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Abstract

We give a general solution to a previously open problem in the decomposition
of nonlinear n-ports. Any resistive (or capacitive or inductive) n-port can be
decomposed into a particular interconnection of two simpler n-ports. The first
is reciprocal, and the second can be further decomposed into reciprocal
n-ports and C^) linear 2n-ports.

The technique, which we believe is completely new to network theory, is

based on certain algebraic properties of the Laplace operator. It is relatea
to the Hodge theorem from differential geometry, applied to 1-forms on Euclidean
space
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I. INTRODUCTION

Our result concerns nonlinear, single-element type (resistive, capacitive,

or inductive) n-ports. From now on we will refer only to the resistive case,

since the others follow by substituting q for i or ((> for v. Moreover, we will

often write "n-port" for "resistive n-port."

1.1. The Problem; Decomposition of Resistive n-Ports

If M is an nxn matrix of real numbers, then the equation

M=^ (1)

represents a way of breaking M into its symmetric and antisymmetric parts. If M

is the resistance or conductance matrix of a linear n-port R, then (1) decomposes

R into its reciprocal^ and antireciprocal parts. Since the synthesis of reciprocal
and antireciprocal linear n-ports is relatively well understood [1,2], this simple

technique is invaluable for reducing a general synthesis problem to two quite

tractable ones.

In 1974, Chua and Lam [3] attempted to find a generalization of (1) which

would work in the nonlinear case. They found that the most direct line of

generalization, decomposing the Jacobian matrix of a vector-valued function according

to (l),is unsuccessful because the matrix-valued function so obtained is not in

general the Jacobian of any vector function.

Motivated by synthesis applications, Chua and Lam attempted to find a

different decomposition technique which would allow every nonlinear n-port to be

built from reciprocal n-ports and a simpler class of n-ports they called "quasi-

antireciprocal." Although their method is valid for all 2-ports, it was not

generally successful for n 3, and their paper concluded with the open question

of whether a generalization of (1) was possible for arbitrary n. The result

reported in this paper is one such generalization.

1.2. The Approach; The Hodge Theorem, Helmholz* Theorem, and Vector Calculus

The decomposition technique that we have developed was inspired by the

Hodge theorem [13,24,25]. But the Hodge theorem is applicable only to vector

fields (more precisely, differential forms) on compact manifolds, although it

can be extended to include vector fields on Euclidean space that vanish rapidly

1
Reciprocity is defined carefully in part IV. For the moment we will say that an

n-port is reciprocal if its constitutive relation v = f(i) or i = g(v) is a
gradient map.
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enough at infinity. Since our application requires us to decompose vector
fields which do not vanish or even remain bounded at infinity, we have had to
modify the theorem in a major way. Those readers well versed in differential
geometry should be forewarned that much of the special structure of the Hodge
theorem does not remain valid in our application. For example, unlike the
classical result of Hodge, our decomposition is not unique. And the notion of
the inner product of two vector fields, considered as points in an infinite
dimensional linear space, is not defined here.

Except for occasional asides to the reader who is comfortable with ideas
from differential geometry, the discussion in this paper will be conducted entirely
in the language of vector calculus and matrix algebra to make it accessible to
a wider audience. Therefore we will postpone further technical consideration of
the Hodge theorem until the Appendix. Those interested in the mathematical
origin of our result should read Appendix A first.

The starting point of our work is the standard identity from vector calculus
on ]R ^ [4],

A? = ~ Y ^ (Y^P (2)

where F is a smooth vector field and A is the Laplace operator acting separately

on each Euclidean component of F, i.e.
2

n 3 F,

AF = [AFt,AF.,...,AF where AF = ^ ^
j=l 3x.

3

The Helmholz theorem, a special case of the Hodge theorem which is sometimes used

in fluid mechanics [5,13], continuum mechanics [9,pp.147-150], and electromagnetic

theory [4,p.222], applies (2) to the decomposition of a vector field f on IR as

follows. If f vanishes rapidly enough at infinity, then the equation

AF = f (3)

can be solved by convolution [6], i.e

f (y)
F. (x)=--^fff — dy; 1 =1,2,3. W1 ^"JJJ 3 Ox-yll -

K.

Then the decomposition

f = AF = V(V-p - VX (VxF) (5)
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breaks f uniquely into the sum of the gradient vector field V(V*F) and the

solenoidal (or divergence-free) vector field, -7 x (Vxp.

If were a 3-port resistor with the constitutive relation i = f(v), and

if the convolution integral (4) in the components of f converged, then Helmholz*

theorem would allow us to realize as the parallel connection of a reciprocal

3-port characterized by i = V(V*F) (v) and a 3-port R2 characterized by
i = _V X (VxF) (v).

The significance of this second term is that a further algebraic manipulation
allows us to decompose R2 into reciprocal multiports and linear multiports.
The algebraic details are somewhat lengthy when n = 3, so we postpone them until

Eq. (37) and confine ourselves here to the case n = 2. In two dimensions [6] the

solution to (3) is given by

= 1,2.Fi(x) ff Inllx-yll dy, i =1 (6)

and (5) can be written out in coordinates as

fl(x^,X2)

'̂
<

1

•3^ 2 n3 F^ 2 "13 F2
23x^ 3xj^3x2 3x2 3xj^3x2

AF2
3^F^ 2

+
2

3x^ 23X2 3x^3x2
,

3x2 3x^3x2 ^ 23x^

/3F

I 3x

The first term in the last line is the gradient of the scalar function

(7)

1 ^*2 /
and the second term has zero divergence. This last term can be

rewritten as the composition of a linear map and the gradient of another scalar

function

3 Ph 3F,

3x^y9Xj^ 3X2

3 Ph 3F,

3X2\3x^ 3X2

to produce the final decomposition

-1

3 'h 3F,

3x^ \p*2 ^^1>

^3F,

3X2X3x2
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If ^ were a 2-port resistor characterized by i = f(y)> then each of the
gradient terms would represent a reciprocal 2-port, and, as we shall see, the
matrix represents a linear 4-port.

Two remaining problems must be solved before we can call this result a
general synthesis technique. The first is that constitutive relations of
practical devices do not vanish at infinity, so the integrals (4) and (6) will
normally diverge. But it will turn out that a solution to (3) exists nonetheless
[7,8], provided only that f is sufficiently smooth.

The second is that there is no obvious way to generalize this result to
higher dimensions, because (2) doesn't make sense for n_^ 4. This is where we
draw on the Hodge theorem - for a generalization of the vector identity (2). The
result is given in (28) in terms of standard Euclidean coordinates, and its
relationship to the general form of the Hodge theorem is discussed in the appendix.

1,3, S"™"^ry of Results, and Application to Network Synthesis

In this paper we show how any C*" hybrid n-port resistor can be realized
as an interconnection of linear nonreciprocal 2n-port resistors and C^) +1
nonlinear reciprocal n-port resistors. The linear 2n-ports can be realized on
paper using dependent sources, and it is not too difficult in practice to build
them from operational amplifiers [10].

Our decomposition technique does not yield a unique synthesis: it only
specifies certain constraints which the terminal characteristics of the reciprocal
n—ports must satisfy. Within these constraints, a certain range of choice is
possible. This is a significant practical advantage, since one version may be
much more appealing than another for actual hardware construction.

The problem of synthesizing nonlinear reciprocal n-ports from 2-terminal
elements is still far from solved. However some progress has been made, e.g.
the recent work of Hung [11] on the synthesis of complete reciprocal n-ports.
Since our result shows that reciprocal synthesis is the last roadblock in the
way of a solution to the complete resistive synthesis problem, we hope it will
motivate redoubled effort in that direction.

II. DECOMPOSITION OF TWO-PORT VOLTAGE-CONTROLLED RESISTORS

In this section we want to demonstrate our method by means of the simplest
possible example, without striving for generality or rigor. The general
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version of the technique will be given in sections III and IV.

2.1. General 2-Port Voltage-Controlled Resistors

Let ^ be characterized by i^ = fj^(v2^,V2), ±2 ~ solve
Poisson*s equation in these two functions, i.e. AF^ = f^ and AF^ = ^2' Solutions
F-(v.,v«) and F«(v.,v«) always exist, although they are not unique [7,8].^

X -L 21 z ^ m

Then we rearrange f = (^19^2^ ' where x^ = v^ and X2 ~ ^2* This
suggests the synthesis shown in Fig. 1. The interconnections are drawn in such

a way that ~ ~ ^2 ~ ^2 ~ ®2* will be designed so that

®1 ~ ®2 ~ i.e. "passes on" the independent variables v^ and V2 to
the ports of R2, so = v^ = v^ and ^2 = = v^. is the reciprocal voltage-
controlled resistor defined by the co-content function

/3F, aF«\
Gi(vJ^.vp =

i.e.

