

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

lMTt«t.mRA»rsr loan department
IPHOTODUPt-TCATfON SECTION)

THE •ENBRAL LIBRARY
UNIVERSITY OP CALIPORNIA
•ERKELEY, CALIFORNIA 9AJ%9

OBSERVATIONS ON DATA MANIPULATION LANGUAGES AND THEIR EMBEDDING

IN GENERAL PURPOSE PROGRAMMING LANGUAGES

by
I

M. Stonebraker and L. A. Rowe

Memorandum No. UCB/ERL M77/53

29 July 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

OBSERVATIONS ON DATA MANIPULATION LANGUAGES AND THEIR EMBEDDING

IN GENERAL PURPOSE PROGRAMMING LANGUAGES
I . .

Michael Stonebraker and Lawrence A. Rowe

Department of Electrical Engineering and Computer Sciences
Electronics Research Laboratory

University of California
Berkeley, CA 9^720

ABSTRACT

Many data base query languages, both stand-alone and coupled to a general purpose pro
gramming language, have been proposed: A number of issues that various designs have
addressed In different ways are treated in this paper. These issues include the specif
ication of performance options, side effects, implicitness, the handling of types and
the time of binding. In all cases, the emphasis is on a comparative analysis, rather
than on an exhaustive survey of proposals. Several general observations on language
design for data base access are also made.

1. INTRODUCTION

In recent years many data manipulation languages have been proposed. This paper
attempts to explore issues that these languages face and to indicate the range of possi
ble solutions. In this discussion, which occurs in Section 2, no attempt is made to
exhaustively list languages, rather, we contain our remarks, to a smaller set of
representative cases. Moreover, we specifically exclude low-level, record-at-a-time
languages, commonly called "access methods" (e.g., VSAM [KEEHT^], ISAM [IBM 66], etc.).
In addition, natural language interfaces, such as Rendezvous [C0DD74] and TORUS
[MYL075], are also excluded.

In Section 3t the problems associated with coupling data manipulation languages to gen
eral purpose programming languages are discussed. Again, the discussion treats
representative cases and we make no effort to be complete.

In the last section, some general observations are made on language design as it relates
to data base systems.

2. PROBLEMS OF DATA MANIPULATION LANGUAGES

The examples in this section are drawn from the following languages:

* CODASYL Data Manipulation Language [C0DA71t CODA74]*
• Data Language Alpha [C0DD71],

* Data Language/1 (IMS Data Base Management System [IBM 75]),

* Link and Selector Language (OMEGA Data Base Management System [TSIC76b]),

* QUEL (INGRES Data Base Management System [HELD75, STON76]),

• Query by Example [ZL0075],

• Relational Algebra [C0DD72, PECH75, SMIT75],

• SEQUEL 2 (System R Data Base Management System [ASTR76, CHAM76]).

In all cases we use the language supported to mean the data base system when appropri
ate. For example, we refer to features of Data Language/1 (DL/1) which might more
appropriately be called features of IMS.

In the following subsections we discuss issues related to data definition, performance
specification, side effects, tuple variables, procedural versus nonprocedural specifica
tion, and implicit specification.

2.1. Relation to Data Definition

All data manipulation languages (DML) have an associated data definition language (DDL)
toi describe the data on which actions are performed. The DDL acts as a specification
mechanism for the data in a data base and cannot be avoided. Many DML's which have been
proposed but not implemented (e.g.. Data Language/Alpha and Relational Algebra) would
have to be augmented with a DDL.

Research sponsored by the Army Research Office Grant DAAG29-76-(5-0245.

For most relational languages, the HDL is a "create relation" ' command." " Syntactically,
it can be expressed as:

CREATE NAME(D0MAIN_1=format,D0MAIN_2=format,..,)
The data definition for a relation must specify a relation name, column names, and the
data type for each column. For network and hierarchical languages, the DDL contains
additional information about record inter-relationships.

Because there are two languages, constructs can be moved from the DML to the DDL, and
vice-versa. This is illustrated by examining three possibilites: (1) minimal informa
tion in the DDL, (2) linking information in the DDL, and (3) maximal information in the
DDL.

*>

2.1.1. Minimal Information in the DDL (e.g:, QUEL and SEQUEL 2) •

In this case, only a create relation function exists in the DDL. For example, one can
specify two relations as follows:

CREATE EMPLOYEE(NAME=C20,SALARYrFil,DEPT=C10,MANAGER=C20)^
CREATE DEPT(DNAME=C10,SALES_VOL=I4,FLOOR=I2)

Any association between the EMPLOYEE and DEPT relations must appear in the data manipu
lation language. Thus, to express the query "find the names of all'employees on the
first floor" in SEQUEL 2 one requires

SELECT NAME
FROM EMPLOYEE
WHERE DEPT IN

SELECT DNAME
FROM DEPT
WHERE FLOOR = 1

Notice that linking information (i.e., that DEPT in the EMPLOYEE relation must match
DNAME in the DEPT relation) appears in the data manipulation language.

2.1.2. Link Information in the DDL (e.g., CODASYL, DL/1, and LSD

In this case, linking information appears in the DDL as opposed to the DML as shown
above. In IMS for example, linking information is specified in a hierarchy definition.
In the CODASYL proposal, it is specified by the definition of sets. Lastly, in the Link
and Selector Language (LSD it is specified by the existence of explicitly defined
LINKS.

This case is illustrated by an example from LSL. Besides creating the two relations via
DDL commands, one can create a LINK as follows:

DEFINE LINK IS_IN
FROM EMPLOYEE
TO DEPT
BY EMPLOYEE.DEPT=DEPT.DNAME

As a result of the LINK IS.IN, our example query is written

GIVE NAME FROM EMPLOYEE
LINKED BY IS_IN
WHERE FLOORS 1

The linking information has been moved to the DDL. Consequently, there isrmore informa
tion in the DDL and less in the DML.

