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e study ‘two problems of control of large Markov éhains, and present a different procedure forl
ch of them. The computational burden associated with the large number of states is :

ddressed in the first procedure by a two-level controller, and in the second by a two-layer

ontroller. i | ]

'
| I
LnTRODUCTION b |
| B ———— L
ile considerable effort has been recently directed at inventing computationally attractive
rocedures for large deterministic control problems, the comparative effort devoted to large
tochastic problems is minute, and most of this has been concentrated on the LQG problem
[Ref. 1].. Moreover the experience gained with the LQG problem is unlikely to be "transferable"
o other formulations. This paper is concerned with one of these other formulations viz., :
he control of large, finite state, Markov chains. "Large" means simply that the standard
rocedures for finding optimal control laws or strategies are too cumbersome and so a practical
rocedurﬁ involving some kind of approximation or decomposition is needed. \
. P i H
e presedt two such procedures: one uses a two-level decomposition method; the other uses a .
jomewhat novel idea which we have named boundary control or control by exception. As will :
e seen later the second method can also be regarded as a two-layer controller. . 4
\ . . [ ' o
e’only ‘paper we know of which also deals with large Markov chains is by Kushner and |
en [Ref. 2]. Starting with the fact [Ref. 3, p. 152] that if the number of controls, as f
11 as the number of states, is finite, then the problem of finding the optimal strategy can
e formulated as a linear program (LP), they observe that if the transition probability matrix
a certain form then the LP can be solved by the Dantzig-Wolfe decomposition algorithm,
e LP formulation is, generally speaking, not computationally attractive since the number of .
ariables is\st where s 18 the number of states and N is the number of controls. :
\ 1 .
[TWO-LEVEL CONTROL | : ’ |
We have in mind the following situation. The state of the Markov chain represents the amount
of available resources at any given time. At each time demands are made randomly and some of
the resources must be diverted to satisfy them.. If too many resources are diverted the
tutrent demand can be easily met but future demands cannot. The reverse happens if too few
esources are devoted to the current demand. The resources are "renewable" in the sense that
pnce the demand is fulfilled they are once again available. Thus the resources can be :
considered to be installed plant and equipment capacity or a constant labor pool. !

' \ ‘.
Problem Formulation Ay ‘ v , |

\\ [ ‘l
Consider ? request or demand process Iy, t =0,1,... with values in a set R different points
of which designate different types of request for service. Also consider a state of service
rocess 8¢ with values in S = {1,...,8}. Different points in S signify different amounts of
egources available for servicing a request. The request process affects the state of service
follows. Suppose the latter is in state Sy = 1 when the request ry = r is received. Then
decision must be taken assigning some of the resources indicated by 8y to service ry. Denote
he decisfon taken by u, = u(se,ry) and let U(i,r) be the set of all possible decisiom which
be ta?en in the condition i,r. ug Fffeccs the next state of service according to

. N ; {

o avoid any misunderstanding we emphasize that e are not concerned here with decentralized
konttol as the term is used in [Ref. 1]. We have in mind a single controller who has access
ko all the available information. .
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:hete f is known. The cost associated with thia decision is specified by the function :
(1,ug,r). Associated with a atrategx ue {u(i r)} € U = x{u(4,r)|(1,r) €S x R} 1s the long-
Yun average cost |
{ TYPE TITLE OF /RTICLE HERE ON PAGE 1 1

= 1im =i ST T
rI(|.|) 1im wmm L ZBm(st,u(st,r ).r Y. b
T | I I
To make r.hfe exptiession mearﬁ.ngt'ul two assmptiona are made. |
Pe ulaaty ety vrer

'_ . Tr¢ 1s a stationary, independent process. Denote the distribution of r, by P(dr). This
puarantees; that if u.is the atrategy adopted thens, becomes a Markov chain with the stationary
ptobab:ll:lt.y transition matrix P(u) = {Pij (u)} where ' !
i

!’u(u) - Prob(s = jla = 4} -I f(:l,j,u(i,r ).r )P(dt ) AE f(i.j,u(i.t) r) (3)

(2)

e ———— e e

AgONFor:each. .in.!l .l'.he Markov chaia has a singlel ergodic class in the gsense of Doob i

