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!• INTRODUCTION

This paper presents an algorithm which is at the end of a fairly
long evolutionary chain. Originally, as proposed by Hestenes [8],
Powell [12]and Haarhoff and Buys [4], multiplier methods for solving a

problem of the form P: min{f(x)|h(x) = 0} proceeded as follows. They

constructed recursively, a sequence of augmented Lagrangians

F(x,c^) 4 f(x) +<i).^,h(x)> +-1 l)h(x)ll^, i =0,1,2,...

with c^ > 0 monotonically increasing. Beginning with a they

minimized F(x,c^) to get an and then updated the multiplier to

by some formula, for the next augmented Lagrangian. Since it soon became

known (see e.g. [3],[1]) that the x^ thus constructed may converge to

a solution x of ^ even when the c^ do not converge to infinity, it was

proposed by Fletcher in a series of papers [3,4,5] to combine the infinite

sequence of unconstrained minimizations of the F(x,c^) into a single

problem by using a formula ilf(x) for This idea was very good, except

for two shortcomings. The first was that he did not know how to find

automatically a satisfactory value of the penalty c, while the other was

that his extension of his formula to problems with inequalities [6] resulted

in discontinuous derivatives in the augmented Lagrangian, which caused

algorithms to jam.

In [10], Mukai and Polak proposed a test for limiting the growth

of the penalty for Fletcher's scheme for the case of equality constraints.

In this paper, we proposed a new formula for the multiplier as well as a

test for limiting the growth of the penalty for problems of the form

(x) Ig(x) ^ 0, h(x) = 0}. Our formula results in twice continuously

diffGrentiable multipliers and in a twice continuously differentiable augDiented
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Lagrangian. To simplify exposition, for the augmented Lagrangian we

have used the quadratic form proposed by Buys [2] and Rockaffelar [13].

If one wishes to get more differentiability, one can use the slightly

more complex, cubic form proposed by Kort and Bertsekas [9]. Our test

for limiting the growth of the penalty conforms to the requirements of

the abstract algorithm model for exact penalty methods proposed in

Polak [11]. As a result, if the sequence {x^}, which the algorithm

constructs, stays bounded then the penalty stays bounded. Mostly, this

is the case in practice.

In summary, we present in this paper a multiplier method for solving

optimization problems with equality and inequality constraints. This

method realizes all the good features that were foreseen by Fletcher for

this type of algorithm in the past, but which suffers from none of the

drawbacks of the earlier attempts.

2. THE PROBLEM AND BUILDING BLOCKS FOR AN ALGORITHM

Consider the problem

min{f(x)lg(x) <0. h(x) = 0} (D

where f:]R^ 1R^» g:lR^ h:lR -*• 3R .

Notations We shall denote by m the set {l,2,...,m}, by ^ the set

{1,2,...,A) and by B(x,e) the set (x* |Ilx*-xtl _< e}. ^

Assumption 1; The functions f, g and h are three times continuously

differentiable. n

Assumption 2; For any x ^ IR^, let I(x) A {j ^ ®lg (x) ^0}. We

assume that for any x ^ the vectors Vg (x), j ^ I(x) together with

the vectors Vh^(x), j ^ are linearly independent. ^
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We note that Assumption 2 is somewhat stronger than the positive linear

independence condition usually required for the Kuhn-Tucker constraint

qualification to hold.

For problem (1) we shall seek Kuhn Tucker points, which we define

as follows.

Definition 1; A point x ^ 3R^ is a K-T (Kuhn-Tucker) point if

g(x) < 0, h(x) = 0 (2)

» n ^

and there exist vectors X G ]R , ^ IR such that

(3)

X ^ 0, <X,g(x)> = 0 (4)

We shall denote the set of all K-T points for (1) by A. jj

Note that because of assumption 2, X and ip are uniquely defined by (3).