2.1.3. Maximal Information in'the DDL

In this case, all information is moved into the DDL. There is no language that proposes
doing this; hence, a hypothetical example is given to illustrate our point. Of the
languages considered, LSL comes closest to this point of view. The DDL specification
would be:

^ In the type specification, C specifies a string of characters, I an integer,' and
a floating point number of the indicated width.

CREATE EMPLOYEE(. . .)
CREATE DEPT(. . .)
DEFINE FIRST FLOOR AS

SELECT NAME
FROM EMPLOYEE
WHERE DEPT IN

SELECT DNAME
FROM DEPT
WHERE FLOOR r 1

and our example query would be invoked by
RUN FIRST_FLOOR

The entire manipulation facility has been moved into the DDL and only predefined tran
sactions are invoked in the DML. It might be noted that views [CHAM75, STONTSa] allow
SEQUEL 2 and QUEL to be augmented with similar facilities.
The point to be stressed is that information can be moved back and forth between a data
definition language and a data manipulation language. Furthermore, all implemented sys
tems separate functions between the DML and DDL. It is debatable how much information
should go in each language. However, any discussion of the relative simplicity or
cleanliness of a DML must include the DDL because any DML can be made arbitrarily simple
by making its associated DDL more complicated.

2.2. Performance Information

All implemented systems known to the authors include a facility to specify performance
information. For relational systems, this information includes: (1) the storage struc
ture used to physically hold the relation, (2) auxilary access paths that might exist
(e.g., secondary indices [SCHK75] and LINKS CTSIC75]), and (3) blocking factors for
secondary storage, buffering strategies, and hash algorithms. For the CODASYL proposal,
this information includes: (1) the LOCATION MODE for each record type, (2) how records
are to be allocated to files (AREA attribute), and (3) clustering effects between
records. For IMS, this information includes: (1) an access method choice (e.g., HDAM,
HSAM, etc.) and (2) secondary data sets that should be maintained.
This information can be specified implicitly by use patterns or explicitly by a
knowledgable user (typically a data base administrator). Three possibilities are dis
cussed in the following paragraphs.

No implemented system known to us uses only implicitly specified performance informa
tion, although it has been widely discussed in the literature [HAMM76b]. The basic idea
is to automatically adapt the implementation to changing use requirements by physical
restructuring. Similar ideas are being discussed in programming language circles with
respect to core resident data structures. This is an interesting research area that
warrants further work.

QUEL and SEQUEL 2 support a mixed strategy where minor performance information is gath
ered implicitly, while major performance information is specified explicitly. For exam
ple, hash functions, blocking factors, and the like are automatically handled by the
system. Secondary indices and clustering decisions, on the other hand, must be speci
fied explicitly by some user. The specification of this information is separated from
the DDL and can be changed without impacting any data manipulation programs.

Finally, all performance information can be specified explicitly in the DDL. Both
CODASYL and IMS adopt this strategy, mixing the specification of performance information
with data definition. For these systems, it is often impossible to change, performance
information without impacting -data manipulation programs.

There is a definite trend toward implicit specification of performance information.
Until research on automatic restructuring provides the algorithms and knowledge
representations needed to achieve an acceptable level of performance, explicit specifi
cation will be necessary in commercial systems. Such performance information should not
be visible to the end user and should be separated from the DDL and DML.

2.3. Side Effects

Several data manipulation languages have side effects. A side effect is an implicit
change in the execution environment as a result of a DML command. One example of a side
effect is shown in the following IMS example. Using the employee and department example
described above, a stylized definition of a hierarchy for DL/1 is

DEFINE RECORD DEPT
FIELD DNAME
FIELD SALES.VOL
FIELD FLOOR

DEFINE SUBORDINATE RECORD EMPLOYEE
FIELD NAME
FIELD SALARY
FIELD MANAGER

Notice that the linking information (the DEPT field in the EMPLOYEE record) need not be
present because it is implicit in the hierarchy definition. Each employee record is
stored physically subordinate to the record describing his department. In stylized
DL/1, the shoe department is deleted by

GET (DNAMEs'SHOE»)
DELETE

However, it has the added side effect of removing all employees who work in the shoe
department. DL/1 commands do not have to be given explicitly to delete the employee
records.

The argument given in favor of side effects is .that they allow the number of data mani
pulation commands to be reduced by having some actions be effects of others. Moreover,
execution efficiencies may be realized. The argument against side effects is that they
lead to data base transactions that are hard to understand and debug. Using side
effects is considered poor programming practice because the desired action is not stated
explicitly which often leads to misunderstanding the action.

Data manipulation languages are divided on this issue. Side effects are present in
CODASYL (mandatory and automatic set membership, set,selection criteria, and data base
procedures), DL/1 (removing a record automatically removes all descendents), and SEQUEL
2 (data base procedures, which are called "triggers'* [ESWA763). QUEL, Data Language
Alpha, and Relational Algebra do not have side effects.

2.11. Presence of Tuple Variables

This issue is illustrated by examples from SEQUEL 2 and QUEL. In Section 2.1.1, a query
in SEQUEL 2 was given that finds all employees who work on the first floor. Another
example is to find all employees who earn more than their managers, which can be writ
ten :

SELECT NAME
FROM E IN EMPLOYEE
WHERE MANAGER IN

SELECT NAME
FROM EMPLOYEE
WHERE SALARY < E.SALARY

The query in Section 2.1.1 makes no explicit reference to a specific row in the EMPLOYEE
or DEPT relation. However, the second query requires an explicit iteration variable (E
in the example). This variable iterates over all rows of EMPLOYEE, at any point indi
cating a specific one. As such, it is often called a "tuple variable" [C0DD71]. SEQUEL
2 Includes tuple variables only where necessary.

