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I. INTRODUCTION

In this chapter, we review recent development of the linear time-

invariant servomechanism problem (asymptotic tracking and disturbance

rejection). This problem is one of the most important subjects in

control theory. For single-input single-output systems, this problem

has been well-understood for about 40 years. However, it is only recently

that this problem has been solved for the multi-input multi-output case.

Thus it is appropriate at this time to give an overview of the state of

knowledge: we present a unified self-contained treatment which employs

simple derivations so that a Master's level reader will find no difficulty

in understanding our development.

In section II, some notations and preliminaries are given, then the

problem is stated precisely. In section III, a controller is given and

shown to achieve as3nnptotic tracking and disturbance rejection robustly.

Effects of perturbations at various data points are discussed. In

section IV, characterization of a robust feedback controller is given for

the lumped as well as the distributed case. The necessity of the rank

condition is examined carefully in section V. The relation

between transmission zeros and the servomechanism problem is further

amplified in section VI. In section VII, we discuss the lumped, discrete-

time case and provide a table so that one can easily translate all

the previous results to the lumped discrete-time servomechanism

problem. Some results available in literature are briefly reviewed

in section IX. A representative list of references is given at the

end of this chapter. We leave it to the science historian to describe

fairly the history of the subject. We offer our apologies to

any author whose work did not get the recognition that it deserves:

our purpose is to present a self-contained easily understandable

exposition of the main results.
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II. PROBLEM FORMULATION

A. Notation and Preliminaries

Let 3R ((C) denote the field of real (complex, respectively) numbers,
o o

Let (C_((E_|_,(E^) denote the open left (open right, closed right; respectively)

half complex plane. Let IR [s] (]R(s)) be the set of all polynomials

(rational functions, respectively) in s with real coefficients. Let

]R [s]^*^ (IR (s)^**^) be the set of all pxq matrices with elements in

nR[s] (IR(s), respectively). Let 9(<i)(s)) denote the degree of

(|>(s) ^ 3R[s]. Let <|»(s), t|'(s) ^ IR[s], then <|>(s) |i|^(s) means (|)(s)

divides ij^(s). Let M^ IR™^, then ^ (M) denotes the range space of M.

Let A ^ then denotes the minimal polynomial of A and o(A) denotes
A

the spectrum of A. Let 6^ denote the zero vector in C^. Let [A,B,C,D]
be a (not necessarily minimal) state space representation with state x,

then X (s) A det(sl-A) denotes the characteristic polynomial of A
A ngjcn^

with state x. Let G(s) ^ IR (s) be proper and [A,B,C,D] be a minimal

state space realization of G(s), then A det(sl-A) is said to be

the characteristic polynomial of G(s). The system [A,B,C,D] is said to

be exponentially stable (abbreviated, exp. stable) iff when u = 6 ,
^i

for all x(0). x(t) ^ 6^ exponentially as t ^ A property is

said to be robust at some data point p in some normed space (e.g. IR™)

iff it holds true throughout a (not necessarily small) neighborhood

of p. Let Njj^(s) ^ IR[s]''*'̂ , ^ IR[s]^*^; M(s) ^ IR [s]^^ is said
to be a common left divisor of Nj^(s) and D^(s) iff there ex5.st

N^(s) GIR[s]^**^, D^(s) ^ IR[s]^*^ such that =M(s)N^(s), and
D^(s) = M(s)Dj^(s); both N^^ and are said to be right multiples of M;

L(s) GIR[s]^*^ is said to be a greatest common left divisor of N^ and
D. iff 1) it is a common left divisor of N and D , and 2) it is a right

Xr Xr Xr
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multiple of every connnon left divisor of amd D^. When a greatest

common left divisor L is unimodular (i.e. det L(s) = constant 0),

then and are said to be left coprime. is said to be a left

coprime factorization of G(s) ^ IR iff ^ lR[s]^*^,

N (s) ^ ]R[s]^*^ and D., N are left coprime. The definitions of
Jw Xr JC

right coprimeness and right coprime factorization are similar. Let

be the convolution algebra [Des. 2]: recall that f belongs to ^iff
00

for t < 0, f(t) = 0 and, for t ^ 0, f(t) = f (t) + £ 6(t-t.),
^ i=0

where f (•) ^ L.[0,"); f. € IR, Vi; t. > 0, Vi and
00 a i i ^ ~

53 |f I < ». Apxq matrix <0^ iff every element of belongs
i=0 A

to a.. Let a A (.CO (A'""' Ai, ), the Laplace transform of

hence f the Laplace transform of f (denoted by f) belongs

to Let .y(^(s) e /^(s) thenu/^ and are
said to be pseudo-left-coprime iff there exist ^ U ^ >
— A

0^^ such that (i) det 2/(s) 0, for all s ^ and

(ii) j^(s) 2X.(s) + ']/(s) =^t/(s), for all s € Let Gbe a
pxq matrix-valued Laplace transformable distributions with support on

IR^, then is said to be a pseudo-left-coprime factorization

of G iff (i) G(s) = ^ for all s G c_j_; i±±) and
00

are pseudo-left-coprime; and (iii) whenever ^ sequence in

with |s. I we have lim inf |det/5^(s.)| > 0. The definitions of
X # X X

i-+«>

pseudo-right-coprimeness and pseudo-right-coprime factorization are

similar. A linear time-invariant distributed system with input u and

A A A

output y is said to be dZ-stable iff its transfer function H(s): .u y

is a matrix with all its element in Tbis implies that for any

p^ [Ij"]# any input u^ L^ produces an output in L^ and "y '̂p ^

-3-



B. Fundamental Facts:

[A,B,C,D] is exp. stable a (A) C a; .

nxn

( ^2) Let A ^ B S IR , then (A,B) is completely controllable

rank [sI-a!b] = n, Vs ^ C7(A).

( 5^3) Let N(s) ^ ]R[s]^*^, D(s) ^ IR [s]^*^, then Nand Dare left

coprime iff [N(s):D(s)] ^ ]R is full rank, ¥s ^ (E.

C. Statement of Problem

Consider the following linear time-invariant lumped multi-input

multi-output system:

(II.1) X = Ax + Bu + Ew

(II. 2) y = Cx + Du + Fw

(II. 3) e = r - y

where x

u

w

r

y

e

G ]R is the plant state.
n.

^ ]R is the plant input,

^ ]R^ is the disturbance signal.

S ]R is the reference signal to be tracked.
n

0 .^ ]R is the output to follow the reference signal r(*),

S ]R is the tracking error to be regulated.

Furthermore, w(»)> r(*) are assumed to be modelled by the following

state equations, respectively,

(II.4) X = A X
^ ' w w w

w = C X
w w

(II. 5) x^ = A^x^

r = C X
r r

n n

where x^(t) ^ IR x^(t) G m
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(C^,A^), completely observable;

and, without loss of generality,

(II.6) a(A ) U a(A ) C ffi .
w r +

The goal is to design a feedback system with the following objectives;

( (3^1) the closed-loop system is exp. stable;

( &2) asymptotic tracking and disturbance rejection is achieved, i.e.

for all initial states x(0), x (0), x (0), x (0), e(t) ->0 ,c w r nQ

as t where x(0) and x (0) denote the initial states of the
c

plant and the controller, respectively;

(O'i) the properties ( ffl), ( 0^2) are robust at some data point.

Throughout this paper, we will assume that the error signal e(*)

is available and the controller to be constructed is of feedback type,

i.e. it is driven by the error signal e = r - y^^^. The eager reader may

want to peek at Fig. 2 below to see the final feedback system.

