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1. Introduction

A triangular matrix reveals its eigenvalues on the main diagonal. By

Schur's lemma any square matrix is unitarily similar to an upper triangular

matrix with the eigenvalues arranged in any desired order along the diagonal

In practice the QR algorithm in real arithmetic produces a block triangular

matrix in which the eigenvalues are likely to be in monotone decreasing

order by absolute value down the diagonal. However this monotonicity

cannot be guaranteed and for some purposes the ordering by absolute value

is not what is wanted.

The problem which we address here is to find some simple orthogonal

similarity transformations which have the effect of exchanging two diagonal

elements (or blocks) while preserving block triangular form. Actually we

will show only how to swap adjacent blocks and so the exchange of distant

blocks must be accomplished by a succession of adjacent swaps.

Although the cost of such a swap is small it is not negligible; in an

nxn matrix (p+q) n multiplications are needed to swap adjacent diagonal

blocks of orders p and q.

2. Ruhe's Trick

For any real 0 and s = sin 0, c = cos 0 the symmetric matrix
-s c ]

is an orthogonal matrix representing a reflection of the plane
c s J

Observe that

-s c

c s 0 tto

-s c

c s

2 2 2a-jS -Bsc+ttgC , -a^sc-Bs ^-a^sc
2 2 2-a^sc+Bc +a2SC , a^c +Bsc+a2S

The new matrix is upper triangular if and only if

c[Bc - (a.|-a2)s] = 0 .



The choice c = 0 represents no change, the choice

tan 0 = s/c = 3/(a^-a2)

results in an exchange of and The new (1,2) element is

-s[3s +(a^-a2)c] =-s[6s +3c^/s] =-3 .

Now suppose that is the (j,j) element of an nxn upper triangular

matrix. The plane reflection indicated above, effected in the (j,j+l)

coordinate plane, will swap and Postmultiplication affects

columns j and j+1 while premultiplication affects rows j and j+1.

This requires 4(n-2) multiplications. To keep the angle 6 in

(-iT/2,Tr/2) we define

d = + 3^ ,

c = la^-agl/d ,

s = 3 sign(a^-a2)/d

Note that when 3 = 0 the transformation merely exchanges the two rows and

the corresponding pair of columns.

3. The General Case

Consider the reduced matrix

At B 1 is p Xp ,
»

2 } A2 is qxq .
1

0 A

We seek an orthogonal similarity transformation which swaps A^ and

In general this is not possible; fortunately we can achieve a form which

is as useful as exchanging A^ and A2. We denote by the transpose



of any matrix Z. A partitioned matrix

-sj Cg
Ci Sg

is pxp ,

Cg is qxq ,

is orthogonal if, and only if, the following relations hold;

(1)

(2)

(3)

(4)

C^C^+S2S2 =Ip - S^sj +C^C^ ,

S^S^+C2C2 = Iq ^2^2 "^^2^2 '

- C,S, +S.Ci = „
11 22 p,q

- S^Cp +CiS. = 0„ „
12 12 q,p

Note that if c| =C^, =C2 then we can take =$2, however this
is not always advantageous.

We seek an orthogonal matrix of the form shown above such that

•sj C2
Ci $2

B 1

0 Ao

A2 B

0 A,

-sj C2
Ci $2

On equating the (2,1) and (2,2) blocks on each side of the equation we find

(5) (also A2cj =cjSg) ,

When

(6) C^B +S2A2 = A-Sg .

is invertible (more on this below) then (6) can be rewritten as

B+C^^S2A2 =C^^A^S2
.-1= A^C-'$2 . by (5) .



We now let the pxq matrix = X/C, where ^ is a positive constant

at our disposal, and substitute into the equation above to get

(7) A^X-XA2 = CB.

In order to obtain from X we pre- and post-multiply the first ortho

gonality relation (1) appropriately and invert to find

I +

or

(8) (c^/crcc^/s) =dpC^ +Xx''')"^ = .

Using (3) we find that X/5 also equals S,CZ and by using (2) we obtain

(9) {C^/Z) =(Iq5^ +x'''x)"^ 5W2 .

It is well known that an X satisfying (7) exists and is unique if

and only if A^ and Ag have no eigenvalues in common. In practice only

such cases interest us but we want the algorithm to be robust in the face

of some perverse or extreme requests. Clearly if A.| = A2 we want the

algorithm to do nothing rather than to fail. In such a case = C2 = 0

which is far from invertible. By taking ^ = 0 and setting C^/C = =

= X= I the algorithm will work. When the eigenvalues of A^ and

are close, in some sense, then C will be chosen so that

max{^, 11X11} = 1 approximately.

There are infinitely many C's satisfying (8) and (9) and any of them

will do. In the absence of other constraints the symmetric solutions are

the natural ones; if c| =C^, Cg =C2 then =$2, but this fact is
not obvious. In this algorithm, however, we prefer to choose and C2

so that A^ and have a convenient form for most applications.



L =

It is not necessary to compute and $2 explicitly.

C.j/C, the scaled version of C^. Then

(10) P =

-S^ c 1^1 ^2

II

r 0 .