Now consider these same two queries written in QUEL. The first floor employees query is
RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPT
RETRIEVE (E.NAME) WHERE

E.DEPT = D.DNAME AND D.FLOOR = 1

while the employees earning more, than their managers is

RANGE OF E IS EMPLOYEE
RANGE OF M IS EMPLOYEE
RETRIEVE (E.NAME) WHERE

E.MANAGER = M.MANAGER
AND E.SALARY > M.SALARY

Tuple variables are present for every domain name referenced in a query. No attempt is
made to avoid them.

There are three possibilities for dealing with tuple variables: (1) they are never
explicitly present (eig., Relational Algebra), (2) they are present only when needed
(e.g., SEQUEL 2 and LSL), and (3) they are always present (Data Language Alpha and
QUEL). Note that DL/1 and*CODASYL do not have a notion of iterators because they are

record-at-a-time languages.

The argument for the elimination of tuple variables is that the resulting DHL is simpler
for easy queries and- a casual user (who may only need elementary features) can avoid
learning a confusing concept. The argument for the presence of tuple variables is that
the DHL can have a semantically clean and consistent interpretation. Moreover, while
easier queries may be harder to write, difficult queries are easier (and easier to
optimize, see the next section). Lastly, most casual users will be using a "customized
end user facility," so arguments against tuple variables do not hold because sophisti
cated applications programmers will be the only ones learning the language.

We believe that the human factors of data manipulation languages [LOCH77t MCD075a,
REIS75, REIS76] are not well enough understood to authoritatively address this issue.
Moreover, any arguments not based on human factors experiments are simply untested
expressions of belief on the part of the protagonists. Speculation about human factors
responses is no substitute for actual experiments. We hope to see more such experiments
in the future.

2.5. Procedural versus Nonprocedural Languages
In the previous section, examples were given in both SEQUEL 2 and QUEL. SEQUEL 2 is a
procedural language because a processing order is implied by the query specification
(from the inside block out, as noted in [ASTR753). QUEL, on the other hand, does not
induce a preferred processing order. Examples of procedural languages are: SEQUEL 2,
LSL, and Relational Algebra. Examples of nonprocedural languages are: Data Language
Alpha, QUEL, CUPID CMCD075b], and Query by Example.

Nonprocedural languages are amenable to elaborate optimization [WONG76J. Complex
transformations for efficiency can also be preformed on procedural languages (e.g., see
[PECH75f SMIT75])t but the ordering makes optimization more tedious.
The controversy between procedural and nonprocedural specification is not new to com
puter science. Other debatable points between these approaches are the ease of writing
down a desired query and the ease of understanding a query written by someone else. The
argument may well be moot (as happened, for example, in artificial intelligence and data
abstraction specification) because it likely depends on the background and experience of
the individual user.

2.6. Implicitness

Looking again at the examples discussed in Section 2.^1, notice that SEQUEL 2 implicitly
binds domain names to a relation by scoping rules. In effect, all domains indicated in
a particular SEQUEL 2 block are associated with the relation indicated in the "FROM
RELATION_NAME" clause (unless a tuple variable indicates otherwise). Thus, a degree of
implicitness is present in SEQUEL 2 in its treatment of tuple variables. Defaulting
them is done by an implicit convention. This implicitness was not present in the QUEL
examples.

Besides tuple variables, other features can be made implicit. For example. Query by
Example makes boolean operators implicit as shown* in the following two examples. To
find the names of all employees who work for Jones or Smith, one writes

i 1
EMPLOYEE 1 NAME i AGE

1 1
.SALARY MANAGER DEFT

1 1
iD.examolel
i !
i i
ID.examolel

! 1
1 1

Jones

Smith

i

On the other hand, to find the names of all employees who work for Jones and Smith,
writes

one

I i
t EHPLOIEE I NAME

•I I
\ AGE i SALARY ! MANAGER

t;p.££&£U2i£ t Jones
t

1 Smith

DEPT

.1

The fact that there are two rows beneath MANAGER indicate a boolean connective. The
difference between "and" and "or" is indicated by repeating the "p.example" (and) or by
leaving the name field blank (or). Moreover^ Query by Example makes equality compari
sons between domains the default case unless overridden by a different operator.
These examples indicate some of the things that can be made implicit. All data manipu
lation languages make a cammltment as to what should be implicit and what should be
explicit.

3. COUPLING A PROGRAMMING LANGUAGE TO A DATA BASE SYSTEM
Three approaches to providing data base access from a programming language are;

1. defining subroutines that execute data base requests when called (e.g., IMS-PL/1
[IBM75, TSIC76a]),

2. embedding data base constructs into an existing language and using a preprocessor
to translate these constructs into run-time calls on the data base system (e.g.,
DBTC-COBOL, EQUEL [ALLM76], and SEQUEL 2 [CHAM76]), or

3, designing a new programming language in which data base facilities
into the language environment.

are integrated

Previous work has focused on the first two approaches, as indicated by the ''©f®
cited, although more recently several groups have begun work on new languages LPnENTT,
HASS77, WELL76].

Regardless of which approach is used many fundamental design issues must be resolved.
Using sample programs written in four representative languages (DBTG-COBOL, EQU&L, IMS-
PL/1. and SEQUEL 2), we discuss possible solutions to some of these issues. The sample
programs are presented in the first subsection. Following this, the design issues are
discussed. Finally, some ideas suggested for a new language are briefly described.
Readers familar with the languages may want to skip the first subsection.

3.1. Sample Programs

The example problem is to write a program that executes a procedure for each employee
working in the shoe department. How each program accomplishes the
briefly, so that an understanding of the languages is not required. As much of the ddl
description as possible is suppressed so that the programs can be kept to a managabie
length. Readers interested in the complete details are referred to the appropriate
source material referenced previously.

