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ABSTRACT

A unified treatment of particle motion in a wave field, is

presented both for propagation oblique to a magnetic field and propaga

tion across a magnetic field. It is shown that both cases are related

to the dynamical motion of two nonlinear coupled oscillators whose

frequencies are harmonically related at some values of their actions.

The oblique propagation corresponds to accidental degeneracy of the

coupled oscillators for which the oscillator frequencies are functions

of the action in the absence of the perturbation. The motion with

perpendicular propagation corresponds to intrinsic degeneracy for

which the nonlinearity occurs only in the coupling term. For the former

case islands in the phase space trajectories are formed around the

tesofuhit actions with the ratio of the bounce to cyclotron frequency

* e and the island amplitude ^ » where e is the coupling

parameter. In the latter case Q^/Si " e and Ap^ 1. For both cases
D M

coupled oscillator theory^ predicts overlap (2Apj^/6p =1, where 6p
is the resonance separation) at With similar parameters

this implies overlap at smaller coupling for accidental degeneracy,

although the use of practical parameters, corresponding to real plasma

waves, may reverse this situation. The importance of 2nd order resonances



in leading to stochasticity is demonstrated by showing that the 2nd

order islands are exponentially small for small that the

ratio of the 2nd order island width to their separation becomes compara

ble to the 1st order island ratio near overlap. The result is a nearly

complete randomization of the trajectories in the phase plane near

= h leading to stochasticity and heating.
B



I. Introduction

Recently there has been renewed interest in the conditions under

which the dynamical motion of a phase trajectory of two nonlinear

coupled oscillators can lead to stochastic motion in the phase plane,

that is, motion which tends to fill a three dimensional phase volume,

rather than being restricted by a constant of the motion to a two

dimensional torus within that volume. This renewed interest has arisen

from numerical observations that waves propagating either obliquely^
2 3

or perpendicularly * to a magnetic field can give rise to stochastic

heating of particles gyrating in that field, providing appropriate

field and dynamical variables are chosen. In both cases these results

have been interpreted in terms of the breakdown of the invariants

12 3
arising from system resonances ' * .

The purpose of this paper is twofold. First, we show the relation

between particle motion in a wave field in which the wave is propagating

obliquely to a d.c. magnetic field^ and particle motion for a wave
2 3

propagating perpendicularly to the magnetic field. * In both cases

we consider the wave field as a perturbation on the particle motion

4
during a single gyroperiod rather than the dominant behavior. Second,

we demonstrate, in a more systematic way than previously^ the mechanism

by which the second and higher order islands lead to ergodic motion

over portions of the available phase space. We shall show that the

resonant forms of the basic Hamiltonian*s for the oblique and perpen

dicular wave propagation, correspond to the two basic forms of the

Hamiltonian for two nonlinearly coupled oscillators, which we have

5
treated previously, that of accidental and intrinsic degeneracy.
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II. First Order Resonances

For an oblique wave. Smith and Kaufman^ find the Kamiltonian for

a particle as measured in the wave frame v = —
z k

Pz
^ ' IFT ^ sinCk^z - m(j)) (1)

m

z

2

where is the axial momentum,p^ the magnetic moment, Qthe gyrofre—
quency, (j) the gyrophase, k^ and k^ the componants of wave vector along

and perpendicular to the static field B , p the gyroradius, e4» the
o o

magnitude of the perturbing potential, and the Bessel functions of

the 1st kind. The Bessel function summation arises from the nonlinear

phase shift resulting from the Larraor orbit extend over a spatially

varying wave phase. For <!' = 0, p and p are constants of the motion.
O Z (p

2 3For k X B^ Karny and Bers and Fukuyama et al obtain the Hamiltonian

H = fip + I J (kp) sin((jt - m({)) (2)
Y o ni

m

One difference between the Hamiltonians in Eqs. (1) and (2) is that the

2nd is explicitly time dependent. However, introducing the near—identity

canonical transformation with the generating function

F2= + (3)

the new Hamiltonian given by

- •H = H + — (4)

becomes

H= + (iip^ + e <|.^ I J^(kp) sln(ip - m<(i) (5)

which does not contain time explicitly.
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Eqs. (1) and (5) can now be considered as the Hamiltonians of

two-dimensional oscillators which are coupled through a perturbation

term of coupling strength considered small. There remains, however,

a fundamental difference between the forms of the two equations. In

(5) both momenta in the unperturbed terras are linear and thus in action-

angle form, while the z-momentum in (1) is quadratic. These two cases

have been previously treated for a pair of weakly coupled oscillators in

which a resonance existed between some harmonics of the two degrees of

freedom.^ Aresonance in Eq. (1) represents an "accidental degeneracy"

for a given value of ra=£ and

p = Mi il/k (6)