C2 0 ' -X^ 51 "

• ^2

0

00

.51 X ,

Write

and P is best applied in this factored form. In practice the orthogonality

of P is completely determined by the accuracy with which the C's satisfy

(8) and (9).

It is not necessary to compute A.j, A2, or B explicitly since they

will emerge when the similarity transformation

(11)
f A^ B

0 A«

is effected. For completeness we give the formulas

S.

(12)

'1

^1 "
B =

xtl $2 " ^1''
Ag =62^2^2^

AgC^^sJ - sjc^^A^ =C^^AgS^-sjA^C^^



4. The Algorithm for SWAP A =
B

0 A
2^

Clear the (2,1) block of A.

Solve A^X-XAg = CB for X and ^ usinci subroutine TXMXT.

^ is chosen so that 11X11 # 1

If C = 0 then exit.

Solve cjc^ =(C^+XX^)"^ = for using CTCEnw.
Solve CgCg =(C^+X^X)"^ EWg for Cg using CTCEQW.
Premultiply A by P using NEWCOL,

Postmultiply PA by P^ using NEWROW.
Update the matrix of orthogonal transformations using NEWROW.

/\ -A

Force the diagonal elements in the new blocks A^ and A2 to

be equal.

Name Executable Statements Count for 2x2 Case

SWAP 17 32n multiplications

TXMXT 52 42 multiplications

CTCEQW 17 32 multiplications,
4 square roots

NEWCOL 22 16 multiplications
per column

NEWROW 22 16 multiplications
per row

When A^ =
a. 6^

lY,-

5. Solving A-jX - XAp = B

, i = 1,2, the linear equations which determine X

can be solved stably in closed form. Let 6 = ai-a2» then the equations

may be written as



(1)

where

c 6,12 1

y•^l2 c
X = b ; X =

^11 ["ill
X12

II

"12

CM
X

''21
Xoo

dZ • ''22 -

(2) C =
•6 -Y2 • , C2= '
, -62 fi . \

6+02^2 -2<5Y2

Multiply (1) as indicated in order to make the coefficient matrix block

diagonal,

(3)

Now let

where

(4)

SlY, 0 • C -Si '
X = b

BiYi , • -Yl
c

G =

T 26y2

2662 T
/d

T=6^ +62Y2 - B-,Y, . d= - (2662)(26y2) .

and premultiply (3) diag(G,6) to find

X =

(5)

G 0

0 G

G :o

0 ; G

c -e,

-Yi C1

6b, 1 -Y2l',2-B,b2,

*®2b,, * '̂ '>12 -e,b22
-Y,b,, + db2,-Y2b22

- Y-|b,2 - B2b2i + '5b22 .
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(()6b^^ +(26 -T)Y2b^2 '

(26 -TjBgb-ii + <|)«b^2- ZdB-jBgbgi-

bgg

TBib22

-TYibi,-

_ ~26y-j ^2^11 ~

H y/d

2BY^Y2bi2+ *l*Bb2^ '*' (26 -T)Y2b22
(26 -T)B2b2i + (})6b22 J

defining y, where

/d .

(|) ~ T- ^^2^2 ~ ^ ~ Yi'*'32Y2) ^ 0 ,

t|) =26^-T =6^+ (B1Y1-62Y2) •

Inevitably (5) is Cramer's rule and d = det(A^®I -I®A2) so that d = 0

if and only if = ag. P-jYi = 32Y2'

Among all the coefficients in the linear combinations of the elements

of B which are given above only t and i|; involve genuine subtractions

and possible loss of information through cancellation. However by rewriting

them in a more complicated form all unnecessary loss can be avoided. From
7 2(4) T= 6 +B2Y2-31Y1 and if either of 6 or -B^y^ is tiny compared

with the other two terms we want to add it in last. Similarly for i(;. Thus

we use

(6)

2 2
= (3iYi+n'ax{6 '̂ in{6 »-32Y2^

2 2T = (B2Y2'''"^2ix{6 ,-BiYi>) + min{6

Here is an example for a machine with a relative precision of 8 decimals,

i.e. the floating point result fl(10®-9) is 10® whereas fl(10®-10) is
10®-10 =10(10^-1). Let 6^ =9, B^Y] =-(10®-10), B2Y2 =

from (4), computing from the left, x =fl(fl (9-10®) +10^ - 10) = -10 ,
from (6), computing from the left, x = fl(fl(-10®+ (10®-10)+9) = -1 .

.8
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3
If we are given a matrix M with eigenvalues near ±10 i and are evaluating

exp{10M) then values like the ones given above will occur.

Normalization

The important matrix in effecting the orthogonal transformations is

r 62 01
o

0 C K X

and we want our formulas to be accurate right out to both extremes:

-I 0 ' 01'
and

0 I I 0

An appropriate way to achieve this is to choose ^ so that

max{^,{|Xll} = 1 .