Vf(x) +islii! X+ i =0

Assumption 3: Let x be any K-T point for problem (1), with associated

multipliers X, and let

L(x,X,i|>) = f(x) +<X,g(x)> +<iji,h(x)> (5)

Then (i) X^ > 0 for all j ^ I(x) (strict complementarity) and (ii) the

Hessian matrix ^ L(XyXyi|;) nonsingular on the subspace
3x
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M= {y| y = 0; <Vgj(x|,h> = 0, j e I(x)} (6)

We shall shortly define the augmented Lagrangian, as in Buys

and Rockafellar [13],and substitute into it multipliers obtained by a

modification of Fletcher's formula [6], It was necessary to modify the

formula because the multiplier it yields can have a discontinuous gradient

Thus, we define ]R™, ->• H^ by
T T

(X(x),i|>(x)) 4 ^^^8 {llVf (x) + X +

+ <X,G(x)X>} (7)

where

G(x) 4 diag((g^(x))^) (8)

Proposition 1; The functions X('), are well defined and are twice

continuously differentiable. Furthermore, for any K-T point x,

X(x), \|;(x) satisfy (3) and (4).

Proof; First we show that the second order term in (7) is positive

definite. Since it is obviously at least positive semidefinite, it

is sufficient to show that

1^ + <x,G(x)x> = 0

implies that X = 0 and = 0. We can rewrite (9) as

(9)

2 (X^)^(g^(x))^ + llSx^Vg^Cx) + I = 0 (10)
j=l j=l j=l

Then we must have X^ = 0 for all j ^ msuch that g^(x) 0. Consequently
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2,

T, A^Vg^(x) + =0 /,,x
jei(x) j=i

and this Implies that A= 0 and ij/ = 0 because of Assumption 2.

Since A and iJj are given by

, , 3h{x)^
"a^ + g(x)a = 0 (12)

(-L) : 3h(x) , , 3g(x)''̂ , , 3h(x)^ ^
W 3x ^ + -at^ ♦) = 0 (13)

<^) . 2^ fff« ♦ ^ w iMsi! „

we conclude, because of Assumption 1, that they are twice continuously

differentiable.

Now suppose that x is a K-T point. Then there exist (A,if)

satisfying (3) and (4) and hence also (1^ and (13). Since the solutions

of (1^ and (13) are unique, we conclude that A(x) = A, i/;(x) = if, which

completes our proof. n

We can now define an augmented Lagrangian F:1r'̂ x ]R^ by

F(x,c) 4 f(x) +<i(i(x),h(x)> +-^ {ll(cg(x)+X(x))^l|2 _ llx(x)l^}

+jllh(x)ll^ (14)
where for any vector y ^ IR , y^ £ ]R is a vector with components

^4- Aniax{0,y^}, j = 1,2,...,m. We shall denote the set of points

X^ IR^ at which the gradient of F vanishes by A , i.e.
c

A{x e ]r''|v^F(x,c) = 0} (15)

To construct an algorithm for solving (1) based on the unconstrained

minimization of a finite number of augmented Lagrangians, we follow the

scheme described as Algorithm Model 4 in [11]. This scheme requires that

we have an algorithm for minimizing F(x,c) for any value of c > 0 and

a real valued test function (x,c)|—»t(x,c). Denoting the iteration

function for the unconstrained optimization algorithm by A
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XI "t* IR^
(A:1R X ]R -»• 2 ) we can restate algorithm Model 4 in [11] in terms

+ +
of the quantities in this paper. Let <|):]R -*• IR be such that

(J>(c) > c Vc ^ IR^ (16)

<|)(c) -> «> as c ->• «> (17)

e.g. (f>(c) A 2c.

Algorithm Model

Data: Xq ^ Cq > 0.

Step 0: Set i=0, j=0.

Step 1: If t(x^,c^) >0, go to step 2; else go to step 3.

Step 2: Set x. = x., set c.., = <(>(c.), set j = j+1 and go to step 1.
^— j 1 J+1 3

Step 3: If ^ » stop; else compute an ^ A(x^,c^) set

i = i+1 and go to step 1. n

The following convergence result specifies the properties of the

test function t, which we shall need to construct, as well as the

properties of the resulting algorithm (see [11]).

Theorem 1: Consider the sequences {x^}, {x^} and {c^} constructed by

the Algorithm Model. Suppose that

(i) for each j, A(*,c^) is such that any accumulation point x of a
sequence <^o^structed according to ^ A(x^,c^), j = 0,1,2,...,

satisfies x G A
c.

