Copyright © 1977, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

SECURATE QUICK REFERENCE GUIDE

THE LANGUAGE

Primary Terms	Primary Hedges	Relations
high	extremely very low medium	pretty fairly sortof than higher than
Relation Hedges	Connectives	
not much slightly	and	

Additionally, a number from one to ten may be specified, optionally preceded by "about". If a number is used, it must be spelled out in letters.

DATA ENTRY

The following commands may be entered following a ":" prompt:
ADD <object name>
VALUE <object value>
NEXT
OFFSPRING
OUT
With the exception of OUT, the above commands may be shortened to the first letter.

SECURITY EVALUATION FUNCTIONS

The following commands may be entered:

OVERALLRATING (or ORATE)
INDIVIDUALRATING (or IRATE)
SECTIONALRATING (or SRATE)
WORSTSUBSECTION (or WRATE)

Scoring Options

The following scoring options are available and may be specified by entering either "SETRATE", followed by a prompt, or just "RATESET":

1) Weakest Link
2) Selected Weakest Link
3) Fuzzy Mean
4) Weighted Fuzzy Mean
5) Fuzzy Mean With Each Major Subsection Weighted By Maximum Object Value

Other Functions
ADDTRIP
DELTRIP
MODTRIP
SAVE
HIERARCHY
THREATS
FEATURES

SECURATE User's Manual

by
Lance J. Hoffman, Eric H. Michelman, and Don Clements

Memorandum No. UCB/ERL M77/49
21 July 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

SECURATE User's Manual

TABLE OF CONTENTS

\author{

1. Introduction
 2. The Language
 3. Initialization and Data Entry
 4. Use of Analysis Functions
 Appendix A. Object Hierarchy and Threats, Features, and Flaws Listings
 Appendix B. A Complete Example
 Appendix C. Formal Language Definition
 Appendix D. Available Installation Models
 Appendix E. Additional Notes
}

1. INTRODUCTION

This manual provides instructions for using SECURATE, an interactive security evaluation and analysis system. SECURATE was designed to analyze computer installations, but it is easily adapted to other security options. The user first inputs the data necessary to describe the installation from a security point of view. A set of security evaluation functions are then provided to assist the user in analyzing the installation's security.

The installation is described as a set of object-threat-feature triples. OBJECTS are defined as the resources within a computing system, the loss of which would have a cost to the owner. THREATS are activities which a potential intruder may employ to gain unauthorized access to an object. This term also refers to chance events which may jeopardize an object. FEATURES are protective measures which present some degree of resistance to a threat.

The system incorporates a hierarchical structure of objects commonly found in computer installations. Associated with the object hierarchy is a listing of corresponding threats and security features. A portion of the object hierarchy is illustrated in figure 1.1. The entire object hierarchy and threat and feature listings are given in Appendix A. The hierarchy is used extensively throughout the system to structure both the analysis and the data input.

Each triple is specified by the user in terms of object value, threat likelihood, and feature resistance. A key feature of this system is that the measures of object value, threat likelihood and feature resistance, as well as the resultant security rating, are specified in terms of linguistic variables--variables which assume values which are words rather than numbers. Acceptable values are words such as high, low, and medium. Appropriate modifiers provide finer resolution by allowing terms such as very high, somewhat high, medium to high, etc.

The user thus describes the installation by specifying triples composed of object value, threat likelihood, and feature resistance. An input program leads the user through the object hierarchy, allowing him to modify the hierarchy to fit the particular installation and to specify appropriate triples. Security evaluation functions are then supplied which take the set of triples as input and return security ratings. Subsets of the triples set, corresponding to subsections of the hierarchy, can also be rated. For example one might elect to rate only the CENTRAL MACHINE subsection of figure 1.1. An informational facility is also available for suggesting security threats and measures.

1. Hardware
1.1 Central machine
1.1.1 CPU
1.1.2 Main memory
1.1.3 I/O channels
1.1.4 Operator's console
1.2 Storage medium
1.2.1 Magnetic media
1.2.1.1 Disk packs
1.2.1.2 Magnetic tapes
1.2.1.3 Diskettes (floppies)
1.2.1.4 Cassettes
1.2.1.5 Other
1.2.2 Non-magnetic media
1.2.2.1 Punched cards
1.2.2.2 Paper tape
1.2.2.3 Paper printout
1.2.2.4 Other
1.3 Communications equipment
1.3.1 Communications lines
1.3.2 Communications processor
1.3.3 Multiplexor
1.4 1/O devices
1.4.1 User directed I/O devices
1.4.1.1 Printer
1.4.1.2 Card reader
1.4.1.3 Card punch
1.4.1.4 Paper tape reader
1.4.1.5 Paper tape punch
1.4.1.6 Terminals
1.4.1.6.1 Local terminals
1.4.1.6.2 Remote terminals
1.4.1.7 Modems
1.4.2 Storage I/O devices
1.4.2.1 Disk drives
1.4.2.2 Tape drives

Figure 1.1 Portion of the Object Hierarchy

2. THE LANGUAGE

2.1 The Language Terms

Presently, the following terms are available for use in specifying the object values, threat likelihoods, and feature resistances:
Primary Terms Primary Hedges Relations

high	extremely	lower than
low	very	higher than
medium	pretty	
	fairly	
	sortof	

Relation Hedges
Connectives

not	and
much	to
slightly	

Additionally, a number from one to ten may be specified, optionally preceded by a blank. If a number is used, it must be spelled out in letters.

2.2 Examples

Following are examples of acceptable phrases:

```
high
low
medium
very high
moreorless medium
fairly low
low to medium
(about four) to about six
slightly lower than pretty high
not higher than medium
(much higher than low) and slightly lower than sortof medium
```

The following phrases are not acceptable:
extremely (a primary term--"high", "low", or "medium"--must be used)
not very (a primary term must be used)
about high ("about" may only modify numbers)
5 (numbers must be spelled out, e.g. "five")
slightly high ("slightly" is a relation hedge, which may only modify "lower than" or "higher than")
slightly higher than medium and lower than pretty high (parenthesis must enclose two or more words to the left of "and" or "to")

2.3 Hedges

The words "extremely" and "very" sharpen the curve toward the extreme, "extremely" more so than "very".

The words "sortof", "fairly", and "pretty" shift the curve toward the middle, "sortof" shifting it the most, and "pretty" shifting it the least.

2.4 Rules of Use

Basically, anything that sounds like English is acceptable. However, following is a set of simple rules:

1) At least one primary term must be present.
2) Primary hedges modify primary terms.
3) Relations modify primary terms or a combination of a primary term and a primary hedge.
4) Relation hedges modify relations.
5) Connectives connect any two of the above forms.
6) Anything to the left of a connective must be enclosed in parenthesis if it is more than one word.

Appendix C contains a formal definition of the language.

3. INITIALIZATION AND DATA ENTRY

3.1 Initialization

SECURATE is called by entering "SECURATE" after logon. Instruction for logging on and off are given in Appendix E.

Before data entry can begin, the user must make some initialization choices.
Figure 3.1 shows an example of this portion of the terminal session when SECURATE is first used.

securate

hi There.
please wait a peh momerts haile he set taings up.

```
HI AGAIN.
ENTER THE NAME OF YOUR WORKSPACE ('NONE' POR THE FIRST TIME):
NONE
DO YOU WANT TO USE A SYSTEM MODEL OTHER THAN THE STANDARD COMPUTER INSTALLATION MODEL? N
YOU ARE NON ENTERING TEE DATA ENTRY PGASE.
DO YOU WANT TO USE THREAT NUMBERS? Y Y
ENTER A NAME FOR YOUR PILE: PIGURE
DO YOU HANT YOUR DATA TO BE ENCRYPTED WAEN IT IS EILEDT Y (5)
ENTER A PASSWORD TO BE ASSOCIATED WITH YOUR FILE:
```



```
    OU mUST REMEMBER tHIS PASSWORD AS YOU WILL NEED TO SPECIPY IT TO acCBSS your data at a later date.
```

Figure 3.1 Initialization sequence

The user is first asked for the name of his workspace (file), being directed to enter "none" if this is the first time the system is being used (refer to point (1), figure 3.2).

