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ABSTRACT
"1

ite study two problems of control of large Markov chains, and present a different procedure for
each of them. The computational burden associated with the large number of states is
addressed in the first procedure by a two-level controller, and in the second by a two-layer
controller. ! i I i

INTRO

I
AUCTION

While considerable effort has been recently directed at inventing computationally attractive
procedures for large deterministic control problems, the comparative effort devoted to large
stochastic problems is minute, and most of this has been concentrated on the LQG problem
[Ref. 1].: Moreover the experience gained with the LQG problem is unlikely to be "transferable"
to other formulations. This paper is concerned with one of these other formulations viz.,
the control of large, finite state, Markov chains. "Large" means simply that the standard
procedures for finding optimal control laws or strategies are too cumbersome and so a practical
procedure Involving some kind of approximation or decomposition is needed. j

! i : i • !
tfe present two such procedures: one uses a two1level decomposition method; the other uses a
somewhat novel idea which we have named boundary control or control by exception. As will ;
be^ seen later the second method can also be regarded as a two-layer controller.! »

\ • • « s : i
The only paper we know of which also deals with large Markov chains is by Kushner and I
Chen (Ref. 2]. Starting with the fact [Ref. 3, p. 152] that if the number of controls, as !
well as the number of states, is finite, then the problem of finding the optimal strategy can
be formulated as a linear program (LP), they observe that if the transition probability matrix
lias a certain form then the LP can be solved by the Dantzig-Wolfe decomposition algorithm.
The LP formulation is, generally speaking, not computationally attractive since the number of .
variables is^sxN where s is the number of states and N is the number of controls.

fTWO-LEVEL CONTROL

We have in mind the following situation. The state of the Markov chain represents the amount
of available resources at any given time. At each time demands are made randomly and some of
the resources must be diverted to satisfy them. If too many resources are diverted the
current demand can be easily met but future demands cannot. The reverse happens if too few
resources are devoted to the current demand. The resources are "renewable" in the sense that
once the demand is fulfilled they are once again available. Thus the resources can be
considered to be installed plant and equipment capacity or a constant labor pool.

Problem Formulation

Consider a request or demand process rt, t « 0,1,... with values in a set R different points
af which designate different types of request for service. Also consider a state of service
process st with values in S - {l,...,s}. Different points in S signify different amounts of
resources available for servicing a request. The request process affects the state of service
bs follows. Suppose the latter is in state s.. - 1 when the reaueat r. . r is received. Then

to service r Denote

as loixows. suppose tne latter is in state st - 1 when the request rt -
adecision must be taken assigning some of the resources indicated by at
the decision taken by u^ - u(st,rt) and let U(i,r) be the set of all pos f

can be taken in the condition i,r
possible decision which

ut affects the next state of service according to

po avoid any misunderstanding we emphasize that we are not concerned here with decentralized
control as the term Is used in [Ref. 1]. We have in mind a single controller who has access
(to all the available information.
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tProb{8t+1 - j|st - i,rt - r,ufc} - f(,i,J,ut,r) (1)

where f Is known. The cost associated with this decision is specified by the function
n(i,ut,r). Associated with a strategy u « (u(i,r)} G U - x(U(i,r)|(i,r) € s x R} is the long-
run average cost • I • i J

I TYPE TITLE OF /^TICLE_HERE ON PAGE 1_j
J(u) -lirn^r:'£eb(s' uCs.VrXr:'):*-^" I JxT
. *- ° i i i i

To make this expression meaningful two assumptions are made. I
J ' I ypu /Adl.mis ;.i.il!ii.i lli ft: i • '
A^. rt is a stationary, independent process. Denote the distribution of r by P(dr). This
guaranteesjthat if u.is the strategy adopted thenat becomes a Markov chain with the stationary
probability transition matrix P(u) - (Pij(u)} where (

?1;J(u) -*rob{ac+1 -jjst •> 1} -J(f(i,j,u(i,rt),rt)P(drt) AEr£(i,j.u(i,r),rr).
<&OIV*X0£;.e.9ch.tt in.Ui.the Markov chain has a single ergodlc class in the sense of Doob ,
it, p. 181]. ' • '

(3)

' I

It is then equivalent to assume that there is a unique (row) vector ir(u) » Oh (u),... ,ir0(u))
ait<»h fhnl- I ' •*• I 8Buch that

,v(u)P(u) - tt(u), s(u)l - 1.

vbere I lL (1»... ,1)*• Furthermore the Cesarq limit (2) can then be evaluated as
I ' :fJ(u) - £ iri(u)Erm(i,u(i,r),r).

