

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

FAST APPROXIMATION ALGORITHMS

FOR KNAPSACK PROBLEMS

by

E. L. Lawler

Memorandum No. UCB/ERL M77/45

21 June 1977

1NTKRLIBRARY LOAN »ERARTMEMl
(PHOTODUPCICATION SUCTION)

THE GENBRAL LIBRARY
UNIVERSITY OF CALIFORNIA
BERKELEY. CALIFORNIA »472«

FAST APPROXIMATION ALGORITHMS FOR KNAPSACK PROBLEMS

by

E. L. Lawler

Memorandum No. UCB/ERL M77/45

21 June 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FAST APPROXIMATION ALGORITHMS FOR KNAPSACK PROBLEMS*

E.L. Lawler

Computer Science Division

and the Electronics Research Laboratory
University of California at Berkeley

ABSTRACT

Fully polynomial approximation algorithms for knapsack problems are

presented. These algorithms are based on ideas of Ibarra and Kim, with

modifications which yield better time and space bounds, and also tend to

improve the practicality of the procedures. Among the principal improve

ments are the introduction of a more efficient method of scaling and the

use of a median-finding routine to eliminate sorting. The 0-1 knapsack

problem, for n items and accuracy e > 0, is solved in (n log(—) +-=ir)

time and 0(n+-75") space. The time bound is reduced to 0(n+-ir) for

the "unbounded" knapsack problem. For the "subset-sum" problem, 0(n+-^-)

time and 0(n+—7) space, or 0(n +~rlog(-)) time and space, are

achieved. The "multiple choice" problem, with m equivalence classes,
2

is solved in OC-™—) time and space.

*

The research reported in this paper was supported in part by National
Science Foundation Grant MCS76-17605, and in part by the Mathematical
Center, Amsterdam, The Netherlands, where the author was a visitor,
January-February, 1977.

1. Introduction

The "0-1" knapsack problem is as follows: Given n pairs of positive

integers, (pa) and a positive integer b, find Xl,x„,...,x so as to
J J 1 2 n

maximize P = £.p.x
rj J3 * x. G {0,1} .

subject to A = y.a^x, < b , J
3 J J -

We may think of j as indexing items, with associated profits p

and weights a . The object is to find the most profitable possible

selection of items which can be made to fit into a knapsack with capacity

b. One variation of the problem permits items to be chosen with repeti

tion. That is, x is permitted to be any nonnegative integer. This is

sometimes called the "unbounded" knapsack problem.

There are well-known methods for solving the 0-1 knapsack problem

which have worst-case running time of 0(nb) [2]. However, these do not

qualify as "polynomial-bounded" algorithms, because the running time is

not bounded by a polynomial in the length of the excoding of input data.

Thus O(nlogb) is a polynomial bound, but not 0(nb). (Unless data are

encoded in unary notation, a possibility we disregard here, cf. [3].) In

fact, the problem is known to be NP-complete, even in the case of the

"subset-sum" problem, where p = a , for all items. Hence it is very

unlikely that any polynomial-bounded algorithm exists.

However, it is possible, within polynomial time, to find a solution

which is arbitrarily close to optimum. An approximation algorithm for this

purpose receives two inputs: one is the encoded set of data for a problem

instance (i.e. pairs (p.,a), and b), the other is a number e, 0<e<l,

which prescribes the degree of accuracy required. The algorithm then

produces a solution with profit P, such that if P* is the value of an

optimal solution,

P - P < eP'

If for every fixed c, the algorithm operates in time bounded by the

length of the encoded input, the algorithm is a "polynomial time approxi

mation scheme." If the algorithm operates in time bounded by a polynomial

in the length of the encoded input and in 1/e, it is said to be "fully
polynomial" [3],

Ibarra and Kim [4] have presented fully polynomial approximation

algorithms for the 0-1 knapsack problem, and variations. Their most effi

cient algorithm utilizes alower bound PQ, P0<P*<2PQ, to separate items
according to profits into aclass of "small" items and a class of "large"

items. The problem is then solved for the large items only, with profits

scaled by asuitably chosen scale factor. Feasible solutions of large items

are then joined with sets of small items, and the feasible solution with

the largest total profit is selected.

By noting that it is possible to obtain a bound, independent of n,

on the number of large items which need to be considered for their computa
tion, Ibarra and Kim claim a bound of

O^logn+^-log^)) (ltl)
on running time and

°<n+p-) (1.2)
on space requirements.

In this paper we elaborate on the Ibarra-Kim approach, introducing a

number of improvements which yield better time and space bounds and also

tend to enhance the practicality of the procedures. Among the modifications

proposed are the use of a median-finding routine to eliminate sorting, and

a more efficient scaling technique. A number of other modifications are

proposed, including alternative data structures and a different method for

carrying out the large-item computation.

As a result of these changes, we are able to obtain the following

bounds. For the 0-1 problem: 0(n log(±) +pr) time and 0(n+-^-) space.
For the unbounded problem: 0(n+p-) time and space. For the subset-sum •

problem: 0(n+-y) time and 0(n+-~) space, or 0(n +-\ log(-)) time
c. £ £

and space. The "multiple-choice" problem, with m equivalence classes,
nm2is solved in 0(—-) time and space.

