

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

tRE &fc/*f8Ab UliAARY

UNIVIM1TY »F CALIFORNIA

• KRKtUSY, OALIPOftNIA 64720

A STUDY OF THE EFFECTS OF LOCKING GRANULARITY

IN A DATA BASE MANAGEMENT SYSTEM

by

D. R. Ries and M. Stonebraker

Memorandum No. UCB/ERL M77/34

2 May 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

* *

^

A STUDY OF THE EFFECTS OF LOCKING GRANULARITY IN

A

DATA BASE MANAGEMENT SYSTEM

by

DANIEL R. RIES

and

MICHAEL STONEBRAKER

Memorandum No. UCB/ERL-M77/3i|

2 May 1977

Electronics Research Laboratory and

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, California

ABSTRACT

Many data base systems guarantee some form of integrity control

upon multiple concurrent updates by some form of locking. Some

"granule" of the data base is chosen as the unit which is indivi

dually locked, and a lock management algorithm is used to ensure

integrity. By a simulation model this paper explores the desired

size of a "granule". Under a wide variety of seemingly realistic

conditions, surprisingly coarse granularity is called for. The

paper concludes with some implications of these results concern

ing the viability of so called "predicate locking".

Research sponsored by the Naval Electronic Systems Command Con
tract N00039-76-C-0022, the National Science Foundation Grant
DCR75-03839 and the Army Research Office Grant DAAG29-76-6-0245.

I. INTRODUCTION

A commonly desired feature, in a multi-user data base system, is

some sort of guarantee on the integrity of the data base when

subjected to multiple concurrent update activity. Suppose, for

example, the following two updates are executed simultaneously:

U1: "Give a 10% raise to all crogrammers"

U2: "Change all programmers to systems analysts"

With no controls some persons who were initially programmers

would ret the raise nnd some would not. Moreover, in general,

the result would not be repeatable if the data base was backed up

and two updates were rerun.

A common approach to this integrity Droblem is to define a "tran

saction", as a data manioulation prosram (whose allowed complexi

ty varies from system to system). Then, a data base system

guarantees that the outcome of a collection of simultaneous tran

sactions is equivalent to the one produced by running the tran

sactions seauentially in some order.

For examole, System-R proposes supporting the above guarantee for

a transaction consisting of a PL/1 Drogram containing SEQUEL data

manioulation commands [ASTR76]. INGRES Droposes the above

guarantee for a transaction consisting of a single QUEL data

manipulation command•[STON76].

Other systems propose supporting lesser sorts of guarantees. For

examDle, System-R Droposes several weaker levels of integrity

control [ASTR76, GRAY76]. Moreover, both IMS [DATF75] and the

LOCK SIMULATION -1- May 2, 1977

CODASYL proposal [C0DA71, CODA73] suggest facilities which can

only, guarantee weaker conditions.

regardless of what consistency conditions are supported, a con

currency mechanism must be present as an enforcement agent. Two

s-eneral options appear feasible.

'•) Physical locks on records, pases, segments, files, etc.

In this case, the data base system supports the notion of locking

a "granule" of the data base. This "granule" is a record

(CODASYL [C0DA71], System-R [ASTR76], DMS-1100 [GRAY75]), a page

(IMS rGRAY75]), a column of a relation (INGRES [ST0N76]), all

records of a given tyDe (LSL [LIP76]), a whole data base (SYSTEM

2000 [SPIT76]), etc. In addition, System-R proposes a granule

whose size can be dynamically varied.

In all cases, a data manipulation command cannot proceed if a

granule it needs is locked by someone else. Various strategies

for reauesting and releasing locks have been suggested [CHAM74,

0RAY7*, STEA76, MACR76], some with the necessity of detecting

(and resolving) deadlock [C0FF71].

Some systems (eg. CODASYL) leave the locking strategy effectively

in the hands of the application programmer.

