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ABSTRACT

An analytical representation Is Introduced for m-dlmenslonal plece-

wlse-llnear functions which are afflne over convex polyhedral sets.

Explicit formulas are presented to compute the coefficients associated

with this representation along with an example.
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Piecewise-linear techniques have been used extensively in Circuits

and Systems theory to model dc nonlinear characteristics of electronic

devices [1-3] and to study a large class of nonlinear resistive

networks [4-8]. In a recent paper [9], Chua and Kang introduced new

analytical representations for one-dimensional piecewise-linear functions

and multi-dimensional section-wise piecewise-linear functions. These

representations led to the possibility of deriving explicit closed form

expressions for system parameters and design formulas. They also

allowed standard mathematical operations and manipulations to be carried

out in various theoretical studies.

The objective of this paper is to present a new compact representation

for m-dimensional piecewise-linear functions. This representation is

global in the sense that a single equation can be used to completely

characterize piecewise-linear surfaces. Simple formulas are derived in

this paper for the identification of the coefficients associated with

this explicit representation.

Let L non-degenerate^ linear partition vectors in m^dimensional

Euclidean space be defined as [10]

{ )... ' ^k^ * ^ 1»2j...,L} (1)
12 m

linear partition is said to be "non-degenerate" if the intersection of
any k of the hyperplanes a^x = 8^ has a dimension ^ m-k.
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Then associated with this partition, there corresponds a closed convex

2
polyhedral set defined by

Sj A{x ^ ]R™|a^x ^ 3^, i ^ I and a^x <6^» i ^ 1} (2)

where I denotes a subset of {1,2,...,L} and the superscript T denotes

a matrix transpose. Hence, is simply the intersection of a finite

family of closed half-spaces of ]R™. Under the above-mentioned conditions,

we will show that any single-valued m-dimensional piecewise-linear

function f:]R'° -> ]R^ with jump discontinuities can be represented

globally by the following explicit analytical expression:

f(x) =Sq +a^x + 53 {g |̂a^x-3j,l +h^ sgn(a^x-3^)} (3)

where a^, g^, h^^ are real numbers and aj^,g^,x ^ ]R™. It will be obvious
later that when f(x) is continuous, h^ = 0 for all i in Eq. (3).

To prove the above representation, observe that f(x) restricted to

any polyhedral set is an affine function of x, i.e.,

f L (x) = a^x + b (^)bj -

Hence, it remains for us to show how the coefficients, ^Q'-l'^i* ^i'

i = 1,2,...,L associated with Eq. (3) can be identified.

Identification of Coefficients

We first observe that for any x lying in any open region S® C s^,

the gradient 3f(x)/9x is well-defined and is given by

4*

It is easy to prove that represents a closed and convex polyhedral

set. The class of piecewise-linear functions defined on convex polyhedral
sets is important specially in the representation of nonlinear circuits
containing 2-terminal nonlinear elements characterized by piecewise-linear
v-i curves [1-3].
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3f(x) Jk T , X
^ = a- + 2 SiSf-t
3x "J- ^ ^ ^ ^

Since the domain of f(x) is the entire space ]R°^, there exists an
Topen region, say S^, where sgn(a^x-0^) = 1 for all i and an open

region S®, where sgn(a^x-3^) =-1 for all i. Hence it follows that

- 1 /IIW
1 2 \ 3x - ^1 )go 9X Igo/

In order to determine the coefficient gj^, k = 1,2,...,L, we use the

information on the slopes of f(x) for points lying on two "adjacent"
Topen regions S® and S® whose associated "sign sequences" (sgn(a^x-3^),

i = 1,2,...,L) differ only in the kth position. If we evaluate

Eq. (5) at any point lying the the two adjacent open regions S® and S®,

then gj^ is easily seen to be given by;

(*). ...
(7)

1 3f (x) I \ . T
Sk =- 2\ll7~ ,o • j/v

S® - S'
a ' 3

where the "+" sign is chosen if the sign sequence associated with S®

contains a "+" sign in the kth position. Otherwise, the "-" sign is chosen.

The coefficients h^'s are determined from the amount of jump discontinuity

of f(x) along the ith hyperplane; namely

h^ =~ dim f(x) - lim f(x)} (8)
x-^x+ X-^X-
- -i ~ ~i

Twhere x^ is any point lying on the i^^ hyperplane a^x = 3^. Finally,

having computed ^ ®1,2,...,L, and h^, the remaining coefficient

a^ is obtained by substituting x = 0 in Eq. (3); namely;
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aQ = f(0) - 2 \ sgn(6^)}
i=l

(9)

To illustrate the above coefficient identification procedure, consider

a typical continuous piecewise-linear function f(x) as shown in Fig. 1.

Since f(x) is continuous, it follows immediately from Eq. (8) that

h^ = 0, i = 1,2,3. The notation (-,+,+) in Fig. 1 identifies the associated

polyhedral set by specifying the "direction" of the inequalities;

namely,

(-,+,+) (a^ < a^x ^ &2* ^3? ^ ^3^*

Since there are three hyperplanes in Fig. 1, the function f(x) can be

represented by

L=»3

i=l

(10)

To determine the associated coefficients, the following set of derivative

information can be used:

3f (x)

dx

3f(x)

9x

3f(x)

3x

3f(x)

3x

= - 2 8i?i
S? 1=1

q®
^5

= a + gj^a - 62^2 - h-3

= 5l + Si"! + ^2^2 - 83?3

= ^1 81S1 8222 8323

Using Eqs. (6), (7), and (9), we obtain
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(ll.a)

(11.b)

(11.c)

(11.d)



and

^ 1 / 8f(x)

9x

•1 " 2 (
3x

1 T /3f(x)g= — ni I '
2 2 •JST

. i „T j3^
3x

s®

s®
^7

3f(x)

3x

3f (x)

3x

3f (x)

dx

Mixi
3x

ag = f(0) - 2 8^16^
i=l

)

)/^hi

,)/V2
i

,)Ak

(12. a)

(12.b)

(12.c)

(12.d)

(12.e)

Remarks; To determine all coefficients, it is necessary for the path

(denoted by dotted lines in Fig. 1) to cross the bounding hyperplanes

"L" times* Such a path need not be unique however. For example, other

paths such as S2~S2-S^-S^ or may also be chosen.

To demonstrate the compactness of our new representation, we close

this correspondence by considering an example taken from [11].

Example. Consider the two-dimensional continuous piecewise-linear

function f(x2,X2) shown in Fig. 2. It is described by six affine

equations and those straight-line boundaries defining the six convex

polyhedral sets shown in Fig. 2. Using our new representation, this

piecewise-linear function is defined compactly by the following explicit

analytical expression:

° I- i''2i 1-^ "1^2!2/3 2/3

It is clear from this example that our piecewise-linear representation not

only greatly simplifies the computer programming efforts and storage

requirements, but it also allows algebraic operations and equation manipulations

to be carried out in symbolic form.
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FIGURE CAPTIONS

2 1
Fig. 1, A two-dimensional piecewise-linear function ft B. IR defined

on a plane which has been partitioned into seven convex polyhedral

sets.

2 1
Fig. 2. Example of a two-dimensional piecewise-linear function f: K "*• IR

as described by conventional representation requiring six affine

equations associated with six convex polyhedral sets.
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