J

•''For example, A^x,c) Ax-XV^F(x,c) for the Armijo gradient method, and
A(x,c) =X- (-^—1 (x,c))~^VF(x,c) for Newton's method. When the unconstrained
algorithm is a^multipoint method, e.g. a quasi-Newton method, the notation
A(x,c) is not correct, but will be used for simplicity of exposition.
Theorem 1 is not sensitive to whether A represents a single or multipoint

method.
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(ii) For any c > 0, t(*,c) is continuous.

for j —0)1,2)3)..., {x ^ A_ |t(X)C.) < 0} C
• 3 —

3

(iv) For every x S there exists a c ^ 0 and an e > 0 such that

t(X)C) < 0 for all c > S for all x e {x' |Ox'-xll < e}.

Under these assumptions:

(i) If the sequence {x } is finite (so that {x } is also finite) then
J

the last element) say Xj^, is in A.

(ii) If the sequence {x^} is finite and the sequence {x^} is infinite, then

every accumulation point x of {x^} is in A.

(iii) If the sequence {Xj} is infinte, then this sequence has no accumulation

points.
n

We see from this theorem that if we combine any convergent method

for unconstrained minimization A(»)0 with an appropriate test

function t(*)*) as in the Algorithm Model, we obtain a convergent

algorithm with the property that it will not drive the penalty c to

infinity whenever the constructed sequence {x^} stays bounded. For

example, this will always be the case when the level sets (for

a ^ [0,»)) {x|f (x) _< a} are compact.

Since there is no shortage of unconstrained minimization algorithms,

we see that the main task in constructing an algorithm of the form of

our Algorithm Model, is the construction of the test function t(•,•).

We shall do this in the next section.

3. THE TEST FUNCTION t.

Our construction of the test function, for the algorithm we are

developing in this paper, is based on ideas which also were used in

-8-



[10] and [9a] to construct test functions for other exact penalty type

algorithms. In this spirit, we propose to develop a test function of

the form

t(x,c) 4-ll7^F(x,c) 11^ +c{Ila(x,c)0^ +ilh(x)ll^} (18)

so that when V^F(x,c) = 0, t(x,c) <0 if and only if h(x) =0 and

a(x,c) = 0. Obviously, to ensure that, in that case, x € A, a(',«)

has to be chosen so that a(x,c) = 0 if and only if g(x) 4 0, X(x) >_ 0 and

<X(x),g(x)> =0. We note that

V.^F(x,c) =Vf (x) +-^1^^ "Kx) +^3^^

+\ ^3^^^ (cg(x)+X(x))^
. X(x) } + c h(x) (19)

If we define a(',') by

a(x,c) 4 (g(x) + ~ (20)

then we get

T

V^F(x,c) =Vf (x) + (i|j(x) + ch(x)) + h(x)

+ X(x) + + a(x.c) (21)
3x ox c 3x

Le^a_l: If, for some c > 0, a(x,c) = 0, then g(x) 4 0, A(x) 4 0

and <X(x),g(x)> = 0.

Proof: Suppose a(x,c) = 0. Then, from (20)

(g(x) +-^ X(x))^ =^ A(x) (22)

and hence X(x) 4 0. Next, for any i such that X^(x) - 0, we must have

(hv (20)) that R^(x) < 0 and for any 1 such that X^(x) > 0 we must have

gi(x) +- X^(x) =- X(x), i.e., g^(x) =0. We therefore conclude that
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g(x) < 0 and <X(x) ,g(x)) = 0.
n

The next result is obvious.

Corollary: Suppose a(x,c) = 0 for some c € (0,®). Then a(x,c) = 0

for all c G (0,®).
n

Lemma 2: x is a K-T point if and only if for any c ^ (0,®)

V^F(x,c) = 0, a(x,c) = 0 and h(x) = 0.

Proof: Suppose x is a K-T point. Then h(x) = 0, g(x) = 0 and i/#(x),

X(x) satisfy (3) and (4). Hence we must also have V^F(x,c) = 0,

a(x,c) = 0 for any c G (0,®).

Now suppose that 7^F(x,c) = 0, a(x,c) = 0 and h(x) = 0. Then, by

Lemma 1, g(x) 4 X(x) satisfies (4) and from (21), X(x) and ij;(x) satisfy

(3), i.e., X is a K-T point. jj

Corollary: Let t(-,-) be defined as in (18), with a(-,«) as in (20).