The organization of this paper is as follows .x In Section 2 a basic

optimization procedure is described. Modifications of this procedure are

presented in Sections 3-11. These yield various approximation algorithms

for the 0-1 knapsack problem. In Sections 12 through 15, algorithms are

outlined for related problems, including the unbounded problem, the subset-

sum problem, and "multiple-choice" knapsack problems. Concluding sections,

16 and 17, indicate possible further extensions and directions for future

research.

Comment: Complexity estimates are based on the assumption that computer

word length is sufficient to accommodate numbers as large as P*, b, and n.

Arithmetic operations on numbers as large as these are assumed to require

constant time. Thus, factors such as log b do not appear in bounds such

as (1.1) and (1.2). However, we shall not assume word length on the order

of l/£ or n bits (numbers as large as 2 '£ or 2n).

2« A Basic Optimization Procedure

We begin with the description of an optimization algorithm for the 0-1

knapsack problem. All of the approximation algorithms presented in this

paper are modifications or adaptations of this basic procedure.

One way to solve the 0-1 knapsack problem is to generate a list of all

feasible combinations of profit and weight. Each such combination is repre

sented by a pair (P,A), for which there is a subset of items S with

^jes aj =A-b '

The value of P* is then given by a pair (P,A) for which P is maximum.

The list can be generated in n iterations as follows. Initially

place only the pair (0,0) in the list. Then, at iteration j, form from

each pair (P,A) a "candidate" pair (F+p,A+a), if A+a < b, and

place the new pair in the list if it does not duplicate an existing one.

The result is that at the end of iteration j, each pair in the list repre

sents a feasible profit-weight combination for some subset of items

s^ il»2,...,j}, and each such subset is represented by a pair.

This procedure is unnecessarily inefficient, because it generates many

pairs which are not needed to determine an optimal solution. It clearly

does not affect the computed value of P* if "dominated" pairs are dis

carded. That is, if (P,A) is in the list, one may eliminate any pair

(P\A'), where P > P', and A <A\ After dominated pairs are eliminated,

each remaining pair (P,A) satisfies the following conditions at the end

of iteration j: P is the largest attainable profit for a subset of items

SC {l,2,...,j}, with weight at most equal to A, and A is the smallest

attainable weight for a subset of items with profit at least equal to P.

The procedure is now revised as follows. At the end of each iteration,

the pairs (P,A) are in strictly increasing order of P and of A. To

perform iteration j, produce a candidate pair (P+p.,A+a.) for each pair

(P,A), provided A+a.. < b. Since the list is in increasing order of A,

the production of candidate pairs can be terminated whenever a pair (P,A)

is reached for which k+a. > b. Then merge the existing list and the list

of candidates, discarding dominated pairs in the process. This is easily

accomplished, because of the ordering of the P's and A's. At the end of

iteration n, the last pair in the list is (P*,A*), where A* is the

minimum attainable weight for an optimal solution.

There are various data structures and list merging techniques which

are suitable for processing the list of pairs. In any case, it is clear

that at each iteration the running time and space requirements are linearly

proportional to the number of pairs existing in the list at the beginning

of the iteration. An upper bound on the number of pairs in the list is

min{P ,b). Hence an upper bound on the running time for the overall proce

dure, in the worst case, is 0(nmin{P*,b}), and an upper bound on space

requirements is 0(n+ min{P*,b}). (The term n in the space bound accounts

for the storage of input data.)

Up to this point, we have ignored the problem of constructing an opti

mal solution, i.e. determining a set S* corresponding to the last pair

(P ,A) in the list at the end of iteration n. There are at least two

methods for doing this.

A very straightforward method, employed in [4], is to convert each pair

(P,A) to a triple (P,A,S), where S is a list of indices of items such

that

£jGSPj =P > IjGSaj =A •

Initially, only the triple (0,0,0) is placed in the list. Thereafter, at

iteration j, each candidate triple is of the form (P+p ,A+a ,SU{j}).

This has the effect of increasing the space bound to 0(n min{p*,b}) , since
i

S maybe 0(n) in size. Forming the set SU{j} may be assumed to

require 0(n) time, thereby also adding an extra factor of n to the time

bound, running it up to ,0(n2 min{P*,n}).

Comment: It appears that the time required to form SU{j} is disre

garded in [4], and that consequently the time bound (1.1) should be raised

to

0(nlogn+^-log(^)) .

We choose not to provide an explicit representation of the set S

corresponding to a pair (P,A). Instead, we propose to construct S by

"backtracing" through a secondary data structure in the form of a rooted
tree.

The necessary data structures are indicated in Figure 1. Each entry

in the list of (P,A) pairs has four components: a P value, an A value,

a pointer to the next entry in the list, and a pointer to a node in the

rooted tree. Each tree node has two components: an item index j and a

pointer to its parent node.

To find the set S for an entry (P,A) in the list, one goes to the

tree node indicated by its pointer and then reads off the item indices

1'

a A n(.
U U t) •

Figure 1. Data structures for list of (P,A) pairs and tree for backtracing,

associated with nodes on the path to the root. Thus, for the entry at the

head of the list in Figure 1, S = {6,4,3,1}. It is easily seen that S

can be constructed in 0(n) time.

