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Abstract

This paper presents several new algorithms, generalizing feasible

directions algorithms, for the nonlinear programming problem, min{f°(z)|
f (z) <_ 0, j=l,2,...,m}. These new algorithms do not require an initial

feasible point. They automatically combine the operations of initializa

tion (Phase I) and optimization (Phase II) in an efficient manner.
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I. Introduction

In solving problems in engineering design, we have found that the

usual procedure for computing an initial feasible point, for later use

in amethod of feasible directions, was very time consuming since it was

necessary to set up an auxiliary optimization problem. .This was costly in

programming time and required aseparate computer run. Also the auxiliary

problem generated a feasible point without regard to the cost function

of the original problem. As a result, we attempted to construct a

procedure which automatically constructs feasible points while not

completely ignoring the cost function. It turned out that one can

construct algorithms, derived from classical methods of feasible

directions, which combine directly the operations of initialization

and optimization, in avery efficient manner. The resulting algorithms

are to methods of feasible directions what the combined phase I-phase

II simplex algorithm is to linear programming. Our initial findings were

reported in our work on computer-aided design [1,2,3,4 ]where we dealt

with very complex problems with infinitely many inequality constraints.

Since our results are scattered piecemeal and since the complexity of

the engineering design problems tends to obscure our results on combined

phase I-phase II methods, we present in this paper the algorithm model

as well as examples of modified "optimality" functions on which our new

algorithms are based, together with some previously unpublished phase I-

phase II algorithms which we find to be particularly efficient computationally,
From our results, it should be obvious to the reader how to construct

his own phase I-phase II method should he prefer a different method of

feasible directions to the ones which served us as astarting point.
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^11. An Algorithm Model

In this paper we consider nonlinear programming problems of the form

min{f (z)|fJ(z) <0, j=l,2,...,m} (1)

where f : 1R ^ 1R ,j = 0,1,2,... ,m are continuously differentiable

functions. The problem of computing an initial feasible point for (1)

can be seen as being related to the problem

min f(z) (2)
z em11

with ty : ]Rn -*- m1- defined by

^(z) A max f^(z) ,3)
j £ m

where m£{1,2,...,m}. That is, if afeasible point zQ for (1) exists,
then ^(zQ) <0, and such a zQ can be computed by solving (2), since

any solution z^ to (2) must then satisfy *<*•) <HZq) <0and hence
is feasible for (1). Thus, we really have two cost functions to

contend with in solving (1): f°(.) which is of interest in the feasible
set

FA (z|fJ(z) <0, j=1,2,...,m} (4)

and *(•) which is of interest in Fc, the complement of F. We shall

say that a point zG F is stationary if it satisfies the F. John

condition [5] for (1), viz. for some multipliers u° >0, u1 >0,...,um >0,
not all zero,

E Wjfj(z) =0; f) ujVfj(z) =o ' m'
J=l j=o { }

We shall denote by Sthe set of feasible stationary points (S CF).
Our algorithms define an iteration map A:IRn +2 ** and have the
following structure:
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Algorithm Model

Data: z e IRn.

Step 0: Set i = 0.

Step_l: If z. G S,stop; otherwise compute a z , G A(z )
i+1 i

Step_2: Set i = i+1 and go to step 1.
n

A form of the following result can be found in [1],

Theorem 1: Let f , i/> be as defined earlier and suppose that

(i) A(F) C f.

(ii) For any zG IRn, such that zG S, there exist an e(z) >0

and a 6(z) < 0 such that

f (z") - f (z1) < 6(z) < 0, Vzf G B(z,e(z)) D F (6)

Vz" G A(zf)

•Mz") - i|/(z') £ 6(z) < 0, Vz' G B(z,e(z)) H fC (7)

Vz" G A(z')

where B(z,e) 4 (z' G ]Rn|[|2'-zf| < e}. Then every accumuiation point

z, of an infinite sequence {z±} generated by the Algorithm Model,

satisfies z G s.

Proof: Suppose {z } is an infinite sequence constructed by the Algorithm

Model which has an accumulation point z G s (i.e. for some infinite

subset K C {0,1,2,...} z. + z, and z G s). We must consider two

cases. (1) For some i*, z , G F. Then, because of (i) z. G F for

all i >_ if, 'and since no z. G s (otherwise the sequence would not

O CO
be infinite), it follows from (6) that {f (z.)}.=.t is a monotonically

decreasing sequence, i.e., f (zi+1) < f (z.) for all i >^ i*. Since

t
Note that the theorem does not claim that accumulation points exist.