2) Predicate locks

Here a "logical lock" can be set on the exact portion of the

data base which is required. The portion of the data base which

is locked is determined by a predicate or qualification. The

LOCK SIMULATION1 -2- May 2, 1977

oredicate (eg. "all records with date field values in June,

1976") restricts the transaction to a logical subset of the data

base. Such locks do not necessarily correspond to any "granule"

of the physical data base. This approach is explored in [FL0R71*,

ST0N7M, ESWA76].

In this paper we examine two questions:

1) If physical locking is used, what size should the "granule"

be?

Fine granularity allows a higher degree of parallelism at greater

cost in managing locks. For example, assume that a granule

corresponds to a record in a data base. Then the transactions

may run in parallel without conflict as long as they access dis

tinct records. However, the data base system must be prepared to

handle a lock table with the same number of entries as records in

the data base.

Coarse granularity, on the other hand, inhibits parallelism but

minimizing management of locks. If the granule is considered the

entire data base, no transactions will run in parallel. The data

base system will, in this case, only have to keep track of one

lock.

In [SPIT76] the effect of scheduling on granule selection is

examined for System 2000 by simulation. Our approach is also by

simulation, but we examine a much larger class of alternatives.

Also, our model is hiehly parameterized so it can hopefully yield

insight into "granule" selection in a wide class of data base

LOCK SIMULATION -?- May 2, iq77

systems.

2) How viable is predicate locking?

Our model, although it does not directly simulate predicate lock

ing, is used to make predictions concerning the sort of predicate

lockine schemes that may be feasible.

The remainder of the paper is organized as follows. In the next

section we indicate the model of a data base system which we

assume and the model's inputs and outputs. Then in Section III

we indicate and discuss the results of several test runs. Last

ly, in Section IV we draw conclusions concerning the two above

mentioned questions.

II. DESCRIPTION OF THE SIMULATION

The complete model simulates requests against a data base. A

fixed collection of transactions are assumed to cycle continuous

ly around Figure 1.

Initially, the transactions arrive one time unit apart and are

put on the pending queue. A transaction then goes through the

following stages.

a) The transaction is removed from the PENDING queue

and reauired locks are requested. If the locks are

granted, the transaction is, placed on the bottom of

the I/O queue. If the locks are denied, the tran

saction is placed on the bottom of a BLOCKED oueue.

The blocking transaction is recorded.

LOCK SIMULATION -*»- May 2, iq77

b) After completing the I/O required, the transaction

is placed on the bottom of the CPU queue.

c) After completing the CPU required, the transaction

releases its locks and joins the end of the PENDING

queue. All transactions blocked by the completed

transaction are placed on the front of the PENDING

queue.

Note that all needed locks are requested initially. Hence,

deadlock is impossible and there is no need to simulate it.

Moreover, each transaction goes through one I/O phase and one CPU

phase. Although they are sequential in the model, the result

would be the same if each transaction went through many I/O - CPU

phases in a single cycle. The costs to reauest and set locks

includes the cost of releasing those locks. That cost is assumed

to be the same even if the locks are denied. Lastly, the con

currency mechanism has preemptive power over the running transac

tions for the I/O and CPU resources. Thus when locking requests

are being analysed, parallel running of transactions is not al

lowed. We corrment in Section IV on the results to be expected if

transactions request locks when actually required.

The following input parameters are required to drive the simula

tion.

dbsize- The number of accessible entities in the data

base. An accessible entity is the unit moved by

the operating system into data base system

LOCK SIMULATION -5- May 2 1Q7?

buffers. Commonly this is a disk sector.

lgran- The number of granules into which the data base is

divided. Each granule is assumed to be the same

size. Hence, if lgranrl, a granule is the entire

data base of dbsize entities. If lgran=2, a

granule is dbsize/2 entities. If lgranrdbsize,

each granule is 1 entity. A granule is the unit

which is locked by a transaction.

ntran- The number of transactions in the system.

rad- Used to generate the distributions of the number

of entities required by a transaction (see

below).

ioamax- Maximum number of transactions allowed on the I/O

queue.

