[\begin{array}{ll}
c r_{11} & { }^{c r_{12}}-s r_{22} \\
s r_{11} & s r_{12}+c r_{22}
\end{array}\right] .
$$

Our object now is to get rid of the intermediate quantities and express C in terms of d and M. So

$$
\begin{aligned}
\hat{a} & =\left(\beta r_{11}^{2}-\gamma\left[r_{12}^{2}-r_{22}^{2}\right]\right) / 2 r_{11} r_{22}, \\
& =\gamma\left[d^{2}-\left(m_{12}^{2}-\beta m_{11}^{2} / \gamma\right)\right] / 2 m_{11}{ }^{d}, \\
& \equiv \gamma \zeta / m_{11}, \text { defining } \zeta, \\
\delta & =\gamma r_{12} / r_{11}=\gamma m_{12} / m_{11}, \\
\nu & =|\gamma| \phi / m_{11} \text { where } \phi \equiv \sqrt{\xi^{2}+m_{12}^{2}} .
\end{aligned}
$$

Since $\beta \gamma<0$ the expression
is positive.

$$
\omega^{2} \equiv m_{12}^{2}-\beta m_{11}^{2} / \gamma
$$

At the cost of an extra square root the important quantity ζ can be written in a form which is attractive for finite precision computation

$$
\zeta \equiv\left[d^{2}-\left(m_{12}^{2}-\beta m_{11}^{2} / \gamma\right)\right] / 2 d=(d-\omega)(d+\omega) / 2 d .
$$

Having computed d, M, ξ, and ϕ we obtain the desired formulas:

$$
\begin{aligned}
\sigma & =m_{11} / 2 d^{2}, \\
c_{11} & =c r_{11}=\sqrt{\sigma(1+\mid \zeta ा / \phi)}, \\
c_{21} & =s r_{11}=r_{11}^{2} \delta \operatorname{sign}(\hat{a}) / 2 v\left(c r_{11}\right)=\operatorname{sign}(\xi) \sigma m_{12} / \phi c_{11}, \\
c_{12} & =c r_{12}-s r_{22}=\left(c_{11} m_{12}-c_{21} d\right) / m_{11}, \\
c_{22} & =s r_{12}+c r_{22}=\left(c_{21} m_{12}+c_{11} d\right) / m_{11} .
\end{aligned}
$$

For completeness we note that

$$
\left(\begin{array}{cc}
0 & \tilde{B} \\
\tilde{\gamma} & 0
\end{array}\right)=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
\gamma & 0
\end{array}\right)\left(\begin{array}{cc}
c_{22} & -c_{12} \\
-c_{21} & c_{11}
\end{array}\right) d
$$

so that

$$
\begin{aligned}
& \tilde{\beta}=\left(\beta c_{11}^{2}-\gamma c_{12}^{2}\right) d, \\
& \tilde{\gamma}=\beta \gamma / \tilde{\beta} .
\end{aligned}
$$

The matrix C is computed by the subprogram named CTCEQW (i.e. $C^{\top} C=W$).

Computation of C_{2}

The subprogram which computes C_{1} from d, X, β, γ can also be used to compute C_{2}. Recall from (9) that

$$
c_{2}^{T} C_{2}=\left(I_{2}+x^{\top} x\right)^{-1}
$$

By symmetry $d^{2}=\operatorname{det}\left(I+X^{\top} X\right)=\operatorname{det}\left(I+X X^{\top}\right)$. Moreover, from (12)

$$
\tilde{A}_{2}^{\top}=C_{2} A_{2}^{\top} C_{2}^{-1}
$$

By transposing the data we can use the same formulas as given above for C_{1}. The data is $d, x^{\top}, \gamma_{2}, \beta_{2}$ and the output will be $C_{2}, \tilde{\gamma}_{2}, \tilde{\beta}_{2}$. In other words it is only the interpretation of the parameters which distinguishes the computation of C_{2} from that of C_{1}.
7. Performing the Similarity Transformations

In practice A_{1} and A_{2} will be contiguous submatrices on the diagonal of some big block triangular matrix. The similarity transformation determined by P affects elements in the same row or column as those of A_{1} and A_{2} as indicated in the figure.