Accumulation points will obviously exist if the sequence z, is bounded.
'i
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f (•) is continuous and z. -*• z, it follows that f (z.) •> f (z)* But

0 co
{f (z±)}±=-' *s monotonic decreasing, and hence we must have

f (z±) -*• f (z) as i •»• «. Consequently, lim[f (z .) - f°(z.)] = 0,

and hence

lim Ef°(z.+1) -f°(z.)] =0 (8)
i G K 1+1 x

follows trivially. But from (6), we must have

lim [f°(z.+1) -f°(z.)] <6(z) <0 (9)

and so we get a contradiction. We conclude, therefore, that

z G s.

(2) Now suppose that {z^h C F . It now follows from (7)
00

that {y(zj)\-o is a monotonically decreasing sequence, and, since

the subsequence ity(z^)} e must converge to i|/(z) (because ty is

continuous and z. -*• z), we conclude that ty(z.) + \\>(z) and hence that

lim[i|>(zi+1) - ty(z±)] = 0, so that

lim [*(zi+1) - iKz^] = 0 (10)
i ^ Jx

But from (7) we have

lim [*(z,+1) - if(z.)] < 5(z) < 0 (11)
iG K i+1 i "

and we have again a contradiction. We conclude again that z G s

must hold. This completes our proof.
•

III. Optimality Functions for Phase I-Phase II Algorithms

The computation of a feasible direction for a classical method

of feasible directions is based on the solution of a linear or

quadratic program which defines an optimality function. We shall
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give several examples. For any z G f, and any e ^ 0, let

I£(z) -{j Gm|fj(z) >-£} (12)
Then we find that, among others, Zoutendijk [6] used the optimality

function

6 (z) A min max <7f3(z),h> ' (13)
hG c jG {0} U i£(z)

with CA (h ^ IRn| In1] <_ 1, i= l,2,...,n}. Topkis and Veinott [7] used

the optimality function

82(z) A min max{<Vf°(z),h>; fj (z) +<Vfj (z) ,h> ,jG m} (14)
h G c ~

Pironneau and Polak [8] used the optimality function

63(z) Amax{£ ujfj<z) -±H£ ujVfJ(z)U2| £j j =1, uj >0,
y j=i j=o j=o

(15)
j G {0} Um}

and, more recently, Polak and Trahan [3] used the optimality function

64(z) Amax{-i||E pjVfj (z)«2| E uj =1,
e u 2jG i (Z) U {0} "jGi.(z)U{0}

e e

UJ > 0, jG I (Z) U {0}}
— e

Zukhovitski, Polyak, and Primak [9] used the optimality function

e£(z) A fmin {<Vf°(z),h> |<Vfj(z),h> +e<0, jGI(z)}
h G c -e

/ if a feasible h exists
(17)

0 otherwise

These optimality functions can be modified for the combined Phase I-

Phase II algorithm as follows. First, we define ty : ]Rn ->• 1R by

i|>0(z) A max{0,^(z)} (18)

(16)
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Then for any zG jRnt and any e > q} iet

J£(z) A(j Gra|fJ(z) -*0(Z) >-e} (19)

We now give the modified optimality function corresponding to those

defined by (13)-(17).+ Let the weighting coefficient y satisfy
Y ±. 1, then we define

.0
maxi\ vi

C

(20)

e£(z) A min max{<Vf0(z),h> -Y*n(z); <7fj(z),h>, j6j (z)}
h c r u e

i2
e

9£(z) A min max{< 7f°(z),h> -Y^Q(z);

i3
e

fJ(z) -*0(Z) +<7fj(z),h), jGm>
m

(z) Amax{£ y3(fJ(z) -* (z)) -YA (z)
P j=l u u

(21)

"fllZ PJVfJ(z)U2|£ ,j =1, „* >0, -J =0,1,.;.,«} (22)

S*(z) Amax{-Yy%0(z) - \ II £
j Gj£(z) U {0}

uj7fj(z)ll2

2 yj = l; wj >o, j gj (Z) u {o}}
j ej(z) U {0} ~ e

e5(z) a r min {<7f°(z),h> + i/;n(z)(Yh° - 1)
h 1 -e, h G c

<7fj(z),h> - h° <0, j Gj (z)}

if a feasible (h ,h) exists

0 otherwise.

(23)

(24)

zzs&z rL^^rr^?-we use the subscrtpt - « ^ <*
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For tt G {1,2,5}, denote the solutions of the program for ^(z)

by he(z). Let P3>E(z) and U4 (z) denote the solutions of the programs
"3 " L

for e£(z) and 6£(z) respectively. We define the "descent" direction

vectors

m

V2) AI) PJ3j£(2)VfJ(z) (25)

4
U) A _

jG je(z) U {0}

Note again that in the definitions of e^Cz) and h*(z) for tt = 2 or 3,

e is only a dummy parameter and is included for notational convenience only,

We assume the following hypotheses are satisfied by problem (1).