3Gi

3G

(10)

and R2 is defined by the co-content

/3F- 3F«\
G2(v'̂ ,v'P =

i.e.

3G«i''(v^.vp =3^1
(12)

Informally speaking, the purpose of the linear 4-port is to "pass on"
the independent variables v^ and V2 to R2 unaltered and to "pass back" the

^e discuss the problem of solving Poisson*s equation in Appendix B.
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dependent variables 1^ and from R2 so that they are "scrambled" as indicated
by the matrix

0 1

-1 0

Therefore when the sign convention for currents in Fig. 1 is taken into account,
the equations defining ^ will have to be those given in the figure. Note that
^is an active element, that is, the net power flow into a, given by
p=e.J * ^2^2* either sign. Thus cannot be synthesized
from ideal transformers and gyrators alone, since these are power-conserving or
"nonenergic" devices [12]. Asimple circuit for realizing S£ from two dependent
sources is shown in Fig. 2.

2,2. An Fr'«'«"Ple; Application to Ebers-Moll Equations for Transistor
In this section we will illustrate the method by using it to synthesize

the well-known d.c. Ebers-Moll circuit model for a transistor from the terminal
equations. This isn't a difficult problem; an engineer could solve it almost
by inspection. Its purpose is to provide a concrete example of our technique,
which is of course applicable to arbitrarily complex terminal equations as well.

Example 1. We have adopted the same notation as in example 1 of [3] to simplify
comparison. The low-frequency common-base Ebers-Moll equations for a pnp
transistor. Fig. 3, can be written as

Kv Kv2
i. = A,(e -1) - B,(e -1) = i,(v2,V2)

Kv. KV2
ij = -AjCe -1) + 82(6 -1) = 12(V2.V2)

where =''eB' ^2 ° "2 " ''CB' ° ^ES' ° Vcs ° VeS ° ^2'

®2 ° ^CS' ° q/kT-

In this case we can solve Eq. (3) by inspection to get

A^ Kv^ A^v2 Kv2 ^
¥'r'2> °^ ® ^2" ®1 2
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^ >^^2 ^4 ,,,,
- 2 ® 2 „2 ® ®2 2 • ^ ^

K K

other solutions, of course, can be obtained by adding harmonic functions to

and ¥2* From Eqs. (9) and (11) the content functions are

A- Kv- Kv«

&l(Vi.V2) = ^ e - AjlV^ + -^ e -

B Kv A2 Kv^
G2(vi.V2) = - X ® + ®l'2 + T ® " Vr

SO if we now revert to our convention that the variables for are named i^, i^*
vj^, V2 and the variables for R2 are i*^, i^, v^, v'̂ , the constitutive relation
for R^ is

8G Kv'

±[ = = A^(e -1)
^ (16)

3G Kv:

and for R^ we have

9G. KvV

^ (17)
3G« Kv"

while ^ remains as in Fig. 1.
The decomposition in (16) and (17) appears in Fig. 4(a). Both Rj^ and R2

are uncoupled 2-ports, and R^ just consists of the two diodes and D2* But
R2 is more difficult to synthesize because the device D^, as given in the
second line of (17), is active. And since we are synthesizing the 3-terminal

device of Fig. 3, we have connected the negative sides of ports 1 and 2

together to create a grounded 2-port.

The formal synthesis procedure ends here, but with a little engineering

common sense we can greatly simplify the result obtained so far. The first
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step is to notice that is active only because ^ produces the constraint
4 =-i,. If we substitute for the 4-port 92' which as in
1 ^ I

Fig. 4(b), then the active device becomes the passive diode D^. Next we
simplify and rearrange Fig. 4(b) so that it appears as in Fig. 5(a). Notice
that the arrows on the dependent sources are now reversed because i'^ + ±2
5- _ (A +•!.). The functional subunit labelled I and enclosed by dotted lines

produces the current which is i'̂ - But i'̂ = B^(e -1) =
And similarly, subunit II produces i2-i2 " ^1' ^1
substitute single dependent sources for units I and II, which reduces Fig. 5(a)
to Fig. 5(b), the well-known d.c. Ebers-Moll model for a transistor.

III. THE DECOMPOSITION OF AN ARBITRARY C*" FUNCTION f t r" •> 3R^

3.1. Decomposition of Functions- the >fain Result

In this section we will derive the higher dimensional generalization of
the 3-dimensional vector identity (2). Let "->1R ^) stand for the class of
all functions mapping ]R H for which partial derivatives of all orders
exist at each point,^ and be the class of C~ functions mapping IR^ M.
By identifying ^m'̂ ) with the class of c" vector fields on IR^, we can ^
adopt the following standard definitions from vector calculus. If Fe c (IR ->-lR )

00 n A „ A ^ ^^i AA- sjA, - -M—and <1) G C (m^), then div F = V-F = 2^ , grad ^ - Ux, ' 3x '•••'3x„ ,
i=l i L 1 ^ "J

2

A4, =7^$ = 2 ° [AFj^.AF , Afunction ♦ : m" mis
i=l 3x:

1

said to be harmonic if A(|) = 0.

Lemma 1. If F G "^IR'̂ ) , then

n n

AF = V(V-F) + 2

i<3

(18)

where each term [A^^] represents an antisymmetric nxn matrix with only two nonzero
entries, specifically

^It is possible, although a little awkward, to produce a version of these
results for finite k. The awkwardness arises from the fact that AF - f with

1q,'4"2
f G does not necessarily imply that F G c [13].
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1; k = i, £=j

[A^j] =<-l! k = j. )l=l
k,l

0; otherwise.
Vw

(19)

(The matrix case n=2 appears in (8) , and the matrices

[^isJ» and [423J case n=3 can be found in (37).)

Proof. Choose m, 1 _< m ^ n. Then the m-th component of AF is

n 9 F

E
m

i==l 9x.
X

The m-th component of V(V*F) is

n 9F

9x \ 3x.
m \i=l i

= E
9^F,

. , 9x 9x.
i=l m i

Since each matrix [A^j] has nonzero entries only in locations (i,j) and
(j,i), the only terms of the double sum in (18) which contribute to the m-th

component of AJ" are those corresponding to indices (m,j) with m < j or (i,m)

with i < m. (See Eq. (37) for an example.) Thus the m-th component of

n n /9F. 3F.\

i<j

is the sum of two terms. The first is the m-th entry in

j>m

(9F 9F.\

which is, by (19),

'9^F
m

j>m \3Xj

9^F.
9x. 9x ,

J m/

-10-

(20)

(21)

(22)

(23)

(24)



and the second is

/3F. 9F
m.2 Ybr - 3x.

i<m \ m li

which is

m

i<in \3x,

2
a F.

1

ax. ax
1 m

(25)

(26)

But the sum of (26), (24), and (21) is (20), and since m was arbitrary,

this completes the proof. "

We say that g G c'*'(]R ^) is a gradient map if g = V<|> for some
<j) € c"(]r"), and (f) is called the scalar potential for g. It is a standard
fact from vector calculus that g is a gradient map o

ag. ag^
3^7 (X) = (X)

J 1

n
l^i,j£n, Vx^lR

The central mathematical result of this paper is the following theorem,

which allows us to write an arbitrary function f ^ C (]R^->3r") as the sum of
finite number of terms involving only linear maps and gradient maps.

Theorem 1. If f ^ c"(lR"), then there exists a (nonunique) function

F € c"(]R^-^-IR") such that AF = f. And by decomposing AF as in (18), we can
write f in the form

n n (aF. aF.^

where the matrices defined in (19) .

In other words, f can be written as

(3)

?" io ^
-11-
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where the C(]R, 0 _< Jl j< C^)* are gradient maps and the lA^],
1 _< ^ n are nxn antisymmetric matrices.

Proof. The equation AF = f has a solution F in c"(lR"-^IRif f G c"(lR ")
[7,pp.80,82] [8,pp.3,128,287,355]. (In fact, since two solutions must differ by

a function with harmonic components, i.e. A(F*-F") = 0, and since all harmonic

functions are c", all solutions will be C if one solution is.) Then the expansion
of AF in (18) gives the decomposition of f in (28) . In order to match up terms

between (28) and (29), it is important to note that there are exactly (n^-n)/2
or (2) ordered pairs of integers (i,j) with 1 £ i < j £ n. The scalar potential
for each term g^ in (29) is given explicitly in (28), i.e. the scalar potential
for g^ is V*F and the scalar potential for where corresponds to an ordered

/aFf
pair (i,j),is •

Equations (8) and (38) are special cases of Theorem 1.

