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ABSTRACT

Coherency-based approach to the problem of constructing power system

dynamic equivalents has been very successful in applications. The key

step in this approach is to identify groups of coherent generators. An

analytic study of coherency is conducted. An algebraic characterization

of coherency is given. An algorithm, based on the algebraic character

ization, to identify coherent groups directly from system data is

developed. A physical interpretation of the algebraic characterization

of coherency is presented, where the condition for coherency is described

in terms of generator inertia constants and their equivalent admittances

to the bus of the disturbance.
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I. INTRODUCTION

In the analysis of an interconnected power system, normally one is

interested only in the responses in a portion of the system, called the

study system. The rest of the system is called the external system.

Owing to the dimension of the interconnected systems, it is impossible or

uneconomical to represent the entire system model In detail. A reduced-

order approximate model of the external system is used for stability studies,

this is called a dynamic equivalent in power literature. A dynamic

equivalent is employed to approximate the effect of the external-system

dynamics on the study-system dynamics.

Besides some earlier heuristic methods, there are currently two

approaches to the problem of constructing dynamic equivalents. One is

the modal appraoch and the other is the coherency-based approach. Modal

approach uses a linearized model of the external system and reduces the

order of the model by ignoring the contribution to the responses due to

slowly-varying modes, as well as the uncontrollable and unobservable

modes [1,2]. The modal approach has recently been studied and an efficient

algorithm has been developed [3]. This paper addresses itself to the

coherency-based approach.

It has been observed that certain generators tend to have the same

waveshape for their swing curves (i.e., the response of the rotor angle as

a function of time) after a disturbance. These generators are said to be

coherent and they are referred to as a coherent group of generators. The

concept of coherency has been utilized by Chang and Adlbl [4] for dynamic

equivalents. This approach has been developed further by Podmore [3,6].

The coherency-based approach to dynamic equivalents involves two stages:
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(1) Groups of coherent generators are identified.

(ii) The terminal buses (nodes) for each group of coherent generators

are replaced by a single equivalent bus and the models for

each coherent group of generating units are combined into

one equivalent model.

Coherency is an observed phenomenon. The formation of coherent groups

depends on the location and nature of the disturbance. Some previous

attempts at the problem of identifying coherency have been heuristically-

based. Lee and Schweppe [7] suggested the use of concepts from pattern

recognition to identify coherency. Because of the lack of accuracy and

consistency in the heuristic methods, the current approach [5] to coherency

identification involves numerically solving the (simplified and linearized)

system equations and then processing the swing curves by a clustering

algorithm to determine the coherent groups.

The objectives of the work reported herein are to understand the

phenomenon of coherency and to develop a method for coherency identification.

In Section III of this paper, after describing the mathematical model in

Section II, an algebraic characterization of coherency is given. It is

also shown that the condition for coherency may be expressed in terms

of a system matrix which is independent of the disturbance and a vector

which describes the disturbance. Consequently a simple characterization

for generators to be coherent for a set of disturbances is obtained. An

algorithm, based on the algebraic characterization, to identify coherent

groups directly from system data is presented in Section IV. The

algorithm involves only elementary operations on the matrices of the

system equations. A physical interpretation of the algebraic characteri

zation of coherency is given in Section V. It translates the condition
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for generators to be coherent in terms of their inertia constants and

equivalent admittances to the bus of the disturbance.

II. MATHEMATICAL MODEL

We are considering the response of a power system after a disturbance

and concerned with the identification of coherency. A simplified and

linearized model is used. It has the following characteristics;

(i) The classical model is used to represent the synchronous

generators.

(ii) A linearized system model is used.

(iii) The decoupling between real-power-phase-angle and reactive-

power-voltage-magnitude is assumed.

The model that we are using is the same as the one used by Podmore [5]

Through a number of computer simulation tests, he has found that this

model is adequate for coherency identification.

Detailed derivation of the generator and network models can be found

in standard textbooks (for example: 8, Chapter 4; 9, Chapter 5).

1. Generator and network

When the classical model is used for the synchronous generators, the

machine dynamics are represented by the so-called swing equation. The

linearized swing equation for a generator is given as follows:

-1Ao)^ = M^ (APM^-APG^-D^Aw^) (1)

= ZirfpAu)^ (2)

where

i; subscript for generator i
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A: deviation

M: inertia constant

u): speed

6; rotor angle

D: damping constant

synchronous frequency

PM: mechanical input power

PG: electrical output power

We assume that during the period of interest APM = 0.