Assumption 1. The functions fj :]Rn + m j=0,1,2,...,m are

continuously differentiable.
n

Assumption 2: For any zG iRn, the set of vectors {7f^(z),j G J (z)}

is positive linearly independent.

Assumption 2 is a sufficient condition for the Kuhn-Tucker constraint

qualification to hold [10]. It guarantees that int F = F and also

tt

Vz) A E p! _(z)7fj(2) (26)

that int F = F. Furthermore, it ensures that each optimality function

(with e = 0) is zero only at non-degenerate stationary points, i.e.,
0
y > 0 in the F. John equation, (5) (which then becomes the Kuhn-Tucker

condition). It also ensures that each optimality function (with e = 0)

is strictly negative for all z G pc.

t
We say that a set of vectors {n., j = l,2,...,n} is positive linearly
independent if the zero vector is not contained in the convex hull of
(n., j = 1,2,...,n}.

tt
Int denotes interior and the overbar denotes closure.
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Finally, we note that since the modified optimality functions coincide

,with the original ones on F, we must have S= {z G f|5![(z) = 0} for

any value of ir. We formalize our remarks about optimality functions in

the following lemma which is proved in the Appendix.

Ljasaaj,. Let tt G{1,2,3,4,5} be given, (i) If zGFis optimal

for (1) then 6*(z) =0.(ii) For any zGFc, ej(z) <0.(iii) e£(z) =0
if and only if z G s.

n

It should be clear from the preceeding discussion that it is

possible to modify most, if not all, optimality functions for problem (1)

so as to obtain new optimality functions with the properties given
"it

by Lemma 1 for 0Q(z). Besides having the properties given in

Lemma 1, each optimality function gives rise to a "descent"

direction vector in the algorithm below. We have modified the original

optimality functions so that the effect of the cost function, on this

"descent" direction vector, is suppressed in acontinuous manner

(since <Kz) is continuous) for all zG FC. Thus, for ir G {1,2,5},

whenever *(z) >0, the effect of the term <7f°(z),h> is suppressed in

6*(z), in proportion to <//(z). For tt G{3,4} the value of u° (z)
Tr,ev "

(see (25), (26)) is decreased as i/>(z) increases. Hence, the effect

of the cost gradient 7f°(z) on h*(z) is also reduced for tt G{3,4},
when Hz) is large. The effect of suppressing the cost in this

manner is that the algorithm concentrates on decreasing *(z) at an

infeasible point z without totally ignoring the cost function.

The effect of the cost function becomes progressively greater as the
feasible set F is approached.
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IV. The Algorithms

We now present an algorithm in which any of the above optimality

functions can be used. A single data parameter, tt G {1,2,3,4,5}

is chosen for the desired optimality function. Each optimality function

gives rise to a different direction-finding problem and hence, effectively,

to a different algorithm.

The algorithm below is stated in a form which minimizes the'''use of

"go to" statements so as to make the algorithm easier to follow.

If the algorithm were programmed in FORTRAN in this way, a number of un

necessary "if" statements would be executed. Hence, when the algorithm

is coded in FORTRAN a number of "go to" statements should be inserted

so as to avoid unnecessary operations.

Algorithm

Data: tt G {1,2,3,4,5}, aG (0,1), $G (0,1), Y>1, &̂ (0,1], sQ >0,

0<ei <K V M>°» zo G Rn-

Step 0: Set i=0.

Step 1: Set e=e0.

Step 2: Compute (6*(z.),h*(z,)). If tt G {2,3}, set e=--j e*<z.) and
-TT ""TT0Q(zi) = 6 (z.); else, proceed.

Step 3: If tt G {1,4,5} and e<e^ compute 5q(z.); else, proceed.

Step 4: If {tt G {1,4,5}, e<ev and 6*^) =0}, or if {tt € {2,3}
-tt

and ®q(z±) =0}, stop; else, proceed.

"*1T

Step 5: If 9 (z^ > -6e, set e=e/2 and go to step 2; else, proceed.
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S£ea_6: Let M4maxU.M/llh^z.)!!^. If z± GF, compute the largest
step size s± =3±G(0,M], (l± an integer) satisfying

f°(z. +sV(z±)) -f°(Zi) <-a6£Si (27)

fJ(Zi +s^z.)) <0 jGm
(28)

c HIf z± eF,compute the largest step size S± =Si6 (o,M], (*. an integer)
satisfying

Hzt +st>/(Zi)) -Hz±) <_a6eSi (29)

Step_2: set z±+1 =Zi +s^*^), i=i+1 and go to 8?.p u

Comment: Another version of the algorithm returns from step 7
to step 2 instead of step x> The proQf for this versiQn ^ sQmewhat

harder, but quite standard and we shall omit it.