Figure 1 shows a data structure diagram for the data base used in the DBTG and IMS p^ro-
grams. The relations defined in Section 2.1.1 are used for the EQUEL and SEQUEL 2 pro
grams.

3.1.1. DBTG-COBOL
2

Figure 2 shows a fragment of a COBOL program that performs the desired computation • J"
the FILE SECTION of the DATA DIVISION, the data base subschema is expanded (for this
example the subschema is named EMPLOYEE-DATA-BASE). The DECLARATIVES section of the
PROCEDURE DIVISION specifies the error handling routines to be invoked by the data base
system when an abnormal situation arises (code "OHOPI" indicates end-of-set). Following
the DECLARATIVES section, the actual program begins.

^ The program is written using DHL constructs from
(C0DA7^, TAyL76).

the 197(1 CODASYL report. See

J
J-- DEPT

leaiBEB

\ i
] £MFL03££ !
3 I

Figure 1: Base Structure

IDENTIFICATION DIVISION,

ENVIRONMENT DIVISION.

DATA DIVISION.
FILE SECTION.

DB EMPLOYEE-DATA-BASE

WORKING STORAGE SECTION.
77 END-OF-SET PIC 9(5) "0^1021"

PROCEDURE DIVISION.
DECLARATIVES.

EXPECTED ERROR SECTION,
USE FOR DATABASE-EXCEPTION ON ^•04021^
EXPECTED ERROR HANDLING.

EXIT.

UNEXPECTED ERROR SECTION,
USE FOR DATABASE-EXCEPTION ON DTHEB-
UNEXPECTED ERROR HANDLING.

<PROCESS ERROR>

END DECLARATIVES.

INITIALIZATION.
READY DBAREA.
FIND DEPT USING "SHOE''.
IF MEMBER IS EMPTY

GO TO FINISH.
FIND FIRST EMPLOYEE IN IffiMBER.

NEXT-EMP.
GET EMPLOYEE.

<PROCESS RECDRD>

FIND NEXT EMPLOYEE IN MEMBER.
IF DATABASE-STATUS <> EN1>-0F-SET

GO TO NEXT-EMP.

FINISH.
FINISH DBAREA.
STOP RUN.

Figure 2: DBTG-COBOL Program

The desired action is accomplished by opening the data base (READY ^®AREA), linding the
appropriate DEPT record, and then iterating through the EMPLOYEE records in the DEPT s
MEMBER set. We assume that the DEPT records are stored using a hash function on depart
ment name (LOCATION MODE' IS CALC).

The GET EMPLOYEE statement moves the current EMPLOYEE record from secondary storage (or
perhaps system buffers) to the work space of the program. This work space has been
declared in the subschema. In fact, storage for each distinct record defined in the
subschema is allocated.

3.1.2. EQUEL

An EQUEL program to perform the desired computation is shown in Figure 3. EQUEL is an
embedding of QUEL into the systems programming language C [RITC73]. Lines beginning
with are translated by a preprocessor into procedure calls to the data base system.
First, program environment variables are declared and the data base system is initiated.
The range statement binds the tuple variable to the employee relation. The retrieve
statement executes the iteration body (delimited by and the
in C) once for each record satisfying the qualification. Values from the named fields
in the retrieved record (i.e., name, salary, and manager) are copied into the Pj;og''am
variables (i.e., namev, salaryv, manapy) before each iteration. If
the field in the record does not match that of the program variable, the value

«# char namevC2l3;
int salaryv:
char managrv[2l3;

progO;

^ /• Initiate INGRES with the appropriate data base. •/
m Ingres . EmployeeDataBase

range of e is employee

#i retrieve (namev=e.name,salaryv=e.salary,
#1 managrv=e.manager)

where e.dept =*SHOE*

I

<process record>

}

3 /• end of program •/

Figure 3: EQUEL Program

translated to the type of the destination variable (e.g., integer to real).

3.1.3. IMS-PL/1

Fiaure shows a PL/1 program with DL/1 subroutine calls to solve the example Problem.
IMS is intiated which calls the procedure DL1TPL1 (DL/1 to PL/1), passing to ®
address of a shared communication area (QUERY^PCB in the program). The
the procedure include: (1) a templated describing the fields in ^h®
area, (2) buffers for each record accessed, (3) character strings describing the
qualifications, and (U) local data. Data base retrievals are requested by calling
PL1TDL1 (PL/1 to DL/1) with arguments describing the query.
The data base semantics of this procedure are sinilar to those for the DBTO-COB^^ pro-
aram '(Ret DEPT record and iterate through the subordinate EMPLOYEE records). The fir tlia?emen! in Se program gets, the uniqui record described in the search argument

8

DL1TPL1:PROCEDURE(QUERY_PCB) OPTIONS(MAIN);

DECURE QUERY_PCB POINTER;

/» DECLARE COMMUNICATION BUFFER */

DECLARE
1 PCB BASED(QUERY_PCB),

2 DBNAME CHAR(8),
2 SEGLEVEL CHAR(2),

-2 STATUS CHAR(2),
2 PROCOPT CHAR(M),
2 RESERVED FIXED BINARY(31,0),
2 SEGNAMFB CHAR(8},
2 KEYLENFB FIXED BINARY(31,0),
2 NOSENSEG FIXED BINARY(31>0),
2 KEYFB CHAR(28);

