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Abstract

This paper concerns the metatheory of measurement axioms; specifically,

of first-order conditions necessary for the existence of representations.

As (a subtheory of) the universal theory of the representing structure is

satisfied by all representable structures (-tos-Tarski theorem), we dis

tinguish between necessary conditions which are entailed by this (sub-)

theory, trivially necessary conditions, and those which are not logical

consequences of this subtheory, nontrivially necessary conditions.

Every necessary V3-sentence (in a language without function symbols)

is trivially necessary. In many cases, nontrivially necessary 3V-sentences

exists; i.e. such sentences are satisfied by all representable structures,

but not satisfied by some structures representable in elementary equivalents

of the representing structure. In such cases, the class of representable

structures is not a first-order class. Examples of such nontrivially

necessary 3V-sentences are given for extensive and conjoint measurement and

for other common measurement models.

If the representing structure has many automorphisms, this excludes

necessary conditions of certain quantificational form from being nontrivially

necessary. Likewise, if the first-order theory of the representing
_ ___________
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structure has only one countable model (up to isomorphism), as is the case

with ordinal measurement into the ordered real numbers, there are no non

trivially necessary axioms.
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1. Introduction

This paper is a contribution to general axiomatic measurement theory

along the lines developed in Scott and Suppes' (1958) classic paper. Scott

and Suppes deal in general with first-order conditions which must be satis

fied by "empirical structures" or models in order that there should exist

numerical assignments, measures or representations over the domains of these

structures which satisfy specified hypotheses of measurement; namely that

objects satisfying certain "empirical relations" are assigned numbers

satisfying specified corresponding numerical relations. (For an overview of

measurement theory, see Pflanzagl (1968) and Krantz et al. (1971).)

We will here generalize Scott and Suppes' treatment in several ways.

First, Scott and Suppes require numerical assignments to be homomorphisms

in the sense that a numerical relation holds between numerical measurement

values if and only if the corresponding empirical relation holds between

the empirical objects. This formulation fails to encompass many theories,

such as, for example, Adams' (1965) model of inexact extensive measurement,

which requires the existence of a numerical assignment f over the domain

which satisfies only the one-way implication

if xRy then f(x) > f(y)

and not its converse (as required in homomorphic embedding), where R is

an empirical ordering relation. We will use a more general model to accom

modate the foregoing and analogous hypotheses among the theories we consider.

Second, Scott and Suppes consider primarily purely universal first-

order axioms for measurement. Indeed a central theorem of their paper

demonstrates the impossibility of a finite universal axiomatization of

finite interval (and related) structures homomorphically embeddable in the

1



interval structure of the reals. Although it must be admitted that universal

axioms play a central role in displaying the "empirical content" of measure

ment hypotheses, we wish to argue that other sorts of axioms can be of impor

tance in this regard, and to initiate their investigation. In particular,

we wish to consider what sentences (to be called "nontrivially necessary"),

not entailed by necessary universal axioms are necessary conditions for the

existence of representations satisfying a given hypothesis of measurement.

It appears to us that this question has never been studied heretofore; the

nonuniversal axioms (e.g., the Luce-Tukey "solutions" axioms) considered in

fundamental measurement theory are not necessary conditions for the existence

of representations. We will show that there do in fact exist nontrivially

necessary conditions for a great variety of theories, including extensive,

interval, and conjoint measurement. Furthermore, it is possible to give

an analysis of their logical form, and also to say something about what they

"mean."

Third, we emphasize general insight into representation by not requiring,

as did Scott and Suppes, that the representing structure (to be called

measurement structure in the sequel) be a numerical structure. Rather we

allow arbitrary infinite structures.

We consider an analysis of axiomatizability in the present abstract,

general form valuable in that it may yield

— general methods or guidelines for axiomatization

-- general insights into the relationship between properties of measure

ment structures and the corresponding measurement axioms (and,

ultimately, measurement procedures)

— insights into the special role played by numerical measurement

structures (i.e. real numbers) in measurement, as contrasted with



other mathematical structures which could in principle be used as

measurement structures.

This kind of information is often not obtained by the usual methods of

measurement theory because these methods only apply to the study of specific

measurement models, in which the measurement structure and representation

conditions are fixed at the onset of theoretical consideration.

The methods used in our analysis are those of the model theory of

first-order logic. A model-theoretic setup is natural at the level of

generality at which we are working. We choose a first-order language L;

the measure structure M may be any infinite L-structure (i.e. interpreta

tion of L); representations are mappings from other L-structures into M

satisfying chosen requirements of structure preservation. Necessary axioms

for measurement are all those L-sentences true of all L-structures which can

be represented in M. Treatment of unique representability would seem to

require further concepts, and no results for this or other aspects of

measurement theory are obtained in the present paper.

Many measurement models of importance in measurement theory actually

require a more intricate setup than that suggested in the preceding para

graph but one. It has been our policy to study the simple setup, which we

call Simple Measurement, systematically, and later indicate strategies to

apply the methods and results to more intricate situations. This allows

a unified and, we hope, clear presentation of the ideas.

In Section 2 the basic concepts used in our analysis of simple measure

ment are introduced. Section 3 contains an exposition of the theory of

necessary axioms for representability of finite empirical structures: these

are given by the logical consequences of finiteness together with an appro

priately selected subtheory of the set of universal sentences true in the



measure structure M. (Prop. 3.2.2; essentially well-known.) A surprising

further result, Theorem 3.2.6, is that any V3-sentence true of all finite

representable structures is actually a logical consequence of one of these

universal structures.

The heart of the paper is Section 4, containing the theory of necessary

axioms for representability in M of arbitrary structures, i.e. of the

first-order sentences true in all structures representable in M. By

Prop. 2.3.3, necessary and sufficient conditions for the representability

of arbitrary structures in some model of the first-order theory of M (rather

than in M itself) are given by an appropriately selected subtheory of the

set of all universal sentences true in M. Thus our problem reduces to

finding those necessary first-order sentences which are consequences of this

subtheory of the set of all universal sentences true in M and those that

are not. The second kind will be called nontrivially necessary sentences.

As any sentence true in all representable (in M) structures is true in all

finite representable structures, Theorem 3.2.6, quoted above, shows that no

V3-sentence is nontrivially necessary.

Section 4.2 contains a closer analysis of what it means for a sentence

to be nontrivially necessary; on this basis, 3V and V3V nontrivially

necessary sentences are constructed in Section 4.3 for extensive measurement

and two variants of difference measurement, thus proving that such sentences

actually exist. In Section 4.4 the analysis is pursued further: It is

shown that "if the structure M has many automorphisms,, nontrivially

necessary axioms must have many quantifiers." Analysis shows that the non

trivially necessary axioms constructed in Section 4.3 actually contain the

minimal possible number of quantifiers allowed by the theorems of Section 4.4!

The results of Sections 4.2-4.4 are mainly restricted to sentences of quan

tifier forms no more complicated than V3V; Section 4.5 contains a sketch of



how the results of 4.2 at least can be generalized for arbitrary first-order

sentences.

Section 4.1 contains some rather modeltheoretic considerations on how

the choice of a specific measure structure M within the model class of

the first-order theory of M may influence whether there are any nontrivially

necessary sentences for representability in M. It follows easily from

Theorem 4.1.1, a kind of Lbwenheim-Skolem theorem, that there are no non

trivially necessary axioms for ordinal measurement. Another simple but

important result in this subsection is that any type of measurement with

nontrivially necessary sentences cannot have first-order necessary and

sufficient conditions for representability in M.

Finally, Section 5 considers generalizations and more intricate appli

cations of the preceding theory. A major application is Section 5.4, to

binary additive conjoint measurement (introduced in Luce and Tukey (1964);

see also Krantz et al. (1971)). In this section, all minimal V3V-quantifier

prefixes of nontrivially necessary axioms are determined, a total of eight.

Their minimality is proved, and examples of all eight forms are given

(Theroem 5.4.11 and proceding arguments). The proof of minimality requires

generalizations of the results of Sections 4.2 and 4.4 to two-sorted first-

order logic, as well as a new technique called definability analysis which

allows us to relate the two-sorted measurement situation of binary conjoint

measurement to certain single-sorted measurement situations, among others

the ordinal measurement discussed in Section 4.1 and the two types of

difference measurement (originally introduced by Holder (1901); see also

Krantz et al. (1971)) for which nontrivially necessary sentences are given

in Section 4.3. Examples of nontrivially necessary sentences for binary

additive conjoint measurement are then obtained from these examples for

difference measurement.



Another application, in Section 5.5, shows how ordinal (utility) measure

ment with a constant threshold e (see Luce (1956)) can be reformulated

as simple measurement. A nontrivially necessary axiom is then given for

this type of measurement.



2. Basic Concepts of Abstract Measurement Theory

2.1. Notation and Conventions

Standard definitions and notation from set theory will be used through

out this paper. Specifically, a sequence of objects Xq,X,,X2,... of any

kind will be denoted by <XQ,X,,X2»...>; an initial segment of a sequence

<XQ,...,X.> is a subsequence <XQ,X,,... ,X«>, I <_ k; here the original

sequence may be infinite as well. If the terms xQ,x,,... of a sequence

<xn,x,,...> are elements of a given set X (for example, the individuals

of an L-structure, see below), the sequence is also denoted by x. The set

of all n-term sequences of elements of a set X is denoted by (X) ; the

set of all subsets of a set X which consist of exactly n distinct ele

ments is denoted by [X]n. The cardinality of the set X is denoted by X.