Next, the user is asked if he wants to use the computer installation model or one of the other models available (2). The models are all structured similarly; only the actual objects, threats, and features differ. A list if all available models is given in Appendix D.
i
Once the installation model is set up, the user is given the option of associating a threat and/or feature number with each triple (3). These numbers are solely for identification purposes; no analysis functions consider them. The number may refer to the lists of threats and features associated with the object hierarchy, or may be numbers chosen by the user according to his own numbering scheme. If a threat or feature number used is one of those in the threat or feature listings (nos. 1-129 for threats and nos. 1-274 for features), the corresponding name will be printed out by the display function.

The user is next asked for a name for the file that will contain his data (4). He will then be asked if the data should be encrypted (5), and, if so, a password to base the encryption on (we suggest at least four characters which the user can remember) (6). Encryption is recommended if the information entered as triples is sensitive, as little other protection is provided.

3.2 Data Entry

After initialization, as described in section 3.1, the user is ready to begin data entry. In entering the data, the user is led though the hierarchy, being given the opportunity at each node to add offspring or specify triples for that object. The system will prompt for the first object (refer to point © , figure 3.2).

Figure 3.2 illustrates a typical terminal session of inputing data and the resultant output from the display function.

SECURATE
:HI THERE.
PLEASE WAIT A REN MOMENTS WHILE UE SET THINGS UP.

```
HI AGAIN.
ENTER THE NAME OF YOUR WORKSPACE ('NONE' FOR THE RIRST TINE):
* NOHE
& DO YOU WANT TO USE A SYSTEM MODEL OTGER THAN THE STANDARD COMPUTER IASTALLATION NODEL7 #
```

- you are now entering tag data entry paase.

DO YOU WANT TO USE THREAT NUMBERS? I.
DO YOU WANT TO USE PEATURE NUMBERST Y
ENTER A NAME FOR YOUR FILB: FIGURE
DO YOU WANT YOUR DATA TO BE ENCRYPTED WAEN IT IS RILEDT Y
ENSER A PASSWORD TO BE ASSOCIATED WITH YOUR PILE:

OU MUST REMEMBER THIS PASSWORD AS YOU WILL NEED TO SPBCIPY IT TO ACCESS YOUR DATA AT A LATER DATE.
ENTER THE OBJECT NUMBER FOR THE NEXT OBJECT: 1
HARDNARE
: ADD NETERING EQUIPMENT
HETERING EQUIPMENT RECEIVED OBJECT NUMBER 71
: 0
OBJECT NO 11. CENTRAL MACHINE IS NEXT.
: V VERY UIGH
THREAT NQ THREAT LLKELIHRQD EEATURE NQS EEATURE RESLSTAKCE

+ 6 MEDIUM 2 PRETTY HIGH
+ 10 PRETTY LOW 2930 MEDIUM
\rightarrow
$: n$ -
OBJECT NO 12, STORAGE MEDIA IS NEXT.
: V HIGH
THREAT HQ TEREAT LIKELIEROD REATURE LOS EEATURE RESLSTANCE
$\rightarrow 13$ 甘IGH 4344 PRETTY LOW
+ 11 LON 31 PAIRLY HIGH
$+$
: N
OBJECT NO 13. COMMUNICATIONS EQUIPMENT IS BEXT.
: N
OBJECT NO 14. I/O DEVICES IS NEXT.
: N
OBJECT NO 71. METERING EQUIPMENT IS NEXT.
: V LOW
THREAT NQ THREAT LIKELIHROD EEARURE NOS REATURE RESLSTANCE
\rightarrow 4. LOW 21 HIGH
$\stackrel{\rightharpoonup}{-} N$
ENTER THE OBJBCT NUMBER POR THE NEXT OBJECT: 2
SOFTNARE
: 0
OBJECT NO 21, OPERATING SYSTEM IS NEXT.
\therefore :
OBJECT NO 22, PROGRAMS IS NEXT.
: V MEDIUM
THREAT NQ RHREAT LIKELIBOOD REATURE UQS EEATURE RESISTANCE $\rightarrow 46$ EAIRLY $\operatorname{HIGH} 114$ (EAIRLY LOW) TO MEDIUM
-: 8
OBJECT NO 23. DATA IS NEXT.
Figure 3.2a Inputing the data
: V $H I \dot{G} G$

+20 HYGH 6061 PRETTY LOW
+33 MEDIUM TO HIGH 9091 LOH
\rightarrow 43. PRETTY HIGG 103104105 GIGE
\rightarrow
:
ENTER THE OBJECT NUMBER POR TAE HEXT OBJECT: 0 (6)
DO YOU WANT TO ADD ANY MORE OBJECTS WHICH ARE HOT IN THE HIRRARCHY? $\|$. (D)
YOUR WORK IS HON BEING SAVED.

Figure 3.2b Output from DISPLAY

For each object considered, the user may perform the functions described below. The system will prompt the user with a colon, ":", when it is ready to accept these commands.

ADD--this will add offspring to an object. This is used to insert other objects into the hierarchy under the object presently being considered. To do this, enter "ADD" followed by the name of the object to be added (2).
VALUE--to enter triples for the object presently under consideration, start by typing "VALUE" followed by the object value (4). The header

THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

will then be printed out and the information for each triple for that object may be entered, one triple to an input line. The system will prompt the user with a right pointing arrow, " \rightarrow ", prior to each line entered in this phase. The object value will be that specified following the VALUE keyword. If the user chooses not to use either threat or feature numbers, the corresponding part of the header does not appear. If feature numbers are specified, no punctuation can be used to separate the entries; otherwise the threat likelihood and feature resistance must be separated by a comma. When all of the triples information has been entered for the object, enter a blank carriage return. At this point, the user may specify more triples for the same object, but a different object value, or may use one of the control functions described below to move on to another object. While it is unusual to consider two different object values for the same object, it is occasionally appropriate. An example of this would be specifying a LOW value for a sensitive data file when the threat is accidental erasure (assuming a backup copy exists) and specifying a HIGH value when the threat is unauthorized access.

In addition to the functions above, the following control commands may be entered:
NEXT--the system will continue by prompting the user with the previous object's siblings, or, if none, ask the user for the next object number (5).
OFFSPRING-the system will continue by prompting the user with the previous object's offspring, or, if none, its siblings (3). If there are no offspring or siblings, the user will be asked for the next object number.
OUT--exit from the program (for exiting from the system, see Appendix E for logoff instructions.)

With the exception of OUT, the above commands may be shortened to the first letter.
Note that when a ":" is used as a prompt, the system is expecting a command--ADD, VALUE, NEXT, OFFSPRING, or OUT. When a " \rightarrow " is used as a prompt, the system is operating under the VALUE command, and it is expecting a line of triples' information (threat no., threat likelihood, feature no., feature resistance). To switch from the later, " \rightarrow ", to the former, ":", enter a blank line
(just a carriage return).
To add objects outside of the hierarchy, enter a 0 at a point when the system is asking for the next object number (6). This should also be done to exit from the program at that point, responding "NO" to the prompt concerning adding objects (7).

To use the data entry program at a later time, enter "SETMODEL", calling the function of that name which will accept more input of the same form.

During the data entry, the current workspace is periodicaly saved to guard against a computer system crash. Each time this is completed, the message "CHECKPOINT: WORK TO THIS POINT HAS BEEN SAVED." is printed at the terminal (8).

When gathering the data it is suggested that the user use photostats of the form in Appendix B. Figure 3.3 illustrates both a blank form and completed forms corresponding to the data input of figure 3.2. Note that the order of the objects on the forms is such that each object is immediately followed by its offspring. This is the easiest way to go through the hierarchy when entering triples.