cpurate- CPU time required by a transaction to process one

entity of the data base.

iorate- I/O time required by a transaction to access one

entity of the data base.

lcour- CPU time required to request (and set) a lock for

one granule (CPU lock overhead).

lior- I/O time required to request and set a lock for

one granule (I/O lock overhead, if any).

ioovlp- The I/O overlap possible. In one time interval

LOCK SIMULATION -6- May 2, 1077

» i

ioovlp units of time are equally distributed

among the transactions on the I/O queue. This

parameter is a surrogate for the number of in

dependent paths used between main memory and

secondary storage (and hence for how much I/O

activity can go on in parallel).

cpovlp- CPU overlap allowed. In one time interval,

cpovlp units of time are equally distributed

among the transactions on the CPU queue. This

parameter is generally 1 but can be set lower to

simulate operating system overhead.

tmax- The number of time units to run simulation.

The following parameters are recorded for each simulation run.

tcpu- The number of time units in which the CPU is

busy. During the tmax-tcpu remaining time units,

the CPU is idle.

tio- The total I/O units of time used in tmax units of

running the simulation. During the remaining

time the I/O devices are idle.

lockcDu- The CPU units of time used in reouestinr, set

ting, and releasing locks.

lockio- The I/O units of time used in reauesting, set

ting, and releasing locks.

LOCK SIMULATION -7- May 2, 1077

usefulio- tio-lockio

usefulcpu- tcpu-lockcpu

totcom- Number of transactions completed at tmax.

avres- Average response time of transactions completed.

Some transactions mav have started but not com

pleted. These are not included in the computa

tion of totcom or avres.

We now describe the resources (entities) needed by each transac

tion and how 'lock conflict1 is computed. The ith transaction

(1<=i<=ntran) is described by:

NUi =i*rad number of data base entities to be accessed by

the ith transaction.

LUi =ceil(NUi*lgran/dbsize) number of granules required by

the ith transaction. (Note that this amounts to

an assumption that the NUi entities are placed so

as to require the minimum number of granules.

Alternate assumptions can only increase the

number of granules reauired.)

IOtimei=NUi*iorate I/O time for the ith transaction.

CPtimei =NUi*cpurate CPU time for the ith transaction.

LlOtimi =LUi*lior I/O time for locking bv the ith transaction.

LCPtimi rLUi*lcpur CPU time for locking by the ith transaction.

LOCK SIMULATION -&- May 2, 1977

Lock conflicts are computed as follows. Assume that enough gran

ules are unlocked for the requesting transaction to potentially

proceed. Let T1, T2, ..., Tk denote the k active transactions.

Suppose each transaction Ti has Li granules locked. Divide the

interval (0,1] into k+1 partitions.

P1 =(0 ,L1/lgran]

P2=(L1/lgran,(L1+L2)/lgran]

Pi=(sum(Lj,j<i)/lgran,sum(Lj,j<=i)/lgran]

for i=1,...,k.

and Pk+1 = (sum(Lj,j<=k)/lgran,1]

To determine if a given transaction must be blocked, choose a

random number p, uniformly distributed on (0,1). If p is in Pj

for some j<=k, then the transaction is blocked by Tj. Otherwise,

the transaction may proceed. This amounts to the assumption that

the first granule required by each transaction is uncorrelated

with any of the granules already locked. If there are more gran

ules to be accessed, they are assumed to be distinct from those

already locked.

III. RESULTS AND DISCUSSION

The simulation was initially run with the parameters shown in

Table 1 .