Initially the list contains only the pair (0,0) and the tree pointer

for this pair is directed to the root of the tree. Thereafter, whenever a

pair (P+p_.,A+a^) is added to the list of (P,A) pairs, the tree pointer

for (P+p ,A+a) is directed to a new tree node with associated item index

j. The pointer for this new node is directed to the node pointed to by

(P,A). It is clear that these operations can be implemented in constant

time for each new pair (P+p A+a), or in 0(n min{P*,b}) time overall.

Moreover, the tree requires 0(n min{P*,b}) space.

3. Scaling of Profit Space

One way to make the computation more efficient is to reduce the number

of distinct P (or A) values which may occur in the pairs (P,A). The

simplest method to accomplish this is to replace each p. coefficient by

<U =
!i

where K is a suitably chosen scale factor. Then ^— replaces P* in

the time and space bounds given above.

How large can we make K, and be assured that the solution we obtain

differs from the optimum by no more than £P*? We note the inequality,

^ 1 Pj <K(q^+1) . (3.1)

10

It follows that for any set S,

Hence if we can insure that

K|S*| < £P* ,

where S* is an optimal solution, then K will be avalid scale factor:

the solution found by the computation outlined in the previous section will

be within the prescribed accuracy E > 0.

But surely |s*| < n and P* < p , where
— max

p = max, {p } .max j Kj

(We can assume aj <b for all items.) Hence we may choose

1K = —£p . (3 n)
n max

Now P* < np , so
max

P^ < nf_
K - £

Substituting ^- for P* in the bounds obtained in the previous section,
3

we obtain time and space bounds of 0(^-), with assurance that the rela

tive error of the solution we obtain does not exceed £, as specified.

(Hereafter we ignore the role of b in time and space bounds.) We have

thus obtained a fully polynomial approximation algorithm.

11

4. A Lower Bound on P*

It is evident that a lower bound on P* better than p will enable
max

us to increase the size of the scale factor K and thereby improve the

efficiency of the computation.

If we relax the conditions Xj €{0,1} to 0<x. <1, alinear
programming problem results. It can be solved quite simply: First sort

the items in nonincreasing p /a ratio order, so that, without loss of

generality,

Pl P2-±. > -L >

al ~ a2 "
>

— a

n

Then place the items in the knapsack in order until either (a) the items

are exhausted or (b) the capacity is exactly used up or (c) it is necessary

to fractionalize one item to use up the capacity exactly. In cases (a) and

(b), an optimal solution is obtained, and it is unnecessary to proceed

further.

So suppose case (c) occurs and

but

We assert that

where

and where

an +a_ + • • • +a. < b
12 J

a +a9 + ••• +a, +a#J_ > b
12 j 3+1

nl? 1 2Pn .

> = max{p +p +... +p p }
u 12 j *max

p = max {p.} ,max j *j '

(4.1)

12

as before. This is because

Pl+P2 +"' +pj -P* »

P,+1 1 P_ 1 ?* >j+1 - Kmax

but

Pl +P2 +--"+PJ+i >?* •

Replacing p^ by PQ in (3.2), we obtain

and find that

K " n-£P0 ' <*-2>

P^ 2n
K - £ '

2

The computation can now be carried out in 0(—) time and space, exclusive
£

of the time required to sort the items in p /a order.

But sorting is not necessary to compute P . This can be done in 0(n)

time by employing a median-finding algorithm as follows: First compute the

ratio p^/a.. for all items. Then find the median of these ratios. (All

ratios are considered to be distinct; if ties occur, the item with the

smaller index is considered to have the smaller ratio.) Suppose the median

ratio is r and let

J={j|Pj/aj >r} . (4.3)

If Ij ej aj > ^)b» find the median ratio in (the complement of) J until
the largest set J is found such that 7 _ a < b.

LjGJ j -

Case (a) above occurs if J contains all items. Case (b) occurs if

£jGj aj =b •

1.3

Otherwise, case (c) occurs and

P = max(L CT P4» P }
0 J ej j max

There are median-finding routines which require only 0(n) time [1],

This procedure requires O(log n) applications of such a routine, but these

are carried out over sets which contain n,-^,0-,... elements. It is thus

evident that the computation of PQ requires only 0(n) time and space.

In the next section, we shall have need for a procedure which will

fill the knapsack to any desired capacity b', 0 < b' < b, just as we

filled it to capacity b in computing P . This means finding the largest

ratio r such that T a. < b', where J is defined as in (4.3). We

shall let (Kb1) denote the total profit of the items so placed in the

knapsack:

5. Separation of Items

The existence of the lower bound P enabled us to reduce the time

n3 n2
bound from 0(—) to 0(—). A technique of Ibarra and Kim enables us to

reduce the bound still further, to 0(-\).
2

Comment: The reader may question whether -^ is "better" than —.
G £

The bounds stated are intended to emphasize asymptotic behavior in n,

rather than £. The algorithm we are about to describe will, in fact, be
n2

bounded by 0(—), as well as 0(-\).
fc» £

14

The. Ibarra-Kim approach is as follows: First compute P , as described

in the previous section. Use P to determine a threshold value T. Items

with p. < T are considered "small," and those with p > T "large." Solve
•j j

the problem, using the large items only, with some appropriately chosen scale

factor K. This yields a final list of (Q,A) pairs, where Q denotes

total scaled profit.