/* DECLARE RECORD BUFFERS •/

DECLARE DEPT_IO AREA(16),
1 DEPT DEFINED DEPT lO^AREA,

2 DNAME CHAR(IO),
2 SALES VOL FIXED BINARYC31,0),
2 FLOOR FIXED BINARY(15,0);

DECLARE EMPLOYEE_IO_AREA(U6),
1 EMPLOYEE DEFINED EMPLOYEE_IO_AREA,

2 NAME CHAR(20),
2 SALARY FLOAT BINARYC31,0),
2 MANAGER CHAR(20);

/• SET UP SEARCH ARGUMENTS •/

DECLARE /» »DEPT(DNAME=SHOE)' •/
1 DEPT^SA STATIC UNALIGNED,

SEG NAME
LEFT_PAREN
FIELD NAME
COND_OP
SEARCH VALUE
RIGHT_PAREN

CHAR(5) INITC
CHAR(I) INITC
CHARC8) INITC
CHARC2) INITC
CHARC1) INITC
CHARCD INITC

•DEPT »),
MD,
•DNAME'),
' = •),
•SHOE'),
')•);

DECLARE /» 'EMPLOYEE' •/
1 EMPLOYEE SA STATIC UNALIGNED,

2 SEG^NAME CHARC9) INITC'EMPLOYEE');

/• DECLARE SOME USEFUL VARIABLES »/

DECLARE
SUCCESSFUL
GU
GNP

CHARC2) INITC '),
CHARC4) INITCGU '),
CHARC4) INITCGNP ');

/* MAIN PROCEDURE »/

CALL PL 1TDL1C , GU,QUERY^PCB, DEPT_IO_AREA, DEPT_SA) ;
IF PCB.STATUSOSUCCESSFUL THEN RETURN;
CALL PL1TDL1C1,GN,QUERY PCB,EMPLOYEE_IO AREA,EMPLOYEE_SA);
DO WHILE CPCB.STATUSsSUCCESSFUL);

<PROCESS REGORD>

CALL PL1TDLlCM,GNP,QUERY_PCB,EMPL0YEE_I0_AREA,EMPL0yEE_SA);
END;

END DL1TPL1;

Figure 1: IMS-PL/1 Program

(DEPT SA). Following this, subordinate records are fetched and processed until the data
base status (STATUS in the shared conmunication buffer) indicates that there are no more
records.

3.1.4. SEQUEL 2

Figure 5 shows a PL/1 program with embedded SEQUEL 2 commands to solve.
Asterisk ("•") plays the same role as in EQUEL. First, program variables are
declared, followed by the specification of the query (the query is not J{J®
LET statement, only specified). The <l«ery is bound to a cursor variable (C1 in the
example) which is used for all later references to the retrieval. To execute ^he query,
it is opened (at which time the retrieval is started), individual records are fetched,
and values bound to the program variables (those variable CODE) the
statement). After all'records are processed (signaled by the global variable CODE),

PROG:PROCEDURE OPTIONS(MAIN);
DECLARE NAMEV CHAR(20),

SALARYV FLOAT BINARy(31,0),
MANAGRV CHAR(20);

• LET C1 BE
• SELECT NAME:NAMEV,SALARYiSALARTV,
tt MANAGER:MANAGRV
• FROM EMPLOYEE
• WHERE DEPT = 'SHOE';

• OPEN C1;
DO WHILE (CODE = OK);

• FETCH C1; /• GET NEXT RECORD •/

<PROCESS RECORD>

END;
CLOSE C1;

END PROG;

Figure 5: SEQUEL 2 Program

query is closed.

3.2. Design Issues

In the following paragraphs we discuss issues relating to; (1) the ^®^"®®?
data base svstem and language environment, (2) data types and conversion, (3)?aSguagrion3tr"?s p?5ylde3? (S) side effects, and (5) the tradeoff between efficiency
and flexibility.

3.2.1. Data Base System - Language Environment Interface

Aprogram passes requests to the data base system and receives data
tion in return. The typical mechanism for communication is to have a ®hared workspace.
The issue is how much about this workspace must an applications programmer know and how
Is it protected from inadvertent modification.
We believe that a programmer should know as little as possible about the workspace. The"re a prograaBC? knows about it. the more likely he is to take
example, a programmer may intentionally modify currency pointers normally ®
DBTG system unless specifically prohibited. This can lead to ®®®® ®^^^?J;®®®^®®*
ever, program bugs may unintentionally write into the workspace causing strange errors.
In practice, such bugs can be hard to identify and to isolate.
To use IMS-PL/1 a programmer must declare some variables in the workspace. In the
thr« languages the preprocessor can do storage allocation for the workspace. Thus,
avoiding a preprocessor has the cost that more programming detail must be handled by
programmer.

DBTG-COBOL and IMS-PL/1 put data used by the data base system (e.g., currency
in DBTG) Into the program address space. This means that only one copy of ^ nr-ftcrram
system is needed. The disadvantage of this approach is that the data in the program

10

space is not protected from errors. The issue reduces to one of efficiency versi.j reli
ability .

3.2.2. Data Types and Translation

Obviously, the set of primitive types (e.g., character strings, integers, and reals)
provided in the data base system and the language environment should be the same. If
this is not true, an obvious conversion problem is present. For example, if data of
type "date" is treated as a string in a program, illegal dates may arise (e.g., Janarch
50, -10).

Another problem is whether data of one type in the data base can be bound to a program
variable declared to be another type. If so, who controls the conversion from one
internal representation to another (e.g., packed decimal to integer). Does the system
implicitly convert between all types or does an application programmer or a data base
administrator (DBA) specify explicitly what conversions should be done?

Conversion is a complex issue because it influences efficiency, program reliability, and
program complexity. Providing the user, either programmer or DBA, with explicit control
over conversions provides more protection against unintended conversions. However,
requiring explicit specification of conversions means that simple programs involving
obvious conversions (e.g. integer to real) are more complicated. Implicit conversions,
on the other hand, can degrade performance as well as allow programs to access data in
ways that may not have been intended by the data base owner.