Equation (6) above yields y so that the corresponding 2x2 matrix Y

satisfies

A^Y-YA2 = dB

where d is given in (4). To get x and C let n = llyll^ then

Case 1: n 1 d, take x = y/d, C = 1-

Case 2: n > d, take x = y/n, C = d/n.
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The Algorithm for TXMXT

We solve A^X-XAg = when A^ and 2x2 standardized

matrices as follows:

2
6 = - ttg » <5sq = 6 ,

~ ^1*^1 * "^2, " ^2^2 *

e = (1)6 = 6(6sq - (ir^+iTg))

= (j) = (tt^+max{6sq,-TT2}) + min{6sq,-Tr2} »

f2 = T= (7r2 +max{6sq,-Tr^)) + min{6sq,-Tr^} ,
g = 26^2 » ^ - 2632 *

d = f2 - qh .

At this point y can be evaluated from (5). Then

n = Ilyi„ .

X = Cy/niax(d,n) .

new C = C*d/max(d,ri) .
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6. Solving C C = W

In some applications the A^., i = 1,2, have the special form

Ai = a.l2 +
0 S-

< 0 ,

and we want A^. to have the same standardized form (equal diagonal elements)

Because A. is similar to A^. we must have

A,. = a.l2 +
0 B.

3.Y. = B.y.
VI

This requirement fixes the matrices and of the previous section.

Astraightforward way to derive formulas for and C2 is to obtain a

particular solution to (8) via the Choleski decomposition and then to

standardize the resulting diagonal blocks.

Let and R2 be upper triangular and satisfy

=(5^12+ XX^)"'

r|r2 =W2 s (5^12+ X^X)"^ ,

where X solves (7), A^X-XA2 = CB. Next define

A"! = RiA-jR-j , A2 = R2 A2R2 •

Now let and J2 be the unique plane rotation matrices which stan

dardize A^ and A2, i-e. both

^ /\ T ~ •* TA"! —JiA-jJ-j and A2 —02^2*^2

have equal diagonal elements. The appropriate and C2 are therefore

=C^/5 =O^R^, C2 =4/C =J2R2-
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Let us drop the subscript and dot from and A^. The condition

T.-lc^c =w= +xx^)

imposes three quadratic relations on the four elements of C. If

A =
fa 3 1

y OL then the requirement that CAC"^ have equal diagonal

elements (both a) imposes another quadratic constraint, namely

= YC.,2C22 ,

which suffices to determine C. However the direct solution of these

nonlinear equations is far from obvious. Instead we shall derive the

solution in a straightforward but lengthy manner via the Choleski factori

zation of W, The final algorithm is however very compact. Let

=detCe^i^+xx"^) = ^ ^ J(j2 _

Then define M by

W= M/d^ EX
d"^

and note that

r .2K ^21 ^ ^22 "^*n*2l'̂ ''l2*22^
-"^*11*21^*12*22^ C^ +*^1+*^2

^m
11 "*12' ""ll

d/.fli^

is the Choleski factor of W. Note that det M

form

= d . The next step is to



A = RAR
-1

11 ^^2

0 r

15

0 B

Y 0

r22 -r^2

0
ri]r22 +CXI2 »

22

Yri2

-^^22

6 a

L ^21

12

-6

-Yri2

+ al^ .

11 -I

11 oti2 >

Now let J be the plane rotation which standardizes A.

c -s

A = JAJ' = "12

-6

c s

-s c

+ al
2 '

where

'21

6(c^-s^) - 28sc
26sc - 3i2®

Op , ^ 2 2 n
26sc +a^2^ '^21^
-6(c^-s^) +2Ssc

a = {a.|2+321 )/2 .

The proper choice of c = cos 0 is therefore given by

So

tan 20 = 2sc/(c^-s^) = 6/a .

2c = 1 + cos 20 = 1 + a/v ,

V = ,

c = /(I + |a|/v)/2 , to keep |0| < -n/Z ,

s = sin 20/2 cos 0 = 6 sign{S)/2cv .

+ al
2 '



Finally

C =
c -s

s c

16

""ll ''12

0 22 J sr^2'̂ cr22

Our object now is to get rid of the intermediate quantities and

express C in terms of d and M. So

a =(3r^^"'
=Y[d^ - (m^2 "3m^^/Y)]/2m^^d ,
= YC/m^i » defining c,

6 — ~ Y'̂ i2/'̂ ii >

V= lYk/m-ii where (j) = .

Since 3y < 0 the expression

2 2 2
(i) — 2 ~

is positive.

At the cost of an extra square root the important quantity C can be

written in a form which is attractive for finite precision computation

C 5 = (d-u))(d+u))/2d .

Having computed d, M, and <t> we obtain the desired formulas:

a = m^i/2d ,

c-ii = cr^ = /a(l + |C|/(t>) ,11

C21 = sr^^ = r^^ 6sign(a)/2v(cr^^) = sign(C)am^2/^^ii

^12 ^ ^*^12 " '̂'22 2*^21 ^ '̂''"11 '

^22 ^^^12 "*'̂ *'22 ^ ^^2l'"l2'*"^ll^^ '̂"ll •
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For completeness we note that

SO that

0 6

y 0 ^

*^11 *^12
Cgi C22

0 B

Y 0

B=(Bc^i-YC^2^d
y = 6y/B •

C22 -c^2

••^21

The matrix C is computed by the subprogram named CTCEQW (i.e. C C = W)

Computation of Co

The subprogram which computes C^ from d, X, 3» y can also be used

to compute Cg. Recall from (9) that

C2C2 =(l2 +X^X)'̂ .