Figure 3.3a A blank input form

OBJECT NO：
ADD，A name or number
Value，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS PEATURE RESISTANCE

OBJECT NO：
ADD，A name or number
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS MEDIUM 2 ．
8 MEDIUM
10 PRETTY LOW 2030
\qquad
11

V VERY HISKH
FEATURE RESISTANCE PRETTY HICH

MEハルへ

OBJECT NO：
ADD，A name or number
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE
13
11
H16H
Low
4344
$3 /$
$\div 2$
\qquad
\qquad
V HICH

PRETTY SON
FAIRLY HGH

OBJECT NO：
ADD，A name or number
value，\dot{v} object value
V Nim
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE 4 Low 21 H16．4

Figure 3．3b Input form completed before logging on

OBJECT NO:
ADD, A name or number
VALUE, V object value
THREAT NO TUREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

Figure $3.3 b$ cont. Second completed input form

4. USE OF THE ANALYSIS FUNCTIONS

Once the triples information has been entered, the analysis functions may be used.
There are presently two types of analysis functions available, security evaluation functions and informational functions. They may be invoked interchangeably.

4.1 Security Evaluation Functions

Figure 4.1 illustrates the use of the security evaluation functions with the different rating options. Both the functions and the options will be described following figure 4.1. The data used is the data input in figure 3.2.

Figure 4.1a The data display

```
    RAF8SET
```



```
    THE POLLOHIDO RATIRG FUHCTIOMS ARS AVAILABLE:
            1) WEAKSST LIAK
            2) SELECTED HEAKEST LIAK
            3) PU22% M&AI
            4) PUZEY MEAN WEIGATED BY VALUS
            5) PUZZY MSAN WITH BACH HAJOR SUBSEGTION HEIGETED BY MAXIMUN OBJECT VARUE
GHTSR TAE WUNBER OP TAS RATIMG EUNCTION YOU UISA TO USE: I
            OVERALLRATTNG
```

 (1)
 c)

-

- LAMR BAELME (USIMO HBAKEST LIEK) (1)
- TAS IH8TAELAETON LON

HORSTSUB8ECTIOM

- EARDNARE PRBTYY LON
SOPTWARE EON
- TES LONEST RATIMO WAS GIVEI TO:
- SOPTHARB

SETRATE 3
IHDIVIDUALRATIMO
8HFER TG8 WUNBER OF YGS OBSECT TO 8B RAFBD: 2
©

Figure 4.1b Use of the security evaluation functions


```
**
HAME BALLHL (USIHG FU8%Y NBAG)
SOETHARS
    SORTOR MEDIUN
*
```


SETRATE 2
HRATE
EATER TAE PAREAT OBSECT GUNBER (O POR TAE YOP LEVEL IM TAE GIERARGAY): 0
SPECIEY MIAIMUN POR BARDHARS: PRETYY EIGE
4 ELEMEHT(S) USED
SPECIEY MIHINUH POR SOFTHARE : PRETEZ EIGE
3 ELEMEHL (S) USED

SETRATS
WRATS

Figure 4.1c Continued use of the security evaluation functions

```
SETrats.5
```


- عaye

GARDHARE SORTOE GICA
SOPTHARE MOREOREBSS NEDIUN
* pas lonest ratimo was otven to:
SOPTWARE
-

strpats 8
WRATE
GATbr ght parsur obsbct munber (o for fas fop lavel in fas aisrabcay): 2

*

* LaKE BALLEE (USInG pUzit ngail)
- prograns (SORTOP nEDUN) TO (MOREORLESS MEDIUN)
- D'ATA SORTOP NBDIUN
* tas lonest ratime was givea to:
- tab data
-

MODTRIP
SETER TAB TRTPLB HUMBRR: A
SETER THB EUNBER OR TBE CATEOORY TO BE MODIFISD-
1) OBJECT BUYBER
2) THREAT HUMBER
3) PEATURE MUNBER(S)
4) obsect value
5) THREAT CIKLIHOOD
6) PSATURE RESISTABCE
$: 6$
BGTER THE MEW FEATURE RESTSTAMCE: PRETTY GIOS

Figure 4.1d Use of the MODTRIP function and the security evaluation functions
 MUNBRRS: AMD FABIR PARENT IA TAE EIBRARCEI:
QELECE
NETSRING BQUIPNBHT 71

Figure 4.1e Another data display

```
    HRA88
```


LaME BaERMa (UsImo puser meam)
PROGRAMS (SORTOF MSDTUN) 50 (NOREORLSES MEDIUN)
DARA SORTOR BIOA
THE LOWBST RATINO WAS GIVEM TO:
PROGRANS

SLTRIP

ADDTRIP
GETBR THE OBJBCT BUHBER: 21
BHTER THB THRSAT EUNBBR: 17
EATER THE FBATURE GUMBER(S): 4950
BETER TAS OBSECT VALUE: PRETYI ALOA

EATER TES PSATUAS RBSISTARCE: MORBORESES MEDTUN
SAPE

Figure 4.1f Use of the DELTRIP, ADDTRIP, and SAVE functions

DISPEAI

Figure 4.1g Another data display

WRATB.

SETRATE 5
WRATB
BATER TAS PAREHT OBJECT MUNBER (O POR TGE TOP LEVEE IU TAE EISRARCAY): O

Figure 4.1h Continued use of the security evaluation functions

The following security evaluation functions are available. To invoke one type either the full name or the shortened form.

OVERALLRATING (also ORATE)--This function returns a security rating for the entire installation (refer to point (3), figure 4.1). That is, it rates the entire set of triples.
INDIVIDUALRATING (also IRATE)--This function returns a security rating for a specified subsection of the installation (7). Only triples for that subsection, including offspring, are considered. For example; for an individual subsection rating of the central machine, the evaluation system would consider triples specified for the central machine and each of its offspring: the CPU, main memory, I/O devices, and the operator's console (this section of the hierarchy was illustrated in figure 1.1).
SECTIONALRATING (also SRATE)--Prompting the user for either the top level of the hierarchy or one of the subsections, this function returns an individual rating for each subsection at the next lower level (9). For example, if the top level of the hierarchy was specified, SECTIONALRATING would return a security rating for each of hardware, software, the computer center, personnel, documentation, and the backup system.
WORSTSUBSECTION (also WRATE)--this performs the same function as SECTIONALRATING, with the additional feature that it highlights the subsection receiving the lowest rating (5).

4.2 The Scoring Options

In addition to choosing which of the above analysis functions to use, the user must also choose among four scoring methods of producing a security rating for a given set of triples. Following are the five options:

Weakest link-this will look for the weakest feature resistance and return that as the security rating (4). The philosophy here is that the system is only as secure as its weakest link.
Selected weakest link-this produces a weakest link rating based on those triples which satisfy the condition that either their object value or the threat likelihood is greater than a user specified minimum (A). The idea here is that one would only want to consider triples where the object is of at least a certain value or the threat is of at least a certain likelihood.

Fuzzy mean-this performs a fuzzy mean [1] on the feature resistances and returns the result as the rating (8). The theory here is that a system's security is the mean of the security of its components.
Weighted fuzzy mean-this performs a fuzzy mean on the feature resistance weighted by the greater of the object value and threat likelihood for each triple (B). The theory is that of the fuzzy mean, with the additional assumption that the more valuable objects and those
with more likely threats should receive greater weight in the security rating.
Fuzzy mean with each major subsection weighted by maximum object value-- for each major subsection of the object specified, this finds the fuzzy mean of the resistances. It then weights these fuzzy means by the maximum object value found in the triples for each major subsection and averages these weighted means (C). In other words, it finds the fuzzy means for each major subsection and weights them by their respective maximum object value. The theory is similar to that of the weighted fuzzy mean, but with the assumption that the major subsections should be weighted be their relative values, irrespective of the number of triples they each have.

To specify a rating function, the user types RATESET (2), and a prompt is printed asking for the choice. Alternatively, the user may type SETRATE (6) followed by the number of his choice (try RATESET once to see the choice numbers). Once the user specifies a rating function, it stays in effect for all of the evaluation functions until it is respecified.

4.3 System Functions

Following are the system utilities available to the user.
DISPLAY--this formats and prints the triples information, including object name, number, and value, threat name, number, and likelihood, and feature resistance (1).
ADDTRIP--this function allows the user to add individual triples quickly (see also SAVE) (E).