We adopt the usual definitions pertaining to first-order languages

with equality with logical symbols: ~, -i , ~ (sometimes replaced by '&'),

V, 3; individual variables: x,y,z,...; finitely many relation symbols R

each specified to be n-ary for some n e to; and possibly finitely many

individual constant symbols c,,...,c, (which will be neglected after

Section 3). Repeated conjunctions and disjunctions are denoted by ~~, >~

as in: ~~<}>.. Atomic formulas are of the forms a, = cu, Ra,•••a ,
i<k 1 i .: i n

where the a's denote constant symbols or variables, and R is an n-ary

relation symbol. Quantifier free formulas result from atomic formulas by

finite application of v, /N, -i. If <J> is a formula, Vx <J> and 3x tj> are

formulas (for any variable x) and in Vx 4> the universal quantifier Vx

(or the existential quantifier 3x in 3x (j>) binds any occurrence of the

variable x in <(> not already bound in <J>; any unbound occurrence of a

variable in a formula is free. A formula without free variables is a

sentence. Formulas which can be obtained by the means explicitly described
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have the property that all quantifiers precede all occurrences of ~, -, -i

and are said to be in prenex form. More generally, conjunctions, disjunc

tions and negations of formulas are again formulas; but we will usually

assume that all formulas are in prenex form, which is possible as any formula

can be effectively converted to an equivalent (see below) formula in prenex

form.

An existential (universal) formula or sentence is a formula or sentence

(in prenex form!) with only existential (universal) quantifiers. More

generally, the sequence of quantifiers in a formula i|. will be called the

quantifier prefix Q, and the formula may be abbreviated as Q<J>, where <J>

is the quantifierfree part or matrix of i|>; then ^ is called a Q-formula,

and similarly for sentences. We abbreviate repeated quantification of a

single type, i.e. '3x,3X2...3x d>* as '3x,x2...x <f>' or '3x<j>'.

A formula is n-ary if and only if it contains exactly n distinct

free variables; more precisely, if a formula is written so as to indicate

which variables it contains, i.e. <J>(x,y,z}, then we will call <j> a

U+m+n)-ary formula to indicate that x = <x,...x.>, y = ^i •••>",«>>

z = <z,...z >, and that these are all the free variables which may occur
I n

in $.

Given a first-order language L an L-structure 1s an interpretation

for L in the standard sense; i.e. a set with relations and constants

corresponding to the relation symbols and constants of R. If A is an

L-structure, the underlying set or domain is denoted by |A|; A is

infinite (finite, countable) if and only if \%\ is infinite (finite,

countable). The elements of the domain are called individuals. If S c |A|,

then the substructure AlS is the L-structure with domain S (which must

contain all constants of A), constants as in A, and relations restricted



A

to S, i.e. if R is an n-ary relation of A corresponding to the n-ary

relation symbol R of L, then the relation on AJS corresponding to R

is RA nSn. A, is an extension of A2 if and only if A2 is asubstruc
ture of A,. If m is amap from |A,| to |A2|, we allow the notation

m: A, —*• Ikp »

i.e. m always induces a map from the L-structure A, to the L-structure

A-.. Much of the paper will study such maps which satisfy extra requirements

to be stated in the next subsection.

The notions of satisfaction and truth of L-formulas in L-structures

can be defined using any of the accepted formalisms; our notation will be

that if A is an L-structure ^(x^-.x ) is an L-formula, and a-|-..an e |A|

we write A|= <j>(a,...a ) for: 4> is satisfied by o^.-.a > in A. A

sentence is true in A if and only if it is satisfied in A. For any set

of L-sentences T, A |= T if and only if A |= (J) for all cj> e T; we then

say that A is a model of T; Md(T) denotes the set of all L-structures

which are models of T; T is satisfiable if and only if it has a model.

T, is a logical consequence of T2, notation T2 |= T,, if and only if

Mdt^) DMd(T2).

Th(A) denotes the set of all L-sentences true in A, and if K is

a class of L-structures, Th(K) denotes the set of all L-sentences true

in all members of K. Two L-structures A, and A2 are said to be

elementarily equivalent if and only if they satisfy exactly the same

L-sentences, i.e. if and only if Th(A-) = Th(A2). The term 'elementary'

is used throughout as a synonym for 'first-order'.

In the paper, basic metatheorems of first-order logic will be assumed,

notably the effective reducibility to a logically equivalent prenex form
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(mentioned above) and compactness: a set of sentences is satisfiable if and

only if all its finite subsets are satisfiable. (See Schoenfeld (1967) for

statements and proofs.)

2.2. The Basic Model: Simple Measurement

We are now ready for a rigorous description of the basic model to be

considered: Simple Measurement. Let L be a fixed first-order language

with finitely many relation parameters and constant symbols appropriate to

the description of hypothesized empirical relationships. The notion of a

structure-preserving mapping m:

m: A, —*• A2

between L-structures will be characterized by a set r

r={*1(x),...,«n(x)}

of quantifierfree L-formulas as follows:

m is a r-morphism if and only if for each a from |A|

A1 f= ^(a) =* A2 |= <J>..(m(a)) , i= l,2,...,n .

Some examples will illustrate the manner in which we can specify the

empirical relationships to be preserved by a representation m by requiring

m to be a r-morphism for an appropriately chosen r. Let L be a language

appropriate for the description of concatenation and order relations, i.e.

3 2
L has a ternary relation parameter R , and a binary relation parameter R ;

let A,, A2 be L-structures, and m a mapping A, -* A-,.

(a) The classical notion of A, being a substructure of A2 1s

obtained if we require m to be a r-morphism for
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3 3 2 2
1 — iX-i = X-,,X-i t X«,K X-iXrtX-,,-iK X-|X«X-.»K X-jX^j-tK X-iX«j ,

i.e. such r-morphisms are 1-1 mappings, and

2 2Va^e |A.j|: A1 |= Ra-ja2 <* A2 |= Rm(a1)m(a2)
3 3Va-ja2a3e |A, |: A^ |= Ra-ja2a3 <* A2 |= Rm(a,)m(a2)m(a3)

(b) The notion of representation appropriate to extensive measurement

(for a complete definition and references see below) is obtained by taking

only

3 2
1 — iX^ —XajK X-iX^X-^jK X-iXrtj"~iKoX-Xrtj ,

i.e. these mappings are not required to be 1-1, and we may have

a-i, a«, a-, 6 |A.. |:

3 3A, |= -iR a,a2a3 and Ap |= Rm(a,)m(a2)m(a3)

Simple Measurement will consist of the representation by a r-morphism

m: E -v M

of ("empirical") L-structures E in a specified L-structure M, to be

called the measurement structure. Thus a particular kind of simple measure

ment will be characterized by a pair <M,r> (which implicitly presupposes

some particular first-order language L).

For example, extensive measurement (Holder (1901); see also Krantz et al

3 2
(1971)) will be characterized by the choice of language with R , R made

in the examples above, and the pair <M,r> where

3 2
M = <R,R ,R > = <JR,+,<> , R: the real numbers

and r was given in example (b) above.
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The model of measurement just described is basically similar to that

given by Scott and Suppes (1958); however, our notion of r-morphism is a

generalization of the notion of homomorphism used there.

Many kinds of measurement studied in the literature require somewhat

more general models, or seem to do so. Thus one may wish to replace the

single measurement structure M by a class K of such structures. For

simultaneous consideration of distinct attributes, such as 1n conjoint mea

surement of such attributes, it is useful to introduce structures consisting

of distinct types of objects, with relations among objects of different

types as well as among objects of a common type. Often it is appropriate

to describe a measurement structure in a different language than the empi

rical structures.

We will consider such models in section 5.3. Often it will be possible

to reduce the study of a more generalized measurement model to the study

of simple measurement; or the techniuqes developed in the analysis of simple

measurement prove similarly useful in the analysis of generalized measure

ment models. This will be demonstrated by examples in sections 5.4-5.5.

Thus the phenomena discovered below in the analysis of simple measure

ment are manifested throughout measurement theory; the choice of simple

measurement as the model in the theoretical development was made in order to

enhance conceptual clarity. Once the ideas are properly understood, it

will be sufficiently clear how they apply in different settings.

We now establish notation for some modeltheoretic concepts which will

play a crucial role in the analysis of simple measurement models. Let, for

any L-structure A, and any class of L-structures K

Eq(A) = the set of L-structures elementarily equivalent to A

(i.e. which satisfy exactly the same L-sentences as A);
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r_1(K) d=f the set of L-structures r-morphically representable in

some member of K

r_1(A) d=f r_1({A}), i.e. the set of L-structures r-morphically

representable in A

,-1(i.e. r (•) is the inverse r-morphic image operator)

F d=f the set of finite L-structures r-morphically representable

in M

(Note that <M,r> is assumed in context.)

The classes of L-structures which will be considered in the following

are indicated in Diagram 1, which is drawn under the assumption that |M|

is infinite (points on the page indicate individual L-structures and the

universe of points is the class of all L-structures).

r_1Eq(M)

Diagram 1
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For measurement theory, the relevant aspect of the basic classes is

the first-order theory associated with each class. For example, Th r" (M)

is the set of first order consequences in L of the hypothesis (which

itself can obviously not be formulated in L) that an arbitrary empirical

structure A is r-embeddable into M. Mathematically, investigation of

properties and relationships of the classes of models 1s more convenient

than direct investigation of the associated first-order theories. Also,

the relationships between the classes of models are more easily visualized.

The following relationships indicated in Diagram 1 follow trivially

from the definitions and the assumption that M has an infinite universe.

1. Me r-1(M)

2. Me Eq(M)

3. r-1(M) C r"]Eq(M)

4. Eq(M) £r"]Eq(M)
5. F C r"1Eq(M), MtF

6. F n Eq(M) = 0

On the other hand, T'^M) ?r_1Eq(M)' or equivalents, 'Eq(M) £r_1(M)'
is a nontriviality postulate, and not always satisfied. In most cases of

interest, M satisfies various non-first-order statements not shared by

most other structures in Eq(M) but preserved under inverse r-morphic

images, for instance cardinality restrictions and archimedian axioms. Such

properties are connected in not entirely understood but essential ways with

the usefulness of M as a measure structure. For example, archimedian

axioms often entail that measurement procedures terminate within a finite

number of steps, a property of obvious importance in actual measurement.