The linearized decoupled load flow equations are used to represent

the network. An underlying assumption here is that the effect of changes

in voltage magnitude on the real power flows is negligible. This is

true for transmission system with high X/R ratios [10,11]. The equations

are written below.

—

APG

API

V —

where

V A6

Ae
(3)

PG: vector of real power injections at generator internal buses

PL: vector of real power injections at load buses

6: vector of phase angles at generator internal buses = generator

rotor angles

6: vector of phase angles at load buses

H: matrix of partial derivatives
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2. Disturbances

As the result of a fault, a protective measure is usually taken,

which may be either load shedding, generator dropping, or line switching.

We shall consider the modeling of these changes.

(a) Load shedding

Load shedding at the i load bus can be modeled as:

APL = (0,.. .1,0.. .)\(t) (4)

for some u(t), where 1 occurs at the i^^ position. As we shall see later,

we do not require the exact waveform of u(t) for coherency identification.

(b) Generator dropping

Let us suppose that the i^^ generator is to be dropped and that it
this connected to the k load bus (Fig. la). The effect of generator

thdropping can be modeled by leaving the i generator there and introducing

tha load APG^(t) at the k load bus to compensate the power generation
thAPG^(t) from the i generator (Fig. lb). Thus we can model generator

dropping the same as change in load.

(c) Line switching

The removal of a line connecting bus i and bus j can be modeled as

load changes. Let and P^ be the real power from the line into bus i

and bus j respectively before the line removal (Fig. 2a). We assume that

P^ = "Pj* i*e*» the difference in power at two ends of the line due to

losses is negligible. First we modify the network by removing the line,

hence is changed into H*
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APGi(t)

(b)

Fig. 1. Modeling of generator dropping as change in power injection at

the terminal load bus.

(a) Connection of the generator.

(b) The effect of dropping the generator i can be achieved by

simply adding a load at bus k with magnitude the same as

the output power of the generator.
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T
(b)
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(c)

Fig. 2. Modeling of line switching as changes in power injections at

the load buses with network modification.

(a) The connection and the power flows in the line before

switching.

(b) With power injections and Pj at the terminal buses, of

the line, we may remove the line and have an equivalent

system as in (a).

(c) The removal of. the line can now be represented as change

in the power injections at buses i and j from P^ and P^

to zero.



T Hfor some V, where d = (0,...+1,...-1,...0) with +1 at the position

and —1 at the j position. The power flow in the line before its removal

can be represented as power injections at buses i and j (Fig. 2b). Now

the effect of line removal can be modeled as load changes in buses i and j

in this modified network (Fig. 2c), i.e.,

PL « d (6)

3. System model

A general model incorporating any of these disturbances may be used

to represent the power system after the disturbance. Combining eqs. (1-3)

and eq. (4) or eqs. (5-6), we obtain

•

Aw 0

A6 (2TTfQ)I 0 0

0 0 H
gg

-I

0 0
®Ag 0

IJ

—ol
T

+ Pdd

where

D = diag(D.)

M« diag(M^)

Aw = vector of (Aw^)

A6 = vector of (A6^)

0

0

gA
H

Am

A6

APG

A0

u(t)

For line switching, y 0 and d = (0,...+1,...-1,...0). For load

Tshedding or generator dropping, p = 0 and d = (0,...1,...0).

We further assume that in the case of line switching, it does not
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split the network into two separable parts. This Implies that and

are nonsingular.

We shall write eqs. (7) and (8) in a more compact form
^ —

Ax

0

^1 "'̂ 2

S ^4

^4 = \ + »^ee'

where

Ax =

Ao)

A6

— —

Ax 0

+

Ay e

u(t)

Ay =
APG

Ae

(9)

(10)

and A^,A2,A^,A^,A^ and e are the corresponding submatrices from eq. (7).