The existarice of the perturbation causes p^ to vary, moving the particles*
momentum away from resonance, and thus limiting the effect of the resonant

perturbation. A resonance in Eq. (5) represents an "intrinsic degeneracy"

for which the frequency shift with momentum occurs only due to the, non-

linearity within the perturbation itself, thus allowing much larger varia

tions in momentum before shifting the particle away from resonance. We

calculate these effects, explicitly, below.

Assume Eq. (6) is satisfied for some % we transform Eq. (1) with a

generating function

= (k z - e-({)) p + ({)6 (8)
Z Z Z <p
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to obtain the Hamiltonian in terras of the new canonical variables

, = P, =if = • (9)
z

- 3^2 ^^2
♦ = 3^ =♦ • %~ = - ^P^) (10)

as

2

" ° 2M Pz •P "(P^, " ^Pz) •*" ®'''o ^ O^(k^p) sinCi - (m-i)i,] (11)
m

where p is implicity a function of the actions. Sufficiently close to

a resonance z is slowly varying; we can average over a period of the

(m-i,)} coordinate, obtaining zero for the perturbation terra except for

m = £., for which Eq. (11) becoraes

- 1 .
H Pj, + ~ ^P^^

e<J>

Here we have written e = ^ which is assuraed to be a sraall quantity.
Mv^

The motion is singular at p , z obtained as in Eq. (13):
ZO O T \ X

= 0 p = + 0(e)
3p^ k '̂̂ /M

^ =0 - J .
3^ ° 2

Expanding around the singularity as p = p + Ap z = z + Az
ZO

(13)

we

obtain the linearized Hamiltonian for the perturbed motion

AH = g^^^ + f =Const. (14)
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where the superscript (a) refers to the accidentally degenerate case.

Here

and

g
dp

z

2

f = —r = ± e M V J (k p) .
3^2 z 1 X

(15)

(16)

To lowest order in e, the frequency near the elliptic singular point

for the perturbed oscillation, corresponding to the Hamiltonian of

Eq. (14), is ^

o(a) ^ (fg^a)'̂
Bo

£ J|̂ (k^p)|'̂ <! (18)

and the peak amplitude at the separatrix, as obtained from Eq. (12), is

Max g

eMv J (k p)M
z Jc, J_

h 2
Bo

(a)

Both fi and Ap are proportional to the square root of the small
B z

perturbation. The spearation of adjecent resonances is given from

Eqs. (6) and (9) as

=

(19)

(20)

such that the ratio of the momentum oscillation to momentum separation

is, from Eqs. (15) and (19) and (20),

^ '̂ ^zmax ^ '̂ Bo
(21)

^P.
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A simple overlap condition, Ap/6p > 1 is then

Bo 1

~ =4 (22)

i.e. the frequency of the perturbed resonant oscillation is one fourth

of the lowest fundamental frequency. These results, although not pre

sented in the same way, have been obtained by Smith and Kaufman.

We now compare the results obtained from Eq. (1) v/ith those for

the intrinsicly degenerate system given by Eq. (5). Applying the genera

ting function = (ip - l(p) , assuming sufficient closeness to

resonance, as previously, to keep a single term in Eq. (5) after averag

ing, transformation equations analogous to Eqs. (9) and (10) then trans

form Eq. (5) to

H=Q(p^ - Zp^) +u) +eMv^^J^(kp) sin ij; (23)

e$

where e = j . The gyroradius p is a function of p, and p, through
Mvj_

the transformation Eq. p^ = p^ - and the definition of p

p = [2 pJMSi]^ .
9

Expanding around the singular point as previously, we obtain

AH =g^^^(Ap^)^ -f f(Atii)^ =Const., (24)

eMvj_2 d^J (kp)
8 = r~ * (25)

dp,
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and

f =eMvj^^J^. (25)

where the superscript (i) is for the intrinsicly degenerate case. To

lowest order in e the frequency and momentum excursion are

and

•gd) , f V, / A Bo
'̂ Pmax - 2"TiT - ' 7^) =Hr •

8 \ dp / g'

Comparing Eqs. (26) and (27) with Eqs. (18) and (19) we observe that

for intrinsic degeneracy the frequency of the beat oscillation is of

horder e, e slower than for accidental degeneracy, while the excursion in

.momentum of order unity, e larger than for accidental degeneracy.