3.2. Solenoidal Functions

Borrowing from the language of electromagnetic fields [4], we say that

f € €"(11 ^->1R'̂ ) is solenoidal if V*f = 0. In this case the decomposition of f
in (29) can be simplified in two ways: the term g disappears entirely, and the

scalar potentials for the gradient maps g^^^ , 1 £ A^ (2), can be calculated very
simply in terms of line integrals of the component functions of f. The explicit

formula for the decomposition of a solenoidal function, which we have adapted

from a technique used in the proof of the Poincare* Lemma in differential topology

[20,21,24], appears in Eq. (30).

Lemma 2. If f E C (Ir'^IR'^) is solenoidal, then

?~E2 ^f^(tx)dt -x^l t^ ^fj(tx)dt| , (30)
i<j

where the matrices [A^jl defined in Eq. (19).
Equation (30) resembles a method for reconstructing a scalar function by

taking the line integral of its gradient along rays from the origin. A formal

proof is in Appendix C. The importance of this special decomposition for
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solenoidal functions comes from the following simple lemma, which is a nonlinear
generalization of the standard linear decomposition technique in Eq. (1). (The
relation between (1) and the results in this part will be discussed further in
section V.)

If f € C°(m"-K"), then f can be written (nonuniquely) as the sum of
a gradient map and a solenoidal map as follows.

(31)
f = V<{> +

/

\diere ^ is any solution of A(J) =

Proof. We discuss in Appendix Bthe fact that a c" solution 4, of A^, =V-f always
exists. And since V-(f-74.) = V-f - A4. = 0. the second term is solenoidal as
claimed.

3,3, An Alternate Version of the Decomposition of Functions
The method of decomposition indicated in theorem 1 requires that we solve

Poisson's equation n times, once with each of the component functions f^^ on the
right hand side. But lemmas 2 and 3 allow us to proceed by a different route
which only requires us to solve Poisson's equation once, and therefore saves a
great deal of labor when n is large.

Given f £ "), we first write f as the sum of a gradient term and
a solenoidal term as in (31). Then we decompose the solenoidal term as in (30).
The resulting decomposition is

f = V<|> + (f-Y<l>)

• t «(«>]« - <«>-(.,.)(«)»»
i<j (32)

where A(i) = V v f.

IV. THE DECOMPOSITION OF HYBRID N-PORT RESISTORS

4.1. Hybrid Representations and Reciprocal n-Ports

Definition 1. A hybrid representation of an n-port resistor is a representation

of the form y = f(x), where

-13-



for some value of k, 0 ^ k _< n.

We allow the values k = 0 and k = n, to indicate that the voltage-controlled

and current-controlled representations are included as special cases.

Definition 2. A hybrid n-port is simply an n-port resistor characterized by

a hybrid representation.

The importance of hybrid representations is that some useful n-ports have

a hybrid representation but no voltage- or current-controlled representation,

e.g. the ideal transformer.

Remark 1. For the geometrically inclined reader, the issue here is the following:
2nif we label the axes of ]R ^ as{vT,...,v ,i ,...,i }, then a resistive n-port

is uniquely identified as a set C ^ ]R where C is the set of all points
T

p = [vi,...,v ,iT,...,i ] such that the voltages and currents represented by
1 n 1 n

the components of the vector p can simultaneously exist at the ports of k-.

The set C is called the constitutive relation of For any physically meaningful

n-port (the technical term is "regular" [16]), C will be an n-dimensional manifold

M, embedded in ]R and in most practical cases M will be connected and globally

diffeomorphic to ]R^.
At this point the attitude of circuit theorists diverges radically from that

of differential topologists. In the first place, a circuit theorist considers

the coordinates {v^,...,v^,i^,...,ij^} on IR to be fixed, permanent, and
immutable because they represent the physically measurable variables at the ports

of And secondly, a circuit theorist would not consider M to be in any sense

equivalent to every diffeomorphic image of M. Thus if and ^2
n-port resistors characterized by different embeddings of the same abstract n-

dimensional manifold Min 3R then^^^ and ^^2 completely distinct from a
circuit point of view. For example, a 1 ohm resistor is characterized by M.

2= {(v,i) ^ ]R jv = i} and a 1 volt source is characterized by = {(v,i) ^ ]R |v = 1}.
1 2Now and M2 are merely two different embeddings of ]R in IR , and therefore

topologically equivalent, but of course a 1 ohm resistor and a 1 volt source are

conqpletely distinct circuit elements.

In fact, the only notion that circuit theory wants to borrow from differential

topology at this point is the idea that it is possible to consider various choices
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of coordinates on M. And, as we shall see, the class of coordinate systems known

as hybrid representations is extremely limited from a topologist*s point of view.
Our final requirement for a hybrid n-port is that, after possibly renumbering

the ports, Mmust be the graph of a function y = {(*)» where x and y are defined
in (33). In other words, there is a vector x of k currents and n-k voltages,
all from different ports, such that x is a set of coordinates for Munder the
global parametrization: x h- [f ^^(x) ,... ,f ^^Cx) *****n'̂ l' ***'̂ ^k+l^~^ *' *
= Fv . V -i ....,i € 3R^". In this case f is called a hybrid representation'•l'****n'l n - c c •
of the n-port. If n=l, this amounts to assuming that Mis the graph of a function
V = f(i) or else the graph of a function i = f(v). Although this is a very
special requirement from a geometric point of view, it is sufficiently general
for most circuit applications. An extended discussion of these points can be
found in [14,15,16].

Definition 3. A conjugate hybrid representation of an n-port is a
representation of the form y = f (x), where

X - [-ii »~i9> • • • ****^n

. ,T
y - [v^»'^2'***'^k'^k+l'***' n-" *

Comparing (34) with (33), we see that the only difference between a hybrid
representation and a conjugate hybrid representation is in the first k entries of
X. The reason for introducing this awkward distinction is that for hybrid
representations there is generally no relation between ^ being reciprocal (see
Remark 2below) and f being a gradient map, except in the special voltage- ^
controlled and current-controlled cases, k =0 and k =n. But if ^ is a C
hybrid n-port resistor and y = f(x) is a conjugate hybrid representation of
then^ is reciprocal if and only if f is a gradient map [16]. In this case
the scalar potential for f is called the hybrid content.

Remark 2. The notion of reciprocity is familiar to all circuit theorists, so
there is no need to define it here in engineering terms. But in geometric terms,
reciprocity is a local property of the manifold Mand reflects the way the

^One could avoid this notation by defining the reference current
out of the positively referenced terminal of each port, opposite
coLention. Then reciprocity would be equivalent to f being a gradient map.
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2ttmanifold is embedded in ]R . Specifically, if the constitutive relation of an
1 2nn-port is an n-dimensional C manifold M embedded in ]R , and if the axes of

2n
]R are labelled as in remark #1, then the n-port is said to be reciprocal if

n

the 2—form ^ ^ ^^k ^^"^ishes on M[15,17,18]. It is not hard to verify

that whenever the conjugate hybrid representation y = f(x) is a global para-

metrization of M, this definition is equivalent to f being a gradient map.

If a given hybrid n-port can be characterized by several different conjugate

hybrid representations, then every representation f is a gradient map or else

none of them is. Thus reciprocity is truly a property of the n-port and not

of the particular choice of coordinates used to represent it. The importance

of reciprocity in network synthesis lies in the fact that, (except for non-

regular, i.e. pathological, cases) every 2-terminal element is reciprocal and

every n-port which can be synthesized from reciprocal elements is also reciprocal

[171,

4.2. n-Port Decomposition

We now want to show how the results of section III allow us to synthesize

any C~ hybrid n-port from C^) +1 reciprocal hybrid n-ports and C^) linear
2n-ports.

Given a C*" hybrid n-port, we first write its constitutive relation in the
conjugate hybrid form y = f (x), where x and y are defined in (34). We then

solve AF = f for the vector function F (x), which allows us to decompose f

as we did in Eq. (28), i.e.

n n / aF aF.\
f (x ) = AF (x) = 7(V-F) E E [A ilVl ^

i=l j=l • \ j i/
i<j

The first reciprocal n-port is characterized by y =V(V*F) (x), and the

/aF^ aF. \
other (2) reciprocal n-ports are characterized by y ~v( ~ ) (?) >
1_< i < j _< n. Each linear 2n-port, represented by a matrix [A^j]» "passes
forward" the independent variables x unaltered and "passes back" the

dependent variables y after operating on y with the matrix [A^^j.
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4.3. Decomposition of a General 3-Port Hybrid Resistor

Example 1 illustrated the technique for the 2-port voltage-controlled

case k = 0, n = 2. The following example illustrates the hybrid case k = 1,
n = 3.