By symnetry =det(I+X^X) = det(I +XX^). Moreover, from (12)

Ag =C2A2C2^ .

By transposing the data we can use the same formulas as given above for C^.

The data is d, x"'̂ , Y2» ^3 output will be C2, Y2» 62- In other
words it is only the interpretation of the parameters which distinguishes

the computation of C2 from that of C^.

7. Performing the Similarity Transformations

In practice and will be contiguous submatrices on the

diagonal of some big block triangular matrix. The similarity transformation

determined by P affects elements in the same row or column as those of

and A2 as indicated in the figure.
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J1 Jl+Ll J1+L1+L2

•i 11

X X y X ///X £

'////////y

1
1

• • • •

Figure 1
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Let those elements in a typical column which are altered by the premul

tiplication by P be partitioned conformably with P as ( )• They

will be transformed into

e
2

0 £

0 -X^ CI

51 X V
V /

g2(5v-x'''u) '
£.|{5u +Xv) ,

Notice that the number of multiplications required to effect this is pq

T 2 2for each of Xu and Xv plus q and p for the application of C2

and C^. This is the same as for multiplication by the full, non-factored

version of P except for the (p+q) multiplications involving C-

There is a surprising difficulty in writing a program to effect this.

The program must work for any values of p and q and this condition

prevents us from supplying the input data as values; they must be names or

references since the number of them, p+q, is not known at compile time.

In other words the subprogram is informed that elements m+1 through

m+p+q of an array Y are to be transformed.

The disadvantage of this constraint is that the same code cannot be

used for effecting the postmultiplication by P^. More precisely, the

price of using the same code for both cases is a loss in elegance and

efficiency. The difficulty can be seen clearly by looking at the listings

of the subprograms NEWCOL and NEWROW. They differ only where a variable

Y[i,k] in NEWCOL corresponds to a variable Y[k,i] in NEWROW.
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8. Gaussian Elimination for Solving A^X-XAq = B

The linear equations defining X can also be solved by block Gaussian

elimination in about half the time required by the algorithm just described

Three different factorizations are appropriate (i.e. stable).

2

Case 1: 6 » max(-3iYi»-82T2)

'2 °
YiC-1 l2

C
f y

'^1 • h - ["11 ' \\ -

CM

0 C-B-jYiC . ?2 • ^2
' ?1 " ''12

» "2 b22
\ J

Case 2: |y | > ISiI » inax(6 .-SgYg)

l2 0 1
Cy,^ Yi^ j

Y1I2 c

0 -(C^-S^Y,)
[ill fbl

✓ \, J
^1

V '

Case 3; \y^\ > » max(6

-1 -1

2 "^2

?1 "
11

12

-Y2 ^

0 C^-BgYgJ

f ^2 ~
12

'22

r ^ ^

?i
r K 1

f b
11

^21 . ^2 =
b

12

>22

In each case X can be found with 16 multiplications and 4 divisions. Further

rearrangements should be made when iB-jl > lY-jl "in Case 2, I62I ^
in Case 3.

The extra length of the code (100 statements versus 50) does not

appear to warrant a saving of 16 multiplications.
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9. Swapping Large Blocks

The algorithm we developed for swapping was quite general with pxp

and Ag qxq. However the individual subroutines TXMXT, CTCEQW, NEWCOL, and

NEWROW were specialized for p < 2, q < 2. Here we want to point out that

general versions of these programs are readily produced.

1. A^X-XA2 = B can be solved for X by the algorithm of Bartels

and Stewart [B and S, 1971]. In our case A^ and Ag are already in real

Schur form and X can be partitioned to match A^ and A^. If the equa

tions defining X are taken in the proper order the system is triangular

and can be solved by

A^^ ^X - X A^^^ - B\sru > A^^^x + y X A^^^.3^+1 kj ki^jl •

The proper order is k = p,p-l,...,1; I - l,2,...,q. Here p and q are

the block orders of A^ and Ag.

2. C^C = (^^+XX^)"\ The positive definite matrix ^^ +XX^ can be
formed explicitly and its Choleski factorization R^R computed in a standard

manner. Then R^ can be overwritten with its inverse to give a solution C.

3. The execution of the orthogonal similarity transformation, in

factored form

'1

0 6

-x^ c

presents no difficulties.

We mention this possibility only to reject it. The rival method is

simply to swap A^ and A2 subblock by subblock, using the programs which

we have presented here, that is by swapping many 1 xl's and 2x2's. The
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2
operation count for each method is approximately (p+q) n multiplications

and additions but the general procedure sketched above would require signi

ficantly more program statements.

In the language of computer science we are recommending the recursive

swapping of big blocks.



1.