Remark: For future reference, we say that for the system (II.1) ~ (II.6),

asymptotic tracking holds iff with x (0) = 0 , for all x(0), x^(0),
w

X (0), e(t) 0 as t -»• «»; and asymptotic disturbance rejection holdsr n^

iff with X (0) = 0 , for all x(0), x (0), x (0), y(t) 0
r n c w n«

r 0

(equivalently, e(t)-*0 , since r(*) E 0 ). Consequently, since the

system (II.1) - (II.6) is linear, asymptotic tracking and disturbance

rejection holds iff for all x(0), x (0), x (0), x__(0), e(t) ->• 6_ ,—" c w r n^

as t

It can be shown ([Dav. 4,Fra. 1]) that to satisfy ( (9^3) at certain data
points, it is necessary to have the controller to be of feedback type.
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III. DESIGM of a robust servomechanism

The main result of this section is theorem III.l which specifies

the precise conditions under which one can design a controller which
achieves the objectives (^Tl). (Cr2) and ( Q-l). The theorem is
followed by detailed discussions of the assumptions and of the results.
Following the proof, we give a brief discussion of the effect of per-
turbatiotis in the controller d3rnaiiiics.

A. Main Theorem:

Theorem III.l (Design of a robust feedback controller)

Given the system described by (II. 1) ~ (II.6). Suppose that

[A,B,C] is minimal. Let the controller be given by:

(III.l) = A^x^ + B^e

where A = block diag [1,1,...,1] ^ 3R
c — -

Hq-tuple

n xn
c c

n xn^
c 0

B = block diag [ y1 ^
c

with

(III.2)

(III.3)

T =

Y =

^A A ^

n«-tuple

0 1 (-)
0 0 1^

0

0
e m'

0

Li J

q-l . A. a. s + a is the least common multiple+• •"q-1 q

e m
qxq

w r

of Ti>. and ip. , the minimal polynomials of A^ and A^.
w r

Under these conditions,

(III.4) rank dJ *^0' ^ ^
-6-



then the controller (III.l) is such that

(a) the composite system (plant followed by the controller (see Fig. 1))

(III. 5) = + u

is completely controllable (hence there exists a control law

u = Kx + such that the closed-loop system is exp. stable

(see Fig. 2), see e.g. [And. 1], [Won. 3]);

(b) for any such control law, asymptotic tracking and disturbance

rejection holds (more precisely, for all x(0), x (0), x^^(O), x^(0)
C. W i-

e(t) 0 , as t -> ») ;
"o

(c) asymptotic tracking and disturbance rejection is robust at

(A,B,C,D,B^,K,K^) for the class of perturbations such that
q

(1) B^ remains block diagonal and each block is a nonzero IR

vector;

(2) the closed-loop system remains exp. stable.

Comments: (i) Given [A,B,C,D] together with the controller (III.l),

one finds (K,K^) such that the closed-loop system is exp. stable (see (a)

above). Then it is well-known that for sufficiently small perturbations

on (A,B,C,D,B^,K,K^), the closed-loop system remains exp. stable (even

though [A,B,C] may not be minimal and condition (III.4) may not be

satisfied at the perturbed data point).

(ii) In section V, we will show that several considerations imply

that condition (III.4) is necessary for the existence of a controller

which achieves 1) - ( 0^3).

(iii) Condition (III.4) imples n^ ^ n^, i.e. the number of plant inputs is

greater than or equal to the number of plant outputs. Furthermore, it requires

•

X 0 X B

= +

X

—

-B C
c

A
c_

X -B D
^ c_
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that no modes of the reference- and disturbance-signals are transmission

zeros of the plant ([Dav. 9, Des. 3, Ros. 1, Wol. 1]). As we shall see,

in the following proof, that these two conditions, together with complete

controllability of the plant, will guarantee the complete controllability

of the cascade system (plant followed by the controller, with input u

and state (x,x^)).

(iv) For the single-input single-output case (n^=nQ=l), this theorem

reduces to well-known results of classical control theory, e.g. an

integral controller is required for tracking a step reference signal

[e.g. Oga. 1, pp.184] ; note that the numerator polynomial of the plant

transfer function cannot have zero at the origin (see condition (III.4)).

(v) Robust asymptotic tracking and disturbance rejection is achieved

by duplications of the dynamics of the reference- and disturbance-

signals; this produces blocking zeros [Fer. 1,2] in the closed-loop transfer

function from to e at exactly the locations of the modes of the reference-

and disturbance-signals, hence it completely blocks the transmission from

to e, the error signal. In section IV, we shall show that such duplications

is necessary for robust asymptotic tracking and disturbance rejection.

(vi) It is crucial that the dynamics of the controller (represented by A^)

remains unperturbed. We will discuss the effect of perturbations in the

controller dynamics in section III.B.

(vii) Although the complete controllability and observability requirements

can be relaxed to stabilizability and detectability [Won. 3], we will

use the notions of complete controllability and observability throughout

this chapter to simplify derivations.

-8-
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Proof of Theorem III.l

(a) Closed-loop exponential stability:

Let

M(s) =
sI-A 0

B C sI-A
c c

Note det(sI-A ) ^ 0, Vs ^ a(A ). Now since (A,B) is completely
o c

controllable ^ rank [sI-A',B] = n, Vs ^ (E (see ( ^2)), we conclude that

B

-B D
c

-9-
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(III. 6) rank M(s) = n + n^, Vs ^

Next, write

(III.7) M(s) =
I 0

n

sI-A

sI-A 0

C 0

0 I

B

-D

0

Then for all s ^ a(A^), the first factor has, by construction, rank

n + n^ and the second has, by assumption (III.4), rank n + n^ + n^.

Hence, by Sylvester's inequality, Vs G

(III.8)

(III.9)

n + n > rank M(s) > (n+n ) + (n+n +nr») ~ (n+n -hirt) = n+n
c — — c cU cu 'c" ' c 0

Combining (III.6) and (III. 8), we conclude that

rank M(s) = n + n^, Vs ^ C,

and this is equivalent to the complete controllability of

A

-B C
c Q' [-V

(b) Asymptotic tracking and disturbance rejection:

Apply any stabilizing control law, u = Kx + to the composite

system (III.5),then the closed-loop system is given by

(III.10)
X

•

X
_ c_

A+BK BK

-B (C+DK) A -B DK
c c c c

• V /

X

(III.11) e = [-(C+DK) -DK ]
c

V-

-10-
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(w(sr|
and the closed-loop transfer function matrix H(s): I ^ ®(s) is given by

Furthermore, it is easy to show^^^ that the ij th
element of H(s) is given by

sI-A-BK 1 -BK
_ _ Q- I X 1

(III.12) Y(C+DK)..'
i f

Y(C+DK) (
1

si-r

•T' O
Y(DKe)l.

Y(DK^)2. ><V2j
h., (s) = —7^-—-—r detij^ det(sI-A.)

: 1
I

Y(C+DK)^ ' P
+

^ •

Y(DK )L' c
^ V

(C+DK)^. 1
^ 1

(BK ).
^ c i*

Now premultiply the big matrix in (III.12) by the elementary row

matrix

I
n

I

(III.13) R =

we have

O
I . . . .-Y

q

o

(2)Observe that, by definition

ij

(i+l)^^ block

hi^(s): f^ e^, where denotes the j^h component oi
and is given by ^ ^

hy(s) =

where (C_). ((B_) .) denotes the ithrow (j th column) of C, (B ,
iiiJL

respectively) and (BL)ij denotes the ij th element of Dj^. Finally (III.12)
follows from Cramer's rule applied to

<V.j'
-<Vl. (Vij

where = (x.x^)'"', Vj = [(w.r)'̂ ^] .
'i

n+n
(

,T-

-11-



(III. 14) h^j(s) =det(sI-A^^)

det

(III.15)

(III.16)

~ Sl-A-BK -BK
c

1

X 1

y(C+DK)j^. "^i-r ^

o
•

y(dk^)i.

yCc+dk)^. Y(DK^)2.
•

• • +
•

•

•

•

o
•

•

•

Y(C+DK)^
^0-

•

si-r

o
sl-^

0
•

•

01

•

O
•

•

•

0

(C+DK)^. (DK ).
c i* J

det(sl-r) • n.^(s)
n

det(sI-A^)

♦a a
w r

det(sI-Aj^)
o

Since the closed-loop system is exp. stable, i.e. cj(Aj^) C c .

det(sI-Aj^) are coprime (by assumption (II. 6),

a(A^) Ua{Aj.) Cc^). Thus, for 1 £ i £ n^,

e.(s) = 2 h . (s)w (s) + ^ h (s)r (s) + t(s)
j=l ^ ^ j=d+l ^

n^(s)
det(sI-Aj^) + t(s)

-12-
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where n^(s) is a polynomial in s which depends on x^(0), x^(0) and

t(s) represents the contribution of the initial state (x(0),x (0));
c

e

t(s) has no O^-poles since, by construction, a(Aj^) C c_. The partial

fraction expansion of (III.16) gives

(III.17) lim e(t) = 0^ , Vx(0), x^(0), x (0), x (0),
t-x® c w r

i.e. asyiiq>totic tracking and disturbance rejection holds.

