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ABSTRACT

The computational burden associated with controlling a plant modelled

as a Markov chain with a large number of states is addressed by proposing

a two-layer feedback control structure. At the lower layer a regulator

continuously monitors the plant. When the state of the plant reaches

an extreme value, the supervisor at the higher layer intervenes to reset

the regulator. It is shown that the plant dynamics and cost originally

defined at the lower layer can be "lifted" to the supervisor layer and

that the supervisor's control task can be defined in a way that

permits wide flexibility in the design of the regulator.
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I. INTRODUCTION

We have in mind the situation of a plant being continuously controlled

by a local regulator. Once in a while the "parameters" of the regulator

are "reset" by a "supervisor". This can happen in at least two different

ways: perhaps some components internal to the plant are malfunctioning

and so the supervisor has to carry out some repairs (in this case the

regulator description includes that of the plant), or there is a change

in the external environment and the supervisor intervenes and resets the

regulator to alter the plant's operating condition. We represent the state

of the plant as well as of the relevant environment by s , t = 0,1,... .

sfc takes values in a finite set S = {1 s}.

A control structure of this kind, symbolically drawn in Figure 1,

is called a two-layer structure [1] in contrast to a two-level hierarchical

structure. In the former the determination of control is split into

algorithms which operate at different time scales whereas in the latter

there is a "spatial" division into algorithms operating at the same

time scale.

While there is a voluminous literature dealing with multilevel

structures [2], little effort has been devoted to the study of multilayer

control structures although casual observation suggests that in practice

it is widely adopted in the control of large processes. The reason for

this lack of attention seems in part due to the difficulty in satisfactorily

exhibiting within a single problem formulation three essential features of

a multilayer structure;

(i) the supervisor must intervene less frequently than the regulator (in

terms of Fig. 1 t » 1);
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(ii) the supervisor must use less information than the regulator;

and

(iii) the supervisor must solve a "higher" level problem.

A satisfactory formulation should have as a consequence that

(iv) the system performance improves as the supervisor intervenes

more frequently or receives more information.

Chong and Athans [3] consider an interconnected linear system

x± =A±±x± +BiiUi +£ [AijXj +Biju.] +q,

yi = HiXi + V i * 1»---»k- (1)

Here the subscript i refers to the ith subsystem and the notation is

standard. The cost is a quadratic function. They propose a two-layer

structure in which at the lower layer the ith local regulator chooses a

linear feedback law assuming the model

*i = Aiixi + Biiui + vi + V

yi s Hixi + V

where v± is the "prediction" of the neglected interaction terms received

from the upper layer supervisor. At time 0 the supervisor chooses

v(t) * (v1(t),...,vk(t)) for 0 <_ t < T, at time T it chooses v(t) for

T 1 t < 2T based upon all the information available up to T, and so on.

Thus feature (ii) mentioned above is absent. A variety of "reasonable"

ways for making the supervisor choice is possible each of which can be

intuitively rationalized [4], but there is no theoretically attractive

formulation of the supervisor's higher level problem. Finally, it has not

been possible to prove that the performance improves if the time T between

successive supervisor interventions is reduced.
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Earlier Donoghue and Lefkowitz [5] had considered a static optimization

problem with a similar two-layer structure in which the supervisor

intervened periodically and had full information. One of the variables

under the supervisor's control was the frequency with which its intervention

was carried out.

Periodic intervention is appropriate if the lower layer represents a

production cycle of fixed duration and the supervisor intervenes at a

fixed stage of each cycle as in [5]. It is inappropriate if the lower layer

is a continuous or a periodic process. In the model presented here the

supervisor intervenes only when the state reaches some "extreme" or

"boundary" value. Precisely, we assume given a fixed subset B of S such

that the supervisor intervenes only at those instances t when s is in B.

Furthermore the supervisor observes the state only at these instances. Thus

the moments of intervention are randomly spaced and are determined

"intrinsically" by the plant and environment rather than being arbitrarily

preselected. (Of course periodic intervention is a special case. )

Finally, we pay little attention to the way in which the lower layer

regulation is carried out, and concentrate mainly on the supervisor's

actions. This permits very different design procedures to be employed

for the two layers.