LOCK SIMULATION -9- May 2, 1977

dbsize Intran jrad jioqmax'ioovlp {tmax

5000 10! 50! 10! 1.000! 10000

cpurate 'iorate !lcpur !lior cpovlp

0.0S0! .200! 0.010! .200! 1 .000

TABLE 1: Input parameters

In this scenario, ten transactions were submitted to a data base

of 5000 entities. The transactions required from 50 to 500 enti

ties each (initially uniformly distributed). The I/O and CPU

overlap parameters were set to one which results in only one

transaction doing either at one time. Note that for this run the

1/0 rate is four times the CPU so that this simulates an "1/0

boun-;" application. The CPU cost of a lock is 1/5 that required

to process an entity. Lastly, the 1/0 cost of a lock is equal to

the I/O cost of an entity. Hence, this initial run simulates a

lock table kept on secondary storage.

Intuitively, these inout parameters could be interpreted as fol-

lowes:

dbsize is 5 million bytes (one entity is 102H bytes)

Average transaction size is 2^0,000 bytes.

iorate of 100 msecs per entity (two disk accesses).

cpurate of 25 msec ^^^ entitv.

lior of 100 msecs per lock.

lcpur of 5 msecs per lock.

LOCK SIMULATION -10- May 2, 1977

t •

The 10 transactions could correspond to 10 terminal users or

application programs issuing commands against the data base. The

simulation was also run with 20 transactions with no appreciable

effect on the output parameters.

For these simulation runs, the value tmaxr10000 was chosen after

running all simulations for various smaller values including tmax

=2500. In all cases, no change (except for scaling) was observed

in the output parameters between tmax=2500 and tmax=10000. For

some of the experiments discussed later, other values of tmax

were required to guarantee convergence. Keeping these parameters

fixed, the number of granules allowed was varied between 1 and

5000. The output from the simulations is presented in Tables 2

and 3.

LOCK SIMULATION -11- May ?, IQ77

no__of_granules usefulio Iusefulcpu lockio lockcpu

1! 7041.957! 1759.906 1282.000 12.820
2' 8376.933! 2091.914 970.000 Q.700

3 9002.256! 2237.415 777.000 7.770
4 9030.253 2258.925 671.000 6.710
5 0273.915 2304.927 604.000 6.040
7 9438.514 2309.940 474.000 4.740
q 9449.087 2337.442 428.000 4.280

10 9476.180 2324.041 437.000 4.370
15 9425.585 2358.445 403.000 5.210

20 9437.987 2354.943 396.000 5.280
30 9534.303 2377.1140 "371.000 6.720
40 9572.718 2354.Q4Q 360.O00 7.000

50 0504.073 2330.050 •560.000 8.700

75 qllljp .4^5 2332.452 454.000 13.200

100 9378.277 2324.951 482.000 15.430
125 9351.744 2316.457 547.000 20.890
150 0304.128 2279.060 618.000 23.700
200 9159.688 2259.959 753.000 30.000
250 ' 9110.531 2249.964 806.000 36.740
300 , 8768.228 2177.465 1015.000 43.470
500 ! 8517.211 2097.466 1300.000 69.499
750 7820.611 1019.074 ! 1950.000 94.439
1000 7359.828 1814.076 ! 2462.000 123.099
2500 ! 4764.175 1189.980 ; 4824.000 241. 199

5000 ! 3408.635 [824.092 ! 6120.000 305.098

I/O and CPU Costs

TABLE 2

Note that useful I/O peaks at ^0 granules. Within \% of this

value is reached with only 10 locks and stays relatively constant

until the lock 1/0 costs start to be a significant fraction of

1/0 time. For a small number of granules, high lock 1/0 cost

results from lock conflicts which generate additional lock 1/0.

(In an actual implementation of a locking scheme, a small number

of locks could easily be maintained in primary memory. This

alternative is explored subsequently.) Similarly, the useful CPU

time peaks at 30 granules, and again this value is almost reached

(within 1<) with as few as 10 granules. These results are

LOCK SIMULATION -12- May 2, 1077

portrayed graphically in Fiqure 2. The lock CPU costs reach a

minimum at 10 granules. With fewer than this number, the request

failure rate causes enough additional requests for locks that the

overall CPU costs for locking is greater even though the total

cost for each request should be smaller. With more than 10 gran

ules, the reduction in lock request failures does not offset the

costs of setting the additional locks required for each transac

tion .

no._of_granules lavres !totcom!