Then t(',c) is continuous for any c G (0,®) and {x G A |t(x,c) < 0} C a.
c —

Proof; The fact that t(*,c) is continuous follows from the continuity

of the constituting functions. Now suppose that for some c ^ (0,®)

X G A and t(x,c) < 0. Then V F(x,c) = 0 and therefore t(x,c) < 0

implies that a(x,c) = 0 and h(x) = 0. Hence x is a K-T point

(i.e., X^ A) by Lemma 2. ^

The above corollary shows that our test functions satisfies the

assumptions (ii) and (iii) of Theorem 1. It will be much more difficult

to show that it also satisfies assumption (iv) of"Theorem 1. This will

require the following two lemmas.

Lemma 3: Suppose that Assumption 3 holds. Then, for every compact set

S C which does not contain a K-T point there exist a Cq > 0 and a
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<5 > 0 such that

11V F(x,c)ll > 6> Vc > c^, Vx G S (23)
X — — 0

Proof: Suppose the lemma is false. Then there exist sequences

(x } ~ , {c.}."^ such that x. ^ S for all i, x. x € s, as i «,
i i=0 1 1 ^

c -)- « as i -)• « and Hv F(x.,c.)tl ^ 0 as i -• «>. Since c. «, it follows
i X 1 i 1

from (20) and (21) and Assumption 1 that

3h(x )^ 3g(x.)^ T

h(i) + 8(x)^ = 0. (24)

It now follows from

Assumption 2 that h(x) = 0, g(i) 4 i-e. x is feasible. If S contains

no feasible points, we have a contradiction and we are done. To explore

the other possibility, suppose that S does contain feasible points. In

that case, there Is an ig such that c^g^ (x^) +X^(Xj^) <0. and therefore
(Cj^g(x^) +X(Xj^))^ =0, for all i > and j e A{j Sm|g^(x) <0}.
Hence, for all i ^ Iq*

3h(x,)^ aiKx^)
V^Xj '̂Cf) ° "^"3^ ^ c^hCx^)] +-^ ^h(xp

T

3g(x^)
+ 3^ ^ [Cj^g(Xj^) + X(Xj^»^

3X(x.)''̂ 1 . 1 3X(x )
+ 3^ [g(Xj^) + — ^(Xi)l+ "

3 3
where g, Xare vectors whose components are the components g , X of

A

g and X, respectively, with j ^ I(x). Let

A'̂ (x^) + c^h(x^), L = (c^g(x^) + X(x^))_|_, i =1,2,..., (26)
A

Then, since VF(x. ,c ) -*• 0, we must have i|j. ->• i and X X. Furthermore,
X 1 1

A

since X, > 0 for all 1, X >0, and
1
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= 0 (27)

1- ♦ • " "f"which implies that x is a K-T point. But this contradicts our assumption

that there are no K-T points in S. Hence we are done. ^

Lemma 4: Suppose that Assumptions 1-3 are satisfied and that x is a K-T point.

Then there exist ac>0, a6>0 and an e > 0 such that

ll7^F(x,c)ll ^ 6llx-x8, Vc ^ c, Vx € B(x,e) (28)

Proof; Because of Assumption 3, there exists an e ^ (0,1] such that x

/> i
is the only K-T point in B(x,e) and, in addition (by continuity) g (x) < 0

for all XGB(x,e) and all i S I^(x) A(1 ^m|g^(x) < 0}. Hence there
i i V ^ ^ ^

exists a such that eg (x) + X (x) ^ 0 for all x ^ B(x,e), for all

c ^ c^ and all i ^ I*^(x). For any x^ B(x,e), and ^^ let J(x,c)
be defined by

J(x,c) A{i ^ m|cg^(x) + A^(x) > 0} (29)

Then J(x, c) C i(x) for all x ^ B(x,£), c ^ Cq.