Eliminating Ay in eq. (9) we obtain

Ax = A*Ax + b'u(t)

where

A' =Aj^ +A^CA') ^A,

b' ^ A2(A^)"^e

For later use, we shall also define

A«A^ +A2(A^)"^A3

b^ A2(A^)"^e
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III. CHARACTERIZATION OF COHERENCY

Two generators 'i' and *j' are said to be coherent for a disturbance

occurring at time t^ If 6^(t) - = c, for some constant c, for

all t 2. This Is equivalent to the condition that A6^(t) = A5.(t)
for all t _> tQ, where A6^(t) =6^(t) - and (t) =6^(t) -
In other words, two generators are coherent for a disturbance If the

response curves of the rotor angles have Identical waveshape. We will

follow the convention of taking = 0.

A group of generators Is said to be coherent for a disturbance If

the generators are palrwlse coherent for that disturbance.

A group of generators is said to be coherent for a set of disturbances

If the group Is coherent for each of the disturbances In the set.

Let us define a vector a(l,j) In conjunction with the model developed

In the previous section.

X Aa(l,j) Ax = A6^ - A6j (16)

Clearly, generators '1* and are coherent Iff a(l,j)^Ax =0.

1. Coherency for a single disturbance

Theorem 1. (Characterization of coherency for a single disturbance)

Consider a system represented by

X « Ax + bu (27)

x(0) - 0

where
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Ae m"™, b e u(t) e m, x(t) e iR°.
Let a ^ IR^.

(i) If for some u(t) ^ 0, a^x(t) = 0 for all t ^ 0 then =0
for k = 1,2,...n.

T k-1 T(11) If a A b = 0 for k = 1,2,.. .n, then a x(t) = 0 for all t _> 0

for all u(').

The proof of the theorem Is Included In Appendix A. For ease of•

notation we write a x Q[A,b] Iff = 0 for k = 1,2,

Corollary For the system (17) If for some u ^ 0, a^x(t) = 0 for all t > 0
Tthen a x(t) = 0 for all t ^ 0, for all u(*).

The above corollary Implies that It Is not necessary to know u(t)

In order to Identify coherency. Theorem 1 provides a necessary and

sufficient condition for two generators to be coherent. Using the

model (11) It Is clear that generators *1' and 'j' are coherent If and

only If

a(l,j) 1 Q[A*,b*] (18)

2, Coherency for a set of disturbances

V Normally one Is Interested not only in coherent beha/lor of generators

for a particular disturbance but also for a set of possible disturbances.

In principle, one can always analyze this by considering each disturbance

Individually. Since the matrices A' and b* change with the location and

the nature of. the disturbance, the direct application of Theorem 1 to

characterize coherency of generators for a set of disturbances will involve

a set of independent tests. However it turns out that these tests are
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actually related. Lemma 2 below shows that the necessary and sufficient

condition for coherency (18) can be expressed in terms of the unmodified

constant matrix A of eq. (14). This important observation leads us to

a simple characterization of coherency for a set of disturbances as

stated in Theorem 2.

Lemma 2 Under the assumptions made in obtaining the model given by

eqs. (11-15), the following are equivalent

(i) generators 'i' and 'j' are coherent.

(ii) a(i,j) I Q[A',b']

(iii) a(i,j) iQ[A,b']

(iv) a(i,j) i Q[A,b]

The proof of Lemma 2 is presented in Appendix C. A direct application

of Lemma 2 results in Theorem 2, which provides a simple algebraic

characterization for generators to be coherent for a set of disturbances.

Theorem 2. (Characterization of coherency for a set of disturbances)

Let b^,b2,...bp be the *b' vectors (as defined in eq. (15)) for the p

disturbances in the set. Define

B= [bj^,b2» ••'bp] (19)

Generators 'i' and 'j' are coherent for each of the disturbances in the

set if and only if

a(i»j)^A '̂"^B = 0 for k = l,...n (20)

We will write condition (20) simply as a(i,j) i Q[A,B].
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IV. AN ALGORITHM FOR COHERENCY IDENTIFICATION

The test for coherency (20) can be greatly simplified by the use

of a transformation. We shall first state the required transformation

and the condition for coherency after this transformation in the following

Fact. We then present an efficient algorithm for testing coherency of

generators for a set of disturbances.

Fact Consider the system representation

X = Ax + Bu

where A e Ir"*", b e IR^^P, and u(t) G

Let q = rank[B,AB,...A '̂̂ B].