1 ! 751.914 ! 128!
2 ! 557.232 ! 168!
3 ! 534.390 i 178!
4 ! 523.082 ! 182!
5 ! 490.297 ! 195!
7 ! 506.667 i 189!
9 I 515.117 ! 188!
10 , 472.330 203!
15 484.214 106!
20 462.678 208!
30 472.732 205!
40 454.189 212!
50 441.537 218}
75 430.543 223!
100 420.416 231!
125 463.255 208!
150 460.429 210!
200 435.748 222!
250! 504.021! 192!
300! 447.065, 215!
500I 472.088; 204J
750I 570.089! 168!
10001 546.023! 175!
2500! 815.784J 115!
5000! 1054.088! 86!

Transaction throughput measurements
TABLE 3

The average response time and the total number of transactions

completed at time tmax reached extremums at 100 granules. With

this number of granules, the smaller transactions requiring less

resources were able to run to completion and be recycled more

LOCK SIMULATION -13- May 2, 1077

often. Thus a 'shortest job first1 property was observed.

Moreover, with finer granularity (>200 granules) the locking

overhead increased the average response time.

For this particular situation, response time, throughput, useful

CPU time and useful I/O time are all maximized with a small

number of granules. Hence, a large number of granules (such as

would be required to lock disk sectors or individual records) may

be inappropriate.

To examine the effects of varying the inout parameters on these

initial observations, eight experiments were conducted. In each

experiment, one or two parameters, in addition to the granulari

ty, was varied.

EXPERIMENT 1: The effects of the ratio of the required I/O time

to the required CPU time per entity was investigated. The CPU

rate (cpurate) per entity for a transaction was held fixed at .05

units/entity. The simulation was run with I/O rates (iorate) per

entity set at .01, .05, .1, .2, .3. For each setting of the I/O

rate, the number of granules (lgran) varied from 1 to 5000. The

lock 1/0 rate per granule was set equal to the I/O rate per enti

ty in order to reflect the locks being on the same speed device

as the data. Each simulation ran for 5000 time units. The other

input parameters had the values indicated in Table 1.

The useful 1/0 curves for each setting of iorate was bell shaped

and heavily skewed towards a small number of granules. As such

they are similar to the curves is figure 2 and are not repeated

LOCK SIMULATION -14- May 2, 1077

here. The maximum peak of these curves occurs with fewer number

of granules as the iorate increases. Thus, as transactions be

come more I/O bound, the advantage of additional transactions

running concurrently is outweighed by the additional locking

overhead. Even with CPU bound transactions, however, within 5%

of the peaks was reached with as few as 10 granules. Varying the

iorate had little effect on the throughput measurements (average

response time, and number of transactions completed) as a func

tion of the number of granules allowed. The useful CPU time, as

a function of granule size, showed a similar distribution as the

useful I/O. The costs associated with locking were again minim

ized with less than 100 granules. For all values of iorate,

within 15* of this minimum was reached with 10 granules.

EXPERIMENT 2: In the preceding discussion, the lock I/O rate

(lior) was set equal to the transaction I/O rate (iorate). In

the next series of simulation runs, only the lock I/O rate and

the granularity were varied. The simulation was run with other

parameters as in Table 1. The useful I/O times (usefulio) are

shown in fiaure 3.

AS the lock I/O rate decreased, a larger number of granules could

be afforded before the advantages of more parallelism were out

weighed bv the locking overhead. Of particular interest is the

situation where the lior was set to zero. This case was analo

gous to keeping all locks in main memory. Even with no lock I/O

costs, there was a very flat extremum for usefulio between 10 and

200 granules. Having a granule correspond to fewer than 25 data

LOCK SIMULATION -15- May 2, 1077

base entities (number of granules > 200) resulted in noticeably

poorer performance. If the interpretation of an entity is a 512

byte page (or a 4096 byte sector) a data base management system

should not 'protect1 less than 13,000 (or 100,000) bytes of data

with one lock.