DELTRIP--this function deletes an existing triple (see also SAVE) (E).
MODTRIP--this function allows the user to modify existing triples (see also SAVE) (D).
SAVE--this function saves all of the user's data in the user's workspace ©. This should be executed after changes have been made.
HIERARCHY--this prints all or part of the object hierarchy for the user's installation. Figure 4.2 illustrates the use of the HIERARCHY function with the data input in figure 3.2.
alsparcay

Figure 4.2 Use of the HIERARCHY function

4.4 Information Facilities

Following are the informational facilities available.
THREATS--this prints out common threats for a given object in the hierarchy. An example of this is shown in figure 4.3.

```
    THREATS
ENTER THE NUMBER OF THE CORRESPONDING OBJECT: 11
threatS related to central machine:
MALICIOUS DESTRUCTION
HARDWARE ERROR
HARDWARE TAMPERING
HARDWARE TAMPERING--MODIEIED OPERATION
HARDWARE TAMPERING->-LOSS OF DATA
HARDWARE TAMPERING--MODIFICATION OF DATA
TAMPERING WITH PANEL CONTROLS
UNAUTHORIZED USE
UNAUTH. CHANGE IN OP. CHAR. DURING OPER.
HUMAN ERROR
```

Figure 4.3 Use of the THREATS function

FEATURES--this prints out common security features for a given threat in the threat listing. An example of this is shown in figure 4.4.

FEATURES
ENTER THE NUMBER OF THE CORRESPONDING THREAT: 2
features related to hardware error:
ADEQUATE MAINTENANCE
ERROR CORRECTING CODES
INTERNAL MACHINE CHECKS
REDUNDANT PROCESSORS

Figure 4.4 Use of the FEATURES function

BIBLIOGRAPHY

[1] "SECURATE: A Security Evaluation and Analysis System Using Fuzzy Metrics", Eric H. Michelman and Lance J. Hoffman, Memorandum No. UCB/ERL M77/36, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, July 1977.

[2] "Fuzzy Ratings for Computer Security Evaluation", Don Clements, Memorandum No. UCB/ERL M77/41, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, June 1977.

> [3] "A Practical Framework for Computer Installation Security", Eric H. Michelman, Memorandum No. UCB/ERL M77/4, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, June 1977.

[4] "The Concept of the Lingistic Variable and its Application to Approximate Reasoning", L. A. Zadeh, Memorandum No. ERL-M411, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, October 1973.

Appendix A

The Object Hierarchy and

Threats, Features, and Flaws Listings

In addition to objects, threats, and features, another category is introduced, that of flaws. Flaws are defined as characteristics of a computing system which enhance the likelihood of a threat succeeding in compromising an object. While flaws are not considered by the system, they were developed as a user convenience. Their purpose is to map what a user may view as threats into threats as viewed by the model. A simple example of this would be leaving confidential material exposed. It would be reasonable to view this as a threat to security, however Clements' security model takes the position that the security threat would be an unauthorized person viewing the exposed material. In practice, though, the user should feel free to specify whatever he feels most comfortable with.

The Object Hierarchy

1. Hardware
2. Software
3. The Computer Center
4. Personnel
5. Documentation
6. Backup system
7. Hardware

> 1.1 Central machine

$$
1.1 .1 \mathrm{CPU}
$$

1.1.2 Main memory
1.1.3 I/O channels
1.1.4 Operator's console

1.2 Storage medium

1.2.1 Magnetic media

1.2.1.1 Disk packs
1.2.1.2 Magnetic tapes
1.2.1.3 Diskettes (floppies.)
1.2.1.4 Cassettes
1.2.1.5 Other
1.2.2 Non-magnetic media
1.2.2.1 Punched cards
1.2.2.2 Paper tape
1.2.2.3 Paper printout
1.2.2.4 Other
1.3 Communications equipment
1.3.1 Communications lines
1.3.2 Communications processor
1.3.3 Multiplexor
1.4 I/O devices
1.4.1 User directed I/O devices
1.4.1.1 Printer
1.4.1.2 Card reader
1.4.1.3 Card punch
1.4.1.4 Paper tape reader
1.4.1.5 Paper tape punch
1.4.1.6 Terminals
1.4.1.6.1 Local terminals
1.4.1.6.2 Remote terminals
1.4.1.7 Modems
1.4.2 Storage I/O devices
1.4.2.1 Disk drives
1.4.2.2 Tape drives

2. Software

2.1 Operating system
2.2 Programs
2.2.1 Applications
2.2.1.1 Source
2.2.1.2 Non-source
2.2.2 Contract programs and packages
2.2.3 System utilities
2.2.4 Test programs
2.3 Data
2.3.1 Personal data
2.3.1.1 Payroll
2.3.1.2 Personne1
2.3.1.3 Other personal data (Privacy Act of 1974, 53(a)(4))
2.3.2 Institution data
2.3.2.1 Marketing
2.3.2.2 Financial
2.3.2.3 Operations
2.3.2.4 Planning
2.3.2.5 Other

3. The Computer Center

3.1 Resource supply systems

3.1.1 Air conditioning
3.1.2 Power
3.1.3 Water
3.1.4 Lighting
3.2 Building
3.2.1 Structure
3.2.2 Computer operations
3.2.2.1 Computer room
3.2.2.2 Data reception
3.2.2.3 Tape and disc library
3.2.2.4 CE room
3.2.2.5 Data preparation area
3.2.2.6 Physical plant room
3.2.2.7 Stationery storage
3.3 Waste materials
3.3.1 Paper
3.3.2 Ribbons
3.3.3 Magnetic materials

4. Personnel

4.1 Computer personnel

4.1.1 Supervisory personne]

4.1.2 Systems analysts
4.1.3 Programmers
4.1.3.1 Applications programmers
4.1.3.2 Systems programmers
4.1.4 Operators
4.1.4.1 First shift
4.1.4.2 Second and third shifts
4.1.5 Librarians
4.1.6 Temporary employees and consultants
4.1.7 Maintenance personnel
4.1.8 System evaluators and auditors
4.1.9 Clerical personnel
4.2 Building personnel
4.2.1 Janitors
4.2.2 Watchmen
4.3 Institution executives
4.4 Other personnel
5. Documentation
5.1 Software documentation
5.1.1 File
5.1.2 Program
5.1.3 JCL
5.1.4 System
5.2 Hardware documentation
5.3 Operations
5.3.1 Schedules
5.3.2 Operations guidelines and manuals
5.3.3 Audit documents

6. Backup system

6.1 Hardware

6.1.1 Replacement for equipment detailed in section 1
6.1.2 Replacement time
6.2 Backup for software detailed in section 2
6.3 The Computer Center
6.3.1 Electric power generation
6.3.2 Generator fuel supply
6.3.3 Water supply
6.4 Auxiliary personnel
6.5 Documentation, operational procedures
6.5.1 Vital recores
6.5.2 Priority run schedules
6.5.3 Backup for documentation in section 5

Threats and Flaws

The structure of the threats list is based on the object hierarchy, which is used as an outline. Threats are listed after the objects they refer to, the objects being specified by name and number from the object hierarchy. A threat listed after a non-terminal node of the object hierarchy refers to all objects decending from that node. The threat numbers are listed down the left side, along side the threats they refer to.

The numbers of relevant flaws are listed after each threat. The flaw numbers are preceded by an " F " and are ordered sequentially within each of the six main object/threat categories. The flaws themselves are listed along with their corresponding numbers after threat listings for each of the six main categories.