Example 2. Suppose we wish to decompose a given C 3-port resistorwith
. iT _ r • •the hybrid representation y = f(x) where x = [i2>V2»V2J and y - *

We must first change the constitutive relation to the conjugate hybrid form

X= f(x), where x = V unaltered. Next we solve Poisson's
equation AF = f for the vector function F(x), which we can decompose according
to (35).

In this case (35) takes on the special form of (5), i.e.

X= f(x) = AF(x) = V(7.p(x) - VX (7xp(x), (36)

since n = 3. Although we could simply use (35) to decompose F and arrive at

(38), we choose instead to expand and rearrange the last term on the right
hand side of (36) in order to display the algebraic manipulations that led to

the general formula in Theorem 1.

-V X (Vx|)(x)

= V X

3F2 3F3 3^Fi 3'f2 32F3
ax^ 3X2 8X2^ ax23x^ ax^ax^

3F3 3Fi
8X3 3x3 3x/ ax2ax2 8x38x2

3Fi 3F2 32F3 3^ 23^F2
3X2 3xi 3Xi^ ax^ax^ ax^ax2

2
a F.

aV

""2 2 "
3X 3 ^2

^2 2 n3\ 3^F3
0

3X2^ 3x3^
2 23\ 3^F2

+

9 2

^^2 ^^3

>

"" 8X3^ + U 3x3^ ^^=^2
2 23^F3 3 F3 32F2 3̂2F3

*

0 3X38X3 3^^2 _ - 9X29X3
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-1

2a F^ a^F2
ax^ax2 ax^^
3^Fi a^F2
3x3^ ax^ax2

3^Fi a^Fa
ax2ax2 aXsBXjj -1

^ a^F, 9^F.
ax^a x^ ?x^3x2

a^F. aV
ax^ax^

ax.

0 -1

0
1

1 0

-1 0 0

0 0 0

2 2a F2 a F^

j^ ax.

'\^2 ^*1/

0 0 0

0 0 1

0 -1 0

J'h !!i- \3x3 8X3

3 3 /aF. aF.

S S''«" (4 •^
i<j

ax^ ax2

0 0 1

0 0 0

-1 0 0
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Adding this to the first term on the right hand side of (36) yields the

final decomposition

/3F 3F
X= 4F (x ) = V(V-F) (x) + IA^2^ ^ " 3^/

I (X) + [^23]
J >'V

3 ""3

in agreement with (35) •

This decomposition allows us to synthesize ^ from reciprocal 3-ports and
linear 6—ports as shown in Fig. 6. The network is drawn in such a way that

il = ii = jj: =i'i' = V2 =v- = e-' =e- =e''". and V3 =v' =e'' =e-= e''"
The linear 6-ports are intended to "pass forward" the independent variables
(-i^,V2,V3) without alteration, so they are partially characterized by the

IIe
"

e
'

I

lil
t

1
'e

5

jni
l

1
,V
2=±3 = =i- =±1", V2 =vj =V- =V- =V-'". and V3 =v' = =v- =v-'.

The resistive 3—port Rj|̂ is characterized by the hybrid content function

v^(-ij[,v^,vp 3(-ip

i'f-1' v' v'3 = (39)2^ ^l'̂ 2' 3^ 3v^
swi^(-i',v',vp =̂

as required by (38). Similarly R2, R3 and R^ are characterized by the hybrid
content functions^3;J2»^3 and^^t^^, respectively, where
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2^ 1* 2' 3^ 3v" ~
9F, 9F2

2 a(-ip

3F, 9F,"SWaC-i-.v-.v-) =^-3^ (40)

%i-il",v<"yp =̂ -9F^ 9F^

3 2

We can complete the characterization of s£,. se, , and by noting that
CO 2 3 4 °
^2 ™iist "pass back" the dependent variables (v^,i2,i2) "scrambled" as indicated
by the matrix [Aj^2J > i*e. must produce the transformation i^ e^, -»•

0 So the remaining equations needed to characterize ^2 "^5'
J2 ~ ^3 - 0' Similarly, must satisfy e!||* = = 0> ^3* = ""^4'J
and must satisfy e^" = 0, j^" = "35"* 33" ~ ^5"*

In the case of arbitrarily large n and k, 0 ^ k _< n, it is easy to produce

a network corresponding to (35) by exactly the same method used here. The details

_are lengthy and uninformative, so we have omitted them.

x-Solenoidal n-Ports

Definition 4. An n-port resistor characterized by the conjugate hybrid

representation y = f (x) is said to be x ~solenoidal if f (x) has zero divergence,

n 9f

i-e. £ 3^ 2 0.

We have adopted the term "x - solenoidal" rather than simply "solenoidal"

because one hybrid representation of an n-port may have zero divergence while

another does not. (Consider for example the current-controlled and voltage-

controlled representations of the uncoupled linear 3-port consisting of three

resistors with values of Ifi, Ifi, and -2J2. Only the current-controlled

representation is solenoidal.)

If <15. with the conjugate hybrid representation y = {Wj is x-solenoidal,
then the decomposition in section 4.2 can be greatly simplified by using the

special result given in (30). In this case we do not have to solve Poisson's

equation at all, and the resulting synthesis requires (2) reciprocal hybrid
n-ports rather than (2) + 1. For reference, we summarize this result in
lemma 4.
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Lemma 4.

If ^ is a C*** x-solenoidal n-port, then ^ can be realized by an inter
connection of (2) reciprocal n-ports and C^) linear 2n-ports.

4.5. An Alternate Version of the Decomposition of n-Ports.

We can use the conclusion in section 3.3 to propose a variation on the

method of n-port decomposition given in section 4.2. Using equation (32) as
the basis for our technique yields essentially the same result as (28), but
requires that we solve Poisson*s equation only once. In addition, it suggests
the following reformulation of our decomposition result in language similar to

that of the classical linear decomposition theorem.

Lemma 5.

Every n-port characterized by a C conjugate hybrid representation y = f(x)
can be realized by the interconnection of a reciprocal n-port and an x-solenoidal

n-port.

Example 3.

To illustrate this alternate procedure based on (32), we will again

consider the d.c. Ebers-Moll equations for a pnp transistor,

Kv- Kv

i^ = -1) - B^(e -1) = i3^(v^,V2)

Kv Kv,

With X = y, f(x) = i(y), and n = 2, (32) becomes

(— — f— — r" ^

ij^Cvi.Vz) d<{>

3v^
+

0 1

9<t>
-1 0

with

3v2 3v2 " ^-1 ^-2

(41)

(42)

(43)

This will produce the type of synthesis shown in Fig. 1, but with Gj^(v^,V2)
= <()(v^,V2) and G2(v^,V2) equal to the expression in brackets in (42).
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Substituting (41) into (43), we have

= A,Ke ^ + B„Ke ^
Kv. Kv,

av! av
1 "2

and the algebraically simplest solution is

Kv. Kv«

(44)

(45)

The expression in brackets in (42) becomes, upon substitution of (41) and (45),

.1,- Kv«t -1_ Kv, t
dt.

(46)

If we carry out the integrations in (46), take the gradient as indicated in (42),

and substitute both that result and (45) into (42), we arrive at the final

decomposition

r* —* r
—* ^

r 1
A^e 0 1 A2(e -1) + B2

Kv,
+

Kv

12(^1,V2) -1 0 -B^(e -1) - A^
(47)

In the language of section 2.2 and Fig. 1, the constitutive relation of is

Kv* Kv*
(i|,ip = (A^e ,826 ) and the constitutive relation of R2 is (i!^,i'p

Kv^ Kv^
= 1^2^® ~ ®1^® ~ ^1/* (17), both Rj^ and R2
have turned out to be uncoupled 2-ports. But the two decompositions are very

different. This time, for example, each port of R^ and R2 is active.