There exists a nonsingular transformation T such that

t"^at = ^11 ^12

'22

t"^b =

where A^^ G and B^ G and

rank[B^,A^^B^,...Aj^^B^] =q

Let a G IR** and

a^T =(al a^)

where ^

T k-1Then a A B = 0 for k = l,2,...n if and only if

= 0

-12-
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The proof of the Fact is included in Appendix D for completeness.

Now let us apply the Fact to the test for coherency (20). Because of

the simple structure of a(i,j) it is extremely easy to check if a(i,j)'^T

is of the form (0 a^). Indeed, let T be partitioned as

T= [T^\ T^] (28)

where € IR then a(i,j)^T is of the form (0 a^), i.e., generators
*i* and 'j* are coherent, if and only if the rows corresponding to 6^

and 6^ of are identical. We may go one step further and say that

the rows corresponding to <5^2* ***'̂ ik ^1 identical if and only

if the group of generators il,i2,...ik are coherent for the set of

disturbances under consideration.

The transformation T referred to in the foregoing Fact is not

unique. There are several algorithms for obtaining such a transformation.

We shall incorporate the one by Rosenbrock-Mayne [12] in our coherency

identification algorithm. Rosenbrock-Mayne algorithm utilizes only

elementary transformations and is perhaps the most efficient one.

We now summarize our algorithm for coherency identification below.

Algorithm for coherency identification

A. Setting up the equations

1. Construct the matrices A^,A2,A^ and A^ as in eqs. (7-10) from pre-

disturbance system data.

2. For each disturbance in the set construct the 'e' vector (the *d*

vector) as in eq. (9) (in eqs. (4)(6)(7)). Let e,,e„,...e be the
12 p

set of *e* vectors of the p disturbances and define the nxp matrix

E as

E i ®2 : ••• (29)
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3. Obtain

-1.A= + ^2^^^ ^3

B=A2(A^)"^E.

This is carried out by Gaussian elimination as follows:

Set

M =
\ ^3

-Ao A,

initially and let A^ be rxr, A^ be nxn.

(30)

(31)

(32)

Step 1.1. Set j = 1.

Step 1.2. Find , iV ^ {j,...r} such that |m ,.| > |M | for
*' • ^ 3 • ij

all i ^ (j ^...r).

Step 1.3. If ~ 0, the process can not continue, stop; else continue.

Step 1.4. Interchange rows 1' and j of M.

Step 1.5. For i = j+1,...r+n do the following to make zero:

Mi-
Subtract (tt^) X (row j) from row i of M.

jj

Step 1.6. If j = r, the process is complete, stop; else j = j+1 go to

Step 1.2.

When the process terminates at Step 1.6, the matrices occupying the

middle and right lower blocks are the desired A and B (Fig. 3).

Rosenbrock-Mayne algorithm for determining the contro].lable part

Now we apply the Rosenbrock-Mayne algorithm to obtain the transformation

T defined in the Fact. Initially, we set

N = [B A]

T = I
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^4 ^3 ^
-A2 A, 0

elementary

row operations

U

0

X

A

X

B

Fig. 3.. The system matrices Aand Bcan be easily obtained by Gaussian
elimination.



1

1

B, A„

CJ

l<

H

0 0 1 A22
1

X X X X X X X X X X X

1

x! X X

X X X X X X X 0 X X X X |X X

X X X X X X X 0 0 0 X x'x

d"tx
X

X X X X X X X 0 0 0 0 X

X X X X X X X 0 0 0 0 oix
1

X

Fig. A. Rosenbrock-Mayne algorithm provides the desired transformation.



where N is nx(p+n) and T is nxn.

In the following algorithm we shall refer to A as the current content of

the last n columns of N.

Step 2.1. Set i = 1, j = 1,

Step 2.2. Find N i , k* ^ {i,i+l,—n} such that |n, ,.I > |n, .| for
^ j k j ' — ' kj '

all k e {i,i+l,...n}.

Step 2.3. If = 0 go to Step 2.7, else continue.

Step 2.4. Interchange rows i and k' of N and columns i and k' of

A and T.

Step 2.5. If i = n there is no coherent group, stop; else continue.

Step 2.6. For k = i'^*l». • .n do the following to make N, . zero:
kj

N

Subtract x (row i) from row k of N.

ij
N

Add X (column k) to column i of A and T.
ij

Set i = i + 1.