To establish convergence of the algorithm we show that the hypotheses
of Theorem 1are satisfied. We first state aresult which shows that
the algorithm is well-defined.

Lemma_2. The algorithm cannot cycle indefinitely between steps 2
and 5.

The lemma is obviously true for *€{2,3}. For the case, ,'6 {1,4,5},
the proof is identical to that of Lemma 4.3.27 in [11].

FOr*£ U»2'3>^> - -n define A* :mn +2»° by steps 1through
7of the algorithm with the program defining e^) used to calculate
the direction vector h*^). I„ order to use Theorem ,we ^ ^ rf
the following result which is proved in Appendix A.
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Lemma 3. . Given tt G {1,2,3,4,5} and any z G mn such that
-TT . * '
8q(z) < 0, there exist a y(z) > 0 and a 6(z) < 0 such that

f°(z") -f°(z') <6(z) <0 Vz» G B(z,y(z)) OF

Vz"gaV) (30)

iKz") - <Kz') < 5(z) < 0 Vz1 G B(z,y(z)) O FC

Vz"GA7r(zl). (31)

Since the algorithm stops only at points which are stationary,
• TTi.e., satisfying 6Q(z) = 0, we need to consider only the case when

{z^ is infinite. We now state our main convergence result.

Theorem 2. Given tt G {1,2,3,4,5} and any infinite sequence {z.}

constructed by the algorithm,every accumulation point z of {z.} is

stationary, i.e., 0n(z) = 0.

Proof: It is obvious that A7r(F) C f since step 6 maintains feasibility

for any z^ G F. Thus, hypothesis (i) of Theorem 1 is satisfied.

From Lemma 1 we have that z ? S if and only if

""TT
9_(z) < 0. Hence, we have immediately from Lemma 3 that hypothesis

(ii) of Theorem 1 is satisfied. n

V. Conclusions

In summary, we have shown that by modifying the optimality functions

used in several conventional methods of feasible directions, it is

possible to construct algorithms which combine directly the phase I -

phase II operations. Specifically, each optimality function is modified

(i) by adding a term involving ^ (z) = max{0,f (z),...,fm(z)} to the

term involving the cost function, f (•)» and (ii) by extending the

-12-



definition of the £-active constraint set of infeasible points as

, being the set of constraints which are E-active with respect to the maximum

constraint whenever iKz) > 0. As a result of these modifications, the

new algorithms can be initialized at any point in ]Rn. In the initial

iterations, the algorithms concentrate on decreasing \\>(z)
1 m

=max{f (z),...,f (z)} (if y(z) > o) while not completely ignoring the

cost function, whose effect becomes progressively more pronounced as

the feasible set is approached. The algorithms are demonstrably convergent

in the sense that if an infinite sequence is constructed, then any

accumulation point of the sequence (if one exists) is feasible and

satisfies a first order necessary condition of optimality.

It should be noted that the algorithms presented here can be

considered as special cases of more general combined phase I - phase II

methods of feasible directions. Each algorithm in this paper can be

modified to handle more general problems, such as those which contain

equality constraints [14], or functional constraints of the form

max <Kz,o>) 1 0, QC ]R (fi a compact interval) [1].
o>Gfi
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Appendix A

We now establish the Lemmas 1 and 3 used in the body of

the paper.

Lemma 1. Let tt G {lt2,3,4,5} be given. (i) If z G F is optimal

for (1) then '0q(z) =0. (ii) For any zGFC, e*(z) <0. (iii) ej(z) =0
if and only if z G s.

Proof:

(i) Since z is feasible we have 90(z) = 9n(z) for each

tt G {1,2,3,4,5}. But 6q(z) =0, tt G {1,2,3,4,5} is a well-known

necessary condition of optimality for (1) [8,11 ].

(ii) Suppose z G F , i.e., i|>0(z) > 0. As a consequence of

Assumption 3, there exists h G c such that <7fJ(z),h) < 0, for all

jG J (z). Because ^Q(z) >0and fJ (z) - i/>0(z) < 0, for all

jG JQ(z), j $ 0, there exists XG (0,1) such that <7f (z),Xh> - ^Q(z) <0

and fj(z) -\\>Q(z) +X<7fj(z),h> <0for all jGJQ(z), j±0. Since
Xh G c, this implies that 9^(z) <0 for tt G {1,4,5}.

For tt G {3,4}, we first note that by duality [12] we can write

63(z) and 64(z) as

6^(z) = min 4llhll2 + max{<7f°(z),h> -y*n(z);
£ hG mn 2 °

fj(z) -ip0(z) +<7fJ(z),h>, jGm}} (Al)

94(z) = min {4f|hll2+ max{<7f°(z),h> -y^n(z);
£ hG mn 2 °

<7fj(z),h>, j GJ£(z)}} (A2)

Note that the solution vectors of (Al) and (A2) are the same as those

given by (25) and (26) respectively, i.e. h (z) (h (z)) can be found
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by solving either (22) or (Al) ((23) or (A2».