These issues will be clarified to some extent in section 4.
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The only relationship indicated in Diagram 1 which requires further

justification is:

7. FCr_1(M)

This will be demonstrated as Lemma 3.2.1.

2.3. Axiomatization of Thr^EqM

Given a measurement model <M,r>, one can consider various classes

of structures which are representable according to that model, and the

axioms satisfied by the structures in such classes. We wish to find general

properties of such axiomatizations, i.e. properties which are true for all

possible <M,r>, or for wide varieties of <M,r>; and also to gain an

insight as to what properties of an <M,r> affect properties of axiomatiza

tions. We are especially interested in necessary axioms for <M,^-repre

sentability of arbitrary L-structures, or finite L-structures. Can these

axioms be first-order? Can they be universal axioms (i.e. only universal

quantifiers occur)? Are finite sets of axioms sufficient? Are there

systematic procedures for obtaining such axioms?

As a first step in answering such questions, we will find an important

class of necessary axioms for r-morphic representability. Consider the

set of all L-formulas of the following form:

-, [>. -•••-̂ ] ,

ijj, ,...,i|/. variable substitution variants of formulas in T; k >_ 1. These

formulas and conjunctions of such formulas will be called f-formulas. Sen

tences obtained by quantifying over all variables in a f-formula will be

called f-sentences, or, if the quantifier sequence used is Q, Qf-sentences

For example,
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Vy y(y) » Y: f-formula with free variables y

is a Vf-sentence.

Vf-sentences have an important property, preservation under inverse

images of r-morphisms: Let A1, A2 be L-structures, and Vy y(y) a

Vf-sentence, such that

A2 I- Vy Y(y) .

Let <|>: A, •> A2 be a r-morphism. If Vy y(y) were false in A,, i.e.

^h-Yfa)

for some a from |A,|, then for some variable substitution instances

ip,,...,K of formulas in r, and such an a from |A, |,

A1 |= -i -i [*1 (a) ^k(a)] ,

i.e. A- (= ij>. (a), i = l,...,k; ty.(x) e r. So because 4> is a r-morphism,

A2 |= [^(<()(a)) *k(<>(a))]

A2 |= 3y -. y(y) , namely <t>{t)

contradicting the assumption that A2 |= Vy y(y). Thus we have the following

(taking A2 in the above to be ameasurement structure M).

Proposition 2.3.1. Let <M,r> specify a type of simple measurement.

Every structure E T-morphically representable in M satisfies the set

Thwp(M) of all Vf-sentences true in M.

Thus the sentences in Thu=(M) are necessary axioms for <M,r>-mea-
VI

surability. It will be helpful to have a characterization of the <M,r>-

measurement properties common to all structures E satisfying these axioms.
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Let A be an L-structure, {d : ae |A|} a set of new constant symbols,
a

and LA =Lu {d :ae |A|}. The r-diagram Dr(A) of A is the set of
a -_-_--__--_____-- j —

L -sentences (quantifierfree):

Dr(A) ={*(da •••da ): (t)(xr...,xn) er and A|= (j)(a1,.... ,an)} .

Theorem 2.3.2. Let K be a first-order class of L-structures. For

any L-structure A:

A e r" (K) o All Vf-sentences true in K are true in A .

Proof. Let A e r" (K), i.e. A e r" (T) for some structure T e K.

Let (J> be a Vf-sentence true in K, hence in T. Then (J) is true in A

because truth of Vf-sentences is preserved in r-substructures.

To show the converse, let A be an L-structure, A $ r" (K). Then
A

the set of L -sentences:

Th(K) u Dr(A) (*).

must be unsatisfiable. For if this set of sentences was satisfiable, one

could assign all constants in {d : ae |A|} to elements of the universe
a

of some T e K in such a way that the resulting expansion of T satisfies

D_(A). This would mean that the map

m: m(a) = d e |T| , all a e |A|
a

defined by any one such assignment is a r-morphism

m: A —> T e K

contradicting the assumption that A ^ r" (K).
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It follows from the unsatisfiability of (*) by the compactness theorem

of first-order logic that for some finite subset {<J>,,... ,<J> } c D-,(A),

Th(K) u (4).,...,^}

must still be unsatisfiable. Hence we cannot choose elements in any struc

ture in K to represent the new constants, say d ,...,d , occurring in
1 m

<J>-i>.. • ><\>n> such that all the <j>. are satisfied. But this means

K|= va,---am -i [*, <b] .
1 1 ml m

Thus we have a Vf-sentence which is true in K and false in A, for

because {<(>,,... ,<j> } CD (A), we must have

A|= 3a1--.am [^ <j>n_ . Q.E.D.

We can apply this result in the case K = Eq(M), and thus we find that

ThVp(Eq(M)) =ThVp(M) axiomatizes r_1Eq(M). As we have assumed that L
has only finitely many relation parameters the set of Vf-sentences is

decidable. It follows that if Th(M) is decidable, so is Thvf(M); and

if Th(M) is recursively enumerable (and hence, by a device due to Craig

(1953), has a decidable axiomatization), the same 1s true for Th^(M).

From the point of view of measurement theory, these results can be

reformulated as:

Proposition 2.3.3. There is a necessary and sufficient condition for

r-morphic representability of arbitrary structures in structures elementarily

equivalent to M, consisting of the set Th^(M) of universal f-sentences.

Furthermore:

(a) These sentences contain only those relation parameters of L

which occur in T; hence all other structural knowledge of M 1s irrelevant.

(b) If Th(M) is decidable or axiomatizable, so is Thyj^M).
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Another application of Theorem 2.3.2 is:

Theorem 2.3.4. r"](M) is an elementary class ~ r"](M) =r_1Eq(M).

Proof. One direction is trivial; for the other, assume r" (M) is a

first-order class. Now r"l(r"l(M)) = r"'(M); so taking K = r"'(M) in

Theorem 2.3.2, r"](M) is axiomatized by Th^fr"1 (M)). As r"](M) c
r_1Eq(M), Th(r"](M)) DThtr^EqtM)) =Thvf(M). So r_1(M) f r"]Eq(M)
only if ThVp(r (M)) JTh -(M), i.e. there is a Vf-sentence true in

l -1
r (M) but not in M. But this is impossible, as M e r (M). So indeed

r_1(M) = r_1Eq(M).

In measurement-theoretical terms, Theorem 2.3,4 means that there are

only necessary and sufficient first-order conditions for <M,r>-representa-

bility if all models of Thu^M are <M,r>-representable.

2.4. Notes on Section 2

The model of simple measurement, in a somewhat less general form, was

formulated in Scott and Suppes (1958); their model is obtained from ours

by requiring r to be the set of all atomic formulas of L and their

negations, with the exception that the language L need not contain equality<

formulae (i.e. ,x,=x2'); otherwise such a r would force r-morphisms to

be 1-1, which was not required by Scott and Suppes.

In model theory, sets of formulae such as r have often been used to

define classes of mappings between structures and to prove theorems about

categories of structures with such mappings which depend solely on syntac

tical properties of the formulas in r. Our r-morphisms are special cases

of the r-morphisms of Schoenfeld (1967), and the F-maps of Fittler (1969).
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The result of Theorem 2.3.2 is classical, having been demonstrated in

various contexts by Tarski (1959) and tos" (1955) (extensions of structures),

Fittler (1969, 1972) and others; application to measurement theory occurs

in Suppes and Scott (1958).
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3. Representability of Finite Structures

3.1. Introduction

Because any body of actual discrete observations is finite, finite

structures have been important in methodological considerations in measure

ment theory. Thus, for example, Adams, Fagot and Robinson (1970) evaluate

the empirical content of axioms in theories of measurement by considering

which finite lists of "observation" statements are consistent with an axiomatic

theory (that is, a model of the theory contains a finite substructure whose

elements satisfy such a finite list of "observation" statements). From an

axiomatic point of view, the consistency consists in a certain universal

sentence (asserting that there do not exist elements satisfying a given

finite list of "observation" statements) not being entailed by the axiomatic

theory in question. For similar reasons, Scott and Suppes (1958) pose the

problem of first order axiomatization of measurability of finite structures.

They especially stress finite universal axiomatizations because the empirical

validity of such axiomatizations can generally be established more convincingly

than that of infinite or nonuniversa! axiomatizations. Section 3.2 gives

an overview of the facts about axiomatization of measurability of finite

structures which can be shown in the framework of simple measurement.

(Discussion of applications of Vaught's Criterion for finite universal

axiomatizability has been omitted, as this subject has received treatment

elsewhere, see Scott and Suppes (1958), and Titiev (1969).)

At this point, however, we wish to caution against restricting methodo

logical discussion to consideration of measurability of finite structures.

In many situations, the domain of potential observations (i.e. lengths of

objects) is considered infinite. We will argue that in such cases infinitary

considerations are unavoidably involved in justification of a measurement
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procedure, even though such justification, as well as initial calibration

of the procedure, presumably would be based on a finite body of observations.

A measurement procedure consists of an empirically executable algorithm

which yields (arbitrarily good approximations to) a measurement value for

any given object. Among other things it is required that subsequent measure

ment values for various objects be consistent, i.e. it must not be necessary

to go back and modify an earlier measurement value in the light of later

observations. (This does not exclude later improvement of an approximate

measurement value.) This requirement is not a special feature of measurement

procedures, but rather follows from the definition of representation as a

function from an entire domain of empirical objects, assuming that we intend

to use the measurement procedure to construct such a representation.

In a mathematical model, such a sequence of subsequent measurements

may be represented by (1) a sequence of finite empirical structures, each

a substructure of the next, corresponding to the totality of objects which

have been measured at each subsequent instant of time, with (2) a sequence

of mappings from these structures to the measurement structure, each mapping

extending all the previous ones. This corresponds to the requirement that

previous measurement values remain consistent with later obtained measure

ments. By assumption that the potential domain of observation be infinite,

we have that (3) the structures in the sequence become arbitrarily large.