» p. 181]. . | ' l |
t is theln equivalent to assume that there :lz‘ a' unique (row) vector w(u) = (nl(u),...,!us(u)) :
uch that | ' | ]
1
#(uP(u) = 7(u), v(u)l = 1. : . )
yhere 1 A (1,...,1)'. Purthermore the Cesarq 1 t (2) can then be evaluated as
p(u) =Y v (WEa,u,0),r). ! f )
1 .

|
A strateg‘y u is optimal if J(u) = J* g 1nf{J<u)

1}
1
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Problem Manipulation I

Eote from (3) that different u may give rise to the same P(u). Hence the optimal strategy may

|
|
|
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]
ul. |
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|

___m___.

e sought in two stages. In the first or inner stage P is fixed and we find the u with the .
east cost subject to P(u) = P. In the second or outer stage we find the best P2, So let
P; (u) denote the ith row of P(u). Note that it depends only on u(i,*). Let

\\ Iq) = {P1|P (u) = P, for some ul, CP cpilx...x CP
I

k 4(Pg) A min E L2dud,n),r) A n(i u(4,r),r)P(dr)
J u(d,*) Ill t

n:e er problem can now be defined: i
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1.
[t is assimed thaccpia compact and k(¢) is cfm

I

i
|
I
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' ‘ l
. ' ] | K
| \ 8.t. Pij(u) AI f(i,j,u(‘i,g),'r)l’(dr) Pij' JEs , | ()
l \ u(t,r) € U(L,r), £ € B} | ' S
Let k(P) 3 (kf(l’l),...,k (Pg))'. The outer gtoblem then is: |
p* A m\.((P) = uk(P) , o I
l P \ | ,l I
| . 8et. 'uE\ 7, 7l = 1, | ‘ . | (¢))
|
'

; |
inuous. Hence an optiium strategy exists.
I .
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Duality conditions T

'

n the problem (7)®need not be convex. Even if 1t were convex this is not a convex program-—
ning problem since 7 depends on P in a rather complicated way (v is an eigenvector of P
Iorrespomliing to the largest eigenvalue.) Nevertheless a duality theorem exists as we will see.

i

t 1s convenient to introduce the macrix Q(P) = P-I with Q (P) = Q4 (P4) denoting its i‘h row.
y s-d:lmensional vector c¢ is called’ a dual variable. Define the Hamiltonian
|51(Pipc) - Qi(P Je + k (Pi)) ' l '
\
| S
. l |
| AN )
'3 N u .
|Geo£ftion (5) calls such problem manipulation i to ection". It will be t hat
tombine this with "dualization' C p : seen later ¢ ve
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and its minimum i
by (e) = min{H, 2 ,c)|p, € P,). :
The results stated below are proved by Varaiya
be compuced ftom Q(P) k(P) i
Lemma -1 - !Conbider the s & linear 2{'&‘:’%’&3' ia%h
jvemma - 1 :
| |
71 = H(P,c).

!

1) A solution to (8) always exists; (ii) if
is also a solution ‘for any number §. i
! I

For any ¢ et Authors’ Address Here |
ih(e) = min h,(c), h(c) = max h ()
i~ 1 1 1 1

The
COMMENCE text of articie
Lemma 2 Let P,y,c satisfy (8). Then

I
h(e) <y = J(P) 2 3* < h(e) !
A "minimum principle" is also known. !
Theorem 1 P is an optimal solution to (7) if
IYl = h(c), '
ly =8 4 (Psc) vhenever (@) > 0 |

unique solution of (4) be strictly positive in
elegant:, vl = h(c) = H(P,c). This result was

|
The Two—level Controller l

With these preliminaries over we can propose a,
the outer problem. Define 6(c) by :

R :Oi(c) = h,(c) - ;2 h, (o)

\
\

and\consider the differential equation
|c = 6(c).

0
Theorem 2 (1) For every initial condition ¢
c(0) = cu. |

(11) c(t) converges to the set of all optimal

!
I
i
|

notonically to zero. |

Step 0.  Let PO be.any initial guess obtained,
Step 1. 'Suppose c? 13 known.