23

10. Test Results

(a) 6x6 Matrix (Separated Eigenvalues)*

Original Matrix

2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

1.0000 2.0000 5.0000 6.0000 7.0000 8.0000

6.0000 7.0000 8.0000 9.0000

8.0000 9.0000 10.0000

12.0000 11.0000

-1.0000 12.0000

2. Swap 1st and 2nd blocks, 2x1 case

6.0000

2.2x10
-14

-4.2583 -4.6036 9.6667 11.328 12.990

2.0000 3.2930 -3.8212 -4.3070 -4.7929

-0.91103 2.0000 -1.3978 -1.4569 -1.5161

8.0000 9.0000 10.0000

12.0000 11.0000

-1.0000 12.0000

3. Swap 3rd and 4th blocks, 1 x2 case

6.0000

2.2x10
-14

4.2583

2.0000

•0.91103

•4.6036

3.2930

2.0000

13.192

-4.8713

-1.5437

12.0000

-15.839

4.2x10
-14

•13.265

5.1785

1.8492

0.69449

12.000

-1.3x10
-14

6.3656

-2.3615

-0.75651

5.5837

-4.5244

8.0000

Computations performed on 14 digit machine, results rounded to 5 figures
for display.
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4. Swap 2nd and 3rd blocks, 2x2 case

6.0000

2.2x10
-14

13.402

12.000

-17.224

-1.0x10

-4.7x10

-13

-14

-14.062

0.63866

12.000

4.6x10

2.5x10

-14

-14

-1.3625 -3.1781 6.3656

-3.6006 0.39991 5.3584

-0.21201 0.40812 -5.1223

2.0000 2.7985 -1.6498

-1.0720 2.0000 -0.35352

4.2x10"^^ -1.3x10"^^ 8.0000

(b) 6X6 Matrix (Close Eigenvalues)*

Original Matrix

6.0000 10'^ 4.0000 5.0000 6.0000 7.0000

1.0000 6.0000 5.0000 6.0000 7.0000 8.0000

6.0000 7.0000 8.0000 9.0000

6.0001 9.0000 10.000

6.0001 10'^
-1.0000 6.0001

Swap 1st and 2nd blocks, 2x1 case

0000 0.99984 -4.9995 -5.9992 -6.9990 -7.9989

6.0000 4.0006 5.0010 6.0011 7.0013

-2.4996x10"^ 6.0000 7.0000 8.0000 9.0000

6.0001 9.0000 10.000

6.0001 10'^
-1.0000 6.0001

Computations performed on 14 digit machine, results rounded to 5 figures
for display.
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3. Swap 3rd and 4th blocks, 1x2 case

6.0000 0.99984

6.0000

-2.4996x 10
-5

•4.9995

4.0006

6.0000

- 7.9996

7.0019

9.0008

6.0001

-10.001

3.9x10
-18

4. Swap 2nd and 3rd blocks, 2x2 case

6.0000 -4.9997

6.0001

-4.0008

-2.1 xlO

8.9x10

-23

-24

-0.99972

2.4995 x 10

6.0001

-5

-24

-25
-6.6x10

-3.8x10

•5.9991

7.0000

•5.0011

6.0000

•9.9994x 10

3.9x10"^®

5.9992

•5.0010

7.0000

9.9992X10

6.0001

-6

-19
-4.3x10

-6

-7.9995

9.0008

-7.0020

10.001

6.0000

-4.3x10
-19

6.9983

-6.0004

-7.9991

0.99992

8.9991

6.0001

6.9983

-7.9992

6.0006

-8.9989

1.0000

6.0001
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11. Program Listing

SUh^RO U""! N5~ SWAr> ( NM , N , T , P ♦ Jl f LI » Li? )
D IV1,TN3 IG K* " ( • M ) ♦ >

,3)r;(C2(t ,i ) ,V(l ,5» l

C EXCHANGf ADJACFNJT DIAGONAL BLOCKS Tl AND Ti? Bf.Gtr4NING IN' ROW JI BY
r nRTHOGGNAL SI'^ILAPITV TP AM3F0Rf^A'*'1CN*^» P"" OQO IN P» PRf.GFRViNG THn
C TP I ANGuDCr F ORM n" nC CCK ~ti "'TS 11 '̂ Y LI, IS L2 PY L?.

J 3-J1+L I
J? = J3-1

J A = J2»Lg
Z =1.0

c
THE (2,1) BLOCK,

PC g
O n 5 I = 1 , L 2

5 T( J2+ T, J I +J- 1 ) = 0o i
C i

yp FOR X IN T ^y» X'-c T2 = ?* T1 2 WHLPC_T 1.?. 15. LI BY L2 9 ;v
CALL TXMXT(NM,N,T,J1,J3fL1fL2,Y,7,X) 1
IF (Z^rOeO. ) PFTUPM

^A**yi*:<<P<ITc" ri _ Vv HERJ.^CJ.T'(ZSO'^'T + X*XT ) *'*•" 1
r y;*•• j'i yt<• y:yc ts ^ y;y? a n i •> c P 'ahs C2Y"C2 ~ (/-oI x T y x ) —1 ,