(c) Robustness property:

Assume now the data point (A,B,C,D,B^,K,K^) is under (not necessarily

small) perturbations which is such that B^ remains block diagonal with

each block being a nonzero vector and the closed-loop system remains

po:

(3)
instead of eqn. (III.15), we have

(III.18) hy(s)=— :

exp. stable. Denote the new data point by (A,B,C,D,B^,K,K^). Then

det(sI-Aj^)

Hence, as long as the closed-loop system remains exp. stable, i.e.
«. o -

a(A^) C (i;_, the polynomial det(sI-Aj^) are still coprime and,

instead of eqn. (III.16), we have

n. (s)
(111.19) eAs) = / ^ ^ + t(8)^ det(sI-Aj^)

(3) - . . ~
Note B^ => block diag instead of (III.13), we apply

elementary row matrix R to (III.12) and then obtain (III.18), where R

is obained by replacing y in R by

-13-



where t(s) represents the contribution of the initial state (x(0),x (0));
c

^ O

t(s) has no C^-poles since, by assumption, o(A^) ^ ®• Now the partial

fraction expansion of (III.19) gives

lim e(t) = 0 , Vx(0),x (0),x (0),x (0),
t->co ^0 c w r

i.e. asymptotic tracking and disturbance rejection still holds at

the perturbed data point (A,B,C,D,B^,K,K^). Thus the property of

asymptotic tracking and disturbance rejection is robust at (A,B,C,D,B^,K,K^)

under the prescribed class of perturbations.
Q.E.D.

Comment: The controller (III.l) actually achieves asymptotic tracking

and disturbance rejection for a much larger class of reference- and

disturbance-signals than the one described by (II.4) - (II.6); more

precisely, asjmptotic tracking and disturbance rejection is achieved by

the controller (III.l) for any class of reference (disturbance) signal

characterized by (A ,C ) ((A.»C )) such that (|)r r U. . > where
t i W W I A A

w r ' w r

^A A '̂'̂ A A ^ least common multiple of the minimal polynomials
w^r w^r

of A^ and A^ (A^ and A^, respectively). As an example, let A^ = 0 (i.a.

disturbance free) and A be such that if;? = a •
r A A A

r w r

B. Effect of Perturbations in the Controller Dynamics

We have seen that the controller (III.l) provides asymptotic tracking

and disturbance rejection robustly under the class of perturbations

which maintains the closed-loop exp. stability, the decoupled structure

of the controller and the d3mamics of the controller. For engineers,

it is important to know what will happen to the tracking and disturbance

rejection properties if there is some small perturbation in the

dynamics of the controller?

-14-



(4)
Suppose that is perturbed slightly into (using tildes to denote

perturbed quantities)

(III.20) =

ow
then eqn.(III.18) becomes

det(sl-f)n..(s)

h«(^) = det(sI-A^)

where det(sl-r) = IT (s-A,+e,). This equation should be compared to
k=l ^ ^

q
n

k=l

In order to avoid detailed enumeration of cases, let us restrict

ourselves to the case where all sr© small and nonzero.

Then

d ^ .
e.(s) = 2 h..(s)w (s) + 2 h (s)r (s) + t(s)
i .^1 ±3 j .td+1

(III.21)
det(sI-Aj^) ^i'̂ ^

where ^ (s)U (s) and t(s) has the same meaning as in (III. 19) above.
^ I W

(2d;
To simplify notations, we assume every T subject to the same perturbation

and denote the perturbed T by f. However, the following analysis goes
through with different perturbations on each T.

-15-



Noting that for small perturbations, ^ is still a stable matrix

and that all the (C_|_-poles of e^(s) are contributed by the zeros of

(fi^Cs) —which is unperturbed —we obtain, for 1 £ i £ n^,

(III.22) e. (s) = 2 ^—r+ terms with (C -poles
k j=l

where the sum is taken over the (C^-zeros of <J)^(s); the 6^*s depend
continuously on the and when all are zero, all 'Sj '̂s are zero.

Case 1: if all X, lie on the ito axis and are simple zeros of d>
K A A

w r

(hence bounded reference- and disturbance-signals), then small

perturbations on T (i.e. all are small) will produce a

small steady-state error, because the 6 '̂s are small.
o

Case 2; if some Xj^ ^ (C_^ or if some Xj^ lies on the jm-axis and is a

multiple zero ^ > then, even for small perturbations of
w r

r, the error signal will blow up as t ®.

Therefore, if the class of reference- and disturbance-signals

belong to case 1 (e.g. step, sinusoidal, etc.),a small perturbation in

the controller dynamics may be tolerated, since it only produces small

steady-state error. For case 2, the conclusion above is pure mathematical

fiction because, for tracking and disturbance rejection, we are, in real life,

only interested in a bounded time interval, say [0,T] (of course, to avoid

saturation, the servomechanism will have to be reset at the end of the

Interval). Hence, by adjusting the closed-loop system poles

(via K and K^) such that the closed-loop system time-constants are very

small compared to T, the magnitude of the error signal at time T will

be small for sufficiently small perturbations in the controller dynamics.

Therefore for a given specification on the error at time T.

the Cj '̂s may be different from zero;but the tighter the specification and

the larger T is, the smaller the must be.

-16-



IV. CHARACTERIZATION OF A MINIMAL ORDER ROBUST FEEDBACK CONTROLLER

In this section, we first show that under certain robustness

requirements, any feedback controller which achieves asymptotic tracking

and disturbance rejection must have certain property; consequently, a

minimal order robust feedback controller must be characterized by equation

(III.l) (modulo coordinate transformation). Then a generalization

of this result to the distributed case is briefly discussed in part B.

A. Lumped Case

Let us consider the linear time-invariant lumped system described

by (II.1)-(II.6) and a feedback controller (with input e and state x ).
c

Suppose there exists a control law u = Kx + K x such that the closed-loop
c c

system is exp. stable. Let be a left coprime factorization of

(C+DK) (sI-A-BK) B+ D, where D (s) E ]R [s] ^ and N. G ]R [s]

Let N^D^ be a right coprime factorization of K^G^(s), where G^(s) is
the controller transfer function matrix (see Fig. 2 and Fig. 3).

Theorem IV.1 (characterization of a robust feedback controller)

Given the linear time-invariant system described by (II.l)-(II.6).

Assume that

(i) rA,B,C] is minimal;

(ii) is full column rank,

then any feedback controller (with input e and state x^) satisfying
the following three conditions:
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(a) the composite system is completely controllable (hence there exists

a control law u = Kx + K^x^ such that the closed-loop system is

exp. stable, where x and x^ are the plant and controller states,

respectively);

(b) for any such control law, asymptotic tracking and disturbance

rejection holds(i.e. for all x(0), x (0), x (0), x (0), e(t) 0 ,
C W

as t -> «);

(c*) closed-loop exp. stablility, asymptotic tracking and disturbance

rejection are robust at (A,B,C),

must have the property that

(IV.1) every element of D (s) is a multiple of 4) . (s) ,
^ A A

w r

where (P^ ^ is the least common multiple of the minimal polynomials
w r

of A^ and A^, and D^(s) is the denominator polynomial matrix in the left

coprime factorization of K G (s). (Note that any element of D (s) which
c c r

is the zero polynomial automatically satisfies condition (IV.1) above

because 0*4)^^ (s) = 0).
w r

The following corollary shows that a minimal order robust feedback

controller must be characterized by (III.l) (modulo coordinate transformation):

Corollary (Characterization of a minimal order robust feedback controller)

Under the assumptions of theorem XV.1, a minimal order robust feedback

controller which achieves (a)-'(c*) must be given by (III.l), modulo coordinate

transformation.