Unlike the situation for wave propagation at an angle to the magne

tic field, the higher freqeuncy is fixed at w, and thus there are no

resonances at higher harmonics of i>. For the Hamiltonian of Eq. (23),

it is still possible to obtain resonance at a succession of values of v^.

This can be seen by setting the derivative of (23) equal to zero

—^ = w - + c MVj_ — = 0 (28)

'"Pe ^P^

which give the values of v^^ at the singularities of the motion. We note

that these zeros can occur over n range of values of kf. In particular,

for w - £,12 = 0 they occur for

Jp' (k,) = 0 (29)
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Although no first order resonant overlap exists, to lead to stochastic

motion, resonances can occur between the island frequency and the funda

mental cyclotron frequency, leading to 2nd order island formation and

stochasticity. We shall show below, that this behavior if similar in

character to the second order island formation for the accidentally

degenerate motion.

II. Second Order Resonances

Second order islands play an important part in the development of

the ergodic motion. Considering the linearized perturbed icption about the

resonance given either by Eq. (14) or Eq. (24) the generating function

=-| RAp cot 0, -R = (f/g)'̂ (31)

generates the canonical transformation to new variables

h
Ap = (2 1 R) cos 0

Aq = (2 I/R) '̂ sin 0
(32)

where Ap and Aq represent the perturbation momentum and position

coordinates for either problem. The transformed Hamiltonian is

>^0 = ^ (33)

which is in action—angle form. We can extend this result to the nonlinear

region by expanding AH to fourth order in Ap^ and Az to obtain

K = K + K., (3A)
o o 2 V-''*/
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and

3K

"b = So + IT • <35)

We have suppressed the rather lengthy details of the calculation of

the K2*s, from 4th order perturbation theory, as they are not required

for the following argument.

In localized regions of the phase space harmonics of the slow oscilla

tion Qg resonate with the slowest fundamental frequency Q to produce new

local distortions of the phase plane. We exhibit these resonances by

explicitly reintroducing the oscillatory terms into the perturbation

Hamiltonian

K = + K2 + A • (36)

Here

A= eMv^ y J (kj^p) sinfq + (21/R)'̂ sinG - (m-2,)
mimH)

2 ^ , , 1 i(q - + in0)
= eMv I J (k^p) j; J (ai/R)"^ e ° (37)

m(m?^Jl) n

2 . 2 2
and V is either v or v, for accidental or intrinsic resonance,

z '

respectively. Taking only the lowest order resonant term, as previously,

A= sin(n0-<})) =eJj^^(kj_p) |(2I/R)^] sin(n0-(j)) , (38)
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transforming to a new locally slow variable

9 = n0 - ({) y (39)

by a generating function as in Eq. (8), and expanding around the singu

larity, as in (19), we obtain the Hamiltonian for the secondary islands

AK =g/f)' + (M)'

where
2

<rK2
®s ° ' "n' ^ ° WD

ol

The frequency and peak to peak momentum excursion of the second order

islands are then given, as previously, by

"bs ° (42)

and

I

2 I]
- Bs

m (^3)

Substituting for f^ and g^ in Eqs. (42) and (43) from Eqs. (41) and (38),
A

we find that and are proportional through f to

h.|j |̂(2I/R)'s]j =o|(l/n!)'«| (44)

where the last relationship can be shown by expanding the Bessel function

for large n. Thus for large n (small c) the factorial dominates and the

islands become vanishingly small. However, the secondary resonances
are

-10-



also close together. Without calculating the perturbation Hamiltonian

for the secondary resonances in detail we can compare the island width

to the distance between islands, as previously. We calculate

2
3 K S!

6 I = -£ (45)

for the distance between adjacent resonances. In terms of the hat

variables the distance between resonances is given by

. g .

cS (nl) = — 5 I (46)
O r. / T \ ^cJ(nl)

or

9.

