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Let G = (V,E) be a digraph with n vertices. Let f be a function

from E into the real numbers, associating with each edge e e E a weight

f(e). Given any sequence of edges a=ere2,.. .,e define w(a), the
weight of a, as ] f(e.), and define m(a), the mean weight of a, as
-w(a,f). Let X* = min m(C) where C ranges over all directed cycles in

G; X* is called the minimum cycle mean. We shall give a simple charac

terization of X*, as well as an algorithm for computing it efficiently.

If G is not strongly connected then we can find the minimum cycle

mean by determining the minimum cycle mean for each strong component of G,

and then taking the least of these. The strong components can be found in

0(n+|E|) computational steps ([6]). Henceforth we assume that G is

strongly connected.

Let s be an arbitrarily chosen vertex. For every v e V, and

every nonnegative integer k, define Fk(v) as the minimum weight of an

edge progression of length k from s to v; if no such edge progression

exists, then F.(v) = ~.

Theorem 1.

m * rFn(v)-Fk(v)l(1) X* = min max -D J
vEV 0<k<n-lL n"K J
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The proof requires a lemma.

rFn(v)-F (vh
Lemma 1. If X* = 0 then min max ~ r^ = 0

vGV 0<k<n-lL n"K -1

Proof. Since X* = 0 there exists a cycle of weight zero, and there

exists no cycle of negative weight. Because there are no negative cycles

there is a minimum-weight edge progression from s to v, and its length

is less than n. Let this minimum weight be tt(v). Then F (v) >_ir(v).

Also, ir(v) = min F.(v), so
1<k<n-l K

F (v)-tt(v) = max [Fn(v)-F. (v)] > 0 ,
n 0<k<n-l n K

and

(2) max
0< k<n-T-

rFn(v)-Fk(v),
irnr

> o.

Equality holds in (2) if and only if F (v) = tt(v). Hence we can

complete the proof by showing that there exists a v such that Fn(v) = tt(v)

Let C be a cycle of weight zero, and let w be a vertex in C. Let

P(w) be a path of weight tt(w) from s to w. Then P(w), followed by

any number of repetitions of C, is also a minimum-weight edge progression

from s to w. Hence, any initial part of such an edge progression must

be a minimum-weight edge progression from s to its end point. After

sufficiently many repetitions of C, such an initial part of length n

will occur; let its end point be w'. Then F (w') = ^(w1). Choosing

v = w', the proof is complete.



Proof of Theorem 1. We study the effect of reducing each ed-.i weight

f(e) by a constant c. Clearly X* is reduced by c, F.(v) is reduced
Fn(v)-F.(v) KrFn(v)-Mv>

by kc, —r is reduced by c, and min max —£—
n"K vGV 0<k<n-H n"K

is reduced by c. Hence both sides of (1) are affected"iqua11y when the

function f is translated by a constant. Choosing that translation which

makes X* zero, and then applying Lemma 1, the proof is complete.

We can compute the quantities F.(v) by the recurrence

F. (v) = min [F. ,(u) + f(u,v)] , k= l,2,...,n
k (u,v)GE k"!

with the initial conditions

FQ(s) =0 ; F0(v) =«> , v f s.

The computation requires 0(n|E|) operations, and, once the quantities

rFn(v)"Fk(v)l
F. (v) have been tabulated, we can compute X* = min max •—r—
K 2 vev 0<k<n-lL "~K

in 0(n ) further operations. Since G is strongly connected n£ |E|,

so the over-all computation time is 0(n|E|). If the actual cycle yielding

the minimum cycle mean is desired, it can be computed by selecting the mini

mizing v and k in (1), finding a minimum-weight edge progression of

length n from s to v, and extracting a cycle of length n-k occurring

within that edge progression.

The minimum cycle mean problem is closely related to the negative

cycle problem; i.e., the problem of deciding whether a digraph with weighted

edges has a cycle of negative weight. The best algorithms known for solving

the negative cycle problem require time 0(n|E|) ([2],[4]). The best

algorithm previously known for computing the minimum cycle mean ([3]) makes

0(log n) calls on a subroutine for solving the negative cycle problem,



and hence has a running time of 0(n|E| logn). Any algorithm for "^e minimum

cycle mean problem yields a solution to the negative cycle problem quite

simply: a negative cycle exists if and only if X* < 0. Thus any improve

ment on the 0(n|E|) running time of our minimum cycle mean algorithm

would also give an improved upper bound on the computational complexity of

the negative cycle problem.
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