First we show that there exist ® ^ a 6^ > 0 such that for all

X^ B(x,e) and c ^ c^ satisfying J(x,c) C I(x), J(x,c) 9^ I(x), we must

have

"'ji.F(x,c)" =07£(x) + (i|i(x) +ch(x)) +-^1^^ h(x)

+ E {[cg^(x) + X^(x)]Vg^(x) + g^(x)VX^(x)}
i ^ J(x,c)

+i E X^(x)VX^(x)0 > (29)
i ^ j'^(x,c)

i We conclude from this discussion that if the x^ are minimizers of
F(x,C£), and x^^ -»• x while ->• «>, then x is a K-T point for (1) and,
riirthormoro, that ^^ ^I'L 'l'(x)» wliich implies that
Oj[J'g(xjL)II 0 and e^llh(x^)il ->• 0 as i > «, c.f. Bertsekas [1], i.e. that
we get superlinear convergence to feasibility. With suitable strong
convexity assumptions, this gives superlinear convergence of x^ x in
the sense that c^j^Hxji^-xli -> 0 as i ->• ».
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OO 00

For suppose this Is false. Then there exist sequences

such that ^ B(x,e), k = 0,1,2 Xj^ x and c^^ -> » as k -> «,

J(Xj^,Cj^) C i(x) and J(Xj^,Cj^) I(x), for k = 0,1,2,..., and

V -»• 0 as k -»• «. Since J(Xj^,Cj^) is an element of the finite

set of subsets of I(x), there exists a J I(x), J C i(x) and an infinite

subsequence indexed by KC {0,1,2,...} such that J(Xj^,Cj^) = J for all

k G K. Now, since 0 as k -> « while \and Xj^ ^ x, we

must have, because of Assumption 2 and because

= 2 converges as k -> «, k ^ K,
iej(x^,c^^)

that g(x) 4 0 and h(x) = 0, i.e. that x is feasible. Now for k GK,
3h(x

. .T ^ .

—h(x^)+2 •*""*• 3x i tE J

- -t E (30)

i e j=

Since ^ 0 as k and ~ ^ all k ^ K, and x^ x

as k -»- « and Cj^g^(Xj^) + X^(Xj^) 4 0 for all k Gk, i e j, we find that
[Ckg^(Xj^) +X^(Xj^)] 5 40, as k-• », for i e J, and [Cj^h(x^) +ij>(x^^)] ^ if
as k ->• 0®. Furthermore, since for i ^ J, Cj^g^(x^) + X(x^^) converges as
k ->• <», k ^ K, we must have g^(x) = 0 for i ^ J. But then we have

V£(x) + $ + E XV(J) = 0 (31)
i € J

^We denote by e^ the i^^ column of the mxmidentity matrix.

-13-



with X feasible and ^ 0 for all i ^ J, i.e., x is a K-T point. But

there is only one K-T point in B(x,e) and hence we must have x = x, = <|/(x)

and = X^(x) for all i ^ J. But then (31) contradicts the strict compli-

raentarity assumption at x since J is a proper subset of I(x). Consequently,

there must exist a Cj^ ^ c^ and a 6^ > 0 such that (29) holds for all

X^ B(x,£) and c ^ c^ such that J(x,c) is strictly contained in I(x).

Next we consider all x ^ B(x,e) such that J(x,c) = I(x), with

c ^ c^. Suppose that (28) does not hold for all such x ^ B(x,e). Then

there exist sequences x^^ ->• x, Xj^ ^ B(x,e) and " such that

J(Xk,Cj^) == I(x) and

11 VxF(Xj^,Cj^) 11/11 Xj^-xD ^ 0 as k -> «> (32)

Let b:]R^ x IR"'" -»• be defined by

b(x,c) AVf(x) + 'I'Cx) + h(x) + £
3* i e i(x)

{X^(x)Vg^(x) +g^(x)VA^(x)} -2 x'̂ (x)VX^(x) (33)
- O A

i e I (x)

Then for our sequences obtain,

Ki) ®
(34)

Now, suppose (32) holds. Then •*" ^ conclude that x

is a K-T point. But x is the only K-T point in B(x,e) and hence we must

have X = X. We recall that by Lemma 2, because x is a K-T point, we
A ^

must have V F(x,c, ) = 0 for all c. and hence (since h(x) = 0,
X k K

g^(x) = 0 for i e I(x)), b(x,Cj^) = 0 for all c^.

Hence, expanding (34) by the Taylor formula, we obtain
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B7F(k^,c^)II/IIx^_xII = +c^G^(V^)«/«vSII (35)

where

9b^ 3^ (xH-s(x^-x).c^)ds (36a)

°k
-1 / .