Remarks: (1) Assumption (ii) represents no loss of generality since

if it did not hold we could (a) make a change of coordinates from w

to w, (b) choose this change to effect a reduction to column echelon

form of ,and (c) throw away all the identically zero columns thus

generated, together with the corresponding components of w.
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(2) The robustness requirement (c*) is crucial to the required

structure of controller: it can be shown (e.g. [Fra, 2,3]) that without

robustness requirement, a feedback controller which contains one copy

of the dynamics of the reference- and disturbance-signals

(instead of n^ copies in the robustness case, where n^ is the number of

reference signals) can achieve closed-loop stability, asymptotic tracking

and disturbance rejection.

Now we deduce the minimal order property from the robustness

requirements on closed-loop stability, asymptotic tracking and disturbance

rejection:

Proof of Theorem IV.1

By condition (a), as shown on Fig. 2, closed-loop stability of the

system (with respect to the state ) is achieved by a state feedback law

u = Kx + K X ; refer to Fig. 3, closed-loop stability Implies that
c c

[Cal. 2, Des. 4]

(IV. 2) det(D^D^+Nj^N^) has no (E_j^-zeros,

where is a left coprime factorization of the plant transfer function
iL X

matrix (C+DK)(sI-A-BK)~^B + Dand is a right coprime factorization

of the controller transfer function matrix K G (s).
C C

Since the closed-loop system is linear, we can consider the effect

of r and w separately:

Case 1 w= 0^ (asymptotic tracking)

Perform a partial fraction expansion of r, the reference signal to

be tracked, then

k

(IV. 3) r(s) = C (sI-A ) X (0) = ^ ^i

-19-



where ^ (C and ^ ®[s] has only C^-zeros, by assumption (II.6).

Note that (sI-A ) ^ has a pole of order mat p if and only if , the
IT A

r

minimal polynomial of A^, has a zero of order m at p. Furthermore, since

(C^,A^) is completely observable, the least common multiple of the

(i = 1,2,... ,k) is A.J..

The error resulting from this input is

(s) = [I+dT^„N • I y -^1

,-1.(IV. 4)

^1=1

Consider now an arbitrarily small perturbation of the plant

from (A,B,C) to (A,B,C) which maintains the closed-loop stability,

then the pair (Nj^,D^) becomes (N^,Dj^). Note for almost all (A,B,C),

det Dj^(s) = det(sI-A-BK) modulo a nonzero constant factorFor

as3nnptotic tracking to be robust under such perturbations, it must be

that, for i = l,2,..,,k.

-1- ""i(IV.5) ^r^^£^r^\^r^ ^ C.-poles
*''ri

For any zero, say p, of (hence Re p ^ 0 by (II.6)), by the

stability requirement and for almost all perturbed plants^^^

^ For some special (A,B,C), the pair (C+DK,A+BK), ((A+BK,B), resp.)
may turn out to be not completely obserbable (controllable). However, some
suitable arbitrarily small perturbation from the data point will restore
complete observability (controllability).

^^^The first factor if (IV.6) is always nonsingular as a consequence of
the stability requirement (IV.2) and det ^^(p) ^ 0 for almost all
perturbed plants.
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(IV.6) P A (D.D +N.N ) is nonsingular at p
Xf IT JC IT Xr

Suppose that (s~p)™ with m^ 1, and that, for the purpose

of a proof by contraposition, some element of D^(s) is not a multiple of

(s-p)™, then, for some perturbed data point (Dj^,N^), by Taylor expansion
of P(s) about p, we obtain,from (IV.5) and (IV.6),

(IV.7) D^(s) • P(s) D^(s) •
r , .m r

(s-p)
+ •••

(s-p) (s-p)

By (IV.6), P(p) is nonsingular and by choice of (D^,N^), any component

of P(p) r^ can be made non—zero,^^^ hence the leading term in (IV.7) has at
least a pole of first order at p. Consequently, by (IV.4), e(t) does

not go to zero as t-><», which is a contradiction. Therefore we have shown

that robust asyii5)totic tracking requires that all the elements of D^(s)

be multiples of .

(7)

Without loss of generality, we may assume that Djj, is row proper. Consider

a perturbation such that + 6D^. Since 3[det(D^+6Dj^)]
= 3[det D] and for small 6D^, det[(D^+6Dj^)D^ + N^N^] is a polynomial whose
coefficients are close to those of det[D^D^+N^N^]; hence for sufficiently
small 6D^, closed-loop stability is maintained. Thus any sufficiently small
6D^ is an allowable perturbation. Let A= this class
of perturbations,

P = (D,D

= (A+6Dj '̂D)"^ • (Dj+SDji)

= • a"^ •

. a"S^ +a"^ • • [I-Dj.A"^Dj^]
So the effect of such perturbation on P(p)rj^ is approximately equal to
A(p)"^ • 6D, • tX-D^(p)A(p)"^D^(p)]rj^ . Consequently. can^always

"be chosen so that P(p)r is pushed away from any manifold in «
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Case 2« r = 6 (Asyroptotic disturbance rejection)
"o

If in (II. 1), E = 0, the zero matrix in IR^ , then Fig. 2

shows that the effect of w on the system is identical to a reference signal

to be tracked of the form -Fw. Thus if E = 0, we are right back to the

previous case.

If in (II.1), E 0, then the disturbance w is applied to the output

y through the plant (see Fig. 2). Since the plant transfer function is

the open-loop effect of w on the output y is equivalent to a reference

signal to be tracked of the form^®^D~jM^w, for some (see Fig. 4).
Now the closed-loop transfer function wh-»y is given by

(IV. 9) [i+d;^i,n^d;^]-^;\ =

As before, plant perturbation from (A,B,C) to (A,B,C)

will transform this transfer function to

(IV.IO)

Let the partial fraction expansion of w be

I w

(IV.II) w=£ ^
i=l wi

see this, let D^ be a left coprime factorization of (C+DK)(sI-A-BK) .
Then det D„ (s) = v i = X modulo a nonzero

^ (C+DK) (sI-A-BK)"-*- (C+DK) (sI-A-BK)-Ib

constant factor, where the last equality follow since (A+BK,B) is completely
controllable. Therefore is a left coprime factorization of

(C+DK) (sI-A-BK)"^B (otherwise 3[det Dj > 3[x i ]):
^ (C+DK)(sI-A-BK)"-^B

consequently D~ (NB+D^^D) is a left coprime factorization of
(C+DK) (sI-A-BK)~^B+D. Hence the open-loop effect of w on the output y can be
represented by (C+DK) (sI-A-BK)'̂ E+F =D^^(NE+Dj^F) A Note D^ and

are not necessarily left coprime.

-22-



where ^ and ^ C[s] has only (E_j^-zeros (by assumption (II.6)).

Note that is the least common multiple of 4)^^, i = l,2,...,i.
w

Clearly, any disturbance w will cause an output y decaying exponentially

if and only if

Si w

(IV.12) has no (t^^oles
i=l wi

Now suppose that ~ (s~p) with m ^ 1, then by an argument

similar to (IV. 7) and noting that can be perturbed, we conclude

that robust asyii5)totic disturbance rejection requires that all elements

of D (s) be multiples of .
^ w
Putting the two cases together we conclude that: If the aymptotic

tracking and disturbance rejection property (i.e. for all x(0), x^(0),

X (0), X (0), e(t) 0 , as t ^ is to be maintained in the face of
^ ^ ~

arbitrary plant perturbations (i.e. (A,6,0) becomes (A,B,C)) subject

only to the condition that such perturbations do not upset the closed-

loop stability, then the controller must be such that every element

of D (s) is a multiple a * least common multiple of and .
^ w r w r

Q•E. D.

Proof of corollary

From the result of Theorem IV.1, every element of D^(s) must be

a multiple of ; hence the minimal order of a robust controller
^r

n^-tuple
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Furthermore, we have shown, in Theorem III.l, that a robust feedback

controller (III.l) such ^(s) = diag(<f» ,((>^ ^ ^ )
V^^r wr wry

n^-tuple
does satisfy conditions (a)~(c*). Hence, a minimal order robust

feedback controller which achieves (a)-(c') must be characterized by

(III.l) (modulo coordinate transformation).
Q.E.D.