1. Hardware

1.1 Central machine

Malicious destruction - Fl. 1
Hardware error - F1. 4
Hardware tampering - F1.1, F1.4, F1.5 modified operation loss of data modification of data Tampering with panel controls
Unauthorized use - Fl. 2
Unauthorized change in operating characteristics during operation - Fl. 2
Human error - F1.6, F1. 7

1.2 Storage media

Theft - Fl. 3
Unauthorized modification - Fl. 3
Unauthorized read - F1. 3
1.3 Communications equipment
<same threats as 1.1 Central machine>
1.4 I/0 devices
<same threats as 1.1 Central machine>

Hardware Flaws

Fl. 1 Inadequate plant security
F1. 2 Lack of status indicators
F1.3 Inadequate storage library security
authorization
quard
labeling
diligence in keeping materials stored properly
F1. 4 Lack of machine checks, hardware and software
F1.5 Unsupervised or unauthenticated CE activity
F1. 6 Operator ignorance
F1.7 Misleading documentation, incomplete or inadequate
2. Software
A. Unauthorized access: R/W/E - F2.1, F2.2

Modification of operating system and system routines
Inadequate controls on I/O facilities - F2.3, F2.4
Password compromise - F2.5, F2.6, F2.7, F2.8
Unsecured storage medium - F2.9, F2.10, F2.11, F2.12
Access outside of allocated memory - F2.13, F2.14, F2.15
Modification of stored state vector - F2.16
Unauthorized CE activity
Line tapping and spoofing
Erroneous or inadequate usage of protection facilities - F2.17, F2.18, F2.19
B. Unauthorized access: read

Extra copies of output printed duplicates printed printing restarted before end
Use of erroneous distribution labels
Use of erroneous distribution lists
Theft of mail
Exposed output - F2.20, F2. 21
in user possession within distribution system at operator's console work in progress
Unauthorized reading of terminal buffers
Indirect exposure of output - F2.22, F2.23
C. Unauthorized access: write

Modification or spoof of mail transactions
Unauthorized modification of data during preparation - F2.2.4
Data preparation errors - F2. 24
Modification of original written data input - F2. 25
2.1 Operating systemDefective implementation - F2.26, F2.27, F2.28, F2.29, F2.30,F2.31, F2. 32
2.2 Programs
Inadequate debugging
Incomplete operation specifications
Inadequate or erroneous error handling
Exposure following abnormal end
Improper operation
2.2.2 Contract programs and packages
Dishonest programs
2.2.4 Test programs
Unexpected alteration of real data
Software Flaws
F2.1 Faulty access control mechanism
F2.2 Non-functional protected state mechanism
F2.3 Ability to use self-modifying I/0 code
F2.4 Ability to write file into other user's cataloq
F2.5 Printout of password at terminal
F2.6 Exposed input on spooling facility
F2.7 Use of user selected password
F2.8 Storage of password in unencrypted form
F2.9 Inadequate physical access controls
F2.10 Inadequate operator procedure
F2.11 Ability to spoof operator
F2.12 Improper labeling
F2.13 Inadequate base/bounds checking
F2. 14 Unprotected storage after system crash
F2. 15 Unprotected storage during system initialization
F2.16 State vector stored in user storage
F2.17 User interface of protection system too complex
F2.18 Inaccurate documentation
F2. 19 Incomplete documentation
F2. 20 Materials left exposed during emergency
F2. 21 Output not checked for proper content
F2.22 Sensitive jobs printed with new ribbon

F2.23 Exposed waste materials
F2. 24 Inadequate total and edit checks
F2.25 Inadequate control of hard copy input data
F2.26 Excessive complexity
F2. 27 Non-detected bugs (inadequate testing)
F2.28 Improper design specifications
F2.29 Access control based on checking for lack of permission
F2.30 Effectiveness of protection system based on ignorance
F2.31 Overprivileged system modules
F2.32 Lack of violation recording and review
3. The Computer Center
3.1 Resource supply systems

Natural calamities
Fire
Flood
Earthquake
Manmade disasters
Smoke
Rioting
Bombing
Vandalism
Fate (chance events)
Equipment breakdown
Shutdown of building facilities
3.1.2 Power

Blackout
Fluctuations
Grounding problems
3.1.3 Water

Disruption
Contamination
Temperature variations

3.1.4 Lighting

Blackout

3.2 The Building

Natural calamities
Fire
Flood
Earthquake
Manmade disasters
Smoke
Rioting
Bombing
Vandalism

3.2.2 Computer operations area

Shocks and vibrations

Communications breakdown

Illegal entry and burglary
3.2.2.1 Computer room

Magnets
Electromagnetic radiation, to and from
3.2.2.2 Data reception

Unauthorized intruders
3.2.2.3 Tape and disk library

Magnets
3.2.2.6 Physical plant room

Sabotage

3.3 Waste materials

Unauthorized reading
Theft

4. Personnel

Bribery - F4.1
Dissatisfaction or malice - F4.1, F4.2
Towards the institution
Towards management
Towards other workers
Towards others (possibly unknown)
Greed - F4.1, F4.2
Competitor encouraged
Entrepreneurial tendencies
Incompetence - F4.1
Coercion - F4.1, F4.2
Competitor plants (industrial espionage)
Carelessness - F4.1
Personnel Flaws
F4. 1 Personal instability
F4. 2 Job insecurity

5. Documentation

- 104) 105)
- 106) 107)

Loss - F5.1, F5.2
Thievery - F5.1, F5.2
Unauthorized viewing - F5.1, F5.2
Unauthorized modification - F5.1, F5.2
Documentation Flaws
F5. 7 Inadequate signout procedures
F5. 2 Documentation left unsecured
6. Backup system

- 112)

113)
114)
115)
116)
117)
118)
119)
120)
121)
122)
123)
124)
125)
126)
127)
128)

Limited or no accessibility - F6.1, F6.2, F6.3, F6.4, F6.5
6.1 Hardware

Incompatibility with other equipment in use
Ignorance of operation <additionally, same considerations as section 1, Hardware th sats>
6.2 Software

Not up to date
Incompatible system components
Ignorance of use
Lack of necessary data <additionally, same considerations as section 2, Software threats
6.3 The Computer Center

Malfunctioning power generation system
Shortage of generator fuel
Shortage of operation materials
<additionally, same considerations as section 3, Computer Center threats>
6.4 Personnel

Lack of transportation to backup site
Lack of communication
6.5 Documentation, operational procedures

Inadequate communications facilities
Incompatible run procedures
Inadequate office, other operational facilities
Unplanned emergency run schedules
Inadequate personnel direction
Confusion during disaster - F6. 6
<additionally, same considerations as section 5, Documentation threats>
Backup System Flaws
F6.1 Excessive time involved in traveling to backup installation
F6. 2 Excessive distance involved in traveling to backup installation
F6.3 Excessive cost involved in transportation to backup installation
F6. 4 Ignorance about how to get at backup (real-time)
F6.5 Non-existence of all or part of backup
F6.6 Lack of simulated disaster tests

```
        PRINTFEATURES
```