We formulate the supervisor's problem in the next section. This

requires "lifting" the system dynamics and the cost function defined

originally at the lower layer to the supervisor's layer. This lifting is

To see this suppose the period is N. Consider the process
s » (st,tmod N) € S x {0,1,...,N-1} and take B = S x {0}. Then
s E B for x = 0,N,2N,... .
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examined more abstractly in Section III. We return to the supervisor's

problem in Section IV. In Section V we give optimality conditions for

the supervisor's problem and propose an algorithm for finding the

optimal supervisor strategy.

II. THE SUPERVISOR'S PROBLEM

The lower layer process is denoted s , t = 0,1,... with values in

S = {1,...s}. If s = i the regulator can choose any control u from
t t

U(i), a prespecified set. A (stationary) regulator strategy is any

element u = (u(l),...,u(s)) G U = U(l)x,...,U(s). For each u the process

st is a Markov chain with (stationary) transition probability matrix

P(u) = {P±.(u)} where

P±j(u) =P±j(u(i)) =Prob{st+1 =j|st = i, ut =u(i)}. (2)

Note that the ith row (P ,...,P±g) depends only on u(i).

The cost associated with the regulator strategy u is

T

J(u) =lim Tj^r E£ k(s. ,u(sj) (3)
T-*» l t=0 C

where k(i,u(i)) is the prespecified "instantaneous" cost defined for

i in S and u(i) in U(i).

To make (3) meaningful we impose the following assumption.

Strong ergodicity assumption. For each u the chain s has a single

ergodic class consisting of all the states.

An equivalent assumption is that for each u there is a unique

row vector, called the steady state probability distribution,

tt(u) = (tt1(u),...,tts(u)) with ir^u) >0 for all i, such that

tt(u) = tt(u)P(u) and tt(u)1 = 1, (4)

where 1 « (1,...,1)*. (This assumption can be considerably weakened as

in [10].) Under this assumption (3) can be rewritten more simply as
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J(u) « ir(u)k(u) (5)

where k(u) = (k(l,u(l)),...,k(s,u(s)))'.

We now formulate the supervisor's observation and decision processes.

A distinguished subset B = {l,...,b} C s is preselected; states in B

are called boundary states. We assume that sfl = bft £ B and let

0 = Tn < T, < ... < T be the random times at which s„ is in B i.e.
u 1 n t

Tn+1((o) = min{t > Tn(u))|st(u>) G B}. (6)

Here w denotes the sample path. The supervisor's observation process

is DQ,b-,...9b ,... where

bn(w) =\WM' (7>

Note that the {b } process operates at a different "time scale" slower

than {s } as seen in Figure 2 adapted from [6], {b } is obtained from
c n

{st> by "erasing" the time that {s } does not spend in the boundary states.

Consider the following proposition whose proof can be found in

Revuz [7,p.25J.

Theorem 1 Let sfc t «= 0,1.,,, be any Markov chain with stationary transition

probabilities and state space S. Let B C s, sfl = bQ ^ B, and define

b , n = 0,1,... by (6), (7). Then {b } is also a Markov chain with
n n

stationary transition probabilities. Furthermore, if {s } is strongly

ergodic, so is {b }.

It follows that for every regulator strategy u the supervisor's

observation process is a strongly ergodic Markov chain thus inheriting

the properties of the lower layer process.

The next task is to propose a reasonable class of strategies for

the supervisor. These must of course be based on the {b } process, and
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they must reflect the idea that the supervisor resets the regulator each

time a boundary state is reached. This is formulated as follows. Each

time a boundary state say $ in B is reached the supervisor selects a

8 8
regulator strategy v from a prespecified subset V C u. Thus a

1 h IK
supervisor strategy is a b-tuple v = (v ,...,v ) £ V = V x...xV .

Now suppose v = (v ,...,v ) is chosen. Then during the random time

interval [Tq,T-] the evolution of s is governed by the transition probability

b0 bl
matrix P(v ), during (Tn,T„] by the matrix P(v ),..., during (T ,T .,]

, i £. n n+±

by the matrix P(v ) etc., where b-^b-,... is the supervisor's observation

process, and 0 = T.jT.,... are the reset times given by (6).

Several remarks should be made before proceeding with the analysis.