For each pair (Q,A) in the final list, fill in the remaining knapsack

capacity b-A with small items, as indicated in the previous section. These

small items yield total profit <f>(b-A). The approximate solution, a combina

tion of large and small items, is chosen to yield profit P, where

P = max (KQ + <J)(b-A)} . (5.1)
(Q,A)

Intuitively, it seems reasonable to divide the permissible error equally

between the small items and the large items. This suggests setting

T = 2"£pQf which has the following result: When space b-A is filled with

small items, at most one item with profit no greater than "5"EPn (half the

estimated permissible error) will be omitted. The scale factor K should

then be chosen so that the total error contributed by the large Items is

also no more than one half the permissible amount. Below we justify this

intuitive argument, and prove that this choice of T also enables us to

maximize the scale factor K.

Suppose there exists an optimal solution in which the large items con

tribute profit P and weight A^ and the small items P and A . Let

Q be the sum of the scaled profit coefficients contributing to P , using

scale factor K. It should be apparent, without need of proof, that the

15

final list for the large-item computation must contain a pair (Q,A),

dominating (QL»0, i.e.,

Q- \ ' A1 \ •

Thus P, determined by (5.1), must be such that

P > KQ + <J)(b-A) > KQ +(j)(b-A) . (5.2)

The number of large items contributing to the optimal solutoptimal solution cannot

exceed P./T, where

PL P*

Employing the inequality (3.1),

^ 1 Pj <K(q +1) ,

with (5.3), we obtain

»* / P*P = PL +PS <K(QL+^-)+Ps . (5.4)

From (5.2) and (5.4) it follows that

P*-P <fp*+Ps-(f)(b-A) • (5.5)

But b-A > b-Ag. If our procedure exactly filled the capacity b-A

with small items, then <f>(b-A) >Pg. If it left some unused capacity, the

profit of the item which could not be fit in was no greater than T, and

0(b-A)+T > Pg . (5.6)

16

From inequalities (5.5) and (5.6), we obtain

P*-P <|p*+T.

It follows that T and K should be chosen to insure that

£p*+T<EP* ,

which can be done by letting

and

T =

K A
m = *£ I
T '

(1-X)£P0 < (1-X)£P* ,

for any A, 0 < A < 1. Assuming T f 0, this means

K = A(l-A)£ PQ .

Since we wish to maximize K, we choose A = y, yielding

1 2T>
K = 4£P0 > T = — £P

2tr0 '

This confirms our intuition as to the correct choice of T and K.

Comment: In [4], the choice of K and T was, in effect:

2 2
T = —£P

3 0 »

corresponding to a choice of A = —.

Observe that

K

2P
0 8

— 1 2 £'
•=€ P
4* 0

so the size of scaled profit space is not 0(-=j-) , instead of 0(—).

(5.7)

(5.8)

Time

17

and space for the large-item computation are bounded by O^), since there

are n iterations.

We have yet to discuss the computation of the <J)-values at the end of

the large-item computation. This can be accomplished in O(nlog(-)) time,

as we shall show in the next section. Hence the overall time and space

bounds for the procedure are 0(~). Now notice that if T < 1 (all items

"large") as determined by (5.8), then certainly K < 1 in (4.2). Hence

there is no instance in which the method of the previous section provides a

useful scale factor (greater than unity) and the present one does not.

Moreover, if

T 0 '

then one should simply solve the problem optimally, which can be done in

0(^) time, since P* <—.

Next notice that P*/T can be replaced in (5.5) by n, yielding

P*-P < Kn +T .

Assuming A = -, this implies that K should be of the form

K-£ePo •
which results in

P^ < 4n
K - £

n2
and an 0(~) computation, as in Section 4,

There observations suggest that equations (5.8) should be modified to

become

18

K=max{|£2P0, £* 1} ,

f£P0

^ Fro

if K = 1 , y (5.9)

if K > 1 .

Equations (5.9) assure a computation which is time and space bounded by
n2

both 0(—) and O(p-). Moreover, whenever T <1 in (5.9), an optimal

solution is obtained in 0(|) time. Although in succeeding sections we

shall present ideas leading to substantially better asymptotic performance

with respect to n, we shall not be able to improve on 0(—), for asymp

totic performance with respect to £.

6. Computation of (|>-Values

It is easy to compute the <J>-values in 0(n+p-) time, as in [4], once

the small items have been placed in p /a ratio order. However, we

eliminated sorting in the computation of PQ, so we do not have an ordered

set of small items available as a byproduct. The procedure we propose is

as follows.

First find the median P./a ratio for the set of all small items.

Let this ratio be r and let

as before. If L €j a. > b, throw away the complement of J and repeat,

continuing to throw away half-sets until a ratio r is found, such that

EjGj aj —b* Then search the list of pairs until apair (Q,A) is found,
such that

19

A = max (A| I a <b-A} ,
(Q,A) jGjj

and

(Kb-A) = I p .
j€J J

At this point one Rvalue has been found in 0(n) time, exclusive of

the time required to find the pair (Q,A). Aset J, |j|<|, has been
determined, as has a complementary set J, |j| <II, within the set of

remaining small items. Proper subsets of J determine <j)(b,A) for A > A.

Proper subsets of J, joined with all the items in J, determine (J>(b-A)

for A < A. Thus there are now two subproblems of the same character as
the original one.