(1) Find P €Pso thar n(en) = HepHl, ")
(11) Determine h(c"), h(cn) If h(c®) - h(c“)

and we vant to find P*1 by solving

0.‘.

- 7_-_‘__0'\ -— -
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N
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e-next result provides a useful duality bound. e

The following algorithm is suggested by Lemma 2 and Theorem 2. : .’

; [
. |
b |
[61 The first result shows how J(P) can
l Lb
. I
1+s variables y,c_ I
]

[}

(8)
| |
y.c) 18 a solution then y = J(P) and (y,c+6})

(9

!
I
I
|
ang

|

only if there exist y,c such that

— et h e . — o e - o ———

Remark 1. c¢ is said to be an optimal dual variable i1f these conditions hold for some y,P.
In this case it must be that Yy = J%, 2. Often A2 may be strengthened to requiring that the

which case the minimum principle is wmore
known earlier. |

| !
"dLal" algorithm for finding the optimal P for

a0

4
’

I

l
I
I/ Q1)
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|
there is a unique solution c(t) of (11) with
. a

dual variables c¢ for which ¢'l = eo 1.

(111) h(c(t)). h(c(t) converge monotonically to J* and h(c(t)) - h(c(t)) decreases strictly

oo
d |
P

say, from the currently operating srrategy.

Find vy ,co so that yol = B(Po,co) 1£ p0 isxunavrilable choose c0 arbitrarily.

i

o 1’

] , |

| o ,
i

< € stop because J(Pn) -J* < g,

(111) Otherwise, calculate e(c“) according to (10)
{
Step 2. !Set cotl o o0y Ae(cn) and return to Step 1. Ais a "small“ positive constant.

The only non-trivial procedure in the algorithm is finding Pn+1 since an explicit formula for
H 18 not availabe. (Recall that H depends on k which is defined by the inner problem (6).)
We turn to the calculation of PN by a "lower" level. Suppose e = (cl,...,cs) is known

i
i i
hy(e) = min . H (P,c). ', Col K | 12
P E;ti) i1 : b | / | az
' i i ‘\ | ' K !
1 .
Now, | ‘\ [ l ! !
- vl |
|n g (Pyac) = Q (P e + K, (P,) = }: Pijcj R Y : a3)



Substituting for ki(Pi) from the inner problem (6) into (13) gives:

‘H (P,,c) = min
|11 u(t.-)zj

! . £ )P(dr) = P €
, TYPE TITLE OF E\Rjjx!_f_(é?.‘kgi.i"\tr),’ff% {dr) = Pyl €

P“cj - e +IR m(i.,u(i.t) »r)P(dr)

!
|
A
I
: . . l
i u(i,r) € U{4,r), r ER. |
Substitui:ing this version of Hy 1ato (12), and noting the definition of q)i, it follows that
Type Authiors’ Naps He: : : !
{h,(c) = min J' [2 t.’(i.,_‘],t.l(i,r),r)c:.1 + n(i,u(i,r),r)]P(dr) - c,
i .'l"i'pe/\mh(i','). R 3 o
: ! s.t. u(i,r) €U(i,r), r €ER
whose solution can be written down by "inspection" as:

i H

ﬁCOMMENhi(c)Al;!;:’ ‘fm%(c.'r-)l’(dr)- A £¥¢1(c,rr)._7 Q14)
I R P

where | : I ! :
| Voo
[94(cor) A min[zj f(i,j,v,r)c.'1 + a(i,v,r)|v € U{,1)} - cye (15)

] * i
It also follows that the Pi which minimizes (12) is given by

- l [
Ip* - £(1,1,u*(1,r),r)P(ds), o
| 1 IR | ' |

]
|
|
i
J
I
|
|
|
|
|
|
|
X T |
| R |
| ‘ | E [ |
where v = u*({,r) is the minimizer in (15). !‘rﬁe two-level scheme is sketched below. 'Obsetve

that the lower level calculations can be conducted in "parallel” as is to be expected in dual

decomposition methods. £ |
| .

h
\

AY

lcn+1 - "+ Ae(cn;l oo l Level 1 updates c”

i
I |
N\ l n n, n n | y
N c // hj(e?) ¢ \\hs(c ) |
! Level 2 solves (14), (15),
|

\
\\ : Icalculate hl(cn—)l e « »|calculate hs(c“)

7
.