Firstly, the process {st> will not generally be Markovian any longer,

although it is Markovian within each interval (T ,T .]. Secondly, if
g

we take V = U for all 6 in B, then essentially the supervisor takes over

the task of the regulator and the two layers "collapse". The subset V

must be restricted, presumably on the basis of simplicity of implementation

of the regulator. One way of doing this is to identify a different regulator
g

with each regulator strategy u. V is then the set of regulators available

to the supervisor when the boundary state 3 is reached. Thus the

supervisor's task is of a higher level: it consists of choosing a

regulator. Alternatively we may think of a more versatile regulator with

some variable parameters which are adjusted by the supervisor.

The supervisor's task is to select an optimal v. To formulate this

precisely we must "lift" the dynamics (2) and the cost (3) or (5)

defined at the regulator layer to the supervisor layer. This is accomplished

by the next result whose proof is given in Section IV.
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Theorem 2 Let v = (v ,...,v ) £ V, and let v = (v (1),...,v (s)).

(i) The supervisor process b , n = 0,1... is a strongly ergodic Markov

chain with a unique steady state probability distribution

p(v) = (p^(v),...,p,(v)). p(v) is the solution of

p(v)P(v) = p(v), p(v)l <= 1 (8)

where P(v) = {P fl(v); a, 8 in B} is such that its ath row

PQ(v) = (pai»---»pab^ dePends only on va.

(ii) The (non-Markovian) regulator process s , t = 0,1,... is such that

the limit

T 8

J(v) =lim^j-E £k(s.,v t(s.))
TO

exists, where 8,. = b for t in [T ,T .-).
t n n n+i

8 8
(iii) Moreover there exist functions K(8,v ) and T(8,v ) defined for

6 8
8 in B and v in Vp such that

£p (v)iC(8,/)^(v)=_lJ - •(.)
£p3(v)T(8,vB)

Thus the supervisor's problem is defined by the dynamics (8) and

cost function (9). Observe that (8) has the same form as (2) whereas (9)

differs from (5). The denominator in (9) arises as will be seen from the

fact that the time scale of the supervisor process is slower than the

plant process.
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III. INTERMEDIATE RESULTS

Let xt> t = 0,1,... be a strongly ergodic Markov chain with state

space X = {l,...,x} and transition probability matrix PX. Let
X X XP = (?!»"•»?) be its steady state probability distribution. Let
X X X *
k = (k-,...,k ) be a given instantaneous cost and let

X X
J = P'k (10)

Let Y= {l,...,y} C x. Suppose xQ = yQ G Y. Define 0 =TQ <T < ...

by

Tn+1(aj) = min{t >T^M |xt(aj) G Y}

and the process y , n = 0,1,... by y (u>) = x_ t s (to). By Theorem 1
n n l \i&)

n

(yn) is a strongly ergodic Markov chain. Denote its transition probability
Y

matrix by P and its steady state probability distribution by

Y Y Y XXp = (p1,...,p ). We first relate these to P ,p .

Let Z « X-Y and partition PX as

px p^ I pyz
pZY IpZZ (11)

Then according to [8,p.134] we have

PY =P" +P^II-P22]-^. (12)
Y Y Y Y Y

Using the fact that p is determined by p P = p , pi = 1, it follows from
Y X

(12) that p is just the restriction of p to Y, i.e.,

P^[ «P^[ £ p*f\ i€Y.
j e y
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We proceed to lift the cost (10) to the chain {y }. The next result
n

is known (see, e.g. [9,p.151] or [10,Lemma 3.1]).

Lemma 1 Consider the x linear equations in the 1+x variables y e R,

c G R ,

yl = [P^IJc + kX. (13)

(i) If (y,c) is a solution, then y=J. (ii) If (Y,c) is a solution, then

so is (y,c+61) for every 6. (iii) A solution always exists.

Let (y,c) be asolution to (13). Partition c, k, 1as c= (cY,cZ)\
Y Z Y Z

k = (k ,k )', 1 = (1 ,1 )*, so that (13) can be partitioned as

Y1Y =[P^-Ijc* +PYZcZ +kY, (14)
,Z __ ZYoY rpZZ _, Z . ,Zyi - P c + [P -I]c + k . (15)

YZ 77 — 1Premultiplying (15) by P *[I-P**] x and adding to (14) we get

Y(lVZ[I-PZZ]-1lZ) -[PYY'I]cY +P^U-P^W fkY

+PYZ[I-PZZfV\ (16)

Let K = (K.,...,K V, T = (T ,...,T )' be defined by
y j. y

K- kY +P^WW, T=1Y +PYZ[I-PZZfY (17)