Remark; It is important to note (see eqns. (IV.4) and (IV.9)) that the

poles of the closed-loop transfer function from wf—> y and from r|—>e

belong to some subset of zeros of the closed-loop system characteristic

polynomial det(D^D^+N^N^).

B. Distributed Case

Theorem IV.1 of part A can be generalized to distributed systems.

The problem formulation goes as follows:

Let be a pseudo-left-coprime-factorization of the plant

transfer function matrix and ^^ be a pseudo-right-coprime
factorization of the controller transfer fxinction matrix, where

^ A n xn . >5.n^xn. ^ xn ^

i^^(s) ° </9^(s) e ^

(9) It should be noted that any stabilizing (K,K^) pair is such that
(K^,A^) is completely observable, (otherwise, the unobservable modes of
A which are unstable will not be stabilized byu=Kx+Kx), hence

c c c

det D (s) = det(sI-A ). Now the transfer function matrix (sI-A )" B
r c c c

of the controller (III.l) has a right coprime factorization
-1 ^o^^o

^r^r ' where D^ = diag((()^ ^ ,<|)^ ^ '"•''''a A ^ ^ IR Is] and
w r w r w r

N = diag(v(s) ,v(s) ,... ,v(s)) ^ B. {sj^ ° ° with
r. "2 o—1 T Q

v(s) = II s s ...s" J € BIs] . Since (K^,A^) is completely
observable, CK^N^)D^ ^ is a right coprime factorization of
KG Cs) .

c c
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[Des. 2]. Assume that the closed-loop system is ^-stable (see Fig.

this will be the case if and only if [Cal. 2, Fra. 7]

(IV.13) ±nf\det{^,Jd+J/\J/'j\>0.
*. r * r

For technical reasonsj we must assume that for some < 0, the functions

Ml, Ml are analytic in Re s>o^.
Case 1 (0 = 0^ (asymptotic tracking).

For the class of reference signals described by (II.5), we have,

instead of (IV.4),

(IV.14) e(8) =/9;[ ^
where as in (IV.3), the least common multiple of the d» ^'s is .

^ri

Suppose that asymptotic tracking is robust^^^^ at
Jv X

subject to the condition that the closed loop system remains (i^-stable^^^^

(i.e. (IV.13) holds at the perturbed data point ( ^• Call the
X X

zeros of , p^, and their respective multiplicities m., i = 1,2,...,a .
r 1 r

^^^^or closed-loop stability, we require that ^ ^ o*^o^ ^
^(X ° G^^i^'^i, where denotes the transfer function

av—>3.

^^^^Herejrobustness means that asymptotic tracking is maintained for
all such that S (X- *
where denotes the (it-norm [Des. 2].

(12) Using the continuity of the function det(«), it can easily be shown
[Fra. 7] that closed-loop ^[j-stability is robust at
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Recall that (II.6) ^ ^ Using results of [Gal. 3] and a

theorem of Doetsch [Doe. 1: p. 488, Theorem 1], it can be shown that if,

for some i G {1,2,...,a^}, some element of has a zero at of

multiplicity less than m^, then, for some perturbed data point

(IV.14) implies that e(s) has a pole at p^, say of order

with ^ 1, and the asymptotic representation (for t -*• +«) of e(t)

includes a term p(t)exp(p^t), where p(t) is a non-zero polynomial

of degree - 1. Consequently, since p^ ^ e(t) does not go to

zero as t-^. In conclusion, the robust asymptotic tracking requirement

implies that for i =1.2....every element of ^9^(s) must have a
zero at p^ of multiplicity larger than or equal to m^.

Case 2 r E 0 (asymptotic disturbance rejection).

Reasoning as in part A, assume that we can represent the disturbance

signal wby an equivalent reference signal of the form ^ where
LA ^ I y^CL and is not necessarily pseudo-left-coprime.

Call the zeros of , p^^^, and their respective multiplicities, m^,
w

i = 1,2,...,a . Then, reasoning as above, we can show that robust
w

asymptotic disturbance rejection at ( will require that

for i =l,2,...,a^, every element of ^^(s) must have a zero at p^ of
multiplicity larger than or equal to m^.

In summary, under the assumption that the closed loop system is

^-stable, asymptotic tracking and disturbance rejection being robust

at the plant data-point requires that every element of

^ (s) has a zero at every zero of ^ with a respective multiplicity
^ w r

at least as large as that of the zero ^ • Roughly speaking, we
,cu ^ ^

might say: every element of must be a multiple of <1>

-26-

A A
w r



\

V. NECESSITY OF THE RANK CONDITION

In this section, we illustrate, in several ways, why the rank

condition

(III.4) rank ®1 =n+n^, VX e a(A„) UoCA^)
is necessary:

Theorem V.l below shows that if a feedback controller is given by (III.l)

(as will be the case if the controller is to achieve the requirements

(a)~(c*) as shown in theorem IV.1 and its corollary), then the failure

of the rank condition (III.4) will result in loss of complete controllability

of the composite system (plant followed by the controller); theorem V.2

(theorem V.3) shows that the failure of the rank condition (III.4)

will result in loss of robust asymptotic tracking (robust asymptotic

disturbance rejection, respectively) property. These results illuminate

the importance of the rank condition; recall that it is equivalent to (1)

the number of plant inputs, n^., must be greater or equal to the number

of tracking outputs, n^, and (2) no mode of the reference-and disturbance-

signals can be a transmission zero of the plant.

Theorem V.I (Controllability).

Given the linear time-invariant system described by (II.l)-(II.6).

Assume that IA,B,C] is minimal. Let the feedback controller be given by

(III.l). Under these conditions, if the composite system (see Fig. 1)

KJ °[-B^C aJ [xJ +
is completely controllable, then
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(III.4) rankp'-^g ®] =n+n^. VX e o(A^) Ua(A^).

To prove this theorem, we need the following lemma:

Lemma ([Cal. 1])

Given the cascade linear time-invariant dynamic system shown

in Fig. 6, where N ^ 3R [s]^*™ and ]R [s]™™ are right coprime;
p P

N ^ 3R [s]^^ and D ^ ]R are left coprime; x and x denote the state
c c c

of a minimal state space realization of each subsystem. Then the cascade

system of Fig. 6 (with state completely controllable (by u) iff

N N and D are left coprime.
c p c

Proof of theorem V.l: Proof by contradiction. Suppose that

(V.2) rankp^"^ <n+n^, for some XG ^
then we show that the composite system (plant followed by the feedback

-1
controller (III.l)) is not completely controllable. Let be a

right coprime factorization of the plant transfer function matrix.

Now we claim than

(V.3) rank N (X) < n
P o

Case 1. n^ .f. Then, since (V.2) holds, X is a transmission zero

of the plant [A,B,C,D] and consequently ([Des. 3])

rank N (X) < n
P o

Case 2. n^ > n^. Then Vs € c, rank N (s) < n , since N (s) G C
n xn,

o i

P o' p

Combining case 1 and 2, the inequality (V.3) is established. Now
qn xqn g.. v-n

let D (s) = sI-A G]Rrsl N=BGir °°*, a t>' c ^ JR where A , B are
o c

defined in (IXI.l) then N^ is a left coprime factorization of the

controller transfer function matrix (sI-A )~^B , since (A ,B ) is
c c c c
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completely controllable. Now we show that N N and D are not left
c p c

'coprime, hence by lemma, the composite system of Fig. 1 (plant followed

by the feedback controller (III.l)) is not completely controllable.

By (V.3), there exists a non-zero vector

n

a = € ® such that
a

n
o_

(V.4) a*N (X) = [a* a* ... a* ]
1 2 n

-Npi(X)-

-Np2(X)-

—N „ (X)—

= 0'

where denotes the ith row of the matrix N^CX) and * denotes the
complex conjugate transpose. Also since X ^ cr(r) (by construction

of (III.l)), there exists a nonzero vector

3.

3.