4.6. The Lack of Uniqueness

The decompositions in examples 1, 2, and 3 are very far from unique. This

is potentially a great strength of the method, for it will almost certainly turn

out that some network realizations will be superior to others. From the

theoretical point of view, this flexibility could provide a method for generating

families of equivalent nonlinear networks. This potential application is

especially intriguing, because virtually nothing is known about the problem so

far. And from the point of view of hardware realization, one circuit might be

much easier to build than another.
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Let us examine the three sources of this nonuniqueness in example 2. The
first is that there will usually be many hybrid representations of other than
the one in which i^, and are the independent variables. Adecomposition
based on one of these will yield different descriptions of and Th®
second is that the equation f = AF has many solutions; specifically, if F(-i^,V2,v^)

3 3is a solution and H(-i^,V2,V2) : 3R -»• m has components which are harmonic
functions, then F+H is also a solution and yields a different specification for
R in general. Since the space of all harmonic functions on 3R is infinite

dimensional for n 2l 2, this allows us a great deal of freedom and seems intuitively
to account for most of the "slack".

The third source of freedom also affects only R^* ^4* Each of these
resistors produces three dependent port variables, but only two of them are

used in the circuit, i.e. "passed back" by the corresponding linear 6-port to

contribute to the output variables (v^,12,13)' For example, ^2 Passes back
v'̂ and 1*2 but "ignores" i^- The reason of course is that ^^2 was created to
realize the transformation indicated by the matrix [Aj^2 '̂ which has only two
nonzero entries. In a similar way, ignores i'̂ * and ignores v'̂ ", so these
three variables do not affect the output of

We will illustrate the freedom these "ignored" port variables offer us

by considering R2. Since v!^ and i'̂ appear in the output of we will require
that

=IRf) ("ir-r-P' ^2 =̂ (-i^v••,vp. (48)
The decomposition succeeds no matter what the function riay be.

The only additional constraint is that if we wish R2 to be reciprocal, we must
3i" 8v" 31" 3i"also require that "g^ITTTy e^ and -^ =̂ . Observe that this still leaves

the dependence of i^ on v^ to the convenience of the designer. This type of
freedom is greatly expanded when n > 3, but disappears entirely when n=2.

V. RELATION TO THE STANDARD DECOMPOSITION OF A LINEAR

n-PORT INTO ITS RECIPROCAL AND ANTIRECIRPOCAL PARTS

As we pointed out in the introduction, it is well-known that a linear

resistive n-port R, characterized by y = Mx, can be broken down into an
~ ~ IT

interconnection of two n-ports R^ and R^, where R^ satisfies y = )?
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1 T^2 satisfies X~ ~2 If x = i and y = v, then the sum

y="I (^^)x +I (M-m''̂ )x (49)

is effected by connecting and R2 in series^ if x = y and y = i, then they
are connected in parallel* In either of these two cases, R^ is a reciprocal

and R2 is an antireciprocal one. (Note, however , that the equation of

symmetric matrices with reciprocal elements and antisymmetric matrices with

antireciprocal elements works only in the current- or voltage-controlled case.
If fails when x or y represents a mixture of voltages and currents [17].)

The research reported in this article was motivated by a desire to find a

nonlinear generalization of this classical technique. We can see that (49) is

a special case of our result, since the first term on the right hand side is a

gradient map and the second term has zero divergence. So our method does in

fact generalize (49) although it doesn't reduce to (49) in the linear case due to
the method's inherent nonuniqueness. The following example, which should make

this last point clear, shows how to take advantage of the nonuniqueness to

generate the classical decomposition (49) as a special case of our result.

Example 4. If we use our method to decompose the linear 2-dimensional map

y = i.e.

'1

^2

^1 "^12

™21 ™22

f^(x^,X2)
(50)

we first solve the equations AF^ = f^ and AF2 = f2 by inspection and obtain the
algebraically simplest solutions

F (X X ) =
l^'^l'V 6 6

F(X X)= +'̂ 22^.2^ l'*2' 66
Then decomposing (51) as In (7) and (8), we have
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— — mm —^

"i "11 ®12 ''i
AF^

J2_ J°21 ™22 ^2_ 4\

a^F2 3^Fi 3%"
3x^

,|

axj^ax^ 3x^ ax^ax^

3Fi 32F2 + 3^Fi
ax^ax^ 3x^ - _

^ 2ax^ „

— r- r

m 0
11 ^1

0 ^2 ^1

55 +

0
22

Vm —'
^2_ J^21 0 *2

(52)

which is quite different in general from (49), although both decompositions
share the feature that they yield the sum of a gradient term and a divergence-

free term.

However, the solutions to Poisson*s equation given in (51) are not unique,

and another possibility is

, , "124 , ,2,^ (•"12:^ 3— + + 4 V2 • 12 ""2

- . . ™21*1 . ®22^2
V ° ~6~ ^ "T"

(53)

which differs from (51) by the addition of a harmonic polynomial to the first

term. If we repeat the decomposition given in (52), but this time using

and P2 in place of and F^, we obtain

— —
A,

^1 AF^

J2_

1

CM<FL4
)

m
11

°'l2'^21

which agrees with (49).

"'12-*™21

m
22

°'2l"°^12
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So our method gives a variety of decompositions in the linear case —

in fact, we could easily have written (50) as the sum of two nonlinear terms

by adding the appropriate harmonic functions to and F^. And, as we saw, a
special choice of harmonic functions allowed us to reproduce the classical

decomposition of (50) shown in (49), at least for n=2. The following lemma

shows that the classical technique is a special case of our method for all

n>2 as well.

A

Lemma 6» For any real nxn matrix M there exists a solution F of the equation

Af'(x) = ^ such that in the decomposition

n n /3F. 31".\
to = A|(x) = 7(7-1) + 2 E lA. ] 7I— - (55)

i=l j=l \ j i/
i<j

the following equations hold:

V(V-F)(x) =j (^m"^)? (56)

n n / 9^4 1 T
E E lAy]VM -^ )=2(M-M )x . (57)
i=l 3=1 "^ \ J i^

i<j

The proof, which is constructive and straightforward, is in Appendix C.

VI. CONCLUDING REMARKS

Our decomposition and that of Chua and Lam [3] have one thing in common. They

both break up and rearrange functions mapping ]R^ to by means of particular
linear differential or integro-differential operators with constant coefficients.

There are surely other operators of this type which could be useful in n-port

decomposition, quite likely more useful than the ones we have investigated. So

far we have been unable to isolate just what algebraic properties make an

operator suitable for this purpose and therefore have been unable to undertake

a systematic search. This seems to us to be a significant mathematical problem,

and someone well acquainted with the algebraic properties of differential

operators might be able to produce exciting results.

Second, as we mentioned in the introduction, our result highlights the

importance of reciprocal resistive synthesis techniques. We do jiot yet know how
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to take advantage of the considerable latitude provided by the nonuniqueness in
our method. Perhaps this sort of understanding will develop along with further

progress in reciprocal synthesis.

In a more speculative vein, it seems that our result might have some

applications in the qualitative theory of ordinary differential equations.
Consider, for example, the autonomous planar system

f^(Xj^,X2)

*2

= f(x)

We decompose f as in (8) and obtain

X,

/3F 3F2\ ("0 1] Ml 3F2\
-(^3x^ 3x2/ ^Ll oj ~VX2 "3x^y '

(58)

(59)

which breaks f into the sum of a gradient vector field and a Hamiltonian vector

field. Keeping in mind that the matrix has no effect on the magnitude of the
second term and that there are many such decompositions, suppose we could find

one such that

(60)

everywhere except at points where both terms are zero. Then it would

is increasing along trajectories.
/3Fi 3F2

follow that the scalar function \

a result that rules out the possibility of closed orbits and provides considerable

insight into the qualitative behavior of solutions of the differential equation.
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APPENDIX

APPENDIX A: THE HODGE THEOREM

The purpose of this appendix is to explain the origin of the ideas in this
article and their relation to certain topics in differential geometry. Sections
A.l and A.2 are addressed to the reader with at best an undergraduate acquaintance
with differential forms, while section A.3 assumes that the reader is quite
familiar with the Hodge theorem.

In section A.l we develop the equation A= d6+6d for 1-forms on ]R and
explain what these sjnnbols mean. Lots of examples and explicit calculations are
included and the relation to vector calculus on is emphasized. Then we show
how an algebraic manipulation of the Euclidean coordinate expressions for this
decomposition leads to (18) and to our main result, theorem 1. The reader who is
familiar with these ideas may wish to skip immediately to theorems A-1 and A-2.
They restate our theorem 1 in the language of 1-forms on IR and are designed to
bridge the mental gap between theorem 1 and the Hodge theorem.

Section A.2 is an informal introduction to the Hodge theorem itself. The

simplest possible example, the decomposition of the space of 1-forms on the circle,
is worked out in complete detail.

Section A.3.is addressed to the reader who is already familiar with the

Hodge theorem. In it we discuss the rather peculiar relationship that exists
between that theorem and our main result, especially those features of the Hodge

theorem that disappear in our version.