The difficulty in estimating the remaining time required for the proce

dure is that we cannot be sure how many pairs are involved for each subpro-

blem: about -^ for each or 4r for one and none for the other? We can

confirm that time is bounded by 0(nlog(±)) by the following analysis:
Let

T(ra,n) = the time required for median finding, given

m pairs and n small items.

Then

T(m,n) = en + max (TGn-q.y) +T(q-l,n-)} ,
l<q<m l 2

where c is a constant. Assume T(m,n) < en log2 m. Then

T(m,n) < en + max{c(n-) [log2(m-q) +log2 (q-1)]}
q L

<en +en log2(^)
^ en log2m ,

as required.

20

Thus, median-finding requires at most 0(nlog(-)) time, since m is

0(^7). Other operations required in determining the <J)-values (such as

locating pairs (Q,A)) are bounded by 0(-^-).

7. Discarding Superfluous Items

The time and space bounds can be further reduced by the following

observations.

The number of distinct q values that can exist for the large items

is bounded by

K
< 8 2
— e* £

The number of large items with scaled profit q. which can be contained in

any feasible solution is at most

nj =
2!

Hence for any scaled profit q , one need only consider the n items

with smallest weight for use in the large-item computation.

For q values in the interval (7,7-], the average value of n. is

about -. For the interval (-,-], the average value of n is about •—.
e e j 2£

For each successive interval, the average value of n. is half as large,

but the interval contains twice as many q. values. There are at most
4. J

p* 4
log2(—) < log2(—) intervals. Hence the number of items which must be

considered for the large-item computation is bounded by

JT 1082(1) . (7.1)

21

Identifying the items which need be considered for the large-item com

putation is simple: Place the large items in at most max{n,-^-} buckets,

each bucket containing items with the same q value. Then apply a median-

finding routine to each bucket q to identify the n items with smallest

weight. This can be done in 0(n) time.

We can now substitute p-log(-) for n in the time and space bounds

for the large-item computation obtained in Section 5. This yields a time

bound of 0(nlog(-)+p-log(i)) and aspace bound of 0(n +-rlog(-)) for
the overall computation. (Note that 0(n) space is required to store the

input data.)

8. An Improved Method of Scaling

The method of scaling we have employed up to this point is unnecessarily

conservative. The same fixed error, K, has been permitted each scaled

profit coefficient q . It is more effective to produce coefficients for

which the permissible error is somewhat in proportion to the size of the

coefficient. This can be done as follows.

Let

T=|ePQ, K=|£T =|£2P0, (8.1)

as in Section 5. If p. lies in the interval (2kT,2k+1T],
i P*k = 0,1,2,..., |_log2—J , then let

T

P

-2^-qj = 2* • (8.2)

22

Now notice that

Kqj ~Pj <Kqj+2kK
<Kqj +|e2kT
£Kqj+t€pj '

The above inequality is parallel to (3.1). It follows that we have,

in place of inequality (5.4),

P* =PL +Ps<KQL+|ePL+Ps . (8.3)

By reasoning similar to that used before, we obtain

P*-P <|£P*+T=feP*+!£P0 . (8.4)

I P*iLet m = Ll°g2 "YJ . The size of scaled profit space is bounded by

.2\J - K- e* •

as before. However, the number of distinct q values obtained from each
k k+1 2Pj-interval (2 T,2 T] is at most --1, independent of k. Thus for

the scaled profit-space interval (-,|], the number of q values is
2

about -, and the average value of n is |, For the interval (-,-],
J £• £ £

the number of q values is still -, and the average value of n is tt",
J t- j 2£*

and so on. It follows that the number of items which must be considered

for the large-item computation is bounded by

12(1+1+...+X^ <i2£2U +2+ +p*) < ^2"

We have thus eliminated the log factor in (7.1).

23

Comment: We have dispensed with a more general argument, in which

T = (1-A)£PQ, K = AeT, as this carries through exactly as in Section 5.

Nor shall we confirm that there Is no advantage in choosing an integer

a > 2, and letting

a = J— a

k„ k+1if Pj lies in the interval (a T,a T]. Note that the previous scaling

technique is the case in which a > P*/T.

Since there are now O(p-) items for the large-item computation, the

time bound can be reduced to 0(n log(^) +^) and the space bound to 0(n+4r)
In the next section we shall show how the space bound can be further reduced

to 0(n+-^y), while maintaining the time bound.

9« Modification of the Large-Item Computation

We propose to modify the large-item computation to reduce the space

required for backtracing. Our plan is as follows.

First sort at most n items with a given q value into nondecreas-

ing order of weight. This can be done, for all q4 values, in 0(-4log(-))
j £ £

time. Now notice that there are at most n +1 possibilities for each q

value: Either no items are chosen, the first (smallest-weight) item is

chosen, the first two items are chosen, ... , or all (at most n) items are

chosen. The large-item computation is now carried out in iterations over

distinct q^ values (instead of individual items) in strictly decreasing
order of q .

24

Initially the list contains only the pair (0,0). At the end of

iteration i, each pair (Q,A) indicates the smallest weight A attain

able for asubset of items chosen from the i largest q. values, with
total profit at least Q. It also indicates the largest profit Q attain
able for asubset of items chosen from the i largest <. values, with

J

total weight not exceeding A.