EXPERIMENT 3: The CPU costs for setting one lock are dependent

on the lock management algorithms. To investigate the effects of

varying the CPU rate for locking on the desired granularity, the

simulation was run with CPU lock (lcpur) costs per lock of .005,

.01, .025, .05, .075, and .1. For this series lior and iorate

were set to .2 and the cpurate was set to .05. Other parameters

are as in Table 1.

For a small number of granules, the CPU lock costs were approxi

mately linearly proportional to the CPU rate per lock. For a

large number of granules, the CPU lock costs interfered with

transaction processing, and CPU lock costs increased slightly

less than linearly with lcpur. For all CPU lock costs tested,

the minimum cost occurred at 10 granules.

The maximum amount of useful CPU time occurred with a data base

of 20 granules regardless of the lock CPU rate. In all cases the

graphs resembled the usefulcpu curve in fiqure 2 and are not

repeated here. The lock CPU rate had little effect until the

number of granules became large. Thus a fair amount of CPU time

can be expenaed to manage a small number of locks.

EXPERIMENT 4: The number of entities required by a transactions

LOCK SIMULATION -16- May 2, 1977

is aetermined by the rad parameter. For a rad of 25, the 10

transactions will vary from requiring 25 to 250 entities with an

average number of 125 entities. The simulation was run with rad

values of 1, 25, 50, 100, 250 and 500 on a data base containing

5000 granules. The first case results in an initial average

transaction size of 1/1000 th of the data base. The last case on

the other hand, results in an average transaction size requiring

one half of the data base.

As the needs of the transactions increased, maximum machine util

ization and throughput were obtained with fewer and fewer gran

ules. Minimum response time behaved similarly. The optimum 1*

and 5% intervals of Useful 1/0 are presented in figure 4. Note

that even for very small transactions, 95$ of the optimum was

reached with as few as 10 granules.

EXPERIMENT 5: For the next series of simulation runs, the size

of the aata base was increased to 50000 entities. The transac

tion sizes ranged from using 50 to 500 entities and the simula

tion was run for 15000 time units. The 1* and 5% intervals were

very similar to the results depicted in figure 4 for an average

transaction size of .1* of the data base.

Of particular interest, the optimal number of locks did not ap

pear to be linearly proportional to the size of the data base.

The optimum number of granules did increase with the size of the

data base which is consistent with the outcome of experiment 4.

With both 5,000 and 50,000 entities, however, a small number of

locks (<10) produced results within 5% of optimum.

LOCK SIMULATION -17- May 2, 1977

EXPERIMENT 6: All of the previous runs hao ioovlp values of one.

These experiments thus simulated a system with one I/O path

between main memory and secondary storage. In the next series of

runs, this parameter was set to three and six to simulate, for

example, a data base environment with three and six disk drives

respectively. Other input parameters are the same as in Table 1.

Except for greatly increased magnitude, the output parameters had

a similar distribution as those in Table 2. The useful I/O time

(usefulio) versus the granularity for these simulation runs is

shown in figure 5. Note, with 10 to 100 granules, the useful I/O

increased by a factor of about 2.5 for three I/O paths as com

pared to one I/O path. (The best results possible would be in

creased useful I/O by a factor of 3.) Moreover, as the number of

granules increased three drives became less and less effective.

For 2500 granules, for example, only a 1.5 factor increase in

useful I/O was realized. The results for six 1/0 paths were

similar. Ten to one hundred granules tripled the increase in use

ful I/O. With 2500 granules, the increase in useful I/O was

slightly less than doubled.

EXPERIMENT 7: For some data base systems all of the entities

used need not be locked for the duration of the transaction. To

reflect this property, the simulation was modified so that a

transaction only held a given granule for one half of the time

the transaction was active.

The results were again very similar to those in Table 2.