8
61=7^ (47)

s >

Substituting for AI^ from Eq. (43) we obtain, for overlap,

2AI 417

^ = ^>1 (48)

which is identical in form to the overlap condition obtained for the

primary resonances in Eq. (21) and (22). By induction, higher order

resonances would also have the same form. Note that the secondary and

higher order resonances are always accidentally degenerate. To determine

when second order overlap occurs for increasing size of the perturbation,

we muct explicitly calculate the secondary boxince frequency 17^^^ in terms

of the perturbation amplitude. We calculate g in Appendix B, obt.iinlng.
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to lowest order in e

83 = g/8 (49)

Substituting from Eq. (49) and from Eq. (41) into Eq. (42), we

obtain

(50)

For simplicity we take ~ snd taking at its maximum value at

the separatrix, we obtain using either Eqs. (16) and (18) or

Eqs. (25) and (26)

Ss 1
^ ° n - <51)

For accidental degeneracy secondary islands would overlap first if

Eq. (48) is satisfied before (22); i.e. with n = 4

"4<''M*® 1
> —

8 / ~ 4 (52)

which is marginally not satisfied. Tlie important point, however, is

that for either type of primary degeneracy the second order islands

rapidly become important as the first order islands become large. For
O Q

smaller values of perturbation It has been shown * that overlap exists

near the island separatrices, giving bands of ergodicity in the phase plane

that grow in area with the strength of the perturbation. The regions of

ergodicity near secondary island resonances are very small until the first

order resonances become large; they then increase rapidly leading to an

-12-



ergodic phase plane with isolated adiabatic islands. This behavior has

1 2
been confirmed numerically, for both oblique and perpendicular waves.

The basic results obtained here for perpendicular propagation, in

cluding the calculation of second order island amplitudes, have also been

3
obtained by Fukuyama et al., but in a form emphasizing the stochastic

regions near separatrices. It should also be noted that second order

island calculations, in the neighborhood of an elliptic singularity,

5 9are in the same form for all coupled oscillator problems * .

III. Discussion of Numerical Examples

In particular numerical examples for the two cases. Smith and Kaufman^

found that stochasticity occurred for a perturbation amplitude considerably

2
larger than that found by Karney and Bers. This appears to be a surpris-

ing result in that ® e for accidental degeneracy as seen from Eq.

(18) while Q /Q e for intrinsic degeneracy as seen from Eq. (26). We
a

would therefore expect the opposite result, that for e small, the acci

dentally degenerate case should exhibit stochasticity first. To resolve

this problem we analytically estimate the perturbation amplitude for over

lap for the two cases in which comparable parameters are used. In Appendix

A we calculate an approximate value of g in Eq. (25) for the intrinsic

resonance problem, for the parameters that give maximum perturbation, as

g = eMvj_ Jj,(kp) (53)
M v'x

Substituting this result and f, from Eq. (25) into the expression for

we obtain
a

^(i) 2' = e J " (54)
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Comparing this result with Eq. (18) for accidental degeneracy we find

that the resonance conditions are

r -"2 accidental degeneracy
2 1 "e S, Jj(k^p) = < (55)

L ~ intrinsic degeneracy

Thus, as expected, for identical C, and , and assuming v ~ v ,

the value of perturbation field for a given harmonic resonance is

smaller in the case of accidental resonance. This situation reversed

in the numerical examples studied, because a large value of £=30 was

used for the intrinsic resonance (wave propagation perpendicular to B)

while £—1 was used to study the accidental resonance(wave propagation

at an angle to B) which corresponded to the physical plasma waves being

studied. In both cases k^p was chosen to put near its maximum value;

otherwise n remains large for all reasonable values of the perturbing

field. In the intrinsicly degenerate case the stochasticity occurred

due to the large amplitude of the 2nd and higher order islands, while

interaction of both first and second order islands were important for

accidental degeneracy.

IV. Transition Between Accidental and Intrinsic Degeneracy

There remains the question of the transition from accidental to

ii^brinsic degeneracy as the wave direction approaches a normal to the

magnetic field. The transition can be found by keeping the 0(e) term

in Eq. (15) for g

(56)
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Approximating the Bet'sel function derivative as in Appendix A, we

obtain

g =

2 2 2 2 2
k eMv J Jl(kp) Q.