The issue of type conversion has been argued at length in the programming language com
munity. The current trend seems to be toward strong typing^ with limited implicit
conversions with the programmer having explicit control over other conversions. In our
example languages, DBTG-COBOL comes closest to this viewpoint. There is a uniform set
of data types with explicit control of conversions provided to the manager of the
subschema, presumably a DBA. IMS has no notion of types, so a program may do anything.
EQUEL does implicit conversions between all types. SEQUEL 2 does the same but does not
support all types found in PL/1.

A disadvantage of the type systems in EQUEL and SEQUEL 2 is that records, as used in the
data base system, are not provided as composite structures in the language environment.
For example, values from a data base record must be individually copied into program
variables. This means that records can not be passed as arguments to procedures. In
addition, because relations are not treated as composite structures in the language,
they may not be operands to many otherwise meaningful operations.

3.2.3. Language Control Structures

The third issue relates to how hard it is to read and write programs. The questions are
what control structures are provided for accessing data base records and what facilities
are provided for signaling data base errors? Our bias is that concise, easy—to-
understand language constructs should be provided for commonly used control structures,
such as iterations, and that an exception handling facility (with reasonable default
error routines) should be provided for handling unexpected errors.

In DBTG-COBOL and IMS-PL/1 iterations must be coded by explicitly fetching records and
testing a return status. As can be seen by the sample programs, the DBTG and IMS pro
grams are more confusing than the others (IMS-PL/1 is further complicated by the fact
that query specifications are buried in declared structures). Part of the reason for
this confusion is that both programs involve the EMPLOYEE and DEPT records, while the
EQUEL and SEQUEL 2 programs happen to involve only the EMPLOYEE record. Nevertheless, a
query involving both relations would be only slightly more complicated. The essential
feature making the queries understandable is the iteration control structure. Notice
that SEQUEL 2 requires the same explicit coding of iterations as DBTG and IMS, but an
iteration involving a query is easier to understand because a separate iterative specif
ication of the query is made in the cursor definition statement.

The availability of iterative control structures is a language issue, not a data base
issue. As discussed elsewhere [MICH76, STON75b, TAYL74], iteration constructs can be
provided by adding them to the preprocessor or by using a macro facility. Higher level
constructs make programming easier, sometimes at the expense of execution efficiency.
However, we do not believe that to be the case here.

^ Npte that conversion is not an issue when the language is weakly typed because a
variable takes the type of its current value.

n

As for error handling, DBTG and EQUEL have clean exception handling facilities. IMS-
PL/ 1 and SEQUEL 2 depend on the user to test explicitly a return code.

3.2.1. Side Effects

The issue of side effects arises in language couplings too (see Section 2.3). Basi
cally, the arguments are the same, efficiency versus understandability. However, under-
standability is more critical here because programs often are used for many years. They
are modified periodically to meet new requirements or to fix bugs. The use of side
effects makes modifying a program harder. This is because they cause actions to happen
which are not explicitly stated. Thus, it is harder to determine what a program is
doing. Also, small changes frequently cause unforseen complications.

Of course, programs which are to be executed for years are precisely the ones where
small efficiencies lead to big savings. DBTG-COBOL and IMS-PL/1 make use of side
effects.

3.2.5. Efficiency and Flexibilty

The final design issue concerns the tradeoff between efficiency and flexibility. Both
DL/1 and EQUEL Interpret data base requests, while DBTG and SEQUEL 2" execute compiled
requests. Interpretation is much less efficient in CPU time than compilation.

On the other hand, interpretation means more flexibility because binding time is
delayed. In EQUEL for example, relation and domain names can be changed at run-time.
In DBTG-COBOL names are fixed at the time the application program is compiled. Dynamic
changes are necessary if one wants to write a report generator or general terminal
interaction program because field names and record names (relation names in the rela
tional model) are parameters to the program.

In the first version of SEQUEL, relation and domain names were fixed at coropile-time.
SEQUEL 2 has an execute command that allows a string argument to be interpreted as a
query request. By changing the string, any part of the query may be varied. This is a
useful facility, but using it is quite complicated (storage for individual values
returned by the data base must be allocated explicitly by the program at run-time).
Furthermore, to change a program so that a relation is a variable instead of a constant
requires a substantial change to the program text.

3.3> New Languages

Figure 6 shows a program that solves our sample problem in a proposed language being
developed in part by the second author. The declarations define EMP to be a constant
bound to the EMPLOYEE relation, and x to be a pointer to a record in that relation. The
retrieval is specified using a general "for construct" where an iteration variable
ranges over all records in the relation. The body of the for-statement is executed once
for each record satisfying the qualification.

An Important feature of this language is that the language and data base system support
the same set of types. The issue of type conversion is less of a problem then because
it only takes place if requested by the programmer. The language uses strong type-
checking (i.e., variables have declared types and only values of the right type can be
assigned to them) to insure value integrity (not this is only a small part of the entire
data base integrity problem). Relations and records in relations are structures defined
in the language so particular Instances can be assigned to and passed as arguments to
procedures. .

A data abstraction facility is provided so that abstractions involving data bases can be
maintained and used CHAMM76a].

Relation and field names can vary dynamically. For example, in the sample program EMP
is declared to be a constant. To change it to a variable, the declaration of EMP is
changed to

EMP: relation of EmployeeRec

Now EMP may be assigned a relation (a variable or constant entity of type relation hav
ing records of type EmployeeRec). Suppose that S was a string (perhaps read from a ter
minal) containing the name of a relation; to assign that relation to EMP one writes

EMP :s relation(S)

where relation is a predefined function that converts a string to a relation. Because

procedure Prog; ,
begin

declare EmployeeRec:type s . • •
name:char(20)I
salary:real,
dept:char(10),
manager:char(20)

snAf
x: ptr EmployeeRec,
EMP = relation('EMPLOYEE');

for X in EMP St x.depts'SHOE' ^

<proces3 record>;

eM; . .

end; (Prog)

Figure 6: A Proposed Language

the language uses strong type-checking, the type of the relation named in the string S
must be checked at run-time. Notice that no change is required to the iteration state
ment.