Step 2.7. Set j^'j+l, ifj_>i + p the process is complete,

set q = i and stop; else go to Step 2.2.

When the above algorithm terminates at Step 2.7, the matrix N can be

P^^^iiioned as in Fig. 4 and the matrix T is the desired transformation.

C. Identification of coherent groups of generators

Let the first q columns of T be denoted by T^. We check the rows

.. .n. (These are the rows that correspond to A6) . Whenever

a set of rows (•2)+il, (•2)+i2,... (•2)+ik of are identical, the generators

ll,i2,...ik are coherent for the set of p disturbances under consideration,

-15-



V. A PHYSICAL INTERPRETATION OF THE RESULT

Let us assume that the damping constants of the generators are

negligible, i.e., D= 0. Suppose the disturbance Is modeled as a change

in power injection at bus d, Let subscript e denote the other load

buses. We may express eq. (3) as follows

—

APo
G

AP^ =:

d

0

H
gg

H
dg

H
eg

gd

dd

H
ed

H
ge

H
de

ee

A6

Ae
(

-A0

C33)

Note that the sum of the elements in each row of the matrix in eq. (33)

Is zero [9, p. 175].

Eliminating A0^ in eq. (33) we obtain

APo
G

S3

AP,
d

H*
gg

Hi
dg

"gd

"dd

A6

A0

(34)

The elements of H* , etc., may be viewed as the "equivalent admittances"
gg

of the network after eliminating all the load buses e, except the one

with disturbance. It can be easily verified that the sum of the elements

in each row of the matrix in eq. (34) is zero. (See Appendix E.) This

can be conveniently expressed by defining a vector U consisting of I's.

31 ^ (1,1,...1)'^

Then we have

0» Hi + H' = 0gg gd dg dd

(35)

(36)

Indeed, the elements of H can be approximated by the elements of -B, where
Y « G + jB is the network admittance matrix [10].
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Note tha.t this Implies thet one of the equations In (34) must be redundsnt,

therefore In what follows we shall use only

AP_ = H' A6 + H* AG,
G gg gd d

Using eqs. (37) and (1-2) with D = 0, we obtain the following

equation, which corresponds to eq. (11).

— —

•3
<

A6

r

L

(2nfQ)I

m"^h*
gg

Acu

A6

gd
AG

(37)

(38)

Now let us apply the coherency test (27) to (38). We shall first

pick a transformation T. Let us make one more simplifying assumption

that the eigenvalues of the matrix In eq. (38) (which will be referred to

as A In what follows) are distinct and lie in the left half plane. Then the

X 2matrix consisting of the eigenvectors x ,x ♦...x of A forms a desired

transformation T,

T = [x^ i x^ i . X ] (39)

Let

(40)

Using the transformation T, we may express the necessary and sufficient

2
condition for all the generators to be coherent as

1 H

'The condition (41) Is clearly necessary for all the generators to be
coherent.^ It follows from (42) that there can not be two distinct elgen-

r2

vectors f"i] and
a

, hence the condition (41) is also sufficient.

-17-
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It can be easily shovm (see Appendix F) that

if and only if

! a
L J

is an eigenvector

(42)

where A is the corresponding eigenvalue of A.

T
Let ...) . We can express condition (42) as follows;

Suppose a disturbance is modeled as a change in power injection at

bus d. Let H* be obtained from H, by eliminating all load buses except

bus d» Under the stated assumptions, all the generators will be coherent

if and only if

«ld 5d
for all the generators i,j (43)

As a corollary we have the following:

Suppose a disturbance is modeled as a change in power injection at

bus d. Let H* be obtained from H, by eliminating all load buses except

bus d. Consider a group of generators ll,i2^.».ik. Suppose furthermore

that

for all i e {il,12,...ik}

and j ^ {il, 12, ... ik}

(44)

Under the state assumptions, if the generators il,i2,...ik are coherent then

"id «;d
M, M.