\ .
Remark The scheme presented above was suggested by a practical problem considered in
i{Ref. 7,ﬁ]. ' i ,
\ I ! I . I
] ’
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HWO-LAYER BOUNDARY CONTROL ' S|

We have in mind the situation of a plant being continuously controlled by a local- regulator.
ery once in a while the "parameters" of the regulator are “reset” by a "supervisor”. This
an happen in at least two different ways: perhaps some components internal to the plant are

malfunctioning and so the supervisor has to carry out some repairs, or there is a change in
he external environment and the supervisor intervemes to reset the regulator so as to change
he plant's operating point. We represent the state of the plant as well as of the relevant
nvironment by s¢, t = 0,1,... . 8¢ takes values 1? a finite set S = {1,...,8}. A |

N ‘ . 4 . .

.

l N T . ' .
\ !

| \ - —{SUPERVISOR
| \, R4 ,

I N —{REGULATOR
I
|
}
|

\ | . :
1

A 'Y ’

1 [PLANT AND ENVIRONMENT]
Y 1 ' .
N [ |
! st

Lntrol structure like this one is called a two-layer structure [Ref. 9] in contrast with a
two-level structure discussed earlier. In the former the determination of control is split
into algorithms which operate at different time scales whereas in the latter there is a

'spatial” division into algorithms operating at the same time scale. .

4=
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éThere ha& been little effort devoted to the study of multi-layer structures although they are '
,widely adopted in the control of large processes. The reason for this seems to be the )
difficulty in combining in a single formulation these essential features of a multilayer
structure: (i) the supervisor must itervene less frequently than the regulator (in terms of
Ethe figure above 1 >> 1), (11) the supervisor must use considerably less information than the
regulator ;and (iii). .the superyigor must solve,a "higher" level problem. i j
——— e e e e em e e e . . ‘. P P —_——

- ———— e g —

i

iChong and Athans{10) consider an LQG problem in which at the lower layer there are several
"decentralized regulators, coordinated by a higher layer supervisor. The supervisor
intervenes by sending signals which predict the interactions between the regulators. The
period between successive supervisor interventions is fixed in advance, and the supervisor
"has all ?f‘gpe~§y§}{ab%g'§qufggtion. Thus the second feature listed above is absent.
Earlier Donoghue and Lefkowitz {12] had considered a static optimization problem with the
same structure. Again the supervisor intervened periodically and had full information. One
-of the variables to be optimized was the frequency with which the intervention is carried out.
S RN ! ; . - oL IERRRER R AT A
a\a P r b el ' .
fa%iéa;éuigtérvention'is appropriate if the lower layer represents a production cycle of
‘fixed duration and the supervisor intervenes at a fixed stage of each cycle. It is less
appropriate if the lower layer represents a "continuocus” production process. In the model
presented here the supervisor intervenes only when the gtate (of the system and environment)
reaches some "extreme" or "boundary" value. That is there is a fixed subset B C S such that
the supervisor intervenes only at those instances t for which S, € B. Furthermore the
supervisor observes the state only at these instances. Thus the intervention times occur
randomly and are determined "intrinsically" by the plant and emvironment process rather than
being arbitrarily preselected. (Of course periodic intervention is a special case.) Finally
we pay relatively little attention to the way in which the lower layer regulation is carried
out, and concentrate mainly on the supervisor's actioms. This permits very different design
ptocedurfs to be employed for the two layers. i |
. )
Problem Formulation I |

r |
The lower layer process is denoted 8¢, t = 0,1,... and takes values in S = {1,...,8}. For
each 1 in § the regulator can select a control u(i) € U(1) so that a strategy of the regulator
is a vector u € U(1)x...xU(s). For each u the process s, is Markov with stationary probability
transition matrix P(u) = {Py4(u(1))} as in (3) above. The cost associated with u is ,
i

. 1 P I

T+ . E k(st,u(st)). |

fot A, stated above. Then, using the notation

. '3(0) = 11m :
\\\ . I Tow ) |
To make the 1limit meaningful we impose assump
introduced in (4), we have
AY

’

(16)
T

——— - =
<]