Suppose iteration i is for scaled profit q. and there are n

items with this scaled profit. For each pair (Q,A) in the list, n

candidate pairs are formed, corresponding to the choice of 1item, 2items,
.... nj items. These pairs are placed in Bj separate candidate lists.
The nj+l lists are then merged, deleting dominated pairs in the process.
The merge can be carried out in 0(Nj log^) time, where » is the length
of the original list. This time is dominated by the 0(H n). time required
to prepare the candidate lists. It is clear that 0(£) time is sufficient
for this procedure, since JBj <If and Nj <£ at each iteratlon.

Now let us consider the space bound. At each iteration, the space

required for candidate lists is at most nfi. which is 0.(^-). The number
of new entries added to the list of pairs, and hence the number of nodes

added to the tree used for backtracing is 0(1^). But H is at most 1
for the largest interval, 2for the second-largest, ... ,\ fpr the

second-smallest, and £ for the smallest. This is because the q values
in each interval are a power of 2, which reduces the effective size of the

scaled profit space from — <~ to 2~k^L <r 9~k/--8\ tk Liuu k - £2 co z If- V^V' for iterations

over qj values in interval k. The number of q values (iterations)

for each interval is at most T<1 it follows that the total number of
nodes in the tree is bounded by a number proportional to

25

16n .1.1. , „ 22
IrI1 +4+16+,,*] < eT • (9.1)

Hence total space is bounded by 0(n+-ij-)

Comment: Each of the n^ candidate pairs obtained from apair (Q,A)

can be viewed as corresponding to the choice of a "multiple" item. The

indexing scheme and backtracing procedure must be slightly modified. It is

not difficult to do this, while staying within the time and space bounds.

Hereafter, we shall not mention necessary modifications of the indexing

scheme and backtracing procedure, assuming the reader can supply details.

10. Summary of Algorithm

We now summarize the steps of the approximation algorithm for the 0-1

knapsack problem:

1. Compute Pj/aj ratios for all items. Compute p using amedian-

finding routine as indicated in Section 4: 0(n) time and space.

2. Determine the threshold T and scale factor K by (8.1). Compute

q.j for all large items, using equation (8.2): 0(n) time and space.

3. Determine the O(p-) items to enter into the largeritem computation,

by applying a median-finding routine to find the at most n items

with smallest weight, for each q value: 0(n) time and space.

4. Sort the at most n items for each q value in order of nonincreas-

ing weight: O^ylog^)) time and 0(-~) space.
5. Carry out the modified version of the large-item computation described

in the previous section: O^) time and 0(-~-) space.

6. Compute 0(b,A) for each pair (Q,A) in the final list, employing a

median-finding procedure, as described in Section 6: 0(n log(-) +-\-) time
1 G e

and 0(n+—j) space.

26

7. Find a pair (Q,A) for which KQ +<J>(b-A) is maximum: 0(-i-) time

and space.

8. Find the set of large items in the approximate solution by backtracing:

0(—) time and space. The set of small items in the approximate solu

tion is readily available as a byproduct of Step 6.

In succeeding sections we shall indicate how the steps of the algorithm

should be modified, for other versions of the knapsack problem.

11- "Bootstrapping" the Algorithm

A further analysis of the space bound shows that space is bounded by a

constant times

£3P

Similarly, time is bounded by a constant times

(P*)2

fc *0

It follows that an improvement in the quality of the lower bound P will

yield a reduction in the bounds by at least a linear scale factor.

One way to obtain a better lower bound is to use the algorithm itself

to produce approximate solutions which provide better lower bounds, A

"bootstrapping" procedure is as follows. Begin with the lower bound P

with accuracy eq £ -. Use PQ to obtain a threshold T and scale factor

K1 for accuracy ^ < eq. Apply the approximation algorithm to obtain an

approximate solution with profit P and relative error E . Proceed

through successive iterations, with accuracies £„>£„>£„>•••> £ = e.
0 12 N

27

At successive iterations, the lower bounds P., thresholds T and

scale factors K are determined by the relations:

P > (l-£)P*
i - v i-r '

Ki =KTliK(1-Ei.l)P* •
-1 i 2ei(1-ei-l>P* •

The running time at iteration i is then bounded by a constant times

(P*)2 < P*
I^P5 - eV1-e V2" * (10.1)
i i-1 V ei-l;

If we perform one iteration, as in the preceding, with £ = -, £ = e,

then the quantity (10.1) becomes

4P*

£* *

If we perform N iterations, even if e = 0, the quantity (10.1) becomes

for the last iteration, with £N = £. it follows that no matter how such a

bootstrapping scheme is arranged, we can expect to improve the time bound

by no more than a linear scale factor less than four.

The practical implications are more favorable, however. Suppose

T < 1 and K < 1, as determined by (8.1). One can choose an £ such

that Tx and K± have favorably large values. (It is unlikely, for example,

that Tx <1 when T± =|pq >|p\ for ^ =i; if this is so, then surely
the problem is an easy one.) This enables the iterative process to begin,

and if one is fortunate, a bound P numerically much larger than P ,

will be produced.

28

Another advantage of iteration is that early iterations are likely, in

practice, to be quite short, lengthening considerably with each successive

iteration. This enables one to halt the procedure, when desired, with an

approximate solution known to have accuracy £ , where i was the last

iteration.