Kstrategy u is optimal if J(u) - J* A, inf{J(ju)|u Gu}.
Problem Manipulation | ' I

I i

I ! >

(4)

(5)

Jote from (3) that different u may give rise to the same P(u). Hence the optimal strategy may
!»e sought in two stages. In the first or inner stage P is fixed and we find the u with the
Least cost subject to P(u) » P. In the second or outer stage we find the best P2. So let
P±(u) denote the ith row of P(u). Note that it depends only on u(i,«). Let

|CPi " <pilMu> "p± ^r s°*e u},<T>- qp.x...x <?> . I
>i • » r 8 I /

[he\inner problem can now be defined: i ! i /
\ ' • ; ! I
\ ^i* A **•* Em(i,u(i,r),r) A, f m(i,u(i,r),r)P(dr) |/
\| «(i.O ' 1/

s.t. P. (u) A. J f(l,j,u(i,r),r)P(dr) -P.,, J€s /' (6)

u(i,r) eu(i,r), r Gr
T I

:.et k(P) ,» (kf(Px),..., k8(Pa))•. The outer problem then Is:

P* A.min\{(P) - wk(P)

l ' \
J . S.t. WP «• IT, 111 - 1,

' : '

i ! i
i ! i
i > i

(7)

:t is assumed that<Pis compact and k(») is continuous. Hence an optimum strategy exists.
"... \ ! i / :i

Duality conditions
i i

in the problem (7)vpneed not be convex. Even if it were convex this is not a convex program
ming problem since w depends on P In a rather complicated way (it is an eigenvector of P
Corresponding to the largest eigenvalue.) Nevertheless a duality theorem exists as we will see.

1 i , ; 1 i
It is convenient to introduce the matrix Q(P) =P-l with Q±(P) - Q1(P1) denoting its ith row.
Any s-dimenslonal vector c is called a dual variable. Define the Hamlltonian

,H1(P1,c) - Q1(P±)c + k^),^

. i M
IGeoffrion (5) calls such problem manipulation
coabine this with "dualizetion".
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and its minimum

jh±(c) -min{H1(P1,c)|P1 GCp±}.
The results stated below are proved by Varaiya (6J. The first result shows how J(P) can
be computed from Q(P), k(P). ' • I '
* <• '«rvf'i_,T,T! f OF ,* :• Tir» f- HF"« 0\» PAGt* 1 I
Lemma -1 -Consider the s linear equations in the 1-fs variables Y-»c t__

'yl - H(P,c). ' : '

' I

(8)

(i) A solution to (8) always exists; (ii) if (y,c) is a solution then y - J(P) and (y,c+61)
is also a solution'for any number 6.

1 i ; 'For any c TIefc- Authors' Address Here • |

•h(c) » min h, (c), h(c) - max h.(c). i '' I
i 1 * i * : |

The-next result provides a useful duality bound. '
COMMENCE toxtof article —:—r

Lemma 2 Let P,y,c satisfy (8). Then | ; !
-4-

|h(c) < y - J(P) <. J* < h(c) | , ' .
•• i | I

A minimum principle" is also known. I ' i

Theorem 1 P is an optimal solution to (7) if 'and only if there exist y,c such that !
• lii

|Yl»h(c),

lY a H.(p,c) whenever tt. (P) > 0. . ', I
i *• ii i
1 . ' i '

Remark 1» c is said to be an optimal dual variable if these conditions hold for some y»P.
In this case it must be that y = J*. 2. Often A2 may be strengthened to requiring that the
unique solution of (4) be strictly positive in which case the minimum principle is more
elegant:, Yl » h(c) • H(P,c). This result was known earlier. I

The Two-level Controller I < ' .

I !

(9)

With these preliminaries over we can propose a "dual" algorithm for finding the optimal P for
the outer problem. Define 6(c) by '

I . ' ii i

•e^o-^co-Aj; ye)
and^consider the differential equation
\ lc- 6(c).

Theorem 2 (1) For every initial condition c0'there is aunique solution c(t) of (11) with
c(0) - c°. j •

(il) c(t) converges to the set of all optimal'dual variables c for which c'l - c°'l.