EEATVRE NO THREAT NOS

16
17
18

19
20
21

22

23
24
25

26
27
28
29
30
31
32 33 34 35

- 114

45
116

1

2

3456

7

8

9

10

11
11

12

13
$14 \quad 15$
1 に

EEATURE NAME

PHYSICAL SECURITY
GUARD
ID CARD DOOR
PROPER LOCATION OF CENTER
SECURE DOOR AND WINDON LOCKS
pERSONAL SEARCHES
TWO OPERATOR SYSTEM
ENTRANCE LOG
outside lighting
FENCE
ALARM SYSTEM
CLOSED CIRCUIT TV
ID BADGES
SECURE DOORS AND WINDOWS
adequate maintenance
ERROR CORRECTTNG CODES
INTERNAL MACHINE CHECKS REDUNDANT PROCESSORS
<THE SAME FEATURES AS THREAT NO. 1> SUPERVISION AND AUTHENTICATION OF CE'S LOCKS and alarms on machine covers
<the same features as threat no. 1>
automatic log
LOCKS ON CONTROLS
<ADDITIONALLY, the SAME features as threat no. 1>
status indicators
aUTomatic log
PROPER LABELLING
OPERA'TOR PRAIAING
detalcled, accurate, accesstble documentation
PHYSICAL ACCESS CONTROLS
PACKAGE AND BRTEFCASE INSPECTION
GATE-PASS SYSTEM
SECURE LIBRARY FACILITY
PROPER LABELLING
CONTROL CHECKS
CHECKSUM ON DATA
frfective storage access controls
HE'ADER CHECKING
PREVENTIVE MEASURES
WRITEーINHIBIT SWITCHES
RING OUT FOR TAPES
data enctyptton
L'Ebetive stokage access conthols
<THF : SAME FEATIRE:S AS THREATS 1-13>


```
MINIMUM AUTHORIZATION POLICY
EFFECTIVE AUTHORIZATION AND ACCESS CONTROL MECHANISM
MINIMUM AUTHORIZATION POLICY
DUAL AUTHORIZATIO:N REQUIRED FOR CHANGES
SUPER USER AUTHORIZATION REQUIRED FOR CHANGES
LOG OF ATTEMPTED VIOLATIONS
SELf~MODIFYING I/O ROUTINES NOT ALLOWED
DIRECTION IN PASSWORD CHOICE
STOKE IN ENCRYPTED FORM
ay'romatic delay after invalid login attempt
ENCRYPTED TRANSMISSIONS TO TERMINALS
US: OF INTERACTIVE AUTHENTICATION PROCEDURE
ADEQUATE ACCESS CONTROLS
    ADEQUATE AND ENFORCED LIBRARY FACILITY
    USAGE LOG
    PROPER LABELLING
PROPER SYSTEM DESIGN
    EFFEC'TIVE AUTHORIZATION AND ACCESS CONTROL MECHANISM
    ADEQUATE I/O CONTROLS
    Protection of state vector
Storage in protected storage
ADMINISPRATIVE GONTHOLS
    HUMAN VERIFICATION
    SUPERVISION
    fimlted Ce ACCESS
ENCRYPTION
Effective human EMgineERING
    clear, eaSy to use protection facilitties
    ADEQUATE DOCUMENTATION
    USER EDUCATION
<SEE FEATURES FOR THREATS 27-39>
PRINTR LOG
security conscious i/O routines
PRINT LOG
PRIHT' LOG
SECURITY conscious i/O routines
CAREFUL, ADMINISTRATIVE PROCFDURES
CAR:PUL, ADMINTSTRATIVE PROCEDURES
IMIOM'TANT MAIL SENI RH'GISTERFD OR BY COURIER
DELIVE:RY CONEIRMA'TON
trace hog of sensttTVE oUTPUT
firRARY FACILTTY FOR SENSITTVE OUTPUT
<SEF ALSO FEATURES FOR THREATS 34-37>
CLEAN DESK POLICY
USER EDUCATION
GUARDING :NORK IN TRANSIT
```



```
        \because"
    94 37
    ¢5 38
    90
    97
    98
99
    100
    1J1
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    1 1 5
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
- 138
    139
    140
    141
    142
```



```
<REFER TO FEATURES FOR THREAT NO. 1>'
ELECTRICAL SHIELDING
    ELECTRICAL SHIELDING OF OPERATIONS AREA
    storage of magnetic medta IN SHIELding sapes
<REFER TO FEATURES FOR THREAT NO. 1>
<REFER TO FEATURES FOR THREAT NO. 1>
SECURE LIBRARY FACILITIES
        SECURE TAPE AND DISK LIBRARY
        ONLY AUTHORIZED PERSONNEL ALLOWED TO ENTER LIBRARY
<REFER TO FEATURES FOR THREAT NO. 1>
PAPER SHREDDER
USE OF OLD RIBBONS WITH SENSITIVE JOBS
INCINERATORS
EMPLOYEE AWARENESS AND EDUCATION
SECURE DISPOSAL BINS
PAPER SHREDDER
INCINERATORS
EMPLOYEE AWARENESS AND EDUCATION
SECURE DISPOSAL BINS
REASONAbLE aND INDUSTRY COMPARABLE SALARIES
REFERENCE CHECKING
CAREFUL SUPERVISION
REASONABLE AND INDUSTRY COMPARABLE SALARIES
RFFERENCE CHECKING
CAREFUL SUPERVISION
employEE mORALE programS
PROMPT EMPLOYEE COMPLAINT HANDLING
<ALSO REFER TO FEATURES FOR THREAT NO. 92>
IMHEDLATE NOTICE ON LAYOFF (WITH APPROPRIATE PAY)
PROMP'f EMPLOYEE COMPIAINT HANDLTNG
<REFER ALSO TO FEATURES FOR TIIREAT NO. 92>
<REFER TO FEATURES FOR TIIREAT NO. 92>
ADEQUATE EMPLOYEE TRAINING
<ALSO REEER TO FFATURES FOR THREAT NO. 92>
REFERENCE CHECKING
LIMIT EMPLOYEE AUTHORITY
UEED TO KNOW POLICY
REEERENCE CHECKING
CORPORATE IHTELLIGENGE
ADEQUATE EMPLOYEE TRAINING
<ALSO REFER TO FEATURES FOR THREAT NO. 92>
USE LOG
LIBRARY STORAGE
USE LOG
libRARY STORAGR
CLEA:Y DESK POLICY
HC4 ram
```

```
: <3u
    ivu
    231
    232
        233
        234
    235
    236
    237
- 238
    239
    240
-241
    242
    243
    244
    245
    246
    247
    248
    249. 114
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
        265
        266
        267
        268
        269
        270
        - 271
* 272
    273
    274
        129
        LIBRARY STORAGE
        clear Classification labelling
        PROPER DISPOSAL
CLEAN DESK POLICY
CLEARLY DEFINED AJTHORIZATION FOR MODIFICATION
clear classification labelling
CLEAN DESK POLICY
USE LOG
PROTECTED LIBRARY STORAGE
gOOD COMmUNICATION SYSTEM bETWEEN THE SITES
SIMULATED DISASTER TESTS
RECIPROCAL AGREEMENTS BETWEEN COMPANIES (INCLUDES PERSONNEL)
USE OF SIMILAR EQUIPMENT FOR BACKUP (WITB PERIODIC RECHECKING)
ADEQUATE EMPLOYEE TRAINING
SIMULATED DISASTER TESTS
(ALSO REFER TO THE SECTION ON HARDWARE)
SIMULATED dISASTER TESTS
PROGRAM FOR BACKUP MAINTENANCE
ADEQUATE EMPLOYEE TRAINING
SIMULATED DISASTER TESTS
dUplicate data stored Safely
SIMULATED DISASTER TESTS
(SEE AlSO SECTION ON SOFTWARE)
BACKIP GENERATOR AND FUEL
BACKUP STORE OF FUEL
BACKUP STORE OF OPERATIONS MATERIALS
(SEE alSO SEC!ION ON thE ('OMPUTER CENTER)
PROPER PLANNING
SIMULATED DISASTER TESTS
CONTINGENCY PLANS for reaching personNEL AWAY FROM WORK
SIMULATED DISASTER TESTS
PROPER PLANNING
SIMULATED DISASTER TESTS
PROGRAM FOR BACKUP MAINTENANCE
SIMUl_ATED DISASTER TESTS
Proper PlallNING
SIMULATED DISASTER TESTS
program gor backup malltenance
SIMULATED DISASTER TESTS
PROpER PLA!NING
PROPER PIANNING
ADFQUATE EMMPLOYEE TRAINING
SIM|LATED DISAST:RR TESTS
(ALSO REEER TO THE :SECTION ON DOCUMENTATTON)
```


Appendix B

A Sample Run

We present here an example of the system in use. Included is:
(1) a list of the triples representing the sample installation
(2) input forms--one blank form and a set of completed forms
(3) a terminal session which illustrates the data entry process and use of the analysis functions

Following is a list of the triples representing the sample installation. The threat and feature numbers refer to the names as listed in Appendix A. The format of the triples below is:
object info : object value
threat info : threat likelihood (threat name) threat number
feature info: feature resistance (feature name) feature numbers(s)

1. Hardware

1.1 Central Machine

object info : very high
threat info : medium (unauthorized use) \#8
feature info: pretty high (guard) \#2
object info : very high
threat info : pretty low (human error) \#10
feature info: medium (operator training, documentation) \#29 30
1.2 Storage Media

```
object info : high
threat info : high (unauthorized read) \#13
feature info: pretty low (encryption, system protection) \#43 44
object info : high
threat info: low (theft) \#11
feature info: fairly high (physical access controls) \#31
```