From (12), (16), (17) we see that

YT » [PY-I]cY + K (18)

which can be compared with (13). Also since y=J by Lemma 1, we get

Y-J -&Y, (19)
P T
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We can interpret T, K. Since [I-P ] = £ [P ] = {N },
* t=*0 J

i,j in Z say, therefore N,. is the expected time that the process

{x }, starting in state i, spends in state j before entering Y. It

follows from (17) that for i £ Y, T, is the expected time that the process

{x }, starting in state i, spends in X U {i} before entering Y, whereas

K. is the expected cost incurred during this time.

IV. PROOF OF THEOREM 2

Let v = (v ,...,v ) be a fixed supervisor strategy with

g ft g
v = (v (l),...,v (s)). Let b , n = 0,1,... be the resulting supervisor

process and s , t = 0,1,... the regulator process. The latter is not

necessarily Markovian since knowing s does not tell us which regulator

8
strategy v is in place at time t. That information is given by the last

boundary state visited by {s } before t, that is by the process

3., t = 0,1,... where 3„ = b for t in [T ,T ,-). Hence the augmented
t t n n n+1

process xt = (3 ,s ), t = 0,1,... is Markov. Since we must have

3. = sfc whenever s ^B therefore x„ takes values in
t t t t

X = {(3,6) |B E B} U {(3,i)|3 SB, if B} = Y U z say. (20)

The transition probabilities of {x } can be easily evaluated, using the

notation of (2), as

Pi,i)(B,j) =Prob{xt+l -(^>l*t =<°'i)}

{
P (va(i)) if 3=j or if 3=a and jf B

if 3^a and $£j (21)

(Here (a,i), (3,j) are of course restricted to X.) It is easy to check

using the strong ergodicity assumption that {x } is strongly ergodic also,

Hence it has a unique steady state probability vector

P =* {P(a i). (a,i) G x}.

-11-



We proceed with the proof of Theorem 2. Consider first the subset Y

of Xspecified in (20) and define the chain yn, n-0,1,... as in

Section III. That is y^M =xT ( («) where 0=TQ and
n

Tn+l(a)) * nlll{t > Tn(w)|xt(co) € Y}

=min{t > Tn(u)|st(u») € B}

by (20). Hence

vn^> 5 (b (a)), b (w))

so that {yn> is essentially identical to the supervisor process {b }.
n

By Theorem 1 {yQ}, hence {b^, is astrongly ergodic Markov chain and so

it has a unique steady state distribution p(v) = (p,(v),...,p (v)).
1 b

Secondly, observe that if we define a cost function q for {x }by

q((a,i),v(ct,i)) = k(i,va(i)), (a,i) eX

then the cost can be rewritten as
?:

T A

^(v) =lim^ E£k(st,v '(8^) =lim i E£q(xt,v(xt))

and the second limit exists since {xt> is strongly ergodic. In fact it
can be rewritten as

^(v) - £ p* k(i,va(l)).
(a,i) e X (a,i)

It remains to obtain the representations (8), (9). We do this by

using the representations(12), (17). So partition pX as in (11) with

Y,Z given by (20). Denote the components of the transition probability
Y

matrix P of the process {y }, hence also of {b k by
n n J
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Pa3 =Pa3(v) = Pr°b{yn+1 = «>»K = (a'a)}

* Prob{bn+1 = 3|b =a}, a,3 ^ B,

and let its ath row be denoted

Pa(v) = (Pol.....Pab).

Next let A = S-B = {b+l,...,s} and consider the following row vectors

and matrices:

PaB(vCC) =(Pa6(v01(a)); B£B)>

ai
PaA(v ) = (P„,(va(a)); i€ A),

PAA(v >" <Pij<v <D); i,j eA},

PAB(va> =^ig^d)); i GA, 3€ B).
x

Then we can substitute for P from (21) into (12) and verify that the
Y

ath row of P is given by

VV> =W^ +'aA^I^AA^l'^AB^ <22>
which depends only on v , thereby proving (8). Now from (19) we know

that there exist vector K« (^,...,1^)' and T= (T1,...,Tb)' such that

ft(v) s P(v)K
3K } p(v)T *

From (17) we can verify that

K$ =k(3,v$(3)) +V^II-P^fV3) -K(3,v3) (23)

where the column vector kA(v ) has components (k(i,v (i)); i6A).