Now assume that a sequence of finite structures satisfying (1) and (3)

satisfied a set of necessary and sufficient axioms for measurability of

finite structures. That would imply that there would be a sequence of

mappings from the structures to the measurement structure. However, and

this is the crucial point, it does not follow that (2) is satisfied; in fact

in sections 4.2-4.5 examples will be provided of such sequences of struc

tures, each measurable but only by constant revision at finite stages, of
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previous measurement values. These examples occur in settings of practical

importance, such as extensive measurement into <R,+,<>; moreover, such

occurrences seem to be unavoidably connected with the existence of empirically

executable measurement procedures, of whatever kind. This may seem para

doxical (as we seem to be arguing that measurement procedures can't work

in such circumstances) but of course the union of the sequence of finite

structures is an infinite structure which simply cannot be measured. The

point is that no axioms for measurement of finite structures, and no finite

set of observations, can strictly exclude this structure. (Note that, as

we shall see below in section 3.2, necessary and sufficient axioms for

measurability of finite structures can always be universal, so that the

union of our chain of structures does in fact satisfy all these axioms.)

3.2. Axiomatization of Th(F) '

The initial fact about measurement of finite structures is that we

inherit a set of necessary and sufficient axioms from r" Eq(M). This was

already argued by Scott and Suppes (1958):

Lemma 3.2.1. F c r"1(M)

Proof. Let A e F, that is, |A| is finite and A is r-embeddable

into some T' e Eq(M). Let {x,,...,x } be the image of A in T under

some r-morphism A -»• T; let <J>(x,---x ) be the quantifierfree description

of the relations among x.-'-x in T:

<f>(x-.---xJ = R,(x. •••x. ) iR,(x. •••x. ) •M*--)
• ii 1 k 1 k

which is a finite L-formula because by assumption there are only finitely

many parameters R-i",Rm in L, and ^xi,,,xn^ 1S a finite set. Then clearly
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Th 3a1---an ♦(a1---an)

and so, because T e Eq(M),

M|= 3a1--.an (frU^-.a^ .

But now any instance Cy-i• •"yn^ in M of this existential assertion satisfies

Ml(y1---yn}atTl{x1---xn} .

[__, = isomorphic; T[S = T restricted to subuniverse S] as <j> describes

r|{x-|««'X } up to isomorphism. As we can by hypothesis r-embed A into

TKxt'-'X }, we can r-embed A into Ml{y,"-y } and so into M itself,
'in In

so that A e r (M). As A was arbitrary in F, we find that F c r" (M).

Remark. The argument remains valid under the assumption that only

finitely many relation parameters R-i •••&-- occur in formulas in r, regard

less of the number of relation parameters in L.

Lemma 3.2.1 justifies the following conclusion:

Proposition 3.2.2. A finite structure is r-morphically representable

in M if and only if it satisfies Thv=(M).

This entails that any axiomatization of Thv=(M) is an axiomatization

for r-morphic representability of finite structures in M. Conversely, as

will be shown next, axiomatizations for r-morphic representability of finite

structures in M yield axiomatizations of Thv=(M).

Lemma 3.2.3. Let T be a set of universal L-sentences (with possibly

one 3V-L-sentence). If all finite models of T are in r (M), then all

models of T are in r" Eq(M).
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Proof. Let A e Md(T). If A £ r Eq(M), then, as was shown in the

proof of Theorem 2.3.2, there are <J>,•••<!> e Dr(A) involving d ,...,d ,
I n l Xi x_

I m

x,,... ,x e |A|, such that
1 m ' '

Mh-»3a1---ani [^ -••• -<J>n]

If T contains an 3V-sentence, let yi*"yk e |A| form an instance satis

fying the existential quantifiers of that sentence; otherwise let k = 0.

The finite L-structure

contains x,,...,x , and therefore satisfies
1 m

A' |= 3a1---am [^ <J>n_

so that A' $ r" (M). But also, by the preservation of universal formulae

(e.g. sentences) under substructures, A' e Md(T), and hence by hypothesis

A' er"](M). We conclude that Aer_1Eq(M).

Proposition 3.2.4. Let T be a set of universal sentences. T axioma-

tizes F (i.e. r-morphic representability in M) in the sense

VL-structure A: Afinite => [Aer_1(M) <> A|=T] (*)

if and only if T axiomatizes r" (Eq(M)) in the sense

VL-structure A: [Aer"]Eq(M) ~A|=T] . (**)

Proof. If T satisfies (**), then T j= Th Vf(M) and F |= T, so

Proposition 3.2.2. T satisfies (*).

Let T satisfy (*). Then all finite models of T are in r~ (M),

so by Lemma 3.2.3, all models of T are in r" Eq(M), so
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AM =* Ae r"]Eq(M) .

If A e r Eq(M), not A \* T, then for some $ e T

not A ^ <J> , <J> = Vx,-"X ^(x,"»x ) , ^ quantifierfree

A|= 3x1---xn -i^(x1---xn)

Al{V'Vcr"ck* ^ 3xi'"xn"^V*^

where a,,...,a e |A|, A [= i|>(a,• •*a ), and c, ,...,c. are the constants

of L (1f any). But Al{a,---a ,c, •--c. > 1s a substructure of A, hence

in r" Eq(M), and is finite, hence in F, and

not AlCa^'-a ,c1«««ck} |= T

contradicting the assumption (*). Hence we have A € r" Eq(M) => A (= T,

completing the proof of (**).

The reverse process, for obtaining axiomatizations for r" Eq(M) is

of interest because in actual practice one can sometimes obtain efficient

axiomatizations of r-morphic representability of finite structures in M,

in the sense of (*), directly, for example cancellation laws for conjoint

measurement. In such cases this 1s probably more economical than use of a

decision procedure for the Vf-theory of M or more general and unnecessarily

powerful procedures.

We note that Lemma 3.2.3 is the strongest possible generally true

proposition of its type. In fact, 1f we consider the next possible case

(with respect to the classification of L-sentences by their quantifier

prefixes in prenex form) we find a counterexample to the assertion of 3.2.3

as extended to that case:
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Counterexample 3.2.5. Let L, M, r be arbitrary subject to our general

assumptions. Let T consist of the set of existential axioms:

{'3an---an I>Aa. j*a.]': new} = T .u n l7j i j

Then M (= T, all finite models of T are in r" (M) (as there are none),

and not all models of T will belong to r Eq(M) unless this set con

tains all infinite L-structures (which it normally would not).

On the other hand, the reasoning employed in proving the implication

(*) => (**) is 0f significantly wider application. We showed then that a

universal axiom true in F is true in r" Eq(M); among other things it

follows that such an axiom is a logical consequence of some Vf-sentence in

Thwp(M). All this and more is true for arbitrary V3-sentences (which by

cumulativity of our prefix classification, include existential and universal

sentences).

Theorem 3.2.6. Let L have constants {c,,...,c.}, if any.

Any V3-axiom necessary for r-morphic representation in M of finite

structures is necessary for r-morphic representation of arbitrary structures

in (members of) Eq(M), and hence a consequence of Thup(M).

In fact, if * =Vxi*,,xm 3y-i***yn ^(x-|,**xm»yi",yn)» ^ quantifierfree

is an L-sentence, then

1) either

(i) (J) is unsatisfied in a structure in r" (M) with at most

m elements distinct from the constants of L, m >^ 1» or

(11) ThvF(M) h*
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and 2) we can effectively find a universal sentence x such that

(1) h-x -v (j,

(ii) xeTh r"]Eq(M) «• <fr eTh(F)

(in) x = vxr-.x vv ^•••w^J
Vn'-'V e{x,--«x .c ---c } ' nyl ynetxl Vcl V

Proof. Assume, contrary to l(ii), that not Thw«(M) (= <J>. Then there

is an L-structure A e r" Eq(M) such that A |=-i<J>, i.e.

AMxrxmVyr.yn^(xrVr.yn) -

Choose, on the strength of this, an a,,...,a e |A| such that

Ah »>!•••>.-•*(«1---«B.y1 -•yn) •

Because substructures are r-substructures,

A' dif Al{ar--am,Cl-..ck} er^EqM .

Clearly A' has at most m elements distinct from the constants of L

unless L has no constants and we were considering an existential sentence,

i.e. m = 0. In this case, let a e |A| be arbitrary, and set

A1 = Al(a}.) and by preservation of universal formulas in substructures,

A' KVy1--yn^(a1--am,y1...yn)

A' h-Vxr..xni3yr..ynMx1--.xm,y1...yn)

But by Lemma 3.2.1, A' eFCr'^M), so l(i) is true.

Thus either l(i) or l(ii) is true. This Implies the initial assertion

of the theorem; to show 2, first note that for the choice of x in 2(iii),

2(1) is true, and hence x e Th r (M) *» <J> 6 Th(F). If x were false in

some A e r (M), then "cutting out" a counterexample instance ^xi*,,xm^
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as in the proof of 1, we obtain A' e F in which <J> must be false. So

X$Th r_1(M) => (j> tTh(F). Q.E.D.

Thus any V3-axiom for measurement is either replaceable by a specific

necessary V-axiom (which we can effectively obtain from it), or is not

necessary for measurability of finite structures (the cardinalities of which

we can effectively obtain from the V3-axiom). This essentially settles the

general questions concerning the kinds of first-order consequences of

measurability which have been considered of direct empirical significance

in the methodological literature: V3 and simpler sentences. It also sheds

light on the fact that V3-axioms in representation theorems tend to be

unnecessary for measurability (of course these structural axioms play a

crucial role in the existence of measurement procedures and unique repre

sentations).

Again, Theorem 3.2.6 is as strong as possible for a general assertion

of this kind. For we have:

Counterexample 3.2.7. Let M be the real numbers.