Metering Equipment (add to hierarchy under Hardware)
object info : low
threat info: low (hardware tampering--modified operation) \#4
feature info: high (alarmed cabinets) \#21
2. Software
object info : very high
threat info : medium (unauthorized access: read/write) \#16
feature info: medium to pretty high (authorization and access control mechanism) \#46
2.1 Operating System
object info : high
threat info: medium (defective implementation) \#45
feature info: medium (testing and verification) \#112
2.2 Programs
object info : medium
threat info : fairly high (inadequate debugging) \#46
feature info: (fairly low) to medium (testing and validation) \#114
2.3 Data
object info: high
threat info: high (reading of unsecured storage media) \#20
feature info: pretty low (library facility and use log) \#60 61
object info : high
threat info : medium to high (unauthorized reading of exposed output) \#33
feature info: low (user and employee diligence) \#90 91
object info : high
threat info : pretty high (data preparation errors) \#43
feature info: high (verification and edit checks) \#103 104105
2.3.2 Institution Data
object info: (fairly high) to high
threat info: sortof low (competitor subterfuge) \#0
feature info: low to medium (legal recourse, employee loyalty, guards) \#0
2.3.2.2 Financial Data
object info: (fairly high) to high
threat info: high (employee theft) \#0
feature info: low (audit checks) \#0
3. The Computer Center
3.1 Resource Supply Systems
object info : very high
threat info : sortof low (earthquake) \#56
feature info: low (adequate structural reenforcement) \#144
object info: very high
threat info : fairly low (fire) \#54
feature info: medium (alarms, extinguishers) \#126 127

3.2 The Building

```
object info : medium
threat info : fairly low (fire) \#73
```

feature info: medium (alarms, extinguishers) \#126 127

3.2.2.1 Computer Room

object info: high
threat info: low (magnets) \#84
liature info: (pretty low) to medium (guards) \#2
object info: high
threat info : medium (unauthorized intruders) \#86
feature info: pretty high (guards, alarmed doors) \#2 11

ADD, A name or number
\qquad

VALUE, V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESIS'TANCE

OBJECT NO:
ADD, A name or number
VALUE, V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

OBJECT NO:
ADD, A name or number
VALUE, V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

OBJECT NO:
ADD, A name or number
VALUE, V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

ADD，A name or number
A MITEMO EQUIVTEAT
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

11

ADD，A name or number
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

PRETTY HI゙ー
「ie＂ロハ・••

OBJECT NO：
ADD，A name or number
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE
13 H1EH it 344.

OBJECT NO：

ADD，A name or number．
VALUE，V object value
THREAT NO TUREAT LJKELIHOOD FEATURE NOS EEAJURE RESISSIMNCE
－くい
21
Hノ゙M
$A D D, A$ name or number
VALUE，V object value \qquad
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

ADD，A name or number
VALUE，V object value \qquad
1164
THREAT NO
THREAT LIKELIHOOD
FEATURE NOS
FEATURE RESISTANCE
クロー！リバン
112

OBJECT NO：

\qquad
$\because 2$
\qquad
（1）1！ir（1）
FEATURE RESISTANCE

\qquad
ADD，A name or number
VALUE，V object value

THREAT NO

```
    OO |1/GH
33 Mr ロルン TO HIGH
```

43

```
PRET：HIGH
```

FEATURE NOS

6061
791
$10: 10410.5$

FEATURE RESISTANCE
PRET sJW
LOW
Ho H

ADD，A name or number
VALUE，V object value
\checkmark（FAIRLY HIGH）TC $H I G H$
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE 0 SORTOF LOW O LOW TO MEDNM

OBJECT NO： 2322

ADD，A name or number
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE
H！ぐみ
くくころ

OBJECT NO：

ADD，A name or number
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

56
54

SORTCF LOW i／4 FARL Y LOW 126127

31

V VERY HIGH

```
                                    \thereforeOW
                                    MEDルIM
```

OBJECT NO：
32
ADD，A name or number
VALUE，V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

ADD, A name or number
VALUE, V object value
HICH
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

$\therefore 0 \mathrm{~N}$
DE PMM

2
211

ADD, A name or number
\qquad
OBJECT NO:
\qquad
VALUE, V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

OBJECT NO:
ADD, A name or number \qquad
VALUE, V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

ADD, A name or number
VALUE, V object value
THREAT NO THREAT LIKELIHOOD FEATURE NOS FEATURE RESISTANCE

ENTER THE YAME OF YOUR WORKSPACE ('NONE' FOR TBE PIRST TIME):
DONE

YOU ARE NOW ENTERING THE DATA ENTRY PHASE.
OU MUST REUEMBER THIS PASSWORD AS YOU WILL HEED TO SPEGIFY IT TO ACCESS yOUR data at a later date. ENTER THE OBJECT NUMBER EOR THE NEXT OBJECT: 1
ADD METERING EQUIPUENT
EEERING EQUTP:UENT RECEIVED OBJECT NUMBER 71
OEJEST NO 11, CEVITRAL MACHINE IS NEXT.
: V VERY EIGH
RODEAT NO THREAT LIKELIHQQD EEATURE NOS
$\rightarrow 8$ MEDIUM 2 PRETTY 10 MEDIUM
$\rightarrow 10$ PRETTY LON 2930 MEDIU
$=\mathrm{m}$

$: O$
OBeYECT NO 2321, VARKETING DATA IS NEXT.
$\vdots \quad \vdots$
OBJET YO 2322, EIMANCIAL DATA IS NEXT.

OSJECT NO 2324, PLA!NING DATA IS NEXT.
OBJECT NO 2325, OTAER DATA IS NEXT.
: N TVR THE OBrEOT BJMBER FOR THE NEXT OBJECT: 3
O
OBJECT NO 31, RESOURCE SUPPLY SYSTEMS IS NEXT.

56 SATREY SOU : 20 Ó 127 MEDIUM
YOUR WORK TS YOZ̈ BEIVG SAVED.
CHECKPOINT: $2 O B K ~ T O ~ T E I S ~ P O I N T ~ B A S ~ B E E N ~ S A V E D . ~$
: N

FOLIONING IS A LIST OF OBJECTS ADDED, THEIR ASSIGNED OBJECT NUMBERS, AND THEIR PARENT IN THE HIERARCBY: QBIEAT \quad QRAECT NQ EARENT
QB:LECIS
RPIDLE * NUMBER** 2322 FINANCIAL DATA

* FAIRLY BIGB TO BIGZ

RESOURCE SUPPLY SYSTEHSVERY EIGB

$$
\begin{gathered}
\star \star \star \star \star \star \\
\star \star \star \\
\star \\
\star \\
\star \\
\star \\
\star \star \\
k
\end{gathered}
$$

MEDIU:4
HIGH

$$
\star{ }^{\star \star *} 11 \text { TBEFT }
$$

LON

$$
\stackrel{\star \star *}{*} 16 \text { UNAUTHORIZED ACCESS--R/W/E }
$$

*** HEDIUM

$$
\text { *** } 45 \text { DEFECTIVE IMPLEMENTATION }
$$

* MEDIUM

$$
\text { *** } 46 \text { INADEQUATE DEBUGGING }
$$

*** FAIRLY BIGB

$$
\begin{gathered}
\text { LHREATS } \\
\text { NAME } \\
\text { LIKELIHOOD } \\
\text { *********** }
\end{gathered}
$$

$$
\text { *** } 4 \text { HARDWARE TAMPERING--MODIEIED }
$$

$$
\begin{array}{ll}
* \\
* & \text { PRETTY AIGH } \\
* * * & \\
* 0 & \\
* & \text { SORTOF LOW } \\
* * * \\
* & \\
* & \text { AIGB } \\
* * & \\
* & \\
* & \text { RARTHOUARR }
\end{array}
$$

$$
\begin{aligned}
& 29 \text { OPERATOR TRAINING } \\
& 30 \text { DETAILLED, ACCURATE, ACCESSIBL } \\
& \text { MEDIUM }
\end{aligned}
$$

$$
\begin{aligned}
& 43 \\
& 44
\end{aligned}
$$

$$
\text { ** } 31 \text { PHYSICAL ACCESS CONTROLS }
$$

$$
\begin{aligned}
& * * \\
& * * * \\
& * N G H
\end{aligned}
$$

$$
\begin{aligned}
& 61 \text { USAGE LOG } \\
& \text { PRETTY LOW }
\end{aligned}
$$

$$
\begin{gathered}
105 \\
\star \\
\star
\end{gathered}
$$

$$
\begin{aligned}
& \star \text { LOW TO MEDIUM } \\
& * * \\
& * 0
\end{aligned}
$$