\\]I\J(“) = Ei “1(“)“(1-“(1)) = ﬂ(u)k(u'),' 4 Qz)
|

Ay

| :
vhere k(t) = (k(1,u(D)),...,k(s,u(s)))’.* |
" | \\ !
Qec?ow formulate the supervisor's observation and decision processes. A diatinéuised subset
Bha S ig chosén. B is callgd the set of boundary states. Suppose B = {1,...,b}. Assume
that sg r bg B\?nd let 0 2 Tg < Ty <...< ﬁn <--+ be the random times at which 8, enters B

i.e. | . gl ‘ I
n\ l ' I I‘
‘Tn_’_l'(w) min{t > T (w)]s, () € BY, o, K I (18)
. , [ , ’ !
Here w dgno:ea the sample path. The supervisor's observation process iﬁ,bo.bl,...,b', vhere
b (e) = s (). D ° 5
) ® T, () '\ | : | (19)

1 I 1' -
Note that the process {b,} 'operates at ' " " the !
. a a different "time gcale” than {s_} as seen in th
figure below adapted from [Ref. 13]. {b,} is obtained from {s¢} by "erdsing" the t;me 2hat
(8.} doef not gpend in B. The next result if proved in Revuz [14]. ]
\ | ’ :
| 3 | : l l
' \\ I : I ,'/ l
‘ NS !
! I
H

- N ! .
e Chong-Athans model is better discussed in [Ref. 11].

\

4 : ) : } )
Suppose the choice of control u, depends on the entire past u, = u(so,....s ). Then 8, 1s no
longer Markov, but in the case to be examined later (16) will continue to be meaningful.



ey

n '

1 1o . :
I ;L

8 T- " 8 = {1,2,3} l
I t . f I &y I
| ' :t. —f—) time erased o
I [ )
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Theorem 3TEEorﬁeabh"ﬁ'Ehe‘ahpetviaor's observation process by, n = 0,1,... is Markovian and
has a single ergodic class. oyl | .

1 Type Autnors™ Address Hore o | .
Thus {b,} inherits the most important properties of {s,}. The next task is to propose a
reasonable class of strategies for the supervisor. These strategies must of course be based
on the b, process, and they must reflect the idea that the supervisor resets the regulator
each time a boundary state 1s reached. The reset idea is formulated as follows. Each time a
boumdary BState'say B is reached the supervisor selects a regulator strategy uB from a fixed
set UB.CU. Thus a supervisor strategy is a b-tuple of regulator strategies )
v e (ul,,..,ub) € yB = pylx,..xub, r, ; |

Now suppése ve (ul,...,ub) € B 4g chosen. ’Then during the random time interval [TgsTy), the
evolution of S¢ 1s regulated by the transigion probability matrix p(ubo). during [TI,TZ} by the
matrix p(ubl),,.., during [Tn,Tn+1) by p(u’R) etc., where bgsbys... 18 the process obgetved
by the supervisor and Tp,Tj,... are the reset times given by (18). i

I X
Several comments are in order before we proceed with the analysis. Firstly, the process S¢
will not generally be Markov any more, although it is Markovian within each interval ,
[TysTn+1). Secondly, if we take UB = U for all 8 in B then the supervisor basically takes
over the task of the regulator and the two layers "collapse". The subset UB is selected
presumably on the basis of simplicity of implementation of the regulator. One way to think
about this is to identify a different regulator with each strategy u in U. UB is then the
set of regulators which are available to the supervisor when the boundary state B 1s reached.
Thus the supervisor's task is of a higher level: it consists of selecting a regulator.
Alternatively we may imagine a more versatile regulator with some variable parameters which
are adjusted by the supervisor. Col i i
K | oy | ,
The supervisor's task 1s to select an optimal strategy. Before we can do this however we :
aust somehow "1ift" the cost function defined at the lower layer to the supervisory layer.
Thia\task is accomplished by the next result. All proofs are given in [Ref. 15). . -

v

Theorem 4 For each supervisor's strategy v = (uli...,ub) in UB the pProcess by, n = 0,1,... is
Markovian with a single ergodic class. Furthermore 1f {st} is the (non~Markovian) state - '
Process the limit ' :[ j
L 19)

! - 8 o
1 % t :
IJ\(") A %&2 o1 & B k(s ,u (s.)) i : : oo

exists wl'\ere\a3 =b for t in [Tq,Tp41). Moteaver there exist functions K(B,u81~5nd :

T(8,ub) define ‘forns € B, uB € B such thar; |
[ -
‘g Pa(VIK(8,u’)

!