(a) For any language for the real numbers containing "+", and any r

such that F f 0, let <J> be 3xy Vz [x+y?«z - z+z = z] (non

closure of +).

(b) For any language for the real numbers containing ">" or >, and

any r such that F t $, let <J> be 3x Vy [x \ y] (minimal

elements).

In both cases F M. but M=Ff=-»<|>, so Mer'^M), $ k Th r"1 (M),

<J> \ Th r" Eq(M). The example is fairly general. In case (a) we could replace

IR by any infinite group without nontrivial finite subgroups; in case (b)

by any infinite partial order without minimal elements.
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Theorem 3.2.6 yields the following result on finite axiomatizability:

Proposition 3.2.8. The following assertions are pairwise equivalent

and the first pair implies the second. (See Diagram 2.)

1(a) There is a Vf-sentence <t>

i(a) <j •>> i(b)

V

Th(F) = {\\i: 0i- ip, $: L-sentence}

i(b) There is a V3-sentence <f>'
ii(a) < > ii(b)

Th(F) = {*: <j>' h *, r. L-sentence} Diagram 2

ii(a) There is a Vf-sentence <J>

For any L-structure A: A finite => [A eF «*• A|=<j>]

ii(b) There is a V3-sentence <J>'

For any L-structure A: A finite •* [AeF <> A|=(J>'] .

Proof. In both cases, (a) => (b) is trivial.

1(b) ^ 1(a): If a V3-sentence <f>' axiomatizes Th(F), then (j)'eTh(F),

and so by Theorem 3.2.6, part 2, $' is implied by a Vf-sentence <f> in

Th r"'Eq(M) c Th(F). But then <f> axiomatizes Th(F), as •- $ «-+ <J>'. Note

that in this case Th(F) =Th r^EqfM).

ii(b) =* ii(a): If a V3-sentence <(>' axiomatizes F, then <J>' e Th(F)

and so by Theorem 3.2.6, part 2, <J>' is implied by a Vf-sentence <j> in

Th r Eq(M) CTh(F). Assume that A is a finite L-structure. Then

A f= (j> =• A |= <)>' =>AeF=>A^ThF=>A^(j>.

i(a) =• ii(a): Assume i(a). If A e F, then obviously A |= <J>. If A

is finite and A |= <J> then A e r" Eq(M), because r" Eq(M) is an
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elementary class, by Theorem 2.3.2 and as we noted above Th r" Eq(M) = Th(F)

in this case. But then A eF by the definition of F.
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4. Representability of Arbitrary Structures

4.1. Nontrivially Necessary Sentences

In section 4, necessary sentences for <M,r>-measurab1lity of arbitrary

L-structures will be considered; that is, Th r (M). As r" (M) c r" Eq(M),

Th r" (M) contains Th r Eq(M), which was considered in detail in pre

vious sections. Thus it will be sufficient at present to find the sentences

of Th r (M) which are not contained in Th r" Eq(M). These sentences

will be called nontriviany necessary whereas the sentences of Th r" Eq(M)

will be called trivially necessary.

From these definitions and Theorem 2.3.4, we directly obtain a basic

result:

Proposition 4.1.0. If there are any nontrivially necessary axioms for

<M,r>-measurement, then r" (M) is not a first-order class.

In the present subsection, some basic relationships between the situa

tion of M in Eq(M) and nonexistence of nontrivially necessary sentences

will be discussed. In 4.2, "inductive" processes on structures will

be introduced in terms of which nontrivially necessary sentences are

characterized. Subsection 4.3 provides examples of nontrivially necessary

sentences in a familiar setting, viz. extensive measurement and difference

measurement. In 4.4 it is shown that certain properties of the structure

M exclude sentences of certain syntactical forms from being nontrivially

necessary. In fact the examples for extensive measurement in subsection 4.3

are sentences of the simplest possible forms not excluded by the results of

4.4 as applied to <H,+,<>. The theory of 4.2-4.4 applies mainly to

V3V-sentences. In 4.5 we show how to generalize the ideas of 4.2 to arbi

trary sentences. The basic nonexistence theorem for nontrlivally necessary
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sentences is an analogue of the Lowenheim-Skolem theorem of first-order

logic. (See Bell and Slomson (1971), p. 30.)

Theorem 4.1.1. If all countable models of Th(M) are in r" (M),

then r" (M) has no nontrivially necessary axioms.

Proof. Let <j> be a nontrivially necessary sentence. Then there is

some L-structure T e r" Eq(M) such that T (=-kJ). By the Lowenheim-Skolem

theorem, there is then a countable T' e r" Eq(M) with this property

(i.e. {-t<j>} U Th r" Eq(M) is satisfiable, so countably satisfiable). Again

by the Lowenheim-Skolem theorem, T' e r" (M1) for some countable M' e Eq(M)

(i.e. Dr(T') u Th(M) is satisfiable, so countably satisfiable; D_,(T')

was defined in preceding Theorem 2.3.2). But by hypothesis, M' e r" (M),

so T* e r" (M), T't=-Kt>; this contradicts the assumption that (j> was

nontrivially necessary. So no such <J> exists.

In some cases, the hypothesis of Theorem 4.1.1 will be true irrespec

tive of the choice of M within the class K = Eq(M). An important example

is the case where all countable models of Th(M) are isomorphic; Th(M)

is then called an ^-categorical theory. (Note that ^-categoricity

does not imply that all models of a given other cardinality are isomorphic,

or vice versa.) For example, Th<3R,<> is NQ-categorical, by a famous

theorem of Cantor (1895). With Theorem 4.1.1, this entails that there are

no nontrivially necessary axioms for ordinal measurement (Krantz et al.

(1971)), where M = <K,<>, r = {x<y, x^y}.

The following applications of Theorem 4.1.1 are slightly more technical

than the rest of this paper.
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Theorem 4.1.2. For any r and M: There is a countable M' e Eq(M)

such that r" (M') satisfies no nontrivially necessary sentences. A fortiori,

such M' of any larger cardinality exist.

Proof. Enumerate all L-sentences <b. such that

M(= <J>. and 3T., T. eEq(M): r"1^) r* ♦1 • (*)

Note that there are at most countably many <j>.. We will be assuming that

there are infinitely many 6. and T.; otherwise the following argument

can be drastically simplified. By the reasoning of the proof of Theorem 4.1.1,

we may take all the T. to be countable; by renaming elements we can get

all the T. to have pairwise disjoint universes.

We will construct a sequence of L-structures S., i e w, such that

(i) S. e Eq(M) and S. countable for all i

(11) s-j+i 1S an elementary extension of S. for all i

(iii) T. er"1^.) for all j<i
«j *

(iv) T. and S. have disjoint universes, for all j > i
j •

as follows: Let

(v) S0 =TQ

By a compactness argument, given SQ,..*.,S. satisfying (i)-(v), there

exists S.+, satisfying (i), (1i), (iv), and

But then clearly SQ,...,S.+, satisfies (i)-(v).

Now consider the union of the elementary chain SQ,...,S., ie oj:

M' = US, ,

ieo)
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It follows that

(i) M' e Eq(M), M' countable

(ii) For all iew, T. er_1(M')

and by the choice of the T^ r (M') has no nontrivially necessary

sentences.

An M' of any given larger cardinality with this property can be

found by a compactness argument. (See Bell and Slomson (1971), p. 82.)

Thus, given the theory of a measure structure, we are still free to

choose a model of any infinite cardinality avoiding all nontrivially

necessary sentences, if we so wish.

Given r, and M or Th(M), we can define the nontrivially

necessary sentences in Th(M) as the L-sentences <j> satisfying

3^: T, (= Th(M) , r"1^) h*
3T2: T2 [= Th(M) , r"1^) ¥ 4>

Hence it can be asked whether a countable measure structure M' (= Th(M)

exists such that all these sentences are in fact nontrivially necessary

axioms for r (M'). An answer to this question requires sharper analysis

of nontrivially necessary sentences such as given in the next subsection.

We conclude the present subsection with some similar considerations

concerning the hypothesis of Theorem 4.1.1.

Proposition 4.1.3. Let Th(M) have only countably many countable

models (up to isomorphism). Then

(i) There is a countable M' |= Th(M) such that all countable models

of Th(M) are in r'^M').

(ii) There is a countable M' |= Th(M) such that for any countable T (= Th(M)

Ter'V') => for any countable T' |= Th(M), Ter_1(T') .
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The hypothesis of Proposition 4.1.3 can be weakened somewhat but not

omitted, (i) can be shown by the argument of 4.1.2; M' in (ii) can be

taken to be a prime model of Th(M); see Chang and Keisler (1973). For

example, if M = <F,£,+>, then a prime model exists, namely the rationals

<*),<,+>. Thus Th r"1(<Q,<,+>) DTh r"](<F,<,+>). It would be interesting

to know whether these two theories differ for any T; e.g. does r" (<F,<,+>)

miss any of the nontrivially necessary sentences of r" (<(],<.,+>)?

4.2. Nontrivially Necessary (V)3V-sentences

We wish to discover the simplest quantificational forms of nontrivially

necessary axioms for Simple Measurement models <M,r>. As we shall soon

see, this will entail looking for a mathematically informative characteriza

tion of nontrivially necessary 3V-sentences. In a broad sense, the idea

of this characterization applies to nontrivially necessary axioms of any

quantificational form. This will be exploited in section 4.5, where some

of the basic results of the present section will be generalized for arbitrary

quantifier prefixes. For the more detailed investigations of sections 4.3,

4.4, and 5.4, however, more careful attention to the details of the descrip

tion of nontrivlal necessity for 3V-sentences will be required. In this

degree of detail, our description generalizes easily to the case of V3V-

sentences, and in a less useful way, to V3V3-sentences; beyond that, signi

ficant new aspects arise. Thus the discussion of the present section

focusses on V3V3-sentences and eventually only on V3V-sentences.