A.l. The Operators *, d, 6, A and the Decomposition of 1-Forms on n".

This section presupposes a very elementary acquaintance with differential

forms and wedge products on The authors have found [20-23] to be excellent

introductions, and any one of them will provide much more background than is

needed here.

The conclusions we will draw in this section about 1-forms on ]R have

exact natural analogs concerning vector fields on IR and maps of IR into

A-1



n

itself, once we agree to identify the 1-form ^ f£(x)dx^, the vector field
n .

(?) av » function f : ]R^ -• ]R^ whose component functions in the
i=l ^

usual coordinates are {f ,f ...,f }. We will take this identification for
12 n

granted in the remainder of the apipendix.
P n 00Let E (]R ) be the space of smooth (i.e. C ) p-forms on IR^. The next

four definitions introduce basic operators that transform k-forms to forms.

The first operator is algebraic rather than differential in character and produces

an (n-p)-form from a p-form.

Definition A.l. The Hodge star operator, *, is that (unique) linear operator

mapping E^(]r'̂ ) into e'̂ ^(Ir'^) such that, if tu = dx ^A...Adx then
a)A(%) = dx^A...Adx^.

For example, on H

* <i>(x,y) = <()(x,y)*(l) = <j)(x,y)dxAdy

*dx = dy, *dy = -dx (A-1)

*(fdx+gdy) = fdy-gdx.

The negative signs in (A-1) arise because of the anticommutative property of

the wedge product, dxAdy = -dyAdx.

Lemma A.l. If a e (IR^), then **a = (-l)P^""P^a.

The proof follows easily from the anticommutativity of the wedge product

on E^(]R^).
The next operator, which is the most fundamental of all, produces a (p+l)-form

from a p-form.

Definition A.2. The exterior derivative d is that (unique) linear differential

operator mapping E^(]R^) into E^^(3R^) such that

(Xl» •••»Xn)dx ^A..,Adx'̂ } = dx^^ Adx^A...Adx (A-2)
The operator d, applied to E°(]r'^), corresponds to the gradient operator in

A-2



vector calculus, since d ((>(x) =2 precisely *d),
i=l i

1 3
applied to E (IR ), corresponds to the curl operator, since

rdf 3f, 3f2
*d{f^dx+f2dy+f3dz} = dxAdx +— dyAdx +— dzAdx + dxAdy

af. Sfo 3^3 ^^3 ^ )
+ —^ dyAdy + -r-^ dzAdy + dxAdz + dyAdz + dzAdz>

3y oz VX Oj j

•*{(^ -ir) ♦ (ir -It) ♦ (ir -5r)}

Since dx^Adx^ = 0. In fact, d, applied to E^(m^), is the correct extension
3

to n dimensions of the curl, which is defined in vector calculus only for IR .

LpTTima A.2, If a ^ e'̂ CIR^), then dda = 0 ^ E^ (3R ), i.e. d = 0.

The proof is a straightforward computation and can be found in [20-23].
If a e E°(]R^), then lemma A.2 is just the familiar identity from vector

calculus, V X (V<|)) =0.

The next definition constructs from * and d a new operator which transforms

a p-form to a (p-l)-form.

tl ^

Definition A.3. The linear differential operator 6, mapping E^(m ) into E (3R ),
defined by 6 = (-l)^^ '̂*"^^*d*.IS

For norational convenience, our definition of 6 differs in sign from that
1 3.

given in [24]. The following calculation shows that 6, applied to E (IR ),

esponds to the divergence operator from vector calculus. (Note that (-1)corr

= 1 in this case.)

6(f.^dx+f2dy+f3<iz)

*

f^dx + f2dy + ^3^2 h- f^dyAdz + f2dzAdx + f^dxAdy

A-3



d/3f 3f 3f \ */af af af \
"Va^ +aT ^aT-y +—+—j (a-4)

3
When applied to a 2-form on K , 6 corresponds to the negative of the curl,

as we see below.

6(fj^dyAdz+f 2d2Adx+f )

* d I af2\
fjl^dyAdz + f2dzAdx + f^dxAdy h- f^dx + £2^7 +

/3f^ 3f^\ (-1) '̂̂ *

^" •^/ 13^" jtI +V"sr - -^J (a-s)I'Ja . a, . 'J2)ySx dz j ^ y3y 3x j

Lemma A.3. If a GePch'^), then 66a = 0 e i.e. 6^ = 0.

Proof. 6^a = (-l)'̂ P(-l)'̂ ^P"^^^*d**d* = (-l)P '̂̂ ~P '̂*^*d^* = 0, since d^ = 0.
n

2 3
If a £ E (IR ), then lemma A.3 just says V*(7xa) = 0.

1 3On E (]R ), the following definition reduces to Eq. (2).

Definition A.4. The Beltrami-Laplace operator A: E^CIr'̂ ) •*• E^(IR^) is defined
by A = d6+6d.

A justification for this definition and symbol is the following lemma,

which shows that A, when applied to a 1-form on simply takes the Laplacian

of each component function separately, in agreement with our definition in

section 3.1 . In fact, this conclusion holds for general p-forms on IR^, but
we shall only be interested in the case p=l.

Lemma A.4.

2n .\ n / n a f.

i E fidxM = Z E -f^K (a-6)
1=1 / i=i \j=i ax
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n *2
Proof. When applied to a 1-form, 6 = (-1) *d*, so d6 = d*d*. And when applied

to a 2-fonn, 6 = (-l)'̂ *^*d* = (-D^^^d*, so 6d = (-l)^*d*d. We let dV represent
the n-form dx^A...Adx" and dV/dx^ represent the (n-l)-fonn corresponding to dV
but with the term dx^ missing, etc. The separate parts are computed as follows:

d 6 (S
n . * n„ -t 1 riv ^ A * n 8f. d n n 8 f.

i=l i=l dx i=l i

6d

(n .V

n . d n n /3f. .a a » ^ #"--i "i \
E E - 3^) "• E ELx. -
i=l i=l j=l \ 1 j/ 1=1 j=l\ 1 3/

i<j i<j

n n /3 f.
_1E El

3^f.

. * n n /9f. 3f.

i \ ^
(-1)

. - 3x. 3x.3x.
1=1 i 3=1 1=1 3 1

i+j-1 dV

dx^dx^

(A-7)

i=l 3=1\3x.
i<j ^

3x.3x.
1 3 dx* •k

H- (A-8)

'3^fn n

n n / 3^f. 3^f. ^
? (3x.3i. "a2)

1=1 3=1\ 3 1

E E (Itt'- snrMjti;
3^f

i=l j=l
i<j

>3x 1 J

n n r/3 f
L J. _

i=l 3=1L\3x:
i<j

3^f
3x,3x.

1 J

dx^ +

i-1 dV

dx

J

3 i 3x

2 23'^f. 3 f.
i 1

, il (-1)"(-1) dx > v>

Sx'
3x.3x.

3 1-

dx

We rearrange the result of (A-7) as follows:
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n . n n / . 3^f. .\ n n 3^f.d« D qdx =s Efeat: +3^3^^ "^7+ S S siTit:
i=l i=l j=l\ 1 j i j / 1=1 j=l 1 j

l<j i=j

and add this to the result of (A-8) to get

/ 2- 2. V 2.n . n n /a f. . a f. A n n a f-(as«d) E f.dx^ =E E dx^ ^̂ dxA. E Erf:
1=1 1=1 3=1 \9x 9x / 1=1 3=1 1 3

1<3 i=j

n / n 9^f.\ .
= E E dx^ •1=1 \j=l 9x^ /

Lemma A.5. If 3 GE^(]R^), then there exists a solution a GE^(IR^) of the
1 n

equation Aa = 3» I.e. A maps E (3R ) onto Itself.

Since lemma A.4 has established that A acts on each component of a
n c. •

separately. It Is enough to show that A maps C (]R ) onto Itself. Proofs of this

fact can be found In [7,8].

Lemma A.5 Is special to and does not generalize to E^(M) for a compact
manifold M. This Is one way In which our technique differs from the Hodge

decomposition.

Definition A.5. Suppose a GE^CIr'̂ ). Then a Is exact If there exists <|> ^ E°(]R^)
2

such that a = d(f) (and hence da = 0), and a Is co-exact If there exists 3 G E (IR )

such that a = 63 (and hence 6a = 0).
O

An exact 1-form on ]R corresponds to a gradient (and hence curl-free)
3

vector field . See (A-3). And a co-exact 1-form on K corresponds to a vector

field which Is Itself the curl of some vector field (and hence has zero divergence)

See (A-5).