Using the same arguments as above, we have that .there exists a

"vector Ah G ]Rn with X > 0 and h G c such that

2XIInil2 +max{<7f°(z), Xh) -y^q(z);

fj(z) -*Q(z) +(7fj(z),Xh) ,jGm} <0 (A3)

and

•| A2llhil2 +max{< 7f°(z), Xh> -Y*Q(z);
(7fj(z), Xh) , j GJA(z)} < 00WJ < 0 (A4)

:ttHence, 0Q(z) < 0 for ti G {3,4}.

(iii) The fact that 5J(z) =0 if and only if z Gs follows from the
~7Tfact that 8Q(z) < 0 for all z G F and from the fact that for z G F,

(»\ = n •«
0

We now state some elementary results which are very easy to establish

and, therefore, we omit the proofs.

Proposition 1. For any zG jr11, if e > E'j tiien (±) j (z) D j ((z) and

(ii) 6p,(z) 1 0^ (z) for tt G {1,2,3,4,5}.

Proposition 2. For any z G R , c > 0,there exists a p > 0 such that

J (z1) C J (z), for all z' G B(z,p).
e e n

We now state and prove the following result which will be used

in the proof of Lemma 3.

e0(z) = 0 if and only if z G S, ti G {1,2,3,4,5}.

-15-
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Proposition 3. Let tt G{1,2,3,4,5} and eQ >0, 66 (0,1] be given.
For any zG ]Rn such that 0*(z) <0, there exists a p(z) >0 such that

®e(z)(z) ±-6e(z>» and

§£(z')(z,) <-Mz') l-^(z) Vz» GB(z,p(z)) (A5)

where e(z) (e(zf)) is the value of £ constructed by steps 2 through 5

of the algorithm with z =z(z.=zl).

Proof: (i) For tt=2 or 3, and z =z, the algorithm sets e(z) = - t 5* x(z)
6 £(z)

1 -TT ~2 ~3
="1 e0^' Because e0(#) and Q0(') are continuous, there exists a
p(z) > 0 such that for u=2 or 3,

§0(Z?) i26S(z) ="I6e<z> ¥z' €B(z,p(z)) (A6)

Also, for z^z1 the algorithm constructs an e(z?) such that

5e(z*)(z,) a-^<z') -eS(«') (A7)

Combining (A6) and (A7) we have the desired result for tt=2 or 3.

(ii) For tt G {1,4,5} and for any zG m11 such that 6?!(z) < 0,

it is an immediate consequence of Lemma 2 that the algorithm constructs an

e(z) = £Q2 > 0 with j(z) the smallest nonnegative integer such that

~9£(z)(z) <-«*<*) <0 (A8)

From Proposition 2, there exists a p(z) > 0 such that J • N(z') C j , v(z),
e(z) e(z)v "

for all z' G B(z,p(z)). Let 6* : TRn + m for tt G {1,4,5} be defined
by

rl

h G c
6 (zf) A min max{< 7f°(z'),h> -Y4>A(zf);

<7fj(z,),h>, jGJe(z)(z)} (A9)
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64(z,)Amax{- ±0 £
JGJe(z)(z> U<°>

^7^(2?) II2

- yu ^(z*)
j G J (Z) U {0}

e

Pj =1,

uj >0, jeJ£(z)(z)M {0}}

e5(z')A min {<7f°(zf),h> +^n(zf)(Yh° - 1)
h G c °

h° < -e(z)

<7fj(z,),h> - h° <0, jGJ (Z)}
e(z)

(A10)

(All)

rrTT
Given ttG {1,4,5}, 0 (•) is a continuous function, and therefore there

exists a p(z) G (0,p(z)] such that

\V(z')- V{*)\ <6^f- Vz' G B(z,p(z)) (A12)

But ^(z) = 5* .(z) so that
£.\Z)

eV) <6£kl+^(2)(z )<-s*lf- vz-e b(z,p(2)) (Ai3)
ttt

Comparing 0 (z') and 6 , .(zf) and noting that J , N(zf) Cj , fz)t
e(z) ° e(z)v •' e(z)v "

for all z' GB(z,p(z)), we obtain

e(z)ee(z)(2') lee(z)(z,) i'6^' Vz»GB(z,p(z))
2

where we have made use of (A13) and Proposition 1. Let e(z') = e 2~:'(zI)

where j(z') is the smallest non-negative integer such that

_j(z»)(zf) l-<5e02~j(z \ Then from (A14) we have e(z') >̂ y^,
eo2

(A14)

e(z)and hence, ^^(z1) <-« e(z*) <-6 -^-, for all zf Gb(z,P(z)).
n

Lemma 3. Let tt G {1,2,3,4,5}. For any z G ]Rn such that
XT!
80(z) < 0, there exist a y(z) > 0 and a 6(z) < 0 such that
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f (z") - f°(zf) <6(z) <0 Vz' G B(z,y(z)) OF