(10)

(11)

\ ^

(iii) h(c(t)), h(c(t)) converge monotonlcally to J* and E(c(t)) - h(c(t)) decreases strictly
monotonically to zero. I ' I .'

i , ' '' I
The following algorithm is suggested by Lemma 2 and Theorem 2. / '

SteP °* •Let p0 be-any initial guess obtained, say, from the currently operating strategy.
Find y°,c0 so that y01 . H(p0,c°). If p0 ls, unavailable choose c° arbitrarily.
Step 1. Suppose cn is known. j

(i) Find P1*1 G^Pso that h(c°) -H(Pn+1,cn).
(il) Determine h(cn), h(cn). If h(cn) - h(c'n) < c stop because J(Pn) - J* < c.
(iii) Otherwise, calculate 9(cn) according to (10).

Step__2. |Set c^+l »cn +A6(cn) and return to Step 1. Ais a"small" positive constant.
The only'non-trivial procedure in the algorithm is finding P1*1 since an explicit formula for
H is not availabe. (Recall that H depends on k which is defined by the inner problem (6).)
We turn to the calculation of P"+l by a "lower" level. Suppose cn - (Cl c )• is known
and we want to find P"** by solving ' : / L s «"»™

i ° • i;i

,hi<c>

Now,

H1(P±,c).

I

IH^.O -Q^P^c +ki(Pl) -£ ^- L/c± +ki<p ,.

I i
I !

-3-
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Substituting for \(f±) from the inner problem (6) into (13) gives:

|h±(P ,c) - min £ Pnci " c±+f m(l,u(i,r),r)P(dr)
I x u(i.-) **j « J * JR

&t^J<^Ms.t?.'&*W" V esTYPE TITLE f MM Vj)!.- ill. ill v.. iv r/xvit I j

u(i,r) G U(i,r),r G R.
i I

Substituting this version of H± into (12), and noting the definition of fl> , it follows that
| IType Authors' Nm:---. H-- *• i
j (^(c)- min j [V f(l,J,u(i,r),r)c. + m(i,u(i,r),r)]P(dr) - c, I
j ,Type Aiitta(l".»)VR w.J> J. 1 |

I s.t. u(i,r) G U(i,r), r G r *

whose solution can be written down by "inspection" as:

iCOMMENfc^c)^! .f!^1(c,r)P(dr) AE^c.r), '
where

'R i

^ I • :
♦j/c.r) A, minte^ f(l,j,v,r)Cj +m(i,v,r)|v GU(l,r)} - c±.
ollows that the P. which minimize

!Pij ' / f<1»J»u*(i»r).OP(ds),
It also follows that the P which minimizes (12) is given by

I • I

(14)

(15)

I , ! j I
where v - u*(i,r) is the minimizer in (15). The two-level scheme is sketched below, 'observe
that the.lower level calculations can be conducted in "parallel" as is to be expected in dual
decomposition methods. ,

Ic1*1 -cn +A6(cn)

calculate hj(cn) ... JIcalculate h (cn)

Level 1 updates c1
I

i

Level 2 solves (14), (15).

Remark The scheme presented above was suggested by a practical problem considered in
[Ref. 7,81.

frWO^LAYER BOUNDARY CONTROL

We have in mind the situation of a plant being continuously controlled by a local regulator.
Every once in a while the "parameters" of the regulator are "reset" by a "supervisor". This
can happen in at least two different ways: perhaps some components internal to the plant are
nalfunctlonlng and so the supervisor has to carry out some repairs, or there is a change in
the external environment and the supervisor intervenes to reset the regulator so as to change
the plant s operating point. We represent the state of the plant as well as of the relevant
environment by st, t= 0,1 st takes values in a finite set S = {l,...,s}. A

' ^ T » ! ; /
\ supervisor]

. H7
Hregulator!

Iplant and environment]

iontrol structure like this one is called atwo-layer structure [Ref. 9] in contrast with a
two-leyel structure discussed earlier. In the former the determination of control is split
into algorithms which operate at different time scales whereas in the latter there is a
ispatial division into algorithms operating at the same time scale.
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jThere has been little effort devoted to the study of multi-layer structures although they are '
widely adopted in the control of large processes. The reason for this seems to be the
difficulty in combining in a single formulation these essential features of a multilayer
structure: (1) the supervisor must itcrvene less frequently than the regulator (in terms of
!the figure above x » 1), (il) the supervisor must use considerably less information than the
regulator ;and (iii)^ ,the,supervisor,must solve,a "higher" level problem. i

;Chong and Athans[10) consider an LQG problem in which at the lower layer there are several
decentralized regulators, coordinated by a higher layer supervisor. The supervisor
intervenes by sending signals which predict the interactions between the regulators. The
period between successive supervisor interventions is fixed in advance, and the supervisor
has all of the available information. Thus the second feature listed above is absent.3

.-. f.v.'