[
: S
| [
I [

. 4

| |
1
1w = & P! (20)
| 2 e (MT(8,uf) I} K
B=1 N P .’ |
' t ’
here p(v) = (pl(v),...,pb(v)) is the steady-staté probability vector of the Markov chain
bysn = 0,1,... . A b s '
! N t I ’ I f
The functions K and T can be related to the lowetglayer state process {s¢}. Suppose this
Erocess reaches the boundary state 8 at T, 1.e.'st = B. Between this time and the next time }
ay o that it reaches a boundatg state the {st} process 1s governed by the probability : A
Erangiciqn matrix P(uB). K(B,uP) is the expectgd‘value of the total cost in the interval
T,0), ! \ [ ,' ! i
8 8 roe | J 1
! X(s_,u (8,))+...+k(s_,u (8510 o g : ;
Note that <t a?d 0 are random times. %(B,us)'is'tﬁe expeéted value of o-t. Write , ;
RK(v) = K(1,ul),...,K(b,uP))" and T(v) = (T(Lul)oe.,T(b,ub)) ', Then ;
| N ] I L i .
= m ‘\ f ] ‘ i
| é(v) P(VIT(V) S ) [ (21)‘
, .

which ca@ be compared with (17). A supervis&r’é strategy v is optimal if
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It is possible in principle to calculate the terms p(v), K(v), T(v) from the overall data :
namely {P(u),k(u)|u € U}. However it is much more interesting and useful to note that the i
terms can be estimated from the supervisor's observation process (bn} along. We have already,
indicated this for K(v), T(v). We turn to p(v).

Theorem 5 Fix v = (ul,...,ub) in UB. p(v) 1s the unique solution to—— ~~———— == =
_ . . [}

{P) = PR (W), (WL = 1 L | @3
vhere the;ptobabilicyftrangition masrix {Pgs(v)),‘a,s = 1,...,b 18 such that its ath row
depends only on u%, i.e. Pag(v) = Pag(u®). (Here again 1 A (1,...,1)"). T

!

Tve s Auth B Y ITOR T T 1
Evidently :heéé"tf;;siéioh proﬁabilities can be estimated by the supervisor since {b,} is an
ergodic process. The supervisor's decision problem can now be fornulatqd as one of constrained

optimization: o |

- P
o malWMTMIT [pWRW] g1 b
(oot S B WRP W, w1 =1 s
!

! v=(J“um%wthEUﬁB€¢

It is interesting to compare this with the "outer" problem (7). The only difference is in
the form of the cost function. We can now state the optimality conditions for (24). Let

QB(v) = PB(v) - I. Let Qg(u“), Pg(u“) denote the ath rows. Let ¢ be any b-dimensional vector.
Define the Hamiltonian 1

1B, (Bhe) = Q (BD)c + K(a,u®)

|
and its um

|
|
|
lha(c) = min{ﬂu(lf:.c)luu € u%}. !

' |
|

| |
I l
, |
!

t

'

|

[}

:
Theorem 6 v is an optimal supervisor's strategy if and only if there exist y,c .such that
LyT(v) = (e i

| i

T P2,c) wh 0. ! |
R a(v) Hu( u,c) whenever pu(v) > P.' ' |
| |
. Co ' l
It\is possible to give an algorithm for finding the optimal strategy. This and other results
are\given in [Ref. 15]. One interesting result is this. Suppose the supervision of the
regulator is increased by enlarging the boundary states to 8 D B. Letcg*'be the corresponding
miniomum cost. Then 9* 53. P b
") CONCLUSTONS by l

] ,
Two hierarchical schemes for control of large Markov chains have been presented. The two- i
level 'scheme gives a novel application of decomposition techniques used in mathematical !
programming. - The two-layer scheme attempts to incorporate in a formal way many intuitive
features: of multi-layer conmtrol. :

’/
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