Figure 1

Let those elements in a typical column which are altered by the premultiplication by P be partitioned conformably with P as $\binom{u}{v}$. They will be transformed into

$$
\begin{aligned}
p\binom{u}{v} & =\left(\begin{array}{ll}
C_{2} & 0 \\
0 & \ell_{1}
\end{array}\right]\left(\begin{array}{cc}
-X^{\top} & \xi I \\
\xi I & x
\end{array}\right)\binom{u}{v} \\
& =\binom{\AA_{2}\left(\xi v-X^{\top} u\right)}{\delta_{1}(\xi u+X v)} .
\end{aligned}
$$

Notice that the number of multiplications required to effect this is pq for each of $X^{\top} u$ and $X v$ plus q^{2} and p^{2} for the application of C_{2} and C_{1}. This is the same as for multiplication by the full, non-factored version of p except for the $(p+q)$ multiplications involving ξ.

There is a surprising difficulty in writing a program to effect this. The program must work for any values of p and q and this condition prevents us from supplying the input data as values; they must be names or references since the number of them, $p+q$, is not known at compile time. In other words the subprogram is informed that elements $\mathrm{m}+1$ through $m+p+q$ of an array Y are to be transformed.

The disadvantage of this constraint is that the same code cannot be used for effecting the postmultiplication by p^{\top}. More precisely, the price of using the same code for both cases is a loss in elegance and efficiency. The difficulty can be seen clearly by looking at the listings of the subprograms NEWCOL and NEWROW. They differ only where a variable $\mathrm{Y}[\mathrm{i}, \mathrm{k}]$ in NEWCOL corresponds to a variable $\mathrm{Y}[\mathrm{k}, \mathrm{i}]$ in NEWROW.

8. Gaussian Elimination for Solving $A_{1} X-X A_{2}=B$

The linear equations defining X can also be solved by block Gaussian elimination in about half the time required by the algorithm just described. Three different factorizations are appropriate (i.e. stable).

Case 1: $\delta^{2} \gg \max \left(-\beta_{1} \gamma_{1},-\beta_{2} \gamma_{2}\right)$

$$
\left(\begin{array}{cc}
I_{2} & 0 \\
\gamma_{1} c^{-1} & I_{2}
\end{array}\right)\left(\begin{array}{cc}
c & \beta_{1} I_{2} \\
0 & C-\beta_{1} \gamma_{1} c^{-1}
\end{array}\right)\binom{\underset{\sim}{x} 1}{\underset{\sim}{x}}=\binom{\underset{\sim}{b_{1}}}{\underset{\sim}{b_{2}}}, \quad \underset{\sim}{b_{1}}=\binom{b_{11}}{b_{12}}, \quad b_{2}=\binom{b_{21}}{b_{22}}
$$

Case 2: $|\gamma| \geq\left|\beta_{1}\right| \gg \max \left(\delta^{2},-\beta_{2} \gamma_{2}\right)$

$$
\left(\begin{array}{cc}
I_{2} & 0 \\
C_{\gamma}^{-1} & \gamma_{1}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\gamma_{1} I_{2} & c \\
0 & -\left(c^{2}-\beta_{1} \gamma_{1}\right)
\end{array}\right)\binom{{\underset{\sim}{x}}_{1}}{{\underset{\sim}{x}}_{2}}=\binom{{\underset{\sim}{2}}_{2}}{\underset{\sim}{b_{1}}}
$$

Case 3: $\left|\gamma_{2}\right| \geq\left|\beta_{2}\right| \gg \max \left(\delta^{2},-\beta_{1} \gamma_{1}\right)$

$$
\begin{aligned}
& \left(\begin{array}{cc}
I_{2} & 0 \\
-\hat{C}_{\gamma_{2}^{-1}}^{-1} & \gamma_{2}^{-1}
\end{array}\right)\left(\begin{array}{cc}
-\gamma_{2} & \hat{c} \\
0 & \hat{C}^{2}-\beta_{2} \gamma_{2}
\end{array}\right)\binom{\hat{x}_{1}}{\hat{\hat{x}}_{2}}=\binom{\hat{b}_{2}}{\tilde{\hat{b}}_{1}} ; \\
& \underset{\sim}{\underset{\sim}{x}}=\binom{x_{11}}{x_{12}}, \underset{\sim}{\underset{\sim}{x}}=\binom{x_{12}}{x_{22}}, \underset{\sim}{\underset{\sim}{b}}=\binom{b_{11}}{b_{21}}, \underset{\sim}{\underset{\sim}{\underset{\sim}{2}}}=\binom{b_{12}}{b_{22}}
\end{aligned}
$$

In each case X can be found with 16 multiplications and 4 divisions. Further rearrangements should be made when $\left|\beta_{1}\right|>\left|\gamma_{1}\right|$ in Case 2, $\left|\beta_{2}\right|>\left|\gamma_{2}\right|$ in Case 3.