Earlier Donoghue and Lefkowitz [12] had considered a static optimization problem with the
same structure. Again the supervisor intervened periodically and had full information. One
_?lAh5_Yariables to be optimized was the frequency with which the intervention is carried out.
•COfjV.JJMflF t-%» ••» ;• -if ' ' -•---..-
Periodic intervention is appropriate if the lower layer represents a production cycle of
fixed duration and the supervisor intervenes at a fixed stage of each cycle. It is less
appropriate if the lower layer represents a "continuous" production process. In the model
presented here the supervisor intervenes only when the state (of the system and environment)
reaches some "extreme" or "boundary" value. That is there is a fixed subset B C s such that
the supervisor intervenes only at those instances x for which sT G b. Furthermore the
supervisor observes the state only at these instances. Thus the intervention times occur
randomly and are determined "intrinsically" by the plant and environment process rather than
being arbitrarily preselected. (Of course periodic intervention is a special case.) Finally
we pay relatively little attention to the way in which the lower layer regulation is carried
out, and concentrate mainly on the supervisor's actions. This permits very different design
procedures to be employed for the two layers. •

! I ; I
Problem Formulation I ' i ': i i l I
The lower layer process is denoted st, t - 0,1^..?. and takes values in S - {l,...,s}. For
each i in S the regulator can select a control u(i) G u(i) so that a strategy of the regulator
is a vector uG U(l)x. ..xU(s). For each u the process st is Markov with stationary probability
transition matrix P(u) =• (Pi:j(u(i))} as in (3) above. The cost associated with u is

To make the limit meaningful we impose assumption A, stated above. Then, using the notation'
Introduced in (4), we have < ' ,

\J(u) "Z Vu)k(1'u(i)) "»(«)k(u),; ; !/ (17)
where k(u) * (k(l,u(l)),. ..,k(s,u(8)))\4

"ecTis°cTLa„: Tissu=a£n„: 2rs*s-^decisloa processea- a^»-^^ «*«.
that s0 j- b0 €Band LrJ^ T^ ^T^ 8hTth: T°"V *tt "• *—*i.e. I ° \ 0 1 •" > '••,• Da the ""><iom times at which se enters B

]W"> -V»<« >y»)l«tw6»j[ ; I / I (lg]
Here . denotes the sample path. The supervisor•.' observation process,is b-.b, b. where '

flguretel^ad^te '̂f roe'̂ ef!"SI "\l VJ'S^'T, "")" *-**> - —*'«" '{se) does not spLd in B. The^^t resuJt'l^p^fin ll^ti? "hl°*" «* ^ that
1 \ '.: / i

i : i !
i3L. ~- I.I •>

^The Chong-Athans model Is better discussed in [Ref. 11]. i
4 '
Suppose the choice of control ut depends on the entire past ut - u(s 8 ). ^^ e
longer Markov, but in the case to be examined later (16) will continue to be'meaningful^

-5-
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S - (1,2,3)

time erased

L.t U •- r> iITYPE TITJ..E Ppiai'CLE HERF,-ON PAGE 1
B - (1,2)

^^^t^'^T"^'' ""'T^f*— >" «"».*.- *• ""-ian and
. Iype Authors' Addross Hore . • J

r^o^bL1^'^^ """^r'™' Pr°P«»le« •« <"t>- ^ "ext task is to propose a«^f*Ti strategies for the supervisor. Thlse strategies must of course be based
laU tim° ltTSV they.'n,St "fle" the ldM th" the "Periisor rese" rte regulat"SsL^iWw. ls"™acheI1hted- *? """ "<* *• formulated as follows. Eacl t£e a

Sa=g\- fcia^bftne -S^^^I^^^\tV}Vtn
i > I

w?in^C!!men':?,arS *I! °,rder before TC Proceed' H"h «*• analysis. Firstly, the process s

about this 2 ttiSf^dXIent ^Sr^^.St^JTi ^ Ltnen'tnf
TnuslhrCrvi^snaris^"?nLh° t 7T~ ^"^°-d^t«e1 inched.