From (17) again, we verify that

Tg =1+PgA(v6) [I-PM(ve) )'Y -T(e,v6). (24)

Theorem 2 is proved.
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T(3,v ) is the expected time that the process {s } takes starting

g

at 3 and before reaching the boundary states B and K(3,v ) is the

g

expected cost incurred during this time. Thus the T(3,v ) give the

expected lower layer or "real" time between transitions of the supervisor

g

process and the K(3,v ) give the expected cost between these transitions.

The interpretation of K,T suggest the following practical consideration.

Suppose the supervisor selects a strategy v. Then to reckon its effect

on the dynamics and the cost it is necessary to evaluate (22), (23), (24)

which requires complete knowledge of the lower layer transition probabilities

and costs. To a certain extent this is self-defeating since the higher

layer should have reduced a priori as well as reduced "on line" information.

Suppose that this prior knowledge is not available but that the supervisor

observes the transition times T^T,,..., the process b , n = 0,1,... and
u l n

the cummulative cost

T 3.

kn =£nk(st,v t(st)).

Then the supervisor can use these observations to estimate P (v),

6 8
K^v ) and T(8,v ) by means of obvious empirical averages. Since the

augmented process {x } is ergodic these estimates will be consistent.

It may therefore be possible to combine such estimates with the algorithm

proposed in the next section to obtain an adaptive control scheme for

the supervisor.

V. OPTIMALITY CONDITIONS

From Theorem 2 we see that an optimal supervisor strategy is the

solution to the following problem,
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Min ^(v) =£p3(v)K(3,vB)[£p0(v)T(3,v3)]"1

s.t. p(v)P(v) = p(v), p(v)l = 1,

v = (v1,...,vb) e V=V^c.-xV1*.

8
As before let PQ(v ) be the 3th row of P(v). For any c » (c,,... ,c, )*

p lb

and vin Vdefine H(c,v) =(H1(c,v1),...,Hb(c,vb))» and G(c,v) =(G1(c,v1),.
Gb(c,vb))' by

He(c,v3) -P3(v3)c -c3 +K(3,v3); G3(c,v3) =* H3(c,v3)[T(3,v3)f1.
(25)

Let g(c) be given by

gg(c) =inf{Ge(c,v3)|v3 €V3}, 3-l,...,b. (26)

In obtaining the optimality conditions we need the next result

which can be compared with Lemma 1.

Lemma 2 Let v be fixed. Consider the b linear equations in the 1+b

variables YfC.

Yl = G(c,v). (27)

(i) If (y,c) is a solution, then Ya^(v). (ii) If (y,c) is a solution,

then so is (y,c+61) for every 6. (iii) A solution always exists.

Proof Rewrite (27) as

YT(v) - [P(v)-I]c + K(v) (28)

where T(v) -T(l,v1),...,T(b,vb))», K(v) « (KU.v1),... ,K(b,vb)) '.

Premultiplying (28) by p(v) gives

-15-



YP(v)T(v) = p(v)[P(v)-I]c + p(v)K(v) = 0+ p(v)K(v)

so that Y«^(v). (ii) follows from the fact that [P(v)-I]l =0.
Finally note that

P(v)[J|(v)T(v)-K(v)] =0

so that j)(v)T(v)-K(v) is orthogonal to the null space of [P(v)-I]»,
hence it is in the range of P(v)-I.

n

The°rem 3 <Mini*"* principle) vis optimal if and only if there exist
Y»c such that

Yl =G(c,v) =g(c). (29)

Proof Sufficiency: By Lemma 2y=JM. Let w€v. By definition
of g(c)

J>(v)l <G(c,w)

and since T(w) > 0 therefore

j)(v)T(w) < [P(w)-I]c + K(w).

Premultiplying both sides by p(w) gives ^(v)p(w)T(w) <p(w)K(w) and so
jl(v) <J>(w).

Necessity: Suppose v is optimal. Let c be such that

J>(v)l =G(c,v).

Let w€Vbe such that J|(v)l >G(c,w), hence

J(v)T(w) > [P(w)-I]c + K(w).

Premultiplying both sides by p(w) yields

J)(v) lj(w),
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and since v is optimal we must have equality. Since p0(w) > 0 for
p

each 3this implies that J}(v)l =G(c,w). Hence Jl(v)l =g(c).