An idea used in ECL [WEGB72) will be used in compiling the language. When enough parts
of a construct are fixed (e.g., the relation name is constant) code as efficient as pos
sible will be compiled. Otherwise, less efficient code will be compiled. means
that the tradeoff between efficiency and flexibility can be controlled by the applica
tions programmer. Furthermore, it means that only those programs that need more flexi
bility must pay for it in terms of efficiency. Of course, in those cases whepe code is
compiled to access a specific relation, programs will have to be recompiled if the
definition of that relation changes.

Jl. GENERAL OBSERVATIONS

In this section, general observations are made on the design and use of query languages
and programming language - data base system couplings.
The first observation is that the concept of "completeness" is not very useful when
applied to query languages. By definition, a language is complete if it has the expres
sive power of a first order predicate calculus [CODDTIJ.
There are two problems with this concept. First, what is the size of the language con
struct that is complete. It can be one DHL command, a collection of DML commands, or a
collection of DML commands in an arbitrary host language. Notice, for example, that
assembly language as a DML is complete (as are most programming languaps) if the third
notion of size is used. Moreover, a language can be complete if multiple commands are
allowed yet not be complete when the unit is a single command. Most authors prove com
pleteness for a collection of commands not for a single command. Consequently, whenever
the term "complete" is used, a reader should understand which case is meant.
The second problem with "completeness" is that it measures the expressive POwer of a
language against an arbitrary binary standard (complete or not complete). This is
coarse measure which may not calibrate languages in a meaningful way. Perhaps, for
example, arithmetic and aggregate facilities are more important than completeness. It
is left as an open question to decide what is a reasonable standard by which to measure
the expressive power of a data manipulation language.
The second observation on language design is that human factors studies may be
important at this time than the design of "new" query languages. As previously stated,
designing a new query language and then arguing that it is better than some other
languages without careful experimentation does not prove anything.
The third observation relates to data definition, data manipulation, and performance
Information. Each is important and all data base systems make decisions as to how this
information is distributed among the different specifications to which the system has
access. In particular, performance information, while important, should not be
intertwined with data manipulation or data definition specifications. Queries should
execute even in the absence of performance information, although perhaps much less

efficiently.

The fourth observation has to do with the implicitness of a specification, either in a
Query language or a progranmlng language* Highlighting the variability in a language
construct while suppressing the constant is a good rule in language design. It is pos
sible to go too far towards implicitness as well as not far enough.
The last observation is that the development of a good programming language for
interacting with a data base necessitates the design of a new programming language or
the freedom to make substantive changes to the host language. The difficult aspects of
providing access to a data base are how data is used in the two environments, how pro
cessing is divided between the environments, and the special needs imposed by the
environments themselves. If the programming language and data base system are fixed
these problems are more difficult to solve. Because new languages meet resistance in
the commercial community (sometimes for good reasons), it may time before data
base oriented programming languages are widely used.. Neverthele®is{','..&it" this time we feel
the development of these languages should be enco.uraged.. • '*•;

5. REFERENCES

ALLM76 Allman, E., Stonebraker, M., and Held, G., "Embedding a Relational Data Sub
language in a General Purpose Programming Language," Proc. Conference on Data:
Abstraction, Definition, and Structure, FDT, vol 8, no 2, March 1976.

ASTR75 Astrahan, M. M. and Chamberlin, D. D., "Implementation of a Structured English
Query Language," Communications ACM. vol 18, no 10, October 1975.

ASTR76 Astrahan, M., et. al., "System R: A Relational- Approach to Data," lOfiS, vol 1,
no 2, June 1976.

CHAM75 Chamberlin, D.D., Gray, J. N., and Traiger, I. L., "Views, Authorization and
Locking in a Relational Data Base System," Proc. 1975 National Computer Confer
ence, Anaheim, CA, May 1975.

CHAM76 Chamberlin, D.D., et. al. "SEQUEL 2: A Unified Approach to Data Definition,
Manipulation and Control," IBM Journal of Research and Development, vol 20, no
6, November 1976.

C0DA71 Committee on Data Systems Languages, "CODASYL Data Base Task Group Report,"
available from ACM, New York, NY, 1971.

C0DA7i| Committee on Data Systems Languages, "CODASYL Data Description Language Journal
of Development," NBS Handbook #112, U.S. Department of Commerce, January 197^1.

C0DD71 Codd, E.F., "A Data Base Sublanguage Founded on the Relational Calculus," Proc.
1971 ACM-SIGFIDET Workshop on Data Description, Access and Control, San Diego,
CA, November 1971.

C0DD72 Codd, E.F., "Relational Completeness of Data Base Sublanguages," Courant Com
puter Science Symposium 6, May 1972.

C0DD71 Codd, E.F., "Seven Steps to Rendezvous with the Casual User," Proc. IFIP TC-2
Working Conference on Data Definition, Cargese, Corsica, October 1971.

ESWA76 Eswaren, K., "Specification and Implementation of a Trigger Subsystem in an
Integrated Data Base System," RJ1820, IBM Research, San Jose, CA.

HAMM76a Hammer, M., "Data Abstractions for Data Bases," Proc. Conference on Data:
Abstraction, Definition, and Structure, FDT. vol 8, no 2, March 1976.

HAMM76b Hammer, M. and Chan, A., "Index Selection in a Self-Adaptive Data Base Manage
ment System," Proc. 1976 ACM-SIGMOD Conference on Management of Data, Washing
ton, D.C., June 1976.