3

for all i,j e {ll,i2,...ik} (45)

The results above are only for very restrictive cases. We are not
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suggesting using (45) as a practical criterion for testing coherency. The

proposed algorithm in Sec. IV should be used for that purpose. However

the foregoing physical interpretation provides some insights to the

behavior of coherency.

is a measure of the "electrical distance" from the generator to

the disturbance. The result above shows that the ratio (r;—), a

combination of electrical distance and inertia constant, is perhaps a

quantity more related to the factors that determine coherency. It

suggests that a generator electrically far from the disturbance and having

small inertia may be coherent with a generator electrically closer to

the disturbance but having larger inertia. The result also indicates

that identifying coherency based solely on electrical distance is

inadequate.
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APPENDIX

A. Proof of Theorem 1

X X(i) The fact that a x(-) = 0 (i.e., a x(t)=0 for all t^O) for some u(-) 0
T*

Implies that o x(*) = 0, or

a^Ax(*) +a^bu(*) = 0 (M)

T TWe claim that a b = 0. Suppose not, i.e., a b 9^ 0, then from (Al)

we have

u(t) = - " for all t ^ 0 (A2)
a^b

Hence

X= [A- ba'̂ Ajx . (A3)
ah

x(0) =0

This implies that x(*) = 0; from (A2) we have u(-) = 0, which is

a contradiction. Thus

a'̂ b = 0 (AA)

From (A4) and (Al) we obtain

a'̂ Ax « 0 (A5)

T T 2This in turn implies that a Ab = 0 and a A x = 0, etc.

(ii) Define

®a'̂ A^ ^x k = l,2,...nfl (A6)
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T k-1
Since a A b = 0, we have

" ^k+1 k = 1,2,..,n

From Caley—Hamilton theorem, we have

Let 5 • It follows from (A7) and (A8)

0 10 0

0 0 10

$1 &2

. 0

. 0

. 6

(A7)

(A8)

(A9)

C(0) « 0

Hence C(t) =0 for all t ^ 0, in particular C^(t) =a^x(t) =0 for
all t ^ 0» n

B. Lemma 1 Let AG m"*", b G ir", y ^ IR'̂ , and

A' = A + by (AlO)

Then a l Q[A',b] if and only if a i Q[A,b].

Proof We shall prove by induction that a^A^~^ = a^(A*)^~^, k = l,2,...n.

Clearly it is true for k = 1. Consider

c* A (A+by ) (by induction hypothesis)
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- «T.k . T.k-1, T= a A + a A by

T k
~ A (by assumption)

(=^ Same.

C. Proof of Lemma 2 Lemma 1 will be used in the proof.

(i) (ii) from Theorem 1.

Now consider

=A2A;-^(I-A;a;^)A3

=A2A'"^(I-(A^+yee'̂ )A^^)A3

=*2*4 ^eC-ye '̂̂ Aj)

= b'v (All)

T T -1where y = -ye A, A>.
4 3

It follows from (All) and Lemma 1 that (ii) ^ (iii).

Next consider

b- =A^A'-^e

=A2 (A^+yee^)

=A2A~^(I+ee'̂ A~^y)"^e

=A2A^^e(l+e^A~^ey)"'̂ (A12)
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The last equality follows from that fact that (I+PQ)~^P = PCI+QP)"^

(13, p. 54]. Hence

b' = nb

where n= (l+e^A^^eu) ^ is a sealer.

It then follows that (iii) ^ (iv). n

the Fact The first part of the Fact is a standard theorem

in linear system theory [14, p. 172].

Clearly

aV =0, k=l,2, ...n (AlA)
or

(A13)

a'̂ TT'̂ A '̂̂ TT'̂ B =0, k=l,2,...n (A15)
iff

-T-k-1-
B^ ~ 1,2,...q (A16)

Equation (A16) holds if and only if

«1 0 (A17)

because of eq. (25). n

E. Verification of (36)

From eqs. (33) (34), we have

= H - H H~^H ^AIS^
gg gg ge ee eg

H' = H . - H , fA19^
gd gd ge ee ed
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Since H^3L + H , + H =0 and H U+H.+H 11=0
eg ed ee gg gd ee

it follows from eqs. (A18-A20),

H' U + H* = 0
gg gd

F. Verification of (42)

Let X be the corresponding eigenvector of A associated with x*.

With (40) and (41), we have

Hence

0

aT

1

1
X-I

— —

1
X,

gg 1
= X

1

0 11 u

M"V II
gg

= Xx,

(2TrfQ)Xj^ = XH

Equation (42) follows from eqs. (A23)(A24) and (36)
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(A21)

n

(A22)

(A23)
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