Vz"GA7r(zl) (AJ,5)

iKz") - iKzf) 1 6(z) < 0 Vz' G B(z,y(z)) H FC

Vz" G A7r(zt) (A16)

Proof: Given tt G {1,2,3,4,5} and zG ]Rn such that q*(z) < 0^ it

follows from Proposition 3 that there exists a p1 (z) >0 such that

9e(z»)(z,) l-fie<0 1-| <Se(z) Vz' GB(z,Pl(z)) (A17)
where e(z') is the value of e constructed by the algorithm with

zi = zf, and e(z) is the value corresponding to z = z.

(i) For tt G {3,4}, let h* : 3Rn x IR**1 + mn be defined by
m .

h7r(z',y) =-£ tJ7fj(z')
j=0

Let C* C]Rn be the image of B(z,P;L(z)) x{u GIR1"*1!^ UJ =1.
V >. 0, j = 0,1,...,m} under h . Because h (•,•) is continuous and

C is the image of a compact set, C must also be compact.

(ii) For tt G {1,2,5}, let C* = C.

In view of (i) and (ii) we have that C is compact for

tt G {1,2,3,4,5} . Hence, for any tt G {1,2,3,4,5}, there exists a

P2(z) G (0,p1(z)] and a t^z) G (0,1) such that

|fj(z' + tt/) -fj(z')| <(l-a)<5 ^f- Vz' G B(z,p9(z))
2

Vh^G c*

Vt G [0,t1(z)]

Vj = 0,l,2,...,m (A18)

Also, there exists a P3(z) G (0,p2(z)] and t2(z) G (0,t1(z)] such

that for j = 0,l,2,...,m
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|<7fj(z' +th*),^) -<VfJ<z'),hir> |<(l-a)6 -^i
Vz' G B(z,p3v(fe))

Vh* G c17

Vt G [0,t2(z)] (A19)

Let C (z') C c be the set of all direction vectors obtained by

solving the program for 5g(zi)(z,).+ By the mean-value theorem, for any
z' GB(z,p3(z)) and h^(zt)(z') G£%'), and for any tG[0,t2(z)]

fJ(2t +th£(z')(z,» -fj<z'> +t<7fj(z' +CV, ,v(z')),
£ V.Z /•

h£(z')(z,)) J =°.l»".»m
(A20)

where £J G [0,tj. From (A19) and (A20) we get

fj(2f +th£(z')(2,» "fj(2'> 1(l-«)t« JL^-
+t<7fj(z»),h^(zl)(z')> vz' GB(z,p3(z))

Vt G [0,t2(z)]

Vh^.^z^Gc^z')

j = 0,l,2,...,m (A21)

For tt G {2,3} it is obvious from the definition of 02, lx(z') and
e(z')v y'

the dual form of 5(,<«•) given by (Al), that for all jGj/ /8.) .
£(Z )

fJ(z') -♦„(«•) +<VfV>, h^(2,)(z')> <-6e(z') (A22)
Because fV> -*0(z') <0for all j=1.2....... (A22) must also
hold for, e{1,4,5} for all j€J^.^z'). Since t2(z) €(0,1),
multiplying (A22) by t€ [0,1) and addlng t0 (A21) yields

For tt S {3,4}, the program for e* (z-) is soiVed £or ,
TT * ' TT»£(z')^ ''

and h£(z')(zl) is then obtained by computing as in (25) or (26).
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fJ(Z? +th£(Z')(Z,» - *0(Z,)lfd(Z' +th£(Z»)(Z?» +
(l-t)(*Q(z») - fj(z')) - ^(z')

1 (l-a)t6 -^1 - t6£(z')

<_ (l-a)t6 e(z')- t6 e(z')

= -at6 e(z')

Vz' G B(z,p3(z))

Vt G [0,t2(z)]

VjGj£(z')<zt>

^(z')0^^2')
(A23)

For j GJ£(zt)(zf), j ^ 0, it follows from the definition of

J£(z')(z,) that fJ<z,> " *0(Z,) <"e(z,) <-«£(?')- From (A18)
we obtain

fj(zl +th£(z')(z,)> " fj<z*> 1 (!"«)« ^ Vz' GB(z,p3(z))
Vt G [0,t2(z)]