LOCK SIMULATION -18- May 2, 1977

However, even fewer granules were required to achieve maximum

machine utilization. The lock CPU costs were increased slightly

for a small number of granules. For a larger number of granules,

however, the lock CPU costs were decreased by 'lock releasing*.

Thus the probability of lock conflict was reduced and the

corresponding cost of multiple retrys for one transaction to run

was also reduced.

EXPERIMENT 8: For still other data base systems, locks can be

held while a user or application program pauses for some duration

(often thought of as "head scratching"). The simulation was

modified to reflect this effect by holding all locks for an idle

period of 100 time units (say, for example, about 20 seconds in

the scenario mentioned at the beginning of this section).

The results were also remarkably similar to Table 2. The useful

I/O curve had slightly more variation than the curve if figure 2

with a peak occuring at 50 granules. Ten granules still produced

useful I/O and CPU times within 5% of the optimum. Hence a small

number of granules is still called for even with substantial

pauses in the transaction processing.

IV SUMMARY

Under the assumptions mentioned in the description of our model,

it appears that a small number of granules is sufficient to allow

enough parallelism for efficient machine utilization Furthermore,

a large number of granules, corresponding to locking a page or

record is extremely costly. Any advantages due to additional

LOCK SIMULATION -19- May 2, 1977

parallelism are outweighed by this cost.

This conclusion is strengthened by several assumptions in the

model that were designed to favor a large number of granules.

For example, locks are "well placed" in that the minimum number

of granules, that could possibly lock the number of required

entities, are requested. Moreover, the first granule requested

by a transaction is uncorrelated. Finally, no cost is added for

the deadlock detection and rollback that is present in several

systems with fine granularity. Changing these assumptions would

only make a large number of granules even more costly.

Note, that a small number of granules is optimal whether the

transactions are CPU or I/O bound. This result was expected for

I/O bound transactions since, with one disk, not much overlap is

possible. The surprising result was that even for CPU bound

environments (experiment 1), a small number of locks was desir

able. The simulation runs of three and six I/O paths (experiment

6) also indicated that, where overlap is possible, it can best be

achieved with a small number of granules.

One might have expected that very fine granularity might be

desirable when accessing a very small part of the data base.

However, the simulation results (experiments 4, 5) indicate that

a large number of granules interfere with the system throughput.

Another interesting simulation result is that maintaining locks

in main memory (experiment 2) appears to make little difference

in the desired granularity.

LOCK SIMULATION -20- May 2, 1977

All results point to a small number of granules for implementing

concurrency control in data base management systems. In fact, in

most cases 10 granules appears sufficient. Hence, a very crude

concurrency control scheme seems most desirable.

Consider now the possibility of "predicate locking". Here a log

ical subset of the data base is locked based on the transaction

and its qualification. Three results from the simulation support

the potential viability of predicate locking.

Firstly, with predicate locking only a small number of locks must

be maintained. The number of locks is proportional to the number

of transactions active and not to the size of the data base.

Secondly, while predicate locking may require more CPU time per

granule than physical locking would require, our simulation

results (experiment 3) indicate that for a small number of gran

ules, data base applications can afford considerable CPU costs

for locking.

Finally, the parameter which had the most effect on the desired

number of granules was the number of entities 'touched' by the

transactions. As the transaction size decreased, the desired

number of granules increased. Note, in predicate locking

schemes, the portion of the data base locked is determined by the

transaction, and not a prespecified granularity, effectively mim-

icing the above variable granularity.

It is left as a future project to support or refute these specu

lations on preaicate locking by a more detailed study.

LOCK SIMULATION -21- May 2, 1977

ASTR76

CHAM74

C0DA71

CODA73

C0FF71

DATE75

ESWA76

FLOR74

LOCK SIMULATION

REFERENCES

Astrahan, M. et.al, "System-R: Relational

Approach to Database Management," ACM Transac

tions on Data Base Systems, Vol 1, No 2, June

1976.