Theorem A.l. Every 1-form 3 on can be written as the sum of an exact 1-form

and a co-exact 1-form as follows: choose a ^ E (IR^) such that Aa = 3 and then

3 = d6a + 6da = dw + 6ri (A-10)

A-6



2 n
where 6ot —w^ E° (IR and da = ri ^ E (]R ).

Theorem (A.l) follows immediately from def. A.4 and lemma A.5. In the

body of this article, examples of the above decomposition appear in the language
of functions mapping into 3r" rather than the language of differential forms.
Equations (7) and (8) demonstrate the case n=2, (37) and (38J demonstrate n—3,
and the general case appears in (28).

Definition A.j. For each ordered pair of integers (i,j) with 1 £ i <j £ n, the

-±j
linear map [A, .] : E^(m") + E^(k") is defined by

f, (x)dx'') =• f,(x)dx^ - f,(x)dx^. (A-11)

This definition of [A^j] agrees with that given in (19).
We are finally in a position to restate theorem 1 and equation (28) in

a way that clearly reveals their inheritance from the Hodge theorem.

Theorem A.2. For each 1-form 6 = E B. (x)dx^ on m", there exists a 1-form
i=l

n

0=2 a.(x)dx^ such that
i=l ^ "

n n 9a. 9a

A-7

3 = Aa = dda + £ £ ^

i<j

This is just Eq. (A-10) with the term 6da expanded as in Eq. (28).
Notice that we have not required 3 to vanish at infinity. Theorem (A.2)

is exactly the extension of the Hodge theorem to that we need for n-port
decomposition. However, when restricted to differential forms on compact
manifolds, the Hodge theorem acquires a great deal of beautiful structure which
is lacking in our version. We have provided a painless introduction to the Hodge
theorem on compact manifolds in the next section; intermediate treatments can

be found in [13,25]; and a very elegant presentation with complete proofs
appears in [24].



A. 2. Introduction to the Hodge Decomposition of Differential Forms on a Compact

Rlemannlan • Manifold

This section is designed to provide an elementary descriptive Introduction

to material which Is treated much more carefully In [13,24,25]. These three

references are relatively readable and should be consulted for further Information.

The Hodge theorem provides an orthogonal direct sum decomposition of E^(M),
the space of smooth p-forms on a compact oriented Rlemannlan manifold M. The

operators *, d, 6, and A In this new setting are straightforward generalizations

of the versions defined In the previous section for p-forms on Euclidean spaces.

In fact. If we now let represent a set of local coordinates on M such

that dV = dx^A,..Adx^, then the coordinate expressions for *, d, 6, and Aon M
carry over from section A.l exactly.

The Rlemannlan metric on M Is used to define * In a coordinate Independent

way, and d was already coordinate Independent. Therefore 6 and A, which are

defined In terms of d and *, are also coordinate Independent. The space E^(M)
Is viewed as an Infinite dimensional vector space, and the expression (a)A*n)

defines a polntwlse Inner product of any two p-forms, oj and n- The Inner product

on E^(M) Is produced simply by Integration over M, I.e. = I a)A*n<iV, so
•'M

E^(M) becomes an Inflnlte-dlmenslonal Inner product space.
In this setting a great deal of structure emerges vdilch was lost In our

application. It turns out that A = d6+6d Is self-adjoint and that the Image of

d6 and the Image of 6d are orthogonal In the Inner product defined above.

Furthermore, the kernel of A Is finite dimensional.

Since the kernel of any self-adjoint operator Is orthogonal to Its Image,

the conclusion Is that A breaks up E^(M) Into three mutually orthogonal subspaces:
ker(A) - the finite dimensional space of harmonic forms; Image (d6) - the space

of exact forms; and Image (6d) - the space of co-exact forms. The following Is

the simplest possible example to Illustrate these Ideas.

Example A.l. On the unit circle, S^, we choose 0 ^ [0,2ir] as the coordinate.
If f ! [0,2'n"] -»• 3R Is a smooth function, then f(0) d0 Is a smooth 1-form on S

Iff f" joins up" smoothly at 0 and 2Tr, i.e. f '̂̂ ^(O) = f^^^(2TT), n = 0, 1, 2, ...»
where represents the n-th (one-sided) derivative of f and == f. So

E^(S^) Is just the space of smooth functions on [0,2Tr] which join up properly
at the endpolnts.
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To decompose e\s^) via the Hodge theorem, we first notice that ^ '

and that A= d6 since 6d =0because there are no 2-forms on S^. So the 1-form
.2.

f(9) d0 is harmonic, i.e. A[f(0)d0] =d6[f(0)d0] 0, iff ^^2 ® a0+c.
But since f(0) = f(2TT), a must be zero, so the harmonic forms on S are just the
"constant" forms, cd0. And the space of harmonic forms on is 1-dimensional.

8^<i»0) ir
Now f(0)d0 e image (d6), i.e. f(0)d0 is exact, iff f(0) - ^

90

smooth function <j> on S^. Since in that case <!>' =*^ ^ smooth
function on S^, f must satisfy

2Tr

f f(0)d0 = <|>'(2Tr) - 0'(O) = 0 (A-13)
•'0

in order for f(0)d0 to be exact. It is not hard to verify that (A-13), whxch
just says that the average value of f is zero, is also a sufficient condition
on f to make f(0)d0 exact.

In conclusion, the Hodge theorem applied to E^(S^) breaks up any 1-form
f(0)d0 as follows:

f(e)d0 =1^ f(0)d0jd0 +|f(0) -^ f(0)d0|d0

= fj^(0)d0 + fg(0)d0 ,

(A-14)

where f^(0)d0 is the harmonic part (since fj^(0) is constant), and f^(0)d0 is
the exact part (since it is smooth, "joins up right" at 0 and 2tt, and satisfies

(A-13)). Furthermore, <fj^(0)d0,fg(0)d0 >=| fj^(0)d0A*fg(0)d0
2ir /•2'ir

e 1 f (0)f (0)d0 = f. (6)1 f (0)d0 = 0, illustrating that (A-14) is in fact anJ^h e hj^e

orthogonal decomposition,

^.3. The Relationship Between Theorem 1 and the Hodge Theorem
The reader who is acquainted with the Hodge theorem in its normal setting

in differential geometry will perhaps be puzzled by the odd partial similarity
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between theorem 1 or theorem (A.2) and the Hodge theorem. At first glance,

Eq. (28) (or Eq. (A-12)) seems to be a purely local sort of result, a trivial

generalization of the vector calculus identity (2) to Euclidean spaces of

arbitrary dimension. But this impression is misleading because theorem 1 depends

on a fact about Euclidean space which is far from obvious and which fails

entirely for general Riemannian manifolds: the fact that the Laplace operator

maps C"*(3r'̂ ) onto itself [7,8].

Our extension of the Hodge decomposition to 1-forms on ]R^ which do not
vanish at infinity (the result carries over easily to general p-forms, although

we are only interested in the case p=l) provides exactly the needed result in

circuit theory, but destroys most of the interesting structure the theorem

possessed in its original setting. In contrast to the Hodge decomposition,

our result breaks every 1-form into the sum of two terms in the image of the

Laplacian and no harmonic term appears; the decomposition is not unique; and

there is no inner product.

We have often wondered if some useful inner product could be introduced

in this context if we restricted our attention to, say, the class of 1-forms

whose coefficients in the usual coordinate system on ]R^ grow no faster than
polynomials at infinity. Clearly a measure y could be defined such that the

inner product ((i),ri) = I oj A*ndy is defined for all 1-forms o), n in this class.

3R

Could such a measure be found that would also cause the decomposition

to regain its orthogonality properties in this context? We hope that some

reader whose mathematical skills are more equal to such a problem will find this

one of interest.
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APPENDIX B; SOLVING POISSON'S EQUATION

The version of our decomposition technique in section 3.1 requires that we

solve Poisson*s equation,

A4)(=y^<|)) = ip,

n times, once with each of the port relations f^ substituted for on the right
hand side. The alternate version in sections 3.2-3.3 requires only one such
solution, this time with V-f on the right. In examples 1 and 3 we were able to
solve the equations by inspection, but we won't generally be so lucky.