CALL C"^Cr.OW ( Z, X( 1, i ) , X( 2, I ), x( 1, 2 >f X( ? , 2) , J 1 , J?) ♦ T( Jp ♦ J I ) ,C1 ,L1 )
CALL C^C^0w(7,X(l ,1 ) »X(1 ,2),X(2,1 ),X(?,?),TfJ4,J3),T{J 3,JA),C2,L2)

C«:{e5!t:kjf<:^*«s:cj{;*yeyt*>!sp£ppQRM~T^ANS Fn~PMAT I'DN" ON COLUMNS AND ROWS OF T,
yi3(ti!{X<s{f'!«*3feJ!!#UPOA TC P,

CALL NEwvpC (Z,l. 1,L2,Y,t,nM,N, J1 , 1 )
CALL NEWVFC ( Z , L1 , L2 , Y, T , NM , JA , J1 , NV ) ,
CALL Nrwv-C ( Z , L I , L 2 , Y ,p ,NM , N , J I , N'M^

c Si=p vt LOUALTTY CF OI AGPNAI. rLFMFNTS IN BLOCKS.
TF (L2 aFOa ?) TfJl.JI) =^fJ l.t, 1j J 1 •♦: 1 >=LT1.J 1 t*).! 1) \ _ 1
JF (LI oEO. 2) T( JA-1 , JA-i ) ="^ ( JA , J4 )= (T ( JA-1 , J4-1 )+T (J 4, J 4 ) )/2.
RETURN
END J

' ' ' ' ' ' II ' • • • , , n . .11 I. I • • - — ' "" " " • •• I

I

SURPOUTINF C"*"C'̂ <'JW( 7 ,X1 1 ,X?l ,X12 ,X2? ,BFTA, CAM,C,L )
OTMFNSION C(2,2)

C FIND AN AOOROPRlAtE SOLUTION C TO CT*C =~rZSQ* I XT ) 4 * - i
ZSCa^Z^Z
IF (L .GT, r> GO TO 1 0
C(l, 1 )g lo/5QPT( 7SQ4-xn'»XlH-X2p:'X21-»-xlg»Xlg)
Rf TURN

10 ="M n = 7SO + X21F*? + y22''-'''«2
FMlg = -(X 1 f'XZ 1 +x 1 2FXZ2 )
r)=EMl 1»( 7SO-I- ) -FM12«*2
RTOgSQPT(O)
FGA « S0RT(EM12A'i«2 - 9F;Y A#FM 1 1 2/G AM >
7ETA g (PTO - FGA)4(PTr) •»- FG A) /( 2. P''*RTO)
PHfgSQRT ( ZFT a*>^2 4-fVI 12**2 )
F A C =F MI 1 / ( 2 • O)
C( 1, 1) = SQRT(FAC»^( !oC + ABS(ZCTfl )/nHl ) )
C ( 2 , 1 ) gS I GN ( 1 oO , ZFT A >^T-Ml 2 -^FAC / ( PHI *r ( l , 1 ) )
r( 1 .2)g(Cf 1 .1 )4FM12"C(2.1) -FTD)/_rMM __
C(2,2)=(r( 2, 1 >«FM124-C( 1, 1 )*FTO)/fm 1 1
RETURN
END



3TId
Niafli.atH

XVl^X/Q^ici!(a®®X7l^X)J10^.
r*i)x=(r*ijx0=^

I-IUQ

21*T=rOv00
(Q*XVWX)IXVWV/2=3OS

®l>(X)WdljN

(((^*i;)X)oOtf♦((I•c;)X)--^u/♦(Ic'̂I)X)bvtv*((iM>x)sav)ixvav=xy^MX
0+I2j.I6d-f2Jn«I2Id—liU-'=(2*2JX

IdV2KV^V22^+J-I2d+t^IW-yOvHl;-:-2<»IhIJ-=II*2)X
2d;*l"Add:X2~2d-H5jeiJLdd*12d-as;«2Id+Id^dxaUs?Ild=(2^)X
9:^lj.dax«22a-2d«lxa0>»il2d-ia>!«2rtV9i»2lld«(X*l)X

(i+2r*i+ir)b=22d
12r♦i-t-ir)d=L2d_
{I+crMr)d=2Ic

(2r*ir)tj=XXdj
99(®0®03®0)JI:'-

H5r9^2#s;i_^-J=O.i«
2NV9vl?i0ic•d's0
2l3H:jtl3a«0®2=H

TTH-'^'D'Sa)ISil»^V+{(lo-*OS(J)lXVwV+2d}=2a
(2a-*OSO)iNi^V+((2o-*Oba)IXV^xV+Id)=IJ

((2d4-Ia)-ObO)»T-U
2s*X"IjCJ=0SCl

2wvy>;»2idy=2d
tind

(2r*i+Er)i=:2wvs)
(i+2r*2r)i.»2xaa
(ir*l-^11')i=
(I+Ir*TDX=Ii2hJ17

•2At!2SI21*2AH2SI^^0

0^—DT1TE5

(t(I*2)x)sdv*((I*i>x)bav)ixvimv=xwx
((2fM+1r)dv"150+(2r*Ir)b«(Ir*I+1f)1-)=•(i*2)x
(C2r*1+ir)a>x(i+irMr)j.-(2r*tr>j*i5Ci)=(X't)x