$$
\begin{aligned}
& * 0 \\
& * * * \\
& * * O W
\end{aligned}
$$

EEATLRES

$$
\begin{gathered}
\text { NAME } \\
\text { RESISTANCE }
\end{gathered}
$$

$$
\begin{aligned}
& 43 \text { DATA ENCRYPTION } \\
& 44 \text { EFFECTIVE STORAGE ACCESS CONTR } \\
& \text { PRETTY LOW }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ** } \\
& \text { * } 46 \text { EFPECCTIVE AUTHORIZATION AND AC } \\
& \text { * MEDIUM TO PRETTY HIGH }
\end{aligned}
$$

$$
\begin{aligned}
& 112 \text { TESTING AND VERIEICATION } \\
& \text { MEDIUM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *** } \\
& \text { * } 112 \underset{M E D T U M}{\text { TESTING AND VERIPICATION }} \text {. }
\end{aligned}
$$

$$
\begin{array}{ll}
\star \\
90 & \text { CLEAN DESK POLICY } \\
91 & \text { USER EDUCATION }
\end{array}
$$

$$
\text { *** } 90 \quad \text { CLEAN DESK POLICY }
$$

$$
\begin{aligned}
& * * * \\
& * 103 \\
& \text { SECOND PERSON VERIPICATION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CHECKSUMS } \\
& \text { SOFTWARE CHECKS }
\end{aligned}
$$

$$
\begin{aligned}
& \star \star \star \\
& { }^{\star} 0 \\
& { }_{* * *}^{*} \text { LOW TO MEDIUM }
\end{aligned}
$$

OBJECT NO 3223. TAPE AND DISK LIBRARY IS NEXT.
OBJECT NO 3225. data preparation area is next.
OBJECT NO 3226, pGysical plant room is next.
bJECT HO 3227. Stationery storage is next.
ob.ject in 33. haste materials is next.
ENTER THE OBJECT NUMBER FOR THE NEXT OBJECT: 0
to receive instructions in using phe analysis functions. enter 'instructions'.
INSTRUCTIONS
THE FOLLOWING
THE EOLLOWING ANALYSIS PUNCTIONS ARE AVAILABLE. TO INVOKE SIMPLY TYPE IN THE NAME
ENTER THE NUMBER OF TAE RATING EUNCTION YOU WISH TO USE: 3
enter tae number of tae rating function you wish to use: 1
3) FUZZY UEAN
4) FUZZY UEAN WEIGHTED BY VALUE
5) EJZZY YEAN WITZ EACH MAJOR SUB
5) zUZZY YEAN WITi EACH MAJOR SUBSECTION WEIGHTED BY MAXIMUM OBJBCT VALUE

[^0]
*
*
*
SOWEST RATING WAS GIVEN TO:
SORTW

ENTER.THE PARENT OBJECT NUMBER (O FOR THE TOP LEVEL IN THE HIERARCBY): 2

$* 103$ SECOND PERSON VERIPICATION
$* 104$ CHECKSUMS
$* 105$ SOPTHARE CHECKS ?
$*$ BIGB
*** ${ }^{*} 144$ ADEQUATB STRUCTURAL RE-EDFORCE

LOH
*** 126 aEAT/SMOKE/FIRE DETECTORS WITE 127 RIR
MEDIUM
 127 pIRE EXTINGUISHERS

* ${ }^{*}$ Low to mboivm

DATA PREPARATION ERRORS
PRETTY

enter tae parent object number (o for tas top levbl in the bierarcay): 2
 MOREORLESS MEDIUM
 SORTOE MEDIUM
tae lowest rating was given to:
\cong $* * * 232$ INSTITUTION DATA
$* *$ PAIRLY HIGA TO HIGE
 * \quad IGG

Appendix C

Formal Language Definition

Some of the rating phrases which may de generated with this gralliliar are:

```
high
Low
medium
not high
moreorless medium
indeed low
low to medium
(about 4) to about 6
    slightly lower tnan pretty high
not higher than medium
(much higher than low) and slightly luwer than sortoi high
```


Appendix D

Available Installation Models

There are at present two installation models:

1) The standard computer installation model.
2) A nuclear reactor model. As of July 1977, this is just a small prototype model.

Appendix E

Additional Notes

Logging On

Refer to the figure below for instructions for logging onto the UCSF 370/145. You may safely ignore the various system messages which will be printed out before you enter SECURATE.

```
U.C. Berkeley - APL Info. for Users of VS APL at UCSF - Spring 1977 Summary
Sign-on:
    for 300 baud (non-IBM) and 134.5 baud (IBM or equiv.) use.local
        (UCB) phone no. 2-6050
            when computer answers, the first character(s) entered should be:
                for 300 baud (non-IMm): shift letter "O" (return)
                for 134.5 baud (IB:4-EBCDIC): (return).
                for 134.5 baud (IBid-Cocrespondence): lower case "C" (return)
            Repeat if necessary.
    for 300 baud IB:4 (eg. IBM1 3767 or 5100):
                local (UCB) phone no. 2-7948
            when computer answers, the first character(s) entered should be:
                for (ISM-E3CDIC): (return)
                for (Ibt-Corrempondence): lower case "C" (return)
            Enter APL in response to the prompt: Enter System or ... 
            On command, enter: USERID, pASSiNQi, then enter AyL to contact vS Ar.
```


Logging off

To \log off the system when in the APL environment (where you will be when using SECURATE), enter ")OFF". To log off when in the CMS environment (where you'll be right after you log on, but before you call SECURATE), enter "log".

Error Correction

To correct an error in a line you have typed (before you've hit the return key), do the following:

1) Backspace to the leftmost incorrect character.
2) Press the attention button. This may be marked "ATTN" or "BREAK".
3) After the computer does a vertical space, prints a carrot, and does another vertical space, continue with the line from that point.

Note that the above steps will only work in the APL environment. In CMS, a "@" will delete everything in the line to that point, and a backspace will delete the previous character.

Alternative Function Calls

An alternative way to call SRATE, IRATE, and WRATE is to prepend an " S " to the function name and continue with the relevent object number on the same line. This relieves the necessity of responding to a prompt for the object number.

Examples of legal calls are:
SSRATE 1
SIRATE 21
SWRATE 33
If you would like a message printed out when executing the SAVE function, enter "MESSAVE", instead. This will print out "CHECKPOINT: WORK TO THIS POINT HAS BEEN SAVED." when the save is complete.

$C P$

Occasionally, when the computer system is having a bad day, you will notice that suddenly all you get are "?CP" messages, no matter what you type in. This means that you were thrown into the virtual machine monitor (CP). The most common cause for this is that you tried to type before the system was ready for it (although this only happens on some terminals and only when the system is heavily loaded). The remedy for this is to enter "BEGIN"; this will put you back in APL. After waiting a couple of moments, you may continue normally, where you left off. Note however, that you will need to retype the input line which caused the problem. If after entering "BEGIN" the system responds by printing an error message, followed by a line number and an APL statement, enter a right pointing arrow " \rightarrow " followed by the line number that was printed out. At this point you should be able to continue normally.

SECURATE QUICK REFERENCE GUIDE

THE LANGUAGE

Primary Terms	Primary Hedges	Relations high low medium
	extremely very pretty fairly sortof	lower than higher than
Relation Hedges	Connectives	
not	and	
much	to	
slightly		

Additionally, a number from one to ten may be specified, optionally preceded by "about". If a number is used, it must be spelled out in letters.

DATA ENTRY

The following commands may be entered following a ":" prompt:
ADD <object name>
VALUE <object value>
NEXT
OFFSPRING
OUT
With the exception of OUT, the above commands may be shortened to the first letter.

SECURITY EVALUATION FUNCTIONS

The following commands may be entered:

OVERALLRATING (or ORATE)
INDIVIDUALRATING (or IRATE)
SECTIONALRATING (or SRATE)
WORSTSUBSECTION (or WRATE)

Scoring Options

The following scoring options are available and may be specified by entering either "SETRATE", followed by a prompt, or just "RATESET":

1) Weakest Link
2) Selected Weakest Link
3) Fuzzy Mean
4) Weighted Fuzzy Mean
5) Fuzzy Mean With Each Major Subsection Weighted By Maximum Object Value

Other Functions

```
ADDTRIP
DELTRIP
MODTRIP
SAVE
HIERARCHY
THREATS
FEATURES
```


[^0]: SETRATE 3
 OPATE