4 1 / £ {g^(x+s(x.-x)) —^ (^s(x^-x))
Jo yi tf i(x) ^ 9x

. ^ T 9h(x+s(x--x))^ 9h(^s(x,-x))
+7g^^s(x^-x))VgJ(^s(Xj^-x))^} + ^ ^

a (^s (3C.-x) ) \+ £ h^ (x+s (Xj^-x)) 2 j (36b)

Hence we get that

il [Bj^(xj^-x)/llxj^-xll + ->• 0 as k » (37)

Let KC {0,1,2,...} define a subsequence such that (xj^-x)/llxj^-xll d

as k k € K. Then, since converges (see (42) below) and c^^ <«

as k it follows from (37) that lim Gj^d = 0, i.e., that

£ 7g^(x)<Vg^(x),d> +^1^^ (-^1^ d) =0 (38)
1 e l(i)

Because of the linear independence assumption ( ssumption 2) we conclude

from (38) that

<7g^(i),d) = 0 Vi e l(x). and d = 0 (39)

Now, from (37) again, we get

lim {< d,Bj^(x^-x)/llxj^-xll> + c^< d,G^(Xj^-x)/llx^-xII> } = 0 (40)

A .

Since Bj^ as k ->• «, where
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T

b(x) 4 7f(x) + i|i(x) + S ^ [A^(x)7g^(x) + g^(x)7X^(x)]

+̂ h(x) (41)
and

-nT

^ lei(i) 3x 3x .ask-^" (42)

we conclude from (37) that

lim {<d, ^ ^ <Vg^(x)d) ^ dll^} = 0
k-^ ^ i t i(x)

ab(x)i.e. that<d, d) = 0. Now (see (5)), we obtain from (41) that

^ ^ (X. A(x), ^(x)) + ^ h(a)
dx

+ (Vg^(x)VX^(x)^ + VA(x)Vg^(x)^) (44)
i ^ I(x)

Making use of (39), we now obtain that for any c > 0

0=(d, 4^ d> =<d, a^L(^.^W,»(x)) ^
3x2

But this contradicts Assumption 3. Hence there exists a 6^ ^ a

^ (28) holds for all x ^ B(x,e) for all c ^ c such that

J(x,c) = I(x). Letting 6 = min{6^,62} and recalling that 0 < e £ 1 by

construction, we conclude that 6^ >. 6llx-xll for all x ^ B(x,e) and hence

(making use of (29)) that (28) holds with c > 0 e > 0 and 6 > 0, as

defined.
n

We can now collect our results.

Theorem 2; Suppose that Assximptions 1-3 hold. Then the function

t: IR + ]R IR def ined by
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t(x,c) A-IIV^F(x,c)ll^ +-i {Oa(x,c)II^ +llh(x)ll^j (^5.

with

a(x,c) A(g(x) + ^(x))^ - ^ X(x) (46)

satisfies the assumptions (ii)-(iv) of Theorem 1.

Proof;(i) For any c > 0, t(*,c) is continuous because of Assumption 1

and Proposition 1. (ii) Suppose x ^ {x ^ A |t(x,c ) _< 0}. Then by
j ^

the corollary to Lemma 2, we have that x ^ A. (iii) Suppose x is arbitrary

If X ^ A, i.e., X is not a K-T point, then, by Lemma 3, and assumption 3,

there exist a c^ > 0, a 6^ > 0 and an e > 0 such that there is no K-T
A A

point in B(x,e) and

llv F(x,c)ll >6^ Vc > c^, Vx G B(x,e) (47)
X ' — 0 — 0

Since llh(x)Il^ and Ua(x, c)l^^ are bounded on B(x,e) for all c^ c^, there
A A A

exists a c ^ Cq such that t(x,c) < 0 for all x GB(x,e) and all c 5^ c.