We can also obtain bounds similar to [10, Theorem 4.1]. Define

g

£(c) = min gQ(c) = min inf G_(c,v )
3 3 3 v3 3

— 8
g(c) = max gQ(c) = max inf G0(c,v )

3 3 8 v3 3
Theorem 4 (Bounds) Let c be arbitrary and let v be a minimizer in (26)

i.e., G(c,v) = g(c). Then

£(c) £ J(v) <g(c)

£(c) <J}* <i(c)

where &* = inf Q(v). Also v is optimal if and only if j*(c) = i(c).

Proof &(c)l <_ G(c,v) _< i(c)l, and so

£(c)T(v) < [P(v)-I]c + K(v) < I(c)T(v).

Premultiplication by p(v) gives

£(c)p(v)T(v) < p(v)K(v) <i(c)p(v)T(v)

from which

&M 1 JW < i(c).

Next let w G v. Then

£(c)l < G(c,w)

from which, as above, we can conlcude j>(c) <_ J(w). Hence £(c) < inf >4(w)

=J}*. The final assertion follows from Theorem 3.
n
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With Theorems 3,4 in hand we propose the following algorithm for

finding an optimal supervisor strategy.

Step 0 Let vQ be any initial strategy and solve (27) to obtain cn

such that ^(vQ)l =G(cQ,v0). If vQ is unavailable, start with any cQ
Go to Step 1.

Step 1 Let cn be given. Let vn+1 be a minimizer of (26) i.e.

g(cR) =Gte^v^i)- If i(cn) -£(cn) <_ estop, because by Theorem 4

^(vn+1) - i* <e, otherwise go to Step 2.

Step 2 Let cn+1 = cn + A9(cn) where A > 0 is a "small" number and for

any c,

9(c)- g(c) -£[l'g(c)]l

Set n+1 = n and return to Step 1.

The behavior of the algorithm is partially analyzed in the next

result which deals with its time-continuous version. The proof is

omitted since it is virtually identical with that of [10,Theorem 5.1].

Theorem 5 Consider the differential equation

f -9(c), c(0)=c0 (30)

(i) There is a unique solution c(t) of (30) defined for all t^ 0.

(ii) c(t) converges to a unique limit c* which is the solution of

£(c) =i(c), l'c = l'c0.

(iii) j»(c(t)) increases, and i(c(t)) decreases, strictly monotonically

to J*.

As our final result we will show that the minimum cost decreases

if the supervisor's information increases. More precisely, let
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B= {l,...,b}, V =Vx...xVb, B= U,...,b+1}, V =V^c.xV1*"1 where

1 V^DV1 U...UVb.

We claim that

inf Mv) >inf J(v). (31)
V ^ V u

This assertion is not immediate because a (stationary) supervisor strategy

v G v cannot be implemented as a strategy v € V. However it can be

implemented as a feedback control which depends on previous states. To

see this let v = (v ,...,v ) G v and let b , n = 0,1,... be the supervisor

process with values in B, and the lower layer process be s , t = 0,1,... .

For the more informed supervisor denote the corresponding processes by

bn' n ~ "»!»•••• anci st» t = 0,1... . Consider the following feedback

control

b

vn "v<b0»---»bn) =vmwhere m=maxU <. n|b € b}, n=0,1...
b

It is evident then that v = v n, n = 0,1... and so s = s .

Hence J} <^vn>) =J}W- B"t by aslight modification of astandard argument
(see e.g. [9,p.159] or [10, Corollary 3.17]) it can be shown that

^({vn}) >inf i(v)
V ^

from which (31) follows.

V. CONCLUSIONS

The two layer control structure presented here posseses to some degree

the desirable features mentioned in the Introduction. Its most attractive

aspect is that the dynamics and cost can be lifted to the higher layer

in a form which inherits the most important properties of the lower layer

problem. The least attractive aspect of the structure is that to obtain
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this higher layer problem the supervisor needs to know all of the a priori

information. This is mitigated somewhat by the fact that the problem

parameters can be estimated by the supervisor in a consistent way.

Nevertheless the practical usefulness of the scheme will become clear

only if the estimation of the supervisor's problem and its control can

be combined in an "adaptive" control scheme. We hope to report such a

scheme in the future.
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FIGURE CAPTIONS

Figure 1. A two-layer control structure

Figure 2. The lower layer process {s } and supervisor process {b }
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