(Ir*1+If(1+ir*n')x-i.jj=o
®lAbISi2i*2Ab2blI>;!«>:<.jcijcv^s^

D

OS0139
V)sav*(U*UX)bMtf>IXVWVsXVWX

(130*<x+2rMr)b+(x+zr*2r)i«(2r*xr)b)-(2*x)x
((2r*x+2r)i*(i+2r*ir)d+"i3Q*(2r*ir)d>s(i*x)x

(2r*i+2r)!#(i+2r*2r)i-2«*i5Q=o02
—^2ATH2STZ~L*tAUI5Tjj£:j:ifiif>t>a

D

0^Ox09

I1Ju*®X)NOIb-It(Ic*XtftiX)ixvi^v/i:)5i«(2r*ir)6=ii*x)x
••{IdOIbUVi^U

I(2r*IDb)SQV=XVWXox
®lAOXSI21*XA8XSIX

D
>{*(jy**Lt2*jx)01JOS—

•XNJIxrnOSdOSNOISN31^110dNIWaal-Ci:f**v>!t
9

Ncjnxdb

®I=12*2)X=(I*X)XV
•C~ZNanidM•S-jfnVAN59Idawvs3H1SAVH21ONV#>{«*«*9

9
_ji19"n—"10"N——"0iN"—rrrrT~n

es—2"l+X3v2=X
(2r*cr)-L-1IrMr)i^u

Namad(•J*Or^^*Z)Hl
--•-J=(2*2)X=(2•TTX^rP'cTirs(l«NX

®®(X)kvdON3dn5N5U1Gd9NVH9bi2llXdNoinb9
AdlN3NJNr«AI9blZ*2rONVIfSMQciNlNi95fa21ONVX19

®b5NZ=21»>!X-XsftXlNIXXldlVW21Afi11bOd3A10S9

(2*2).XMN*WN)d*(N*lr<N)1NOISN:Ja10
(X*2*d*21*n*2r*Xr*x'N*iMM)xxvmxxaNiir-oddns

IZ

s'.
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SUPPO'JTI NF 'nF.WVFC (F,N1 tNP?, 7,Y,NM,N,MI ♦ TMT )
OIMFNSION Y( 1 > , 7 ( ? ♦ 6) , W( A )

r roMPUTr- - kfwu tXLL^LL^UU——=—N.EWV.
C WHERF Cl IS N1 BY NltC2 IS N2 BY N?,AND ( U« V) s( Y{ M1 ) t Y( Ml 1 ) fo oo ) o
C THE vaTC'TCES XtCl»C2 A^F STOPfD IN 2m F IS SCALING FACTOR FOR X»
C WHFN TNC=1»
C pf rrOPV HLflCK EXCHANGE TPANS FOP MAT IQN PN_C.0L-UMN5.. l._TQ._ N QF ,Y
r" in" THE N14-N2 ROWS ' f •''A P TI NG \fcITH Ml#
C NV = = Y 1- I+( M1-1 ) = (M 1- NM+1 ) , LF=M1 , JsNMo
C WHE N I NC =NM t
r PFRFORM RL nCK t-XCH,ANGE TR ANSFOPMATI ON CK F UF13.T..-tLPJIW.S Of-X -
C IN TH£ N1+N2 COl.UMh:S STARTING WITH COI.'JMN Ml'>
d fsj Y — = (Ml—l,H=l# J=l#

I=INC

LBj= J =
IF ( I J ) L n=M 1
NY= ( Ml -1 ) +L P - T
L =N H-

GD_TJD-
C

I = 1 f N2=l«
10 or 15 K=L0,N

1 >rY(MY-f2»I l^teF-Zd . 1 )jLY ( NY f 1 )
W( ? ) = Y(NY + T I'^F+Zf 1 , n'i'YINY^-?-^ )
Y(NY+I )=Z(1 fS )»)^W( 1 )
Y(M Y+2f-I ) =Z( 1 »3)*W( 2)

_L3 hY = NYtJ
RETURN

C
N2S51 •

^%fi?)=YVNY+3*I 1♦ 1 >-7( 2, 1 Y+ 2^ I )"
W( ?) = Y(NY-H )«F-»-Z( 1 ,1 )
W( 3 ) = Y(N Y4-?* I I'^'F+ZC 2 , 1 ) *Y( NY4-3* I )
Yf NY»T 1=7(1 ) '̂ W f 1 ) ^
YINY"*-?*! ) = ?( 1,3)*W(2)HZ(1 #4)*W(3)
Y(NY+3''<I )s:Z(2, 3)*W(2 )+Z ( 2t A ) «W ( 3 )

25 NY=NY+J
RL'^UP.N.

r

C 1 = 1 f N2 = 2#
30 DC 35 K=LB»N

V>( 1 ) =Y(NY»?*T )^r-Z(t tl K'V (NYfl )
W( 2)s Y( NY + 3*I )*F-Z( 1 #2) **Y( NY+I )
WfBlsYCNY-H I'^F+Zd , I )*Y(MY+2AI ) + 7( 1, 2)'!Y(NY+3*I )
Y(NY+I )=Z( 1 ,5)*W< 1 )TZ(1 ♦•^-)*W(2)