HELD75 Held, G.D. and Stonebraker, M. 'and Wong, E., "INGRES - A Relational Data Base
Management System," Proc. 1975 National Computer Conference, Anaheim, CA, May

. 1975.

if-

IBM66 IBM, "OS ISAM Logic," 0128-6618.

IBM75 IBM, Information Management System Virtual Storage (IMS/VS) Publications 1975:
General information manual, GH20-1260-3*
System application design guide, SH20-9025-2.
Application programming reference manual, SH20-9026-2.
System programming reference manual, SH20-9027-2.
Operator's reference manual, SH20-9028-1.
Utilities reference manual, SH20-9029-2.
Messages and codes reference manual, SH20-9030-2.

KEEH7^ Keehn, D.G. and Lacy, J. 0., "VSAM Data Set Design Parameters," IBM Systems
Journal. vol 13, no 3, March 197^*.

LOCH77 Lochovsky, F. and Tsichritzis, D., "Human Factors Considerations in DBMS Selec
tion," Computer Systems Research Group, University of Toronto,CSRG-78, February,
1977.

MCD075a McDonald, N., "CUPID: A Graphics Oriented Facility for Support of Non-programmer
Interactions with a Data Base," Ph.D. Thesis, Dept. of Electrical Engineering
and Computer Sciences, U.C. Berkeley, 1975.

MCD075b McDonald, M. and Stonebraker, M.R., "Cupid — The Friendly Query Language,"
Proc. ACM-Pacific-75 Conference, San Francisco, CA, April 1975.

MICH76 Michaels, A.S., Mittman, B., and Carlson, C.R., "Relational and CODASYL
Approaches," Computing Surveys, vol 8, no 1, March 1976. i

MYL075 Mylorpulis, J., et. al., "TORUS:: A Natural Language Understanding System for
Data Management," Proc. Ith International Joint Conference in AI, Tbilisi, USSR,
September, 1975.

PECH75 Pecherer, R.M., "Efficient Evaluation of Expressions in a Relational Algebra,"
Proc. ACM-:Pacific-75 Conference, San Francisco, CA, April 1975.

PREN77 Prenner, C.J. and Rowe, L.A., "A Data Base Oriented Programming Language," ERL
Memorandum, Electronic Research Laboratory, U.C. Berkeley, July 1977.

RE1S75 Reisner, P., Boyce, R.F. and Chamberlin, D.D., "Human Factors Evaluation of Two
Data Base Query Languages: SQUARE and SEQUEL," Proc. 1975 National Computer
Conference, Anaheim, CA, May 1975.

RE1S76 Reisner, P., "Use of Psychological Experimentation as an Aid to Development of a
Query Language," RJ1707, IBM Research, San Jose, CA, January 1976.

R1TC73 Ritchie, D.M., "C Reference Manual," Unpublished Memorandum, Bell Telephone
Laboratories, 1973.

SCHK75 Schkolnick, M., "The Optimal Selection of Secondary Indices for Files," Proc.
1975 ACM-SIGMOD Workshop, Washington, D.C., May 1975.

SMIT75 Smith, J.M. and Chang, P. Y. T., "Optimizing the Performance of. a Relational
Data Base Interface," Communications ACM, vol 18, no 10, October, 1975.

ST0N75a Stonebraker, M.R., "Implementation of Integrity Constraints and Views by Query
Modification," Proc. 1975 ACM-SIGMOD Workshop on Management of Data, San Jose,
CA, May 1975.

ST0N75b Stonebraker, M.R. and Held, G., "Networks, Hierarchies, and Relations in Data
Base Management Systems," ERL Memorandum No ERL-M504, Electronic Research
Laboratory, U.C. Berkeley, May 1975.

STON76 Stonebraker, M., et. al., "The Design and Implementation of INGRES," TODS, vol
1, no 3, September 1976.

TAYLTM Taylor, R.W., Data Administration and the DBTG Report," Proc. 197M ACM-SIGFIDET
Workshop on Data Description, Access, and Control, Ann Arbor, Mich., May

TAYL76 Taylor, R.W. and Frank, R.L., "CODASYL Data-Base Management Systems," Computing
Surveys, vol 8, no 1, March 1976.

TSIC75 Tsichritzis, D. "A Network Framework for a Relational Implementation," in Data
Base Deserlption. Noth Holland Publishing Company, 1975.

TSIC76 Tsichritzis, D.C. and Lochovsky, F.H., "Hierarchical Data-Base Management:. A
Survey," Computing Surveys, vol 8, no 1, March 1976.

TSIC76 Tsichritzis, D., "LSL: A Link and Selector Language" Proc. 1976 ACM-SIGMOD
Conference on-Management of Data, Washington, D.C., June 1976.

WASS77 Wasserman, A.I., "Reliable Interactive Software and Programming Language
Design," Technical Report 20,' Medical Information Science, University of Cali
fornia, San Francisco, April 1976 (revised January 1977).

WELL76 Wells, M.B. and Cornwall, F.L., "A Data Type Encapsulation Scheme Utilizing Base
Language Operators," Proc. Conference on Data: Abstraction, Definition, and
Structure, FDT. vol 8, no 2, March 1976.

WEGB72 Wegbreit, B., "The ECL Programming System," Proc. 1972 National Computer Confer
ence, Las Vegas, NV, December 1972.

W0N076 Wong, E. and Yousseffi, K., "Decomposition — A Strategy for Query Processing,"
TODS, vol 1, no 3i September 1976.

ZL0075 Zloof, M. M., "Query by Example," Proc. 1975 National Computer Conference,
Anaheim, CA, May 1975.

	Copyright notice 1977
	ERL-77-53