3 = ^ such that

L^J
(V.5) B*(XI-r) = 0

Therefore, there exists a non-zero vector ^ C such that

Jl*[N^Np(X);D^(X)]

O"
(V.6) = I*

o
—N , (X)—

"Q
xi-r

'

'1

O
-V̂o

o

-29-
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n

where S.* = [iJ !•* ... !.* ], with i. Gl°, l<i<n, given by
1 2 n. 1 — — o

r °i[B* 6* ... B* B*] g* if B„ 0
a* AI ^ q 1^ j[BJ B* ... B*_j^ 0] if B =0

So, by fundamental fact (^3), NN and D are not left coprime and
c p c

consequently the composite system is not completely controllable which

is a contradiction.

Q•E •D*

The following two theorems show that the rank condition (III.4)

also results from some robustness requirements:

Theorem V.2 (Asymptotic tracking)

Given the linear time-invariant system described by (11.1)-(II.6).

Assume that rank [C;D] = n^. Under these conditions, if there exists a

controller such that

(^1) the closed-loop system is exp. stable;

(^2*) asymptotic tracking holds (i.e. with x (0) =0 ^ for all x(0),
w n

w

x^(0), x^(0), e(t) » as t <», where x^(0) denotes the initial
o

state of the controller);

(^3') asymptotic tracking is robust at (A,B),

then

(V.7) rankp^_^ =n+n^, VX €o(A^).
proof: equations (II.1)~(II.3) imply

(sI-A)x - Bu = Ew

(V.8) ( -Cx-ua + y =IV
A ^ /S

y + e = r

Hence by eliminating y, (V.8) becomes
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(sI-A)x - Bu = Ew
(V.9)

-Cx-Da-e = I^-r

Let x^(0) = (so w(«) = 0 ). Pick any X€ a(A ), then choose x (0) ^ (C ^
^ Xt ^such that r(t) = r^e , where 6 ^ r € (U Then, as t

H

r Xt °y(t) >r^e , by assumption (^2*)

(V.IO) ^x(t) ^x^e^^, for some x^ ^
n \ by assumption (<^1) and (/?2*)

u(t)—!>u e , for some u ^ C (
V. CO " J

Using equation (V.IO) in (V.9) (with w = 6,), we obtain
a

[ -C d] [-u^] "[-r ] • chosen Xea(A^).(V

Note that assumption ( (9^3*) requires that, for a given r 0 ,

eqn. (V.ll) has a solution at the perturbed data point (A+6A,B+<5B).

Now, for the sake of contradiction, assume

(V.12) rank < n + n^, for the chosen XGa(Aj.).

n

Hence, there exist p^ ^ P2 ^ ®° not both zero such that

<v.i3) tpj IFji ;] -

K]' a>
Note rank [CiD] = n^ ^ rank[-CiD] = n^; this implies that p^ # 0^

(if Pn = 0 , then p« = 0 which contradicts the fact that p., p« are
^ *^1 n *^2 n *^1 2

o

not both zero). Therefore there is a component of p^^^ say the i th component,

Pli 4 0. Also, since ^00 ®n * exists a component of r^, say
o

the j th component , r^^ ^ 0.
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Now we construct a perturbation (6A,6B) and show that, for a given

^ 0 » eqn (V.11) no longer has a solution at the perturbed data
^0

point (A+6A,B+6B,C,D), which contradicts assumption ( ^3*):

Let

(V.14) 6A =

o
-eC. •••

3'

o

i th row and 6B =
o

• • eD .

d'
where ^ ^ resp.) and e > 0 is

arbitrarily small. This corresponds to the elementary row operation

that adding e times the (n+j)th row to the i th row in the matrix of

(V.ll). Therefore, (V.13) inplies

(V.15) [pjipf] XI-A-6A &f6B

-C D
« e

n+n.
1

where [p^ ; p*] is obtained by applying elementary column operation

(which is the inverse of the above elementary row operation) to

[pj j P^]» hence pj = p*

P^ = P^ + [0,...,0 -ep^^,...0]

j th component

(V.15) means that

(V.16)

However, by (V.13),

(V.17)

XI-A-6A B+6B
-C D[a* 4

[Pj P^] n

-r
= 0

Thus from (V.17), the selection of r . ^ 0 and the definition of p ,
ooj r2»

we have
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(V.18)

(V.16^ and (V,18) mean that

i
0

n

-r

[pj pf] n

-r
= e p* r . # 0.

li "3

XI-A-6A B+6B

-C D J •

i.e., for the chosen X^ cj(A^), eqn. (V.ll) no longer has a solution at

perturbed data point (A-hSA,B+6B,C,D), which contradicts the assumption

that asymptotic tracking is robust at (A,B). n t? t\
Q • £ • U •

Theorem V.3. (Asymptotic disturbance rejection)

Given the linear time-invariant system described by (II.1)-'(II.6).

If there exists a controller such that

( dl) the closed-loop system is exp. stable;

(5^2") asymptotic disturbance rejection holds (i.e. with x (0) = 6 ,
r

for all x(0),x (0),x (0), y(t) -»• 0 , as t « where x (0)c w n^ ' c

denotes the initial state of the controller);

(^3") asymptotic disturbance rejection is robust at (E,F),

then

(V.18) rank = n + n^ , VX e a(A^)

ProofI

Let x.-(0) = 0 (so r(*) =0 ) and for X G a(A ), choose
n n w

n

(V.19) ) Xt - c «.n
( x(t)—»x e , for some x ^ (E ,

0^ 3{^(0) € (C ^ such that w(t) =w^e , where 0^ 9^ w^ ^ (C^.
w

Then, as t

^y(t)—>0jj , by assumption (6^")

Xt i
, u(t)—»u e , for some u ^ (E
V. OD 00
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Using eqn (V.19) in (V.9) (with r = 6 ), we obtain
o

(V.20)
XI-A

-C d] [-uj "[f]"- ^̂
By assumption (^^")» asymptotic disturbance rejection is robust

n+n

at (E,F), so k is not constrained to any manifold of C , because k

can always be moved slightly away from any such manifold by some small

suitable perturbation (6E,6F). Hence, (V.20) is solvable implies that

n+n

i...

rank d] ° "o' ^

-34-

Q.E.D.

Remarks: (i) It should be noted that in theorem V.2 and V.3, we don't

impose any constraint on the controller structure (in contrast to theorem V.l,

where the controller is assumed to be of feedback type).

(ii) Suppose (A,B) is completely controllable, then it can be shown,

by method analogue to the one used in the proof of theorem V.2, that if

X ^ real, then under the assumptions of theorem V.2, asymptotic

disturbance rejection achieved robustly at (A,B) implies that the rank

condition (V.18) holds. When X ^ ) is complex, this method failed
nxn.

because it leads to 6A ^ (K"^, 6B ^ (C , whereas the allowable

nxnperturbations are such that 6A ^ 3R , 6B G ]R



VI. ASYMPTOTIC TRACKING/DISTURBANCE REJECTION AND TRANSMISSION ZEROS

In section V, we have investigated several aspects of the rank

condition (III.4) in the robust asymptotic tracking and disturbance

rejection problem. Recall that rank condition (III.4) is equivalent

to (1) the number of plant inputs, n^, must be greater or equal to the

number of tracking outputs, n^, and (2) no mode of the reference- and

disturbance-signals may be a transmission zero of the plant. In fact,

this property arises from fundamental considerations applied to a

general feedback system modeled by transfer function matrices.

Theorem VI.1 below states this fact precisely. Next Theorem VI.l*s

corollary specialized the conclusions to the robust asymptotic tracking

and disturbance rejection problem stated in section II.

Consider the unity feedback system shown on Fig. 7 where
n n. n.xn n xn.

r(t), e(t), y(t) ^ ° , u(t) ^ H , K(s) ^ R(s) ^ and G(s) ^ ° ^

Let N^(s)D^(s) ^ be a right coprime factorization of the controller
K(s) and D (s) ^ (s) be a left coprime factorization of the plant G(s).

Xf X

The theorem below states precisely an algebraic fact whose interpretation

is detailed in the remarks following its statement.