The extra length of the code (100 statements versus 50) does not appear to warrant a saving of 16 multiplications.

9. Swapping Large Blocks

The algorithm we developed for swapping was quite general with $A_{1} p \times p$ and $A_{2} q \times q$. However the individual subroutines TXMXT, CTCEQW, NEWCOL, and NEWROW were specialized for $p \leq 2, q \leq 2$. Here we want to point out that general versions of these programs are readily produced.

1. $A_{1} X-X A_{2}=B$ can be solved for X by the algorithm of Bartels and Stewart [B and S, 1971]. In our case A_{1} and A_{2} are already in real Schur form and X can be partitioned to match A_{1} and A_{2}. If the equations defining X are taken in the proper order the system is triangular and can be solved by

$$
A_{k \ell}^{(1)} X_{k \ell}-X_{k \ell} A_{\ell \ell}^{(2)}=B_{k \ell}-\sum_{j=k+1}^{\bar{p}} A_{k j}^{(1)} X_{j \ell}+\sum_{i=1}^{\ell-1} X_{k i} A_{i \ell}^{(2)} .
$$

The proper order is $k=\bar{p}, \bar{p}-1, \ldots, 1 ; \ell=1,2, \ldots, \bar{q}$. Here \bar{p} and \bar{q} are the block orders of A_{1} and A_{2}.
2. $C^{\top} C=\left(\xi^{2}+X X^{\top}\right)^{-1}$. The positive definite matrix $\xi^{2}+X X^{\top}$ can be formed explicitly and its Choleski factorization $R^{\top} R$ computed in a standard manner. Then R^{\top} can be overwritten with its inverse to give a solution \circ.
3. The execution of the orthogonal similarity transformation, in factored form

$$
\left(\begin{array}{ll}
\stackrel{\circ}{C}_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)\left(\begin{array}{cc}
-x^{\top} & \xi \\
\xi & x
\end{array}\right)
$$

presents no difficulties.
We mention this possibility only to reject it. The rival method is simply to swap A_{1} and A_{2} subblock by subblock, using the programs which we have presented here, that is by swapping many 1×1 's and 2×2 's. The
operation count for each method is approximately $(p+q)^{2} n$ multiplications and additions but the general procedure sketched above would require significantly more program statements.

In the language of computer science we are recommending the recursive swapping of big blocks.
10. Test Results
(a) 6×6 Matrix (Separated Eigenvalues)*

1. Original Matrix
$\left[\begin{array}{rrrrrr}2.0000 & 3.0000 & 4.0000 & 5.0000 & 6.0000 & 7.0000 \\ -1.0000 & 2.0000 & 5.0000 & 6.0000 & 7.0000 & 8.0000 \\ & & 6.0000 & 7.0000 & 8.0000 & 9.0000 \\ & & & 8.0000 & 9.0000 & 10.0000 \\ & & & & 12.0000 & 11.0000 \\ & & & & -1.0000 & 12.0000\end{array}\right]$
2. Swap 1st and 2 nd blocks, 2×1 case

$$
\left[\right]
$$

3. Swap 3rd and 4th blocks, 1×2 case
$\left[\begin{array}{lccccc}6.0000 & -4.2583 & -4.6036 & 13.192 & -13.265 & 6.3656 \\ 2.2 \times 10^{-14} & 2.0000 & 3.2930 & -4.8713 & 5.1785 & -2.3615 \\ & -0.91103 & 2.0000 & -1.5437 & 1.8492 & -0.75651 \\ & & & 12.0000 & 0.69449 & 5.5837 \\ & & & -15.839 & 12.000 & -4.5244 \\ & & & 4.2 \times 10^{-14} & -1.3 \times 10^{-14} & 8.0000\end{array}\right]$