Our reason for starting with 3V-sentences is given by the following

basic result:
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Proposition 4.2.1. Any V3-sentence necessary for <M,r>-measurability

is trivially necessary (i.e. in Th r" Eq(M) as well as Th r" (M)).

Proof. Assume <J>. is an V3-sentence, 4> e Th r" (M). As F c r (M)

by Lemma 3.2.1, <t> eTh(F). As $ is V3, *eTh r_1Eq(M) by Theorem 3.2.6.

Together with Proposition 2.3.3, this would seem to solve the problem

raised by Adams (1974): Characterize the V3-theory of r" (M). For clearly

this theory coincides with Thv*(M). This result would seem to contradict

Adams' motivation for his question. For in his discussion of extensive

measurement (i.e. representation of order by order and concatenation by

addition, in M = <F,<,+>; see section 2.2 above), Adams gives the

"empirically confirmable condition"

(a < b) & (Vx)(x< b -*• x*x< b)

which is consistent with Th^M), but clearly contradicts the V3-sentence

(which is in fact nontrivially necessary for r-morphic representation into

<F ,<,+>)» F : positive real numbers.

Vab 3x ~i[a <b & (x <b •* x+x <b)]

i.e. Vb[(3a a<b) -»- (3x)(x<b & x+xfb)] (*)

We resolve this conflict by noting that Adams' formalization of extensive

measurement includes treatment of '+' as an operation symbol. Such symbols

are excluded throughout the present paper, and reformulation of the example

with a ternary relation symbol for '+' would raise the quantificational

complexity of the sentence (*) above V3. (See Example 4.3.0.)

Examination of the proof of Theorem 4.2.6 shows that it is in general

incorrect for languages with operation symbols. The example (*) shows
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further that in fact Theorem 4.2.6 and Proposition 4.2.1 are in general

false for such languages. Thus the restriction to languages without such

symbols is essential at this point.

We now proceed to the description of trivial necessity of 3V-sentences.

The first step is a description of necessity of 3V-sentences: An 3V-sentence

if* is necessary for <M,r>-measurement if and only if no model of the V3-sentence

-iip can be embedded in a r-morphic pre-image of M (i.e. a structure

T e r (M)). The embeddability in a structure T of a model of —iip can

be described more carefully using an idea due to Lbwenheim (1915) and Skolem

(1922). We illustrate this by an example before proceeding to a general

formal description (which will apply to arbitrary -iV3V3-sentences). Let

-up = Vx 3y 4>» and let a structure T be given. Consider the construction

(possibly noneffective):

SQ: pick xQ e |T|

S}: unless T f= Vy-i(f)(x0,y), pick y=x] e |T|: T |= <t>(x0,x-)

Sr. unless T |= Vy-^U^-, ,y), pick y=xi e |T|: T |* (frU^-pX.)

If, for any i > 0, T f= Vy-i<f>(x.,y), we say the process terminates (at

stage i). It is easy to see that if the process never terminates, the

substructure of T:

r =Tl(x0,xr...}

will satisfy T' (= Vx 3y <J>(x,y). Conversely, if T' is a substructure of

T satisfying Vx 3y <J>(x,y), then the construction can be executed on T

in such a way as not to terminate at any finite stage. This is Lbwenheim's

idea, which we proceed to formalize.
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Definition 4.2.2(a). Let £, m, ne u>, and 4>(x-|---x&>yy-«y ,z.-'-z )

be a universal L-formula. Let T be an L structure, ? e |T| , Xc |T|.

(i) A <j)(t,m,n)-induction from X on T is a countable (finite or

infinite) sequence

<t,A ,A«,A-i,...>

corresponding to a process of the following type or an initial segment of

such asequence, containing at least <t,X,XQ>. (Note that such processes

need not be effective in any sense.)

"Given Xand t, set XQ =Xu{t^...,^}, where
t ={tr...,t.h If XQ f 0, go to stage 0.
Stage k (kew): Given X..

If Vy e(Xk) 3?(y) e|T|n: TY4>(t,y,z(y)),
let Xk+1 =Xk U(^ U)m{Zl(?),...,zn(?)})

for some such z(y) =<z1(y),...,zn(y)> e |T| ,

and go to stage k+1

Otherwise, terminate at stage k^."

The (|>(t,m,n)-induction from X on T corresponding to such a process

is the sequence

<t,X,X~|, ...,Ai >

if the process terminated at stage k; otherwise the sequence

<t,X,X0,X.|,...,X.., ieu)> .

In the first case we say the induction has length k, in the second case the

induction has infinite length.

(ii) y e |T| is a termination vector if and only if T |= Vz~i(j)(t,y,z).
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It should be noted that each (f>(?»m,n)-induction is a realization of

a formal process which can be described formally without reference to any

particular objects or any particular structure. In this description,

variables are used to denote the objects which play a role in actual induc

tions, and the sets of objects X,XQ,... are replaced by sets of variables

denoting the objects. Thus the fixed vector t =<z,,...,zn> (where

before t, ,...,t were particular objects) is now a sequence of variables

tj,...,t ; each time a new object is called for, a new variable is intro

duced (even though in some actual inductions, an old object will sometimes

be able to fulfill the new role). Each stage, k, of an induction process

is described by a formula ip. , which depends only on the original cf>, £,

m, n, and the size of initial set X, which we will denote by c. In

defining i|>. it will be helpful to simultaneously define a function

f: a) -*• w such that for each k, {t, ••-t^x,-- *xf/k\} is the complete

list of variables used in describing the process up to and including stage k,

Thus ty. is generated by the process:

Definition 4.2.2(b).

>0 is the empty formula. f(0) = c. Go to stage 0.

Stage k, k > 1. Given \\>. ,, f(k-l).

Let g be a 1-1 enumeration of the m-tuples to be

considered at stage k:

g: -[vvxr"xf(k-i)}ni
— n,2,...,u+f(k-i))m-i}

and z(») be the assignment of an n-tuple of new

variables to each n-tuple from {t, •• *t„,x, ••'X-f/L-n}"1:

z(y') =<xf(k.l)+ng(y)+T---»xf(k-l)+ng(y)+n>
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*k =+ ~ im*(t.y.z(y))ye{t1...trx1...xf(k.1)}

f(k) = f(k-l) +nU+f(k-l))m

The correspondence between the formal description of a <J)(t,n,m)-

induction and its realizations can be stated explicitly as:

Lemma 4.2.3. Let T be an L-structure, t e |T|*, Xc |T|, I =c>1

Let <t,X,X0,Xr...,Xk> be given, with XQ =tuX.
(i) Asequence <t,X,XQ,...,Xk>, Xi c |T|, i=0,...,k is (an

initial segment of) a <f>(t,m,n)-induction of length >_ k on T from X if

and only if there is some mapping of variables to elements of Xk,

u:- (V*VXl*"Xf(k)* + x|< sucn tnat

pt^-i'-'t^) =t

^{ti--vxr"xf(D}) =xi • ilk
T |= — ^(t,p<x1"-xfHx>)

i<k 1 ' Tm

(ii) Similarly <t,X,X., ie_j> is an infinite <f>(t,m,n)-induction if

and only if the above conditions hold with i < k replaced by 'i e a>' and

with

p: {t1---ta,x.: lew, i>1} -*• u X. .
1 * n iew

Lemma 4.2.3 follows directly from Definitions 4.2.2(a) and (b). For

later reference we give here a property of <J>(t,m,n)-inductions:
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Lemma 4.2.4 (Antitonicity of (j)(t,m,n)-inductions). Let T. =<t,X,XQ,... ,Xk >

and T? =<t,X',X',... ,Xj" > be two <t>(?,m,n)-inductions on astructure T,

and X. 2 X' Then T„ can be extended beyond stage k« for at least

as many steps as T, can be extended beyond stage k,.

Proof. If T, has an extension <t,X,XQ,...,Xk ,...,Xk +->, then

in fact T« has an extension <I,X',Xi,... ,Xk ,...,Xk +->, where

Vi-V' i-o.i.....*

as is obvious from Definition 4.2.2(a); and clearly X' +i cannot contain

a terminal vector if X. +. does not. Q.E.D,

We note at this point that the theory of inductive definition on

L-structures as presented in Moschovakis (1974) does not apply to the induc

tive processes defined above. Our processes are not monotone. Given sets

X c X', c{)(t,m,n)-inductions from X' will terminate at least as soon as

those from X; hence the points of the structure accumulable by

<t>(t,m,n)-inductions from X may not form a subset of the set of points so

accumulable from X'. This is especially clear when C is obtained from

X by addition of just enough points so that (X')m contains a terminal

vector.

This difference is due to the difference between our notion of termina

tion and Moschovakis' notion of closure. A further difference is that

inductive definitions adjoin all solutions z in the structure of <f>(t,y,z),

and we adjoin only one.
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We now proceed to a characterization of nontrivially necessary axioms,

which is essentially accomplished by Theorems 4.2.5 and 4.2.6 in conjunction.

The theorems have been formulated to deal with V3V3-sentences which are

necessary except for possibly in small finite structures of size less than

c for some c e w. However, the added generality occasionally requires a

slight reformulation; see Remark 4.2.9.

Theorem 4.2.5. Let c be an L-structure, c > 1; <J>(x,y,z) an

U+m+n)-ary existential formula; iji = Vx 3y Vz <j>(x,y,z), a V3V3-sentence.

(i)-(iii) below are equivalent:

(1) (VTerVmifllc^TM
(ii) (VTer"1(M))(vte|T|il)(VXC|T|)

tux = c => All-i(j)(t,in,n)-inductions from X on T terminate

in a finite number of steps

(111) (VTer'V)): c=1 => T(= vt VxJ - ^(t.xj]
w l<k<w K w

c>1 •=> T |= Vt Vx [[ w x. =x.] -[ w 4, (t,x )]]
l<i<j£c 1 J l<k<w K w

where x = <x1x0--->, and >, ' is obtained from h^' as in Definition 4.2.2(b)
w 1 2 rk

Proof, (ii) <• (iii) follows from Lemma 4.2.3.

-i(ii) =>-i(i): Assume there exist T er (M), t, X, I =c, such that

<t,X,Xn,...> is an infinite ~Kl)(t,m,n)-induction from X on T. Set

A= u X.. Then t e A*\ %> c, and setting A = r|A, A (= Vy 3z-i(J)(t,y,z)
ieoj n

by construction and the fact that '-i(J)' is a universal formula. So

Aer_1(M) , |A| >c, AJ=-n|> .

(ii)=>(i): Let Ter_1(M), |f| >c. Then

(3XC|T|)[R>c &(vte |T|A): All -,<J)(t,m,n)-inductions from Xon T terminate] .
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Hence there must be a terminal vector for each t e |T| , i.e.

T h Vt[3y Vz-nUtf.y.z)]] ,

i.e. T |= ip .

Theorem 4.2.6. Let c, <J>, and ip be as in the preceding theorem;

let the conditions (1)-(111) of that theorem hold.

Then (i)-(iv) below are equivalent:

(1) (VTer^EqMKITIlc^TM
(ii) (3Nea))(VTer"1(M))(vte|T|2')(VXC|T|):

tux = c =» All -i<j>(t,m,n)-inductions from X on T terminate

within N steps.

(iii) (3Neo))(VTer"1(M)):

c = 1 => T |= Vt Vx[ vv ^ (t,x)]
l<k<N K

c > 1 =» T(=V?Vx[[ w x.=x>[ - K(t,x)]]
l<i<j<c 1 J l<k<N K

(iv) (3Ne_j)(3eeThvj;(M)): \= 6•*• vt Vx[ ].

Proof, (ii) o (iii): By Lemma 4.2.3.

(iii) => (1v): Note that the sentences in (iii) are V3 first-order

L-sentences. Hence by our result ThV3(r" (M)) =ThV3(r" Eq(M)), and the

axiomatization of Th(r Eq(M)) by Thvs(M), (iv) follows.

(iv) => (i): From (iv), r" Eq(M) ^ vt Vx[ ]. Now by the same argu

ment (terminal vectors exist) as used for (iii) =* (i) in the previous

theorem, (i) follows.

(i) °* (ii): Assume (ii) is false; i.e. somewhere in r" (M) there

are arbitrarily long -i<l>(t,m,n)-inductions. Noting that r" (M) c r" Eq(M)

which is an elementary class, we see such arbitrarily long finite inductions

can be found within this elementary class. By a compactness argument, the
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class contains an infinite such induction (involving > c points). Taking

the domain ux. of this induction as a substructure, still in r" Eq(M),
iew 1

we have a counterexample to (i).

Regrettably, Theorems 4.2.5 and 4.2.6 do not give a strictly intrinsic

characterization of nontrivially necessary axioms for r" (M); that is,

the discussion remains in terms of r" (M) rather than in terms of internal

properties of M itself. In an important special case, this can be improved

as follows.

Theorem 4.2.7. Let c, r be as before; let <J>(x,y,z) be an U+m+n)-

ary quantifierfree f-formula; i|> = Vx 3y Vz (|)(x,y,z).

1) (i) and (ii) below are equivalent:

(1) VT er_1(M): |T| >c => T (= ^

(ii) Vt e |M|£ VX C |M|

Tux = c =* All-i<t>(t,m,n)-inductions from X on M terminate

in a finite number of steps

2) If Ter-1(M), t e|T|\ XC|T|, and T=<t,X,X0,...> is a
-i <j>(t,m,n)-induction on T from X, and a: T -*- M is a T-morphism, then

a(T) =<a(t),a(X),a(XQ),...>

is a-i<|)(a(t),m,n)-induction on M from a(X), and can be extended on M

at least as fas as T can be extended on T.

Proof. Note that -i<t>(t,y,z) is a r-formula, i.e. a conjunction of

disjunctions of variable substitution instances of members of r. Then (2)

is direct from Definition 4.2.2(a); (1) follows directly from (2).
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We remark that (1) could be extended by a clause (iii) as in Theorem 4.2.5,

Theorem 4.2.6 can be modified similarly. 'So we have

Proposition 4.2.8. If <J>(x,y,z) is an Jl+m+n-ary quantifierfree

f-formula, then \\> = Vx 3y Vz <}>(x,y,z) is a nontrivially necessary axiom

for r^M) if and only if

(i) All -i<J>(m,m,n) - inductions on M terminate in a finite number

of steps, for all in e |M| , and

(ii) There are arbitrarily long -i<J>(m,m,n)-inductions on M, not

necessarily with the same me |M|

Remark 4.2.9. If r-morphisms are not necessarily 1-1, the additional

generality of the case c > 1 is illusory, for we have

[(VTer"1(M))[|f|>c °>tH]] =• r"1 (M) |= i|> .

For assume c > 1, there exists Ter (H), 1 £ |T| < c, T |=-iij/. Let

T' be as follows: fix yn e |T|.

|T'| = |T| u {x0,...,xc}, where {xQ,... ,xc> n |T| =*

a: IT'I - |T|

t if t 6 |T|
a(t) =

yQ if te {x0,...,xc>

for each relation symbol Ra of L:

T'|=Rt <>T|=Ra(t) [so T1 er"](M)]

It is easy to verify that |f'| >c and T1 |=-nj>, contradicting

|f| > c «* T (= i|>.
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If the language L contains a binary relation parameter for indifference,

as is often the case in applications, some simple modifications can be made

to obtain genuine theorems for the case c > 1: Introduce the notation,

for any set X with indifference relation

<X,^>: the number of indifference classes.of <X,^> .

The clauses of Theorem 4.2.5 become:

(1) (VTer^MK^TU^lc ->T|=i|>]

(ii) (VTer_1(M))(vte|T|*)(VXC|T|)

<X/o> =c =»A11 -i<J>(t,m,n)-inductions from X on T terminals are

in a finite number of steps.

(iii) (c>l): (VTer'^M)): Th vt Vx [[ - x.^x.W w ^ (t,x )]]
l<i<j<c 1 J l<k<w w

Thus modified, the theorem is again true for pairs <M,r> for which

M |= x^y «-• x=y

r2 Mx^y]}

This is usually the case in applications; in cases where the language does

not contain an indifference relation parameter, it is reasonable to expect

that addition of such a parameter, treated as above, should not greatly

affect the axiomatization of measurement.

Theorems 4.2.6 and 4.2.7 can be modified similarly.

Remark 4.2.10. As a V3-sentence is a special case of a V3V3-sentence,

i.e. for which the second universal quantifier block is void, it may be

asked how the arguments for V3-sentences in Theorem 3.2.6 and Proposition

4.2.1 can be obtained as special cases of the analysis of Theorems 4.2.5

and 4.2.6. This is not only of interest for better understanding of the
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results; the ideas will find application in the more subtle two-sorted case

in the section 5.4 on conjoint measurement. For simplification we restrict

the discussion to the setting of Proposition 4.2.8.

So assume i|> = Vx 3y 4>(x,y), <f>: U+m)-ary f-sentence, se |M|^, and

consider

-i<J>(s,m,0)-inductions on M .

It is clear that such an induction either terminates at stage 0, I.e.

for some ye(XQ)m: M|=-»b<|>(s,y)]

or, for all ye(XQ)m: M(= -i4>(s,y) (*)

in which case the induction can be extended infinitely to

^S »A>Aa,A*»*«,.., ^

X. = XQ for all i e a) ,

i.e. M^Xq (=-h|;; the reasoning is as employed in Theorem 3.2.6(1).

An alternative viewpoint which will be useful in section 5.4 1s that

one can convert any -»<j>(s,m,0)-1nduction to a -i<J>' (?' ,0,0)-induct1on; this

corresponds to the universal sentence X of Theorem 3.2.6(2).

For given s e |M| , and a finite X c |M|, say X = {x,«"X.},

consider the vector s' = <s1"-sfl,x1'«-x1>, and
I * 1 k

*'(?') = vv <|)(s,y) . (**)
ye{s1"-s.,x1...x,,}m

Then the condition for some -i<J>(s,m,0)-induction on M from X not to

terminate at stage 0 can be written as

HN'(s')
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as can be seen by comparing lines (*) and (**) above; thus the necessity

of \p = 3x Vy <|>(x,y) can be expressed as

M (= Vs' <t>'(s')

which for X = 0 is exactly the result of Theorem 3.2.6(2) for the case

of F-sentences; note that 'Vs' ^'d')' is exactly the sentence V in

Theorem 3.2.6(2). This fits together if we realize that Theorems 4.2.5

and 4.2.6 allow X = 0, as long as s is nontrivial, i.e. I > 0; so we

could have made this restriction in the above.

4.3. Examples of Nontrivially Necessary Sentences

We are now in a position to discuss examples of nontrivially necessary

sentences. Examples will be given for variants of extensive measurement

and for several kinds of difference measurement by an interval scale.

(References to the literature on these measurement models will be given

with the examples.) The examples we give are all of the simplest possible

quantificational forms for the measurement models involved. Proof that

this is actually the case requires techniques to be developed in subsec

tion 4.4; thus such proof is deferred until there.

Example 4.3.0. The first example to be given has already occurred in

the literature: semi-explicitly in Adams (1974) and explicitly in Adams

(1975). We have already referred to a related form in section 4.2. It is

not known whether the sentence has a minimal quantificational form: The

sentence is a disjunction of a V3-sentence and an 3V-sentence. This is

quantificationally one of the two simplest kinds of sentences which is both

3V3 and V3V. What is not known is whether there could be less quantifiers

in a nontrivially necessary axioms for extensive measurement.
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<M,r>: extensive measurement (Krantz et. al. (1971))

M=<Kt<,+>

r = {<,i,+)

\\> «(3x)(Vy)hx+x =y] -3x Vy[y { x] -(VxJ^y^)^ <x &y]+y1 =y2 &y2 {x]

That the sentence in this example is nontrivially necessary is intuitively

obvious once one considers nonstandard models of <1R ,£,+> with infini

tesimals; we omit a rigorous proof. (Adams' (1975) example was slightly

different from ours.)

The construction of nontrivially necessary axioms seems to follow a

pattern: Let us call a monotonic sequence

1) y(0> <y(D <y(2) <...

2) lim y^ =»
i-H»

a basic sequence. (Sometimes it is convenient to let the sequence descend

monotonically to -«>.) In constructing an axiom, one tries to find a system

of basic sequences in the structure with the following properties:

3) The possibilities fory* ' are determined by a quantifierfree

L-formula containing y^ ' and possibly their parameters.

4) The formula of (3) can be strengthened to include checking y^1

for some termination condition, I.e. by comparison with a fixed

parameter so as to force finite termination of basic sequences.

5) The number of steps basic sequences can be followed depends on

the position of y^ ' (possibly with respect to certain parameters)

in F, and can be arbitrarily large.

The simplest case obtains when the relations on the structure are

already sufficiently strong to determine the steps y ' •*- y and the

termination conditions without further parameters. An example of this is
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Example 4.3.1.

1) ' M = <IR,Nx,Sxy> where

VxeR M|= Nx ~ R |= x < 0

Vx,yeR M|= Sxy <* R f= x+1 = y

2) r= {Nx1,Sx1x2}

3) • i[» = 3y Vz -,(J)(y,z)

4)

(J)(y,z) = Syz & Nz

(0) (1) n
y y ••• 0

basic sequences: yx ' = yx '+1

5) Analysis

(a) y* 'e (-1,°°): All <j>(l,l)-inductions from {y^ '} terminate

at stage 0 in 0 steps

(b) y(0> e(-(n+l),-n]: All (j)(l ,1)-inductions from {y^0)}
terminate at stage n-1, n > 1.

Hence we have:

All <j>(l ,l)-inductions on finite in <R,N,S>

There are arbitrarily long finite <J>(1 J)-inductions in <R,N,S>

By Proposition 4.2.8, i^ is a nontrivially necessary axioms for r" (M).

It is of interest to note that the above example still works if we

replace Sxy by Rxy: M = <R,Rxy,Nx> where:

VxyeR: M^= Rxy <*R|= x+1 <y

More realistic examples are obtained if we consider the structure for

classical extensive measurement: M = <R,+,<>, '+' ternary relation. In

the next example, both the step y^ '+ y^1+ ' of basic sequences and the

termination condition are obtained from one fixed parameter x 6 R; that is,
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we will consider <J>(x,l,l)-inductions and get a nontrivially necessary axioms

Vx 3y Vz -i<j)(x,y,z). The example is essentially the same as the previous

one; however, two new phenomena occur in <J>(x,l ,l)-inductions which cannot

occur in <f>(l ,l)-inductions: (1) The parameter x also occurs in XQ,

and so for some x eR we must find a z satisfying <f>(x,x,z). (Clearly,

x may not be a terminal point (vector), as then all <J>(x,l ,l)-inductions

would terminate at stage 0, and Vx 3y Vz would be trivially necessary.

(2) We may have X= {x} = XQ, so we must in fact find z f x satisfying

<|>(x,x,z), and z must be such that (j>(x,l,l)-inductions from z run for

arbitrarily many stages; otherwise we get a trivially necessary axiom.

Example 4.3.2 (Extensive measurement, or weaker models).

1. M = <R,+,<>

r 2 {+,<}

i^2 = Vx 3y Vzn.<t>(x,y,z)

(j>(x,y,z) = [[y =x & z<x] v [y *z+x & y<z< x]]

2.

y z x 0

y = y -x basic sequences

3. Analysis

(a) x^O =* all <j>(x,l,l)-inductions on <R,+,<> terminate at stage

0 or stage 1, namely inductions from X= {x}, x = y^ ' we

get y' ' < x, and are at stage 1. And now the induction

must terminate.

(b) x<0 &y'0' <x =* all <J>(x,l ,l)-inductions on M from {y* '}

terminate within [(x-y^ ')/|x|] steps, and some such

inductions take at least (x-y^ ')/x steps.
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(c) x<0 & y^ ' >x =*• all <J>(x,l ,l)-inductions from y^ ' terminate

at stage 0.

(d) x <0 & y -x^ choice of y ' is free, but smaller than x.

Hence these inductions take up to (x-y^ )/|x| steps,

which is arbitrarily large.

Theorem 4.3.3. For any L-structure T e Eq(<R,+ ,<>), for any r 2 {+><K

i.e. r = {+,<,/}:

either (i) T e r" <R,+,<>

or (ii) for some Ee Y~ (T): E(=-i^2-

Proof. By the analysis of Example 4.2.2, ita is a f-sentence for the

r's considered, and a (nontrivially) necessary axiom in Th r~ (<R,+,<>).

Assume (i) is false. Then T is a nonarchimedian ordered group; for T

is always an ordered group and isomorphically embeddable into <R,+,<_> if

and only if T is archimedian. (Holder's (1901) theorem; see Krantz et alii

(1971), section 2.2.6.) Let i > 0 be infinitesimal in |T|. The follow

ing is an infinite 4>(-i,l ,l)-induction from {-1} on T:

XQ = {-1,-1}

Xk = {-1+ni: n<k} u {-1} , ke a>

and so if we take

E = r|{-l+ni: new} U {-i} ,

then

Thus r" (T) |= ^ ~ T is archimedian (for T e Eq(<R,+ ,<>)). So in this

(weak) sense, first-order observation could in principle show whether there

are infinitesimals in "the real world."
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Example 4.3.4 (Weak variants of extensive measurement). We now proceed

to an example of the quantificational form 3x,x2Vy-?<J>, again for <R,+,<>.

This example is considerably more complicated because no parameters are

available to regulate the basic process, which is as follows:

kl

1 y

with termination at stage k as soon as x. contains two distinct positive

numbers. The main difficulties are

(1) to make sure that we always get some x,, x2 with x, < 0 < x2;

(2) not to terminate prematurely, i.e. on pairs x, = x2 < 0;

(3) to assure that not all x > 0 in x. are multiples of -x, for

all k e a), as this must prevent termination, given (2).

(1.1)

(2)

(3.1)

(3.2)

(3.3)

M = <R,+,<>

r D {+,£,?*}, or {+,<,£}, or {+,<}

^3 = 3x1x2Vy-.(t)(x1,X2,y)

4>(x-|,x2,y) =

x2< xi ~* ^y+y=y &y-xi& y*^

v [x2+X2 =X2 &x2<y<x1]]

xl = x2

xl <x2

y t x1

[[x]+x1 =x1 &y<x.j]

v [x2+x2 =x2 &x2<y]

- U\**z =y &y?sx1
&y^x2]]

0 e X2 (at the latest)

no two distinct negative
numbers in X. , Vk cw

no number is ultimately the
minimal number > 0 in X^,
k -*• °°

at least two distinct
numbers (i.e. in X,)

X3 (at latest) contains y<0

X.. (at latest) contains y>0

If xis x2^0, then "shift x2
left by -x^'
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Lemma 4.3.5. Let <f> be as in tyy M=<R ,<,+>. Every <J>(2,1)-induction

[abbreviated as <J>-induction] on M terminates in a finite number of steps.

Proof. Assume not. So <X =XQ,X,,.. .> is an infinite (^-induction

on M. Then XQ is nonempty. Hence, clause (2) of <j) will be applicable

for at least one pair x, = x« e X~ in the transition to stage 1. So X^

contains at least two distinct elements. Clause (1.1) will be applicable

to at least one pair x? < x, in the transition to stage 2, so 0 e X«.

Then at least one of clauses (3.1) and (3.2) will be applicable to at least

one pair x« > x, in the transition to stage 3, so that X- contains a

positive and a negative element. Moreover, for all i, X. contains at

most one negative element; otherwise clause (1.1) will be applicable to two

negative elements, causing termination. Let i > 3; set

m. = min {x > 0, x e X.}

Now

xfi = the unique negative element of X. .

m .>-xn =* m.^, =m. - IxJ <m. by clause (3.3)
i 0 l+l l ' 0' i J

m. =-xn => m.j, <-xn by clause (1.2)
i 0 l+l 0 J

Let N=m3/|xJ +3 +1. Then 0<mN <-xQ. By clause (3.3), XN+1 will

contain an element y: xQ <y<0. By clause (1.1), the induction terminates

at stage N+l.

Lemma 4.3.6. Let <J> be as in <K, M = <R,£,+>. For any n e o>,

there is a 4>(2,1)-induction on M which terminates at staqe n.

Proof. The lemma is obvious for n < 4. For n >^ 4, <X,Xq,X, ,... ,X >

is a <j>(2,l)-induction on M as required (references in parentheses are to

clauses of definition of 4>).
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X* XQ = {0}

X1 « {0} U {-1} (2)

X2 = {0,-1} U {n-3} (3.2)

X3 = {0,-1} u {(n-3),(n-4)} (3.3)

X4 = {0,-1} u {(n-3),(n-4),(n-5)} u {2n-7} (3.3)

Xn-2 = {0'"1} u {1.2,...,n-3} u {iterated sums of 2,3,... ,(n-3)}

xn-l ={0,"1} U{0»1»---»(n-3)> u{iterated sums} u{^} (3.3) and (1.2)
Xn ={0,-1} u{0,...,(n-3)} u{sums} U{-11} (3.3)

and {-1,-1} cXn is terminal by (1.1).

From Lemmas 4.3.5 and 4.3.6, and Proposition 4.2.8, it follows that \\>~

is a nontrivially necessary axiom for r" (M), for any r such that iJj-

is equivalent on M to a f-sentence. This is clearly the case for the r's

mentioned in Example 4.3.4