Theorem VI.1 (Transmission zeros and robust tracking feedback systems)

Consider the unity feedback system shown on Fig. 7. Let

4)(s) ^ R[s] have only C^-zeros. Suppose that

(i) 4i(s)|d^(s);

(ii) the closed-loop system is exponentially stable (thus

det[D„D +N„N ] has no (E -zeros),
Jl r £ r +
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then

(1) n. > n ;
1—0

(2) neither the plant G(s) nor the controller K(s) have

transmission zeros at X ^ {zeros of (|)(s)}.

Remarks« (i) That the controller K(s) has no transmission zero at

any X ^ {zeros of (j>(s)} follows directly from the right cbprimeness

of the pair (D^,N^) . Indeed, the right coprimeness of is

equivalent to

rank

\(s)
= n Vs e c

o

Now, for each XG {zeros of <i>(s)}, D^(X) = 0, hence for all such X,

rank N (X) = n . Since N (X) € ® ^ , this requires that n. > n and
r o r 1 o

that K(s) =N^(s)D^(s)~^ has no transmission zeros at such X*s.
(ii) Let [A,B,C,D] be any minimal realization of G(s). Then

the conclusion that n^ ^that G(s) has no transmission zero

at X̂ {zeros of 4>(s)} is equivalent to rankj^^ ^ ^
VX G {zeros of (()(s)}.

= n+n ,
o

(iii) A straightforward calculation shows that the feedback system

shown on Fig. 7 with assumptions (i), (ii) will track asymptotically

the class of reference signals r(*) such that r(s) = r(s)/<j>(s) with
n

r(s) ^ H (s) Note that this asymptotic tracking property is robust

under the class of perturbations such that assumptions (i) and (ii)

are maintained at the perturbed data point.

Proof of Theorem VI.1:

The identity

o
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implies that

(VI.1) D„D (D„D +N.N + N.N (D„D +N„N )"^ = I , Vs ^ (E
JlrAr£r Z r Si r I r n

o

Evaluating (VI.1) at s = XG {zeros of <J>(s)} C (C^ and noting that

D^(X) = 0 (by assumption (i)) ai

(by assumption (ii)), we obtain

D (X) = 0 (by assumption (i)) and that [D D+N.N ] ^(X) is nonsingular
IT Jo f Jo IT

(VI.2) N„(X)N (X) [D.D +N„N ]"^(X) = I .
i ' r "• il r £ r n

o

Therefore, for all such X's,

n xn

(VI.3) N.(X)N (X) G (E ° ° is nonsingular
Jw TO

n xn n.xn

and, since H [s] ° and N ^ H [s] ^ (VI.3) implies that
Jv IT

rank N.(X) « rank N (X) = n . Thus n < n. and, by [Des. 3], G(s) and
£ r o 0—1

K(s) have no transmission zero at X ^ {zeros of (|)(s)}.

Q.E.D.

To see the implications of theorem VI.1 on the asymptotic tracking

and disturbance rejection problem we considered in previous sections,

we follow the notation used in section IV.A: recall that theorem VI.1

asserts that under certain robustness requirements, any feedback

controller which achieves asymptotic tracking and disturbance rejection

must be such that (see eqn. (IV.1))

♦a a
w r '

If we compare Fig. 3 with Fig. 7 and identify K(s) = K^G^(s) = K^(sl-A^)

G(s) = (C+DK)(sI-A-BK)~^B+D, then we have the following corollary.

Corollary (Asymptotic tracking/disturbance rejection and transmission

zeros)

Consider the linear time-invariant system described by (II.1) - (II.6),
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Assume that

(i) [A,B,C] is minimal;

(ii) is full column rank,

then any feedback controller (with input e and state x^) satisfying

the conditions (a), (b), (c') stated in Theorem IV.1 must be such that

(VI.4) K(s) = K (sI-A )has no transmission
c c c

zero at X G o(a ) U a(A ).
w r

Furthermore, the plant is such that

"XI-A b"

L -C

Proof of Corollary:

From theorem IV.1, we have that

♦a a
w r'

By the closed-loop stability condition (a) of Theorem IV.1, we have

that (see eqn. (IV.2))

det(D„D +N.N ) has no C -zeros,
r Jl r +

Hence, by theorem VI.1, we conclude that n. > n and that neither
1 — o

G(s) nor K(s) have transmission zeros at X G {zeros of A. ^ }
A A

w r

= a(A ) U a(A ) (so VI.4 follows). The rank condition (III.4) follows
w r

because that it is equivalent to (1) n. > n , and (2) the transfer
1 — o

function matrix C(sl-A) B+D has no transmission zero at X€ ^ cr(Aj.)

and that the transmission zeros of C(sI-A)~^B+D are invariant under

constant state feedback (i.e. C(sl-A) ^B+D and (C+DK)(sI-A-BK) ^+D have

the same transmission zeros).
Q.E.D.

rank = n+n , VX G a(A ) U a(A ) .
o * w r
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VII. THE DISCRETE-TIME CASE

All the results above are stated for continuous-time case. For

lumped systems, all the proofs above are purely algebraic and are based

on simple properties of rational functions, determinants and matrices,

hence the results above apply equally well to the discrete-time case

with modifications indicated in the following table, x^ere 0(0,1) and

0(0,1)^ denote the open unit disk centered at 0 in and its complement

in ffi, respectively.
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VIII. CONCLUSION

This chapter has given a self-contained comprehensive treatment of

the linear time-invariant robust servomechanism problem for multi-input

multi-output systems. Theorem III.l exhibits a feedback controller

(III.l) which achieves asymptotic tracking and disturbance rejection

robustly. Tolerance of perturbations on the controller dynamics is

disussed in section III.B. Theorem IV. 1 and its corollary show that, under

some robustness requirements, any minimal order robust feedback controller

which achieves asymptotic tracking and disturbance rejection must be

given by (III.l)j hence it must contain n^ copies of the reference-

and disturbance-signal dynamics, where n^ is the number of reference

signals. This result shows that this n^-fold replication is necessary

in order to have robustness: this agrees with the intuitive engineering

idea that robustness requires redundancy. A similar characterization of a

robust feedback controller for the distributed case is derived in section IV.B.

Finally, the rank condition (III.4) is examined carefully in section V:

it is shown that lack of the rank condition (III.4) will result in either

loss of controllability of the composite system (theorem V.l), or

loss of robust asymptotic tracking (theorem V.2) or loss of robust asymptotic

disturbance rejection (theorem V.3). Theorem VI.1 investigates

the relation between transmission zeros and a general robust tracking

feedback system. Then theorem VI.l's corollary specializes the

conclusions to the robust servomechanism problems stated in section II.

Generalizations to large-scale decentralized systems and distributed

systems have already been reported [Dav. 6,7; Fra. 7]. Some progress

on the robust nonlinear servomechanism problem has been made [Des. 6].
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IX. NOTES ON LITERATURE

For single-input single-output systems, the servomechanism problem

(asymptotic tracking and disturbance rejection) has been well understood

for about AO years [Bro, 1], It took a lot of work to develop insight
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and design philosophies for the multi-input multi-output case. In the

course of this search, several approaches were proposed:

1) Optimal Control Approach [Joh. 1,2,3]

The problem formulation is basically the same as eqns. (II.1)~(II.6).

A non-robust controller has been obtained via the construction of the

so called disturbance-accommodating controller which is made up by a

copy of the system and a copy of the disturbance signal dynamics.

Control law is then obtained by minimizing some chosen quadratic

cost functionals. Robustness was not discussed. The duplication of

disturbance signal dynamics arises from the idea of reconstructing the

disturbance "state". This approach has provided one way of solving this

problem. However, whether this duplication in the controller is essential

is not established (actually, this is a major drawback in optimal control

approach: the relation between the cost functional and the control

structure is not obvious). For a complete discussion of this approach

which includes disturbance rejection,one should refer to [Joh. 3].