12. The Unbounded Problem

Recall the unbounded knapsack problem is the case in which the variables

x^. are not restricted to 0,1 values, but may be nonnegative integers. A

number of simplifications can be made in this case.

First, it is evident that the computation of P and of the 4>-values

is now much more straightforward: One need only identify a single item with

maximum P^/a ratio, which can be done with a single scan through the

items. A small item with maximum p /a ratio is all that is needed to

compute all the (^-values. This can be done in 0(n+i time.
£z

It is evident we need retain only one large item for each q. value

for the large-item computation, i.e. one with minimum weight. However, we

must provide for all possible n multiplicities of each such item, where

Ibarra and Kim propose doing this by providing n identical copies of the

item. A more sensible procedure is to provide only [_l°g2 ti J additional

copies by "doubling." That is, let the i copy of item j be such that

n(1> - 91 ,(i) o1Pj " 2 p. , a = 2 a .

29

All necessary copies of items can be found in 0(-^-log(-)) time. It

is now necessary to retain only the smallest-weight items, or copy of an

item, for each 9j value. This leaves 0(^log(^)) items for the large-
item computation.

The large-item computation now proceeds by iteration over items or q
j

values (there is no difference), from largest to smallest. It is evident

that this can be carried out in 0(~) time and space. Hence we conclude

that the unbounded knapsack problem can be solved in 0(n+-ir) time and
£d

space.

13. "Subset-Sum" Problem

The "subset-sum" problem is as follows: Given n positive integers

P1»P2»»««»Pn» and an integer b, does there exist a subset S, such that

I P, = b ?
jGS J

This can obviously be reduced to a 0-1 knapsack problem of the form

maximize 7. p.x.

subject to Y. pjXj < b
3 j j -

x € {0,1} .

This is the type of problem for which we propose to find an approximate

solution with accuracy £ > 0.

We first observe that it is a simple matter to compute P . The knap

sack may be filled with items in arbitrary order. This clearly requires

only 0(n) time.

30

We next observe that it is possible to carry out the large-item compu

tation without consideration of item weights. That is, it is possible to

process only lists of scaled profits Q, Q<|, instead of pairs (Q,A).
However, we must insure that each entry in our lists is feasible. That is,
if S is the set corresponding to Q, where KQ < b, then

jes J

In order to guarantee this, we propose to round-up in scaling, rather than
rounding down, i.e. replace (8.2) by

P' k
<. •W'

When this is done, all of the preceding error analysis goes through as
before.

Notice that no existing list entry need ever be eliminated by dominance,

Hence the data structure used for backtracing requires only Q(±) space.

(In fact, the secondary data structure can be dispensed with entirely, and
the pointers replaced by pointers to other list entries.)

Let us now make a selection of items for the large-time computation.

First place the large items in buckets, according to their scaled profits

qj and eliminating any surplus items (more than n) in any bucket. This
1 J

leaves at most 0(pr) items. The situation now differs from the ordinary
0-1 problem in that the items in each bucket are indistinguishable: they

can all be considered to have the same weight. We now want to provide for

the choice of any possible number of the items in any bucket. The procedure
is as follows.

31

Start with the smallest and work upward. If bucket q contains an

odd number of items, say 2k+l, place k "multiple" items, each with scaled

profit 2qjS in bucket 2qj, discarding any extra items if the capacity
of bucket 2qj is exceeded. This leaves one item in bucket q. If bucket

q is nonempty and contains 2k+2 items, do the same thing, leaving two

items. This process requires 0(~) time, for all buckets.

We are now left with at most two items with any given scaled profit q .

The large-item computation can be carried out in a straightforward fashion,
1 1in 0(p-) time and 0(^-) space. This yields overall time and space bounds

of 0(n+-jy) and 0(n+4r).

It is also possible to solve the subset-sum problem in 0(n+-^- log(~))

time and space by applying the computation proposed by Karp [5] to the

0(~log(-)) large items. This computation involves the consideration of

"intervals" of attainable P-values. We shall not give details of this com

putation, referring the reader to the reference.

14- Multiple-Choice Problems

Suppose the n items are partitioned into m equivalence classes and

it is stipulated that no more than one item (or multiples of one item) may

be chosen from each equivalence class. Such a problem is sometimes called

a multiple-choice knapsack problem.

The author has developed an approximation algorithm for the unbounded

multiple-choice problem with time and space bounds of 0(n+-^-log(-)) and
11 e £

0(n+-£r/log(-)). However, this algorithm is rather complicated and very

likely can be improved upon. Hence we shall limit our discussion to the

0-1 multiple choice problem.

32

Our first observation is that there seems to be no feasible method to

compute the lower bound PQ for the 0-1 multiple-choice problem. One can

easily find an item with maximum p /a ratio in each of the m equiva

lence classes. But what if these m items do not fill the knapsack to

capacity? There are similar, but even more severe difficulties in computing

Rvalues. There seems to be no alternative to returning to the approach of

Section 3.

In order to find some sort of lower bound, find an item with maximum

profit in each equivalence class. Then fill the knapsack with these m

items, in nondecreasing order of profit, until either the items are exhausted

or it is not possible to insert another item. (This can be done in 0(m)

time, using a median-finding routine.)