musYsSr-Uft^the^colt8^!:: d°.frj 8"aKteg?- Be£°re Ve Ca» d° this »—^ «Thi^taak is accompl^by tne*n£ resSt? 'i^.X.S'SU. ^STST ^
Theorem 4 For each supervisor's strategy v - (u^ uh\ <n 11B ,ufl . „ ,^rkovlan.with asingle ergodic class. V°™P <°t> " ^(non^rkovlan)^^""

6- I ! .'I
process the limit

£(v) ajs ^ Je kcs^/'cj)

I

is

T^uVdefineS forV^s! 5 eV^'t^H™* **" exl8t fuac"°ns K(e,u*) and
I \ b '

(19)'

l<J<v>
P0(v)K($,ue)

S\B(v)T(B,u0) ,
1 *al \ 1 ! 1 / '

Cne-PoIl.:..(Pl(V) P^(V)) 1S thC stea<*T8^ probability vector of the Markov chain
The functions K and T can be relat-d *•« »•»,« 1 '-, ' I
process reaches the boundary state* at 1Tl ^T T^ Pr°CeSS {StK SuppOSe this
say o that it reaches a boundary state the U\ I ' B* <BetWeen thls tlme *nd the next time
transition matrix P(u6) v(fi $> it tu c process is governed by the probability[x,o), J oaCrlxP<u>- K(e,u»*) is the expected value of the total cost in the inter.

\ 1

• : '

1 ! I

*<VU <8T))+---+M8a_1,ue(So_1))
Note that xand aare random times. T(e,u8) is* the expected value of o-t...___ .. , „„u „ ate ranaom times. T

K(v) - (K(l,ul),...,K(b,ub))» and T(v)

JA(v) -P(V>KWIVK ' P(v)T(v)
Uich can' be compared with (17). Asupervisor's strategy vis optimal if

(T(l,ul)...,T(b,ub))'. Then

-6-
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$(v) -£* &inf{^(v)|vGuB}. '• • ' (22)j
It is possible in principle to calculate the terms p(v), K(v), T(v) from the overall data
namely {P(u),k(u)|u G u}. However it is much more interesting and useful to note that the j
terms can be estimated from the supervisor's observation process (bn) along. We have already ,
indicated this for K(v), T(v). We turn to p(v).

"Theorem 5 Fix v *> (u1,...,u ) in UB. p(v) is the: unique solution to
,p(v) »p(v)PB(v), p(v)l -1 ji| j (23>

where the.probability transition matrix (P0g(v)}, o,B » l,...,b is such that its oth row j
depends only on ua, i.e. Pgg(v) » P5e("a)- (Here again 1 4 (1,...,1)'). ,

• 1 " I
Tv< •Atith->iV ft(lfi-r.< H-i- I

Evidently these transition probabilities can be estimated by the supervisor since {bn} is an
ergodlc process. The supervisor's decision problem can now be formulated as one of constrained
optimization: ! I I

!min[p(v)T(v)]"1 [p(v)K(v)] r t -\ 1
COMMENCE t.jxt g< nrticle, , b, ! ' . 1(8.t. p(v) - p(v)PD(v), p(v)l -1 j , ! I (24)

I v= <u1,...,ub) with u6 G uB, BG B. .
It Is interesting to compare this with the "outer" problem (7). The only difference is in
the form of the cost function. We can now state the optimality conditions for (24). Let
Q"(v) - PB(v) - I. Let Qj(ua), Pg(u<*) denote the. oth rows. Let c be any b-dimensional vector.
Define the Hamlltonian ' 1 . |

'Ha(Po'c) »Qa(Pa>c fK(o,ua) j;, I
I . ' 1 I

and its minimum ' ! I

|ho(c) -min(Ha(PB,c)|uaGua}. ! '• [ |
1 • I

Theorem 6 v is an optimal supervisor's strategy if and only if there exist y»c such that
jYT(v) -h(c) jjl j
|YT0(v) "Ho(PB,c) whenever P(v) >0. ' 1

Moreover y » Jb*. 1

It^ is possible to give an algorithm for find:
are given in [Ref. 15]. One interesting rest
regulator is increased by enlarging the boundary states to §D B. Let j) * be the corresponding
minimum cost. Then ii* < Q. & 1

\i * -J : i ! j/
^CONCLUSIONS ' '
'T • ! ! ,'|

Two hierarchical schemes for control of large Markov chains have been presented. The two-
level scheme gives a novel application of decomposition techniques used in mathematical
programming. The two-layer scheme attempts to incorporate in a formal way many intuitive
features: of multi-layer control. i i *

I Iii * .' I
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