Yf NY^-2»T 1= 7(2, 51»W( 1 )*2{ 2. 6 ) ^W ( 2 )
Y f NY4-M = Z (1 t 3 )'^ W( 3 )

35 ^'Y = NY•»•J
RETURN

1 - 2t N2s2o
AC DC A5 K=LP,N

W( 1 )'=Y(NY4-3''» I) *F-7 (1 ,1 )^Y (NY 4-1 )-Z( 2, 1 )*Y (NYH2A 1 )
W(? ) = Y( NY+4'^ I )'':r-Z( 1, 2)'^ Y(NYHI)-Z( 2,2)^ Y(NY-»-2* I )
V>(3 > =Y (NY+I )'hF-».Z( 1 t 1 )*Y (NY +341 ) + Z(l ,2 )< Y(NY+A«I )
w( A) = Y( N Y->- 2^- T ) 'fep ♦ 7 ( 2 . 1 ) j^X(J^Yii3*J_IjiZJ,2-^2 lYXN YJbjAjXL )_.
y(NY'f I)=Z(1 ,5 )AW(1 )-fZ( 1,A )AW(2)
Y( NY+2*I )sZ(2,F. )ttW(l)>7(?f5)«W(2)
Y(NY+3'<* I )s:Z( I, 3>*W( 3)4^Z( 1, A)*w( A)
JtLNY±jM: I )=7(?»3)AW (3 JX 712.*. A ) lA.} -.

45 NY=NY+J
RFTUPN
END
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Alternative, but less efficient, version of NEWVEC which better illustrates

the column and row operations.

SUBROUTt NE NEWCCL( F )
DIMENSION Y(NM,N ) ,Z( e)4)

-JCJPAt!».S£X:PJmJJDh„.CJ>L_CClLt.ftLM-S._Ml TJ: N CF..-Y
C IN THE N14-N2 ROWS STARTING W ITF Mt*
C COMPUTE C2*(F*V - = NE^kU ♦Cl»(F*U ♦ X»V) = NEWV
C WHERE Cl IS N1 BY Nl,C2 IS N2 BY N2,AND ( t » V)-( Y( M1 ), Y< M1H 1 ),«••) •

I C THE MATRICES X»CltC2 ARF STQREC IN Z, F IS SCALING FACTOR FOR K
M=M1-1

1 DO SO K^Ml,N
! DO 10 J=l,N2

(J> = YfMHNl 4J ,K _ .
DO 10 L=l»NI

10 W(J)sW(J)-Z(L,J)«Y(MHLfK)
DO 20 J=1,Nl
W(N2t J) =_ Y<
DO 20 L=1»N2

2 0 W(N2+J> = W(N2HJ)+2(J,L)')«Y(M*M4L,K)
DO 3 5 J = 1, N2

DO 30 L=1,N2
30 S = S4-Z(J,LH4)*W(L)
35 Y(W4-J,K)=S

DO 45 J=JUNJ
S=0 •
DO 40 L=1,N1

40 S=S+Z(J,L+2)4W(N2+L)
45 Y(M»N?»J.K) =S

50 CONTINUE
RETURN
END

SU8RGUTINE NEWROW(F,N1,N2» Z f Y»NM rN,M1 * I)
DIWENSICN Y(NM,N) , Z(2 f6 )»W (4 )

C
- C PFFFIIRM -BLOCK-..EX CHJiiNjGE.--I RANSJFQRMA T ION. - ON _ F IRST. X ROWS .OF Y

C IN THE NIHN2 COLUMNS STARTING KlITH COLUMN Ml.
C COMPUTE C2*(F*V - XT^U) = NEWU rCl*(F*U 4- X*V» = NEWV
C WHERE Cl IS N1 BY N1,C2 IS N2 BY N2fAND (U»V )~(Y(H1 ),V(M 14 1 ) , • .•)•
C THE MATRICES X,C1,C2 AJ?£ STORED IN Z. F IS SCALING FACTOR FOR X.

M=M1-1
00 50 K=1,I
DO 10 J=1,N?
Wl J> = Yf KfM^-M ♦Jl ^ _ „ „
DO 10 L=lfNl

10 W( J)=W<J)~Z(L, J)4YCK,M4'L)
DO 20 J=I,N1
JtfXN2LJJ =...Y1K.« MiiJJ'feF -
DO 20 L= 1 ,N?

20 W(N2 4-J)=W(N?4-J)4Z(J,L)4Y(K,M4-N 14-L)
0 0 35 J = 1 ♦N2

DO 3o"~L=^^^^?'
30 SsS4-Z( J,L44)4W(L)
35 Y(K,M4-J)=S

S=^.
DO 40 L=1.Nl

40 S = S4-Z( J,L4-2)AW(N24-L)
45- Y(K,M4-N?4-JXg5 - - -
50 CONTINUE

RETURN
END
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