[^1]4. Swap $2 n d$ and 3 rd blocks, 2×2 case
\[

\left[$$
\begin{array}{llllll}
6.0000 & 13.402 & -14.062 & -1.3625 & -3.1781 & 6.3656 \\
2.2 \times 10^{-14} & 12.000 & 0.63866 & -3.6006 & 0.39991 & 5.3584 \\
& -17.224 & 12.000 & -0.21201 & 0.40812 & -5.1223 \\
& -1.0 \times 10^{-13} & 4.6 \times 10^{-14} & 2.0000 & 2.7985 & -1.6498 \\
& -4.7 \times 10^{-14} & 2.5 \times 10^{-14} & -1.0720 & 2.0000 & -0.35352 \\
& & & 4.2 \times 10^{-14} & -1.3 \times 10^{-14} & 8.0000
\end{array}
$$\right]
\]

(b) 6×6 Matrix (Close Eigenvalues)*

1. Original Matrix

$$
\left[\begin{array}{rlllll}
6.0000 & 10^{-4} & 4.0000 & 5.0000 & 6.0000 & 7.0000 \\
-1.0000 & 6.0000 & 5.0000 & 6.0000 & 7.0000 & 8.0000 \\
& & 6.0000 & 7.0000 & 8.0000 & 9.0000 \\
& & & 6.0001 & 9.0000 & 10.000 \\
& & & & 6.0001 & 10^{-4} \\
& & & & -1.0000 & 6.0001
\end{array}\right]
$$

2. Swap 1st and 2 nd blocks, 2×1 case

$$
\left[\begin{array}{ccrrrc}
6.0000 & 0.99984 & -4.9995 & -5.9992 & -6.9990 & -7.9989 \\
& 6.0000 & 4.0006 & 5.0010 & 6.0011 & 7.0013 \\
& -2.4996 \times 10^{-5} & 6.0000 & 7.0000 & 8.0000 & 9.0000 \\
& & & 6.0001 & 9.0000 & 10.000 \\
& & & & 6.0001 & 10^{-4} \\
& & & & -1.0000 & 6.0001
\end{array}\right]
$$

[^2]3. Swap 3rd and 4 th blocks, 1×2 case

$\left[\begin{array}{llcclc}6.0000 & 0.99984 & -4.9995 & -7.9996 & 5.9992 & 6.9983 \\ & 6.0000 & 4.0006 & 7.0019 & -5.0010 & -6.0004 \\ & -2.4996 \times 10^{-5} & 6.0000 & 9.0008 & -7.0000 & -7.9991 \\ & & & 6.0001 & 9.9992 \times 10^{-6} & 0.99992 \\ & & & -10.001 & 6.0001 & 8.9991 \\ & & & 3.9 \times 10^{-18} & -4.3 \times 10^{-19} & 6.0001\end{array}\right]$
4. Swap 2nd and 3 rd blocks, 2×2 case
$\left[\begin{array}{cccccr}6.0000 & -4.9997 & -0.99972 & -5.9991 & -7.9995 & 6.9983 \\ & 6.0001 & 2.4995 \times 10^{-5} & 7.0000 & 9.0008 & -7.9992 \\ & -4.0008 & 6.0001 & -5.0011 & -7.0020 & 6.0006 \\ & -2.1 \times 10^{-23} & -6.6 \times 10^{-24} & 6.0000 & 10.001 & -8.9989 \\ & 8.9 \times 10^{-24} & -3.8 \times 10^{-25} & -9.9994 \times 10^{-6} & 6.0000 & 1.0000 \\ & & & 3.9 \times 10^{-18} & -4.3 \times 10^{-19} & 6.0001\end{array}\right]$

11. Program Listing

Alternative, but less efficient, version of NEWVEC which better illustrates the column and row operations.

References

R.H. Bartels and G.W. Stewart, Algorithm 432, Solution of the matrix equation $A X+X B=C$, Comm. ACM 15 (1972), 820-826.
B.N. Parlett, A recurrence among the elements of functions of triangular matrices, Linear Algebra and its Applications 14 (1976), 117-121.

[^0]: *Research supported by Office of Naval Research Contract N00014-76-C-0013.

[^1]: *Computations performed on 14 digit machine, results rounded to 5 figures for display.

[^2]: *Computations performed on 14 digit machine, results rounded to 5 figures for display.