In the former case, an optimal solution has been found, and there is

nothing more to do. In the latter case, m' items have been used, where

1 < m* < m. Let the total profit of these m' items be Pf. Then

P» < p* < JUt < njpi
— — m —

We now propose to let Pf play the same role as p in the approach
max

of Section 3. Thus, we let

K= H^P. < jtep, #
m — m

Note that the size of scaled profit space is given by

Pj^ m^
K - £ '

The list of pairs (Q,A) is processed with iteration over equivalence

classes, rather than single items. The procedure is very similar to that

33

proposed for the large-item computation in Section 9.

Initially the list contains only the pair (0,0). At the end of itera

tion i, each pair (Q,A) is identified with a feasible solution contain

ing items chosen from equivalence classes 1 through i. Suppose there are

n items in equivalence class i. To perform iteration i, form n candi-
x i

date items for each pair (Q,A) existing in the list at the end of itera

tion i-1. These candidate pairs are placed in n separate candidate

lists. The n^l lists are then merged, eliminating dominated entries.
n m2 2

Iteration i requires 0(——) time and space, and at most O^)

nodes are added to the tree used for backtracing. Hence overall time and
2

space requirements are bounded by 0(-=-),
£

Comment: The number of items which need be considered from each equi

valence class is bounded by the number of distinct q. values, which is
_2 5 ^

0(—). Hence time and space bounds of Ofa+^V) and 0^+™^) can also
t. £* £<:/

be obtained.

15. Separable Nonlinear Functions

One considerable generalization of the knapsack problem is:

m

maximize £ P^^^
j=l 1 J

m

subject to I a.(x) < b ,
j=l 1 J

x nonnegative integer,

x3 <n •

Here p and a are arbitrary real-valued functions, j = 1,2,...,m.

34

By evaluating each function at each feasible integer point, one obtains

n=£n^ items for a0-1 multiple-choice knapsack problem, with m equiva
lence classes. This can be solved, for any prescribed relative error £ > 0,

nm2
in 0(-£-) time and space, using the procedure of the previous section.

Note that there is nothing in our theory which cannot accommodate real-

valued profits and weights. (Of course, items with negative profits or

weights may be neglected, or may cause a knapsack problem to become unbounded,

under certain obvious conditions.)

16. Further Extensions

The knapsack problem arises in many applications. However, it is a

greatly specialized version of more general integer programming models for

which there is a real need for approximation algorithms.

Certainly the techniques discussed in this paper fall far short of

providing a fully polynomial approximation algorithm for multi-constraint

problems. The principal reason is that they involve rescaling profit

(objective) space instead of weight (constraint) space. Until a new tech

nique is devised, there seems to be no reasonable way to apply the present

approach to multi-constraint problems.

That is, unless we are willing to modify our views of optimization and

approximation. For example, it is clearly possible to scale weight space

to obtain an approximate knapsack solution of the following type: Given

6 > 0, find a subset of items S, such that

I P, > P*
jGS J

35

and

I a < (l+6)b .
jES J

At first glance, the above may seem like an unnatural form of approxi

mation. Possibly this because we have been taught that constraints are

inviolate. But suppose the knapsack problem is being used as asimplified

model for, say, project scheduling. Amanager seeks to choose projects for

a certain period, subject to certain resource constraints (knapsack capacity)

The profits associated with the items are real and hard. The constraints

are soft and flexible. He certainly wants to earn P* dollars, if possible.

Which type of approximation is more reasonable?

If the notion of constraint approximation is accepted, then it seems

feasible to move ahead with the application of known techniques to multi-

constraint problems.

17. Concluding Remarks

It is certainly possible that the time and space bounds presented here

can be improved upon. Aside from improvements in factors of -, or log(-),
t» £

there are a number of open questions and directions for future research which

suggest themselves.

We have made a few simple assumptions in making time and space bounds.

Among these are that arithmetic operations can be performed in constant time

on integer operands as large as P* and b. In the case of the 0-1 knap

sack problem, operations on integers as large as n are assumed, for the

purpose of finding medians. Can this assumption be removed?

36

Perhaps a more interesting question is: Can a 0-1 approximation

algorithm be found which is "strictly linear" in n, instead of order

n log(-)? More generally, is it possible to establish that the 0t-1 problem

is inherently more complex than the unbounded problem?

Acknowledgment

The author wishes to thank Alexander Rinnooy Kan and David Lichtenstein

for reading preliminary drafts of this paper, and for their helpful comments

and suggestions.

37

REFERENCES

[1] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest and R.E. Tarjan, "Time
bounds for selection," J. Computer and System Sciences 7 (1973) 448-461.

[2] S.E. Dreyfus and R.E. Bellman, Applied Dynamic Programming, Princeton
University Press, 1962. °

[3] M.R. Garey and D.S. Johnson, "Strong NP-completeness results: motiva
tion, examples and implications," submitted for publication.

[4] O.H. Ibarra and C.E. Kim, "Fast approximation algorithms for the
knapsack and sum of subset problems," JACM 22 (1975) 463-468.

[5] R.M. Karp, "The fast approximate solution of hard combinatorial
problems," Proc. 6th Southeastern Conference on Combinatorics, Graph
Theory, and Computing, Utilitas Mathematica Publishing, Winnipeg
1975, pp. 15-31. v *'

	Copyright notice 1977
	ERL-77-45