Chamberlin, D. et. al, "A Deadlock-Free Scheme

for Resource Locking in a Data Base Environment",

IBM Research Report, San Jose, Ca., June, 1974.

Data Base Task Group of the CODASYL Programming

Language Committee. April, 1971.

Data Base Language Task Group of CODASYL Program

ming Language Committee. February, 1973.

Coffman, E., et.al., "System Deadlocks", ACM Com

puting Surveys, Vol. 3, No. 2, June 1971.

Date, C. J.;An Introduction to Data Base Systems;

Adcison-Wesley, Reading, Mass., 1975.

Eswaran, K. P., Gray, J. N., Lorie, R. A.,

Traiger, L. I.; "On the Notions of Consistency

and Predicate locks in a data base System ", CACM

Vol 19, No 11, November, 1976.

Florentin, J. J., "Consistency Auditing of Data

Bases", The Computer Journal, Vol 17, No 1,

-22- May 2, 1977

GRAY75

GRAY76

LIPS76

MACR76

SPIT76

STEA76

LOCK SIMULATION

February, 1974.

Gray, J.N.,Lorie, R.A., and Putzolu, G.R. "Gran

ularity of Locks in a Shared Data Base", Proc.

1975 VLDB Conference, Framingham, Mass., Sept.,

1975.

Gray, J. N., Lorie, R. A., Putzolu, G. R. and

Traiger, I. L.; "Granularity of Locks and Degrees

of Consistency in a Shared Data Base." Proc.

IFIP Working Conference on Modelling of Data Base

Management Systems; Freudenstadt, Germany; Janu

ary 1976.

Lipson, W. and Lapezak, "LSL User's Manual"; Com

puter Systems Research Group, University of

Toronto, Technical Note No 9, August, 1976.

Maori, P., "Deadlock Detection and Resolution in

a CODASYL Based Data Management System," Proc.

1976 ACM-SIGMOD Conference on Management of data,

Washington, D. C, June, 1976

Spitzer, J. F., "Performance Prototyping of Data

Management Applications", Proc. ACM'76 Annual

Conference, Houston, Texas, October, 1976.

Stearns, R. E. et al, "Concurrency Control for

Data Base Systems " Proc 1976 ACM Symposium on

Foundation of Computer Science, October 1976.

-23- May 2, 1977

ST0N74

STON76

LOCK SIMULATION

Stonebraker, M., "High Level Integrity Assurance

in Relational Data Base Systems", University of

California, Electronics Research Laboratory,

Memo. ERL-M473, August, 1974.

Stonebraker, M. et al "The Design and Implementa

tion of INGRES", ACM Transactions on Data Base

Systems, Vol 1, No 3, Sept. 1976.

-24- May 2, 1977

Pending
queue

Simulation Overview

Figure 1

I/O
queue

CPU
queue

♦max= '0,000 -,

8,000 -

2,000-

Peak

--Useful I/O

— Useful CPU

1 1 1 1

10 100 1,000 5,000

No. of granules (log scale)

Computer time versus no. of granules

Figure 2

k

l,000n Locks in core

k I/O rate =

/2 I/O rate

Lock I/O rate

I/O rate

10 100 1,000 5,000

No. of granules (log scale)

EFFECTS OF LOCK I/O RATE

Figure 3

f

Average transaction size

«0.l% of data base

T (*H-*

Average transaction size

« 2.5% of data base

[(*)]

Average transaction size

« 10% of data base

(,x)]

Average transaction size

« 50% of data base

H*-H

t 1 1 r
.5 I 20 5(20 50 1 200 500 ' 2500 I

10 100 1000 5000

X - peak
()- within 1% of peak
[J- within 5% of peak

Transaction size versus no. of granules

Figure 4

32,000-1

28,000-

24,000-

£

20,000-

a> 16,000-
Z>

12,000-

8,000

4,000-

0

1000 5.000

No. of granules (log scale)
EFFECTS OF MULTIPLE I/O PATHS

Figure 5

	Copyright notice 1977
	ERL-77-34