Next, suppose that x Is a K-T point. Then, by Lemma 4, there exist
A ^

acj^>0a6>0 and an e > 0 such that

llv F(x,c)II > 6 ilx-xll Vc > c., Vx G B(x,e) (48)
X — — 1

Now, because of Assumption 1 and Proposition 1, h(x) and a(x,c) are both

Lipschitz continuous on B(x,e), with constant,say, K, uniformly in

c G [c,®). Since h(x) = 0 and a(x,c) =0, for all c > 0, we obtain

l!h(x)II < Kllx-xli (49)

lla(x,c)Il kOx-xS (50)

Consequently, for any x ^ B(x,e) and c ^ c^ we obtain that

-17-



t(x,c) < (-6 + llx-i
c (51)

Obviously, If we set c = 2K/6, we find that t(x,c) £ 0 for all
_ A A ^X B(x,e) and all c ^ c. This completes the proof. ^

Thus, we have established that the proposed test function t(*,*)

can be used in a scheme conforming to the Algorithm Model. It remains to

say a few words about the selection of an unconstrained optimization

algorithm for minimizing F(x,c). Since by (21), V F(x,c) involves terms

9A(x) 9i^(x)arin n ^ uitcii. uty* v^uuiMUUe \

X
in and ——, it is clear that to compute V_F(x,c) we neeed to

compute second derivatives of g and h. To justify this extra work, it

would be nice to use an optimization algorithm with quadratic convergence

properties. Fortunately, we find such an algorithm described in [10].

It is of the Gauss-Newton type and does not require eventual computation

of third derivatives.

4. CONCLUSION

We have demonstrated that the general constrained optimization

problem can be converted into an unconstrained problem having a

continuously differentiable objective function. In addition we give

a scheme for updating the penalty parameter c. If our algorithm

produces a sequence that remains bounded, we show that the penalty

parameter remains bounded and the algorithm is globally convergent

in the sense that all accumulation points are Kuhn-Tucker points.

-18-



REFERENCES

[1] D. P. Bertsekas: "Combined Primal-Dual and Penalty Methods for

Constrained Minimization," SIAM J. Control and Optimization,

Vol. 13, 521-544, 1975.

[2] J. D. Buys: "Dual Algorithms for Constrained Optimization Problems,"

Doctorate Dissertation, University if Leiden, June 1972.

[3] R. Fletcher: "A Class of Methods for Nonlinear Programming with

Termination and Convergence Properties," in Integer and Nonlinear

Progranwni"g, J. Abadie (ed.), North-Holland, 1970.

[4] R. Fletcher and S. Lill: "A Class of Methods for Nonlinear Programming

II: Computational Experience," in Nonlinear Programming, J. B. Rosen,

0. L. Mangasarian and K. Ritter (ed.). Academic Press, 1971.

[5] R. Fletcher: "A Class of Methods for Nonlinear Programming III:

Rate of Convergence," Technical Paper T.P. 445, Theoretical Physics

Division, U.K.A.E.A. Research Group, Atomic Energy Research

Establishment, HARWELL, May 1971.

[6] R. Fletcher: "An Exact Penalty Function for Nonlinear Programming

with Inequality Constraints," Math Programming, 5, 129-150, 1973.

[7] P. C. Haarhoff and J. D. Buys: "A New Method for the Optimization of

a Nonlinear Function Subject to Nonlinear Constraints, Computer

Journal, Vol. 13, pp. 178-184, 1970.

[8] M. R. Hestenes: "Multiplier and Gradient Methods," Journal of

Optimization Theory and Application, Vol. 4, No. 5, pp. 303-320, 1969.

-19-



[9] B. W. Kort and D. P. Bersekas: "Combined Primal Dual and Penalty

Methods for Convex Programming," SIAM J. Control and Optimization,

Vol. 14, No. 2, pp. 268-295, 1976.

[9a] D. Q. Mayne and E. Polak: "An Exact Penalty Function Algorithm for

Optimal Control Problems with Control and Terminal Inequality

Constraints, IEEE AC Trans., in Press.

[10] H. Mukai and E. Polak: "A Quadratically Convergent Primal-Dual

Algorithm with Global Convergence Properties for Solving Optimization

Problems with Equality Constraints," Math. Programming 9, 336-379,

1975.

[11] E. Polak: ' On the Global Stabilization of Locally Convergence Algorithms

for Optimization and Root Finding," Automatica, Vol. 12, 337-342, 1976.

[12] M. J. D. Powell: "A Method for Nonlinear Constraints in Minimization

Problems," in Optimization, R. Fletcher (ed.). Academic Press,

New York, 1969.

[13] R. T. Rockafellar, "Augmented Lagrange Multiplier Functions and

Duality in Nonconvex Programming," SIAM J. On Control, Vol. 12,

268-285, 1974.

-20-


	Copyright notice 1977
	ERL-77-54