(A24)

Thus,

fj(z? +th£(z')(z,)) " VZ'} - (1-a)6 ^2- *6e<z'>
< (l-a)6 e(z')- 6 e(z')

= -a6 e(z')< -at6 e(z')

Vz' G B(z,p3(z))

Vt G [0,t2(z)]

Vh£(z»)(z,)Ge7T<z,>
(A25)
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Therefore, from (A23) and (A25) we obtain

'* <Kz' +th£(zt)(z')) -*0(z') <-ot« e(z')

Let k(z) > 0 be an integer such that

Vz» G B(z,p3(z))

Vt G [0,t2(z)]

¥h£(z')(zf) E^U') (A26)

Bk(z) <t2(z) <t^-1 (A27)

In step 6 of the algorithm, the smallest integer k(z') is calculated

such that s(z!) = 3k(z,) G (o,M] satisfies

Hz' +s(z')h^(zf)(z')) -iKz') £-s(z')a6£(z') (A28)

whenever z? G fc. Therefore, k(z') <_ k(z) and -3k(zl) <_ -gk(z)
which gives

*(z« +s(z')t/(zf)(z')) -Hz1) <-a63k(z) ^f-
cVz' G B(z,p3(z)) n F

VhE(z')(z,) G £7r(z<) <A29>
We now consider z» G F, i.e. ^(z') = 0. From the definition

*"TT o i

°f e£(z')(z,) (or from the dual forms of V*) an<i 5 (•) in (Al) and
(A2)) it is easily seen that

<7f°(z'), h^(zt)(z')> <-6e(z«) Vz' GB(z,p'(z)) Of

Vh£(z')(z,) G £7r<z,) <A3°)

-21-



By combining (A21) and (A30) we get

f0(2t +h£(z')<z,» "fV) 1d-«)t« ^--t6£(z')
2

< (l-a)t6£(zT) - t6e(z')

= - at6e(z')

Vz' G B(z,p3(z)) H F

Vt G [0,t2(z)j

Vn* (z') 6?(Z>) (A31)
e(z')

From (A26) we have

HZ' + thE(z')(z'» <0 ^' G B(z,p r2)) nF
3

Vt G [0,t (z)]

^(z')^1^^^1) (A32)
In Step 6 of the algorithm, the smallest integer k(z') is calculated

such that s(z') = 8k(2,) G (0,M] satisfies

f°(z' +s(z')t/(zf)(z')) -f°(z') <-s(z')a6£(z«)
fJ(z'+s(z')h^(zI)(z'))<o j=l,2,...,m (A33)

whenever z' G F. Again, we have that k(z') <k(z) and -8k(z,) <-3£(z)
Hence,

fV' +8(«')h*uf)(z')) -f0(z') <Af4i(Z)

Let y(z) A Po(z), then we are done.
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Appendix B.

In order to illustrate the behavior of the combined phase I-phase II

algorithms, consider the following optimization problem which is a

modification of Problem No. 16 in Himmelblau [13],

min f°(z) A-0.5(z1z4-z2z3+z3-z5+z5z8-z6z7) (Bl)

subject to: f1(z) A-1 +(z3)2 +(z4)2 <0 (B2)

f2(z) A-1 +(z5)2 +(z6)2 <0 (B3)

f3(z) A-1 +(z1)2 +(z2-l)2 <0 (B4)

f4(z) 4-1 +(z^z5)2 +(z2-z6)2 <0 (B5)

f5(z) A-1 +(zW)2 +(z2-z8)2 <0 (B6)

f6(z) A-1 +(z3-z5)2 +(z4-z6)2 <0 (B7)

f7(z) A-1 +(z3-z7)2 +(z4-z8)2 <0 (B8)

f8(z) A-1 +(z7)2 +(z8-l)2 <0 (B9)

f9(z) A-zV + z2z3 <0

f10(z) 4-z3 <0

fU(z) A z5 <0

f12(z) A -z5z8 + z^z7 <0

(BIO)

(Bll)

(B12)

(B13)

where zA(z ,z ,...,z )T Gm8. The original problem in [13], to
maximize the area of a hexagon in which the maximum diameter is unity,

was modified slightly so that Assumption 3 could be satisfied.

The parameters used in the algorithm were

-3 -i _6
tp=3; 6=10 ; £Q=10 ;e^lO °; <x»0.3; 3=0.8; M=1.0
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Note that with tt«3, the modified Polak-Trahan optimality function

was used. In order to compare the separate phase I-phase II method to the

new combined method, the following phase. I problem was formulated

min{zV(z) -z9 <0, j=1,2,...,12} (Bi4)

The value of zQ was chosen so that the initial point was feasible for

(B14); i.e. zQ9 -max{fj(zQ), j=l,2,...,12}. The algorithm was then
applied to (B14) until z9 became negative. The results are tabulated
in Table la.