2) Geometric approach ([Bha. 1,2; Fra. 1,2,3,4,5,6; Pea. 1,2; Seb. 1,
Sta. 1, Won. 1,2,3,4]

The problem formulation here is slightly more general (except that

only the case D = 0 is considered); here interaction between disturbance

and reference signals is allowed (however, for engineering purposes,

we feel that the formulation (II.1)-(II.6) is general enough). At

first, the non-robust case is considered: construction of controller

is based on the notions of observer theory (e.g. [Fra. 2,3]) (or state

space extension techniques (e.g. [Pea. 1,2; Sta. 1; Won. 3]) and internal

stability of the whole system (plant together with the "exogenous" system

which is uncontrollable), hence duplication of the exogenous system
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dynamics is not surprising (by observer theory); the far more interesting

fact is that under certain conditions, any non-robust feedback controller

must contain a copy of the exogenous system dynamics [Fra. 2,3]. Then

the robust (or structurally stable) controller is treated by the same

approach. However, to show that under certain assumptions, the robust

controller must contain n^ copies of the exogenous system dynamics

(the so called "internal model principle"), where n^ = number of outputs

to be regulated, turns out to be very involved [Fra. 1]. In summary, this

approach has achieved essentially the same conclusions as the above treatment.

3) Algebraic approach ([Dav. 1,2,3,4,5,8; For. 1; Smi, 1; You. 1])

The most general case has been considered by Davison and Goldberg

[Dav. 5] from which we adopt the present problem formulation (II.1)~(II.6).

The derivation evolved through a sequence of papers ([Dav. 1,2,3,4,5]):

a simple case was first considered [Dav. 1], duplication of reference-and

disturbance-signal dynamics and the robustness result is immediate, since

every component of the reference-and disturbance-signals posess the same

modes. The general case is then resolved through reductions and some

"equivalence" transformations. Conditions are expressed in terms of

rank conditions which can be shown to be equivalent to some conditions

posed in the geometric approach. The results are appealing, but some of

the derivations are by no means easy.

4) Frequency domain approach [Des. 5; Fer. 1,2; Wil. 1; Wolf. 1; Wol.2]

The problem formulation here is basically the same as eqns. (II.l)-(ll.6).

Design of a robust controller is then easily justified by showing a

set of blocking zeros [Fer. 1,2] is generated by appropriated choice
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of controller. The proof of theorem lll.l is based on [Fer. 1].

The derivation of Theorem IV.1 is a modified version of [Des. 5]. Our

treatment of section IV and theorem V.l use the frequency domain approach

and exliibit rigorously what are the necessary characteristics of a minimal-

order robust feedback controller and why the rank condition is necessary.
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FOOTNOTES

can be shown ([Dav. 4,Fra. 1]) that to satisfy ( (5^3) at certain data
points, it is necessary to have the controller to be of feedback type.

Observe that, by definition

hj^j(s): ^ ^^Jiotes the j^b component, of
and is given by

= ^Vi.- <V.j + ^Vi3'
where denotes the ithrow (j th column) of Cj^ (B^^,
respectively) and denotes the ij th element of Dj^. Finally (III.12)
follows from Cramer's rule applied to

sl-

"(Vi.

^V.j

(Vij

n+n
(

Twhere Xj^ = (x,x^) , Vj « [(w,r)

(3)Note B = block diag (y,9Yo»•••)» ®o instead of (III.13), we apply
C J. Z Oq ^

elementary"row matrix R to (III. 12) and then obtain (XIX. 18), where R

is chained by replacing y in R by y^»

(5)
To simplify notations, we assume every T subject to the same perturbation

and denote the perturbed T by f. However, the following analysis goes
through with different perturbations on each F.

^^^For some special (A,B,C), the pair (C+DK,A+BK), ((A+BK,B), resp.)
may turn out to be not completely obserbable (controllable). However, some
suitable arbitrarily small perturbation from the data point will restore
complete observability (controllability).

^^^The first factor if (IV.6) is always nonsingular as a consequence of
the stability requirement (IV.2) and det ^^(p) 0 for almost all
perturbed plants.



(7)

Without loss of generality, we may assume that is row proper. Consider
n^xn^ «a perturbation " such that + 6D^. Since a[det(D +6D )]

*= d[det and for small det[ (Dj^+6D^)D^ + NN1 is a polynomial whose
coefficients are close to those of det[D^^D^+N^N^]; hence for sufficiently
small 6D^, closed-loop stability is maintained. Thus any sufficiently small
6D^ is an allowable perturbation. Let A = D D + N.N . Then for this class
of perturbations, * ^

P = (D.D +N^N
^ i r Jl r' Z

= (A+«Dj^.D)"^ . (D^+fiDj)

• &D, + A~^ • «D. • Il-D A~^ 1
X X r £

So the effect of such perturbation on P(p)r. is approximately equal to

^ * II~D^(p)A(p) • Consequently, 6D^ can always
be chosen so that P(p)r^ is pushed away from any manifold in

i'o see this, let be aleft coprime factorization of (C+DK) (si-A-BK)"^.
Then det D-(s) = v - ^ , ,

^ (C+DK) (SI-A-BK)-I \c+DK) (sI-A-BK)-Ib ®
constant factor, where the last equality follow since (A+BK,B) is completely
controllable, ^erefore DjInb is a left coprime factorization of
(C+DK)(sI-A-BK) B (otherwise 3[det D.] > 3[x ]).
consequently (NBI-Dj^D) is aleft coprime factorSilion'oP"^®
(C+DK)(sI-A-BK)"^B+D. Hence the open-loop effect of won the output ycan be
represented by (C+DK)(sI-A-BK)-W =D^^CNE+D.F) 4 dT^. Note D, and

are not necessarily left coprime.

(9)it should be noted that any stabilizing (K,K ) pair is such that (K ,A )
c c c

is completely observable, (otherwise, the unobservable modes of A

which are unstable will not be stabilized byu = Kx + Kx), hence
det D (s) = det(sI-A ). ^ ^

r c

^^°^or closed-loop stability, we require that H e H
®yz where denote^the transfer function
ai—

^Here robustness means that asymptotic tracking is maintained for

where denotes the CL-aorm [Des. 2J.

C12)„ ^
rF« function det(0. it can easily be shown[Fra. 7] that closed-loop (^-stability is robust at (,;0

Z £



TABLE VII

ContInuotis-time Discrete-time

Laplace transform Z-transform

C D(e,i)

c
+

DCe.!)*^

R (z)*""!
•

X x(k+l)
•

X x(k)

coi!q>lete controllability complete reachability

Dejoec

vl



A,B,C,D

Fig. 1. Composite system under consideration: condition (III.4)

Ixoplies the complete controllability of the state J by
the input u.

A.B.C.D
Cx+Du^+

1

Fig. 2. Feedback system under consideration: is the state of the

controller; w is the disturbance and r is the reference signal

to be tracked.

r =0.

Nr
1 V 1
1 1^

Nt• • 1 1*

1 1

# ^

Kc6c(s)
;rl.

(C+ DK)(sI-A-BK)B+D

Fig. 3. To study the closed-loop stability of the feedback system

In Fig. 2, we set r s 0^ , w= and represent the subsystem
o

transfer function matrices by coprime factorizations W



Fig. 4. The effect of the disturbance w is replaced by an equivalent

reference signal of

r
I

Fig. 5. Counterpart of Fig. 3 in distributed case.

Fig. 6.

u

Cascade system under consideration: and are right
coprlme; \ and are left coprlme; xand denote the states
of any realization of each subsystem.



K(s)
u

G(s)

Fig. 7. Unity feedback system considered in theorem VI.1



6
- «

>

t
Tt «

FIGURE CAPTIONS

Fig. 1. Composite system under consideration: condition (III.4)

implies the complete controllability of the state

the input u.

by

Fig. 2. Feedback system under consideration: is the state of the

controller; w is the disturbance and r is the reference signal

to be tracked.

Fig. 3. To study the closed-loop stability of the feedback system

in Fig. 2, we set r = 0 , w = 8, and represent the subsystem
no.

° -1
transfer function matrices by coprime factorizations and

Fig. 4. The effect of the disturbance w is replaced by an equivalent

reference signal of D^^^w.

Fig. 5. Counterpart of Fig. 3 in distributed case.

Fig. 6. Cascade system under consideration: and are right

coprime; N and D are left coprime; x and x denote the states
o o c

of any minimal realization of each subsystem.

Fig. 7. Unity feedback system considered in theorem VI.1.
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