Z Z g. -L
M ... 2,

which, after substituting k v
z z

<,2 2
I ii

M V

The two terms are equal for

(M V. )

iil and kj^p = i, becomes

1 + e

'M V
2 2

'A J
21 H

M V

= l/(c

(57)

(58)

Assuming that v^^ is the characteristic velocity, we are considering

resonance with an axial velocity class on the wings of the distribution

function. In terms of the propagation vector

(a)
For overlap we would put n = 4 in Eqs. (58) and (59)

-15-
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Appendix A - Evaluation of

We wish to evaluate

.(i) 2 , .
8 = eMv A-1

dp,

near its maximum value. Carying out the derivative implicitly we

obtain

d^J,(kp) d̂J,(x) ^2^^,
% dp/ •

To order the terms we assume that the Bessel function derivatives

are chosen near their maximum values such that we can approximately

set

d^ (x) dj. (x)
d^ =

obtaining for A-2

We also have

d^ J (kp)
- J,(X)

dp . X-r , ' -K
'^'1/

d(kp)y ^d^(kp)
dp.,. / dp ^

A-A

d(kp) _ Ic
j" P Mi.!dp^

Taking kp ; £ at the maximum of the Bessel Function we find the

first term in A-4 is larger than the 2nd by Jl, and assuming fi, >> 1

keep only the 1st term to obtain

-16-



.- 2 •'l „2 4 • •
% • "V

Substituting A-5 in A-1, Eq. (53) is obtained.
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Appendix B - Evaluation of g

We wish to calculate g^. From the Hamiltonian in Eq. (12) or

Eq. (23) we calculate the fourth order terms in the expansion about

the elliptic singularity

2 1 4 1
H2 eMv Lj Jj,(Az) - ^ 2 ('̂ z) +4 I ' 'z' "4! ,-4

V- --ip

2 1 . 4

and trnasfonning to action—angle form by using Eq. (32) and averaging,

we have

^2 ~ \^2 / ~ ^ ^ (2J)^ + (2RJ)^64 l\ R 32 . 2

"Pz

By differentiating twice with respect to J we obtain

,4

g^ = £ MV i I _ i lie 4. 1lie
8 £„2 4-2 8.-4'^

R ^ ftp
z ^z

For accidental degeneracy R - f/g - 0(e), then to lowest order in e,

0(e'*), we keep only the leading term giving

(a) ^ cMv^ ;i (a) _
''s 8 f ® "8

where the superscript (a) stands for accidental degeneracy and the last

equality was obtained by substituting for f from Eq. (16) or (25) For

intrinsic degeneracy f/g = 0(1), and all of the terms in g must be

kept. Using the results from Appendix A wc find that all terras scale

in the same manner, such that for Intrinsic degeneracy

(i)
.. 8
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Appendix C - Regions of validity for resonant and non-resonant transformations

In kamey and Bers numerical example, treating particles moving

in a perpendicularly propagating wave, a slightly off harmonic resonance

frequency was chosen. This was required to compare the results with

their analytic trajectories that were calculated from a first order

invariant obtained from a non-resonant transformation.^ Their transfor

mation generated an invariant whose maximum rate of change can be estimated

cil J (O .

P, (56)

where v = w/fi and the argument of the Bessel function was taken. Thus

for near resonant fields e must be at Its maximum sufficiently small

that

f.-v
<< 1 (57)

This restricts, the region of validity of their transformation near a

resonance. The resonant transformation, on the other hand, requires

that the applied frequency be sufficiently close to a resonance that

the resonant term dominates the summation. The perturbation term can

then shift the harmonic of the gyration frequency sufficiently to bring

it into resonance with the applied frequency. This value can be estima

ted from Eq. (23) by noting that the singularity (resonance) occurs at

- ;ij„(kf )
'HI 9 0. Mv^^ =0 (58)
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where the plus and minus correspond to the stable and unstable singular

points, respectively. The condition for resonance is then that Eq. (29a)

can be satisfied for some value of p^^, and using the same approximations

as in Eq. (29) we obtain

I
" 1 • (59)

For £=1 the regions of validity of the two transformations are mutually

exclusive. For large £ there can be considerable overlap between them.

For an example in Karney and Bers i-v = .1 £ = 30 and ££^ = 1-3 we find

that the left hand side of Eq. (57) lies between 0.1 and 0.3 and thus

their transformation is well satisfied for the smaller perturbation and

marginally for the larger. For the resonant transformation the inequality

in Eq. (59) is well satisfied, the left hand side lying between 3 and 10.
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