The standard method of solution involves a convolution integral. Specifically,
if ij; G c"(lR^ has compact support or at least vanishes fast enough at infinity,

then one solution is given by

®JJ ^(x-y) dy (B-2)

where

r

W„(y) -I

M

iln llyll, n=2

Uyll^~^n>3
(n-2)A ,

n-1

(B-3)

and A 1 is the surface area (i.e. the (n-1)-measure) of the unit (n-l)-sphere
n-1

in [6]. Equations 6 and 4 are examples of the cases n=2 and n=3, respectively.
Of course the integral (B—2) could be difficult to calculate in closed form.

But for our application there is a much more serious objection. The constitutive
relations of realistic network elements practically never vanish at infinity and

in most cases the dependent variables actually become unbounded, as in (41), when
the independent variables go to infinity. The divergence of the constitutive

relation frequently exhibits this same behavior, as in (44). In this case the
integral (B-2) will not converge at all! For example, if we attempt to solve
(44) by using (B-2), it is easy to see that the integral

i JJ +BjKe ^̂
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K rr" 2 2 r K(x2-y2)i
4^ jf l^® ®2® J

diverges, by considering the behavior of the integrand as -»• y2

Of course this does not imply that (44) has no solution, and in fact we

found a simple answer by inspection in (45). Fortunately, it turns out that this

is what always happens. The Laplacian (in common with every other linear
CO

differential operator with constant coefficients) maps C (3R ) onto itself, i.e.

for any C function ip there is a C function (j) that solves (B—1), no matter how

badly \p blows up at infinity [7,pp.80,82][8,pp.3,128,287,355]. So the existence

of a solution is guaranteed, the question is how to find it.

If it is impossible to solve Poisson*s equation by inspection, then the best

approach is to recognize that we are not really interested in arbitrarily large

values of the independent port variables x, since any physical device has some

voltage and current threshold beyond which it breaks down. Instead, we can define

some bounded region of interest, B, for the variables x, and attempt to find a

solution of (B-1) which is valid inside B. One approach would be simply to set

ip to zero outside B and then find a solution by means of (B—2). This would work,

of course, but it still leaves us with the problem that the convolution integral

is frequently quite difficult to calculate in closed form.

For this reason we suggest the following approach. First expand in a

Fourier series on B. And since the terms of the Fourier series are eigenfunctions

of A, we can then solve Poisson*s equation by inspection for each term in the

expansion of ij/. This gives us a Fourier expansion for <|».

To be more specific, let B be a square region of IR^ centered at the origin.

->" —00.

i.e. B = { X G IR

contains all the operating points (values of x) which are of physical interest

The sequence of functions \ —^ _ is a complete orthonormal sequence
in the Hilbert space of complex square integrable functions on [-b,b], and

therefore if we define the family of product functions |gj^ (x)j. on Bby
ik^-rrx^ ik irx

% =fer».(¥t vj.

£ b, i = l,...,n}, and choose b large enough that B
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$

then /g, , (x)\, where each index ranges over all the integers, is a

complete orthonormal family in the space of square integrable complex valued
functions on B [26]. So the Fourier expansion of on B is just

00 00

•I" = S ••• 2- k®k,,...,k '
L n X nkl=_„

where

A simple calculation shows that

\2n

(B-6)

(B-7)

(B-8)

Equation (B-8) is the reason for our approach - it simplifies things enormously
that the g*s are eigenfunctions of the Laplacian. Therefore, once we have
expanded as in (B-6), we can solve (B-1) by inspection, term by term.

In practice, we would approximate if' by a few terms in the expansion (B 6).
Those terms for which max|lk^ k |̂| is small are the most important. And
we would choose Bsomewhat larger than the actual region of interest, since (B-6)
nyill not converge pointwise on the boundary of B.
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APPENDIX C: PROOFS

th
Proof of Lemma 2. We need to show that for any value of m, 1 £ m _< n, the m

component of the right hand side of Eq. (30) is just f^(x). Since by Eq. (19)
each matrix [A..] has nonzero entries only in locations (i»j) and (j>i)» the

"•^3 th
only terms in the double sum in (30) which contribute to the m component are

til
those with indices (m,j), m < j or (i,m), i < m. Hius the m coiiQ)onent of

V f t^"^f (tx)dt - X f t^"^f (tx)dt} (C-1)
iti j=l ~ J J 0 ^ 0 J

i<j
th £

is the sum of two terms. The first is the m component ot

T* [A .]v{x. f (tx)dt - X f .(tx)dt}, (C-2)

and the second is the m*"^ component of

T [A. ]V{x ( t^"^f (tx)dt - X( t^"^f (tx)dt}. (C-3)
iti -i" ~ ®Jo ^ •'O

Recalling the definition of we can write (C-2) as

V D.{x. ( t^"^f (tx)dt - X f t^""^f. (tx)dt}. (C-4)
j4+iJ J-'o ^ ~ "^^0 J -

Carrying out the differentiation in (C-4) yields three terms:

(n-m) ( t'̂ '̂ f (tx)dt (C-5)
+

S X. ( (tx)dt (C-6)
i=mfl ^ ^0 3 m -j=mfl

+

^ (-X f t^^^.f. (tx)dt). (C-7)
j4S-i "'•'o

And similarly, (C-3) can be written as the sum of the following three terms:
' «

. ; t°"\f.(tx)dt) (c-8)
a "Jo ~
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(m-1)
C\n-2
J n

f (tx) dt
m

njr-l -

1 t"~ D.f (tx)dt.
1=1 iJo ^ ^

Collecting terms, the sum of (C-6) and (C-10) is

n ^1
I t'^ D f (tx)dt.

1=1 i J 0 ^ '
i?^m

Recalling that V • f = 0, the sum of (C-7) and (C-8) Is

il n ^1
t^~ f (tx)dt = X 1 t^ D f (tx)dt,

0 j&i 'o mm-
l?^m

and adding (C-11) and (C-12) yields

( ^x. (D.f )(tx)dt = f f (tx))dt.
•'oft i i a - Jq dt m -

The sum of (C-5) and (C-9) Is

1-2(n-1) f t""
0

•f (tx)dt,
m

and (C-13) and (C-14) add up to

(C-9)

(C-10)

CC-11)

(C-12)

(C-13)

(C-14)

(C-15)

n

Proof of Lemma 6» Since example 4 exhibits a general solution for the case n = 2,

and since (55) and (56) Imply (57), we need only prove (56) for the case n ^ 3.

If we define

3/Xj^/6

F(x) ^ M

x^/6

x^/6
n

(C-16)
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A T
and H(x) = [H.(x)] for any choice of harmonic functions

then F = F + H satisfies AF(x) = lix. Since for any nxn matrix A

V{x^(A+A^)x} = 2(A+A^)x,

all we have to do to ensure that Eq.(56) holds is to choose H so that

V . F(x) = .
4

From (C-16),

V . F(x) =

2
m^lXi

2
m X _

. nn n T
+ —=— = X diag

so (C-18) will be satisfied if we choose H so that

V . H(x) = 7 . (F-F)(x) = x'

X,

•«n'

(C-17)

(C-18)

(C-19)

(C-20)

Define # t / t \
/]Am\ /}mL\

Then B is a symmetric matrix with zeros along the diagonal,

of (C-20), i.e. of

(C-21)

One solution H(x)

7 • 5^x) = X Bx,

H^(x) = Xj^

components of H(x)

0 0 . . . 0

22 ®23 * ' • ®2n'
'32

•

•

B33 . .
• •

n2

•

8n3 • • . B
nn

C-3

(C-22)

X



and

H2(x) = X,

B
11

0

31
B

B
nl

0 B

0

0 0

13

0

B
III.

0

0

0 0 . . . 0

H^Cx) = *3^i2"*®21^*1*2'

(C-23)

H^(x) =0, 3 < i 1 n.

It is easy to verify that H(x) satisfies (C-22), so F(x) = F(x) + H(x) satisfies

Eq. (56).
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Fig. 1.

Fig. 2.

Figure Captions

Decomposition of the 2-port voltage-controlled resis^r'̂
into reciprocal 2-ports R-]^ and R2 and linear 4—port 51.
One possible synthesis of ^ from linear dependent sources.

Fig. 3. Apnp transistor in common base configuration.
Fig. 4a. Synthesis of a 2-port characterized by the d.c. Ebers-Moll

equations for a transistor, using the general method.
Fig. 4b. The circuit of Fig. 4(a) after a current source has been altered

so that the passive diode can replace D^.

Fig. 5a. The circuit of Fig. 4(b) redrawn to emphasize the important
features.

Fig. 5b. The d.c. Ebers-Moll circuit model of a pnp transistor.
Fig. 6. Decomposition of the 3-port hybrid resistor ^ tato reciprocal

3-ports R2. R3. R4 and linear 6-ports ^3. ^4-
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