For the phase II mode, the algorithm was applied to the original

problem, (B1)-(B13), using, as an initial point, the resulting feasible

point from the phase I mode. The phase II results are tabulated in

Table lb. The last iteration shown, i* 47, is the number of iterations

needed for each z1, i=1,2,...,8, to be asolution accurate to at least
four decimal places. The algorithm was actually run for more iterations,
but this resulted in no change in the first four decimal places.

The combined phase I-phase II algorithm was run with the same

initial point as that for the separate phase I. The results are shown

in Tables 2and 3for different values of Y. For y =1.0, the computer

run was terminated after the maxiamm limit of 100 iterations was reached

without obtaining a four decimal place accuracy solution. For

Y= 2.0, an accuracy of four decimal places was reached after 43 iterations.

These results clearly show that the new method works very well when y
is chosen properly. Our computational experience with this example, as

well as with others, indicates that y should be chosen strictly greater

than 1so that the algorithm concentrates more heavily on becoming feasible
in the initial iterations.
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Upon comparing Tables.1 and 3, it can be seen that the new combined

phase I-phase II method is somewhat faster than the separate phase I-

Phase II method. Programming time is also saved by using the new methods

since it is necessary to setup only one problem instead of two separate
problems.
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Table la

Pha

i

se 1

1
z

;—,

2
z

3
z

4
z

5
z

6
z

7
z

8
z z9

0

6

1.000

0.333

0.000

0.337

1.000

0.333

1.000

0.666

-1.000

-0.333

1.000

0.666

-1.000

-0.333

0.000

0.337

4.000

-0.110

Table lb

Phase 2

8
f(z)

0

10

20

30

40

43

47

0.3330

0.4934

0.5000

0.5000

0.5000

0.5000

0.5000

0.3370

0.3891

0.4032

0.4022

0.4024

0.4023

0.4024

0.3330

0.3404

0.3443

0.3436

0.3438

0.3438

0.3438

0.6660

0.9253

0.9386

0.9391

0.9390

0.9391

0.9391

-0.3330

-0.3404

-0.3443

-0.3436

-0.3438

-0.3438

-0.3438

0.6660

0.9253

0.9386

0.9391

0.9390

0.9391

0.9391

-0.3330

-0.4934

-0.5000

-0.5000

-0.5000

-0.5000

•0.5000

0.3370

0.3891

0.4032

0.4032

0.4024

0.4023

0.4024

-0.4426

-0.6646

-0.6747

-0.6750

-0.6750

-0.6750

-0.6750

0

20

40

47

60

80

100

1.0000

0.4426

0.4331

0.4329

0.3936

0.3565

0.3448

Table 2

Combined Phase I-Phase II; y = 1.0

0.0000

0.2663

0.2501

0.2499

0.0989

0.0669

0.0615

1.0000

0.4426

0.4331

0.4331

0.5170

0.5024

0.5003

1.0000

0.7337

0.7499

0.7500

0.6335

0.5977

0.5978

-1.0000

-0.4426

-0.4331

-0.4331

-0.4685

-0.4958

•0.4996

1.0000

0.7337

0.7499

0.7500

0.5916

0.5875

0.5969

-1.0000

-0.4426

-0.4331

-0.4329

•0.3248

•0.3390

•0.3432

0.0000

0.2663

0.2501

0.2499

0.1069

0.0609

0.0608

f(z)

-2.0000

-0.6497

-0.6495

-0.6495

-0.6629

-0.6733

-0.6749

Vz)

-8

4.0000

0.0022

8.5x10

0.0000

0.0000

0.0000

0.0000



Table 3

Combined Phase I-Phase II; y - 2.0

i
( 1

z
2

z
3 |

z

0 1.0000 0.0000 1.0000

1 0.0385 0.1202 0.0385

10 0.4759 0.3943 0.3855

20 0.4998 0.4028 0.3443

30 0.5000 0.4023 0.3437

40 0.5000 0.4023 0.3438

43 0.5000 0.4024 0.3438

1.0000

0.8799

0.9021

0.9388

0.9391

0.9391

0.9391

-1.0000

-0.0385

-0.3855

-0.3443

-0.3437

-0.3438

-0.3438

1.0000

0.8799

0.9021

0.9388

0.9391

0.9391

0.9391

-1.0000

-0.0385

-0.4759

-0.4998

-0.5000

-0.5000

-0.5000

0.0000

0.1202

0.3943

0.4028

0.4023

0.4023

0.4024

f(z)

-2.0000

-0.6768

-0.6628

-0.6748

-0.6750

-0.6750

-0.6750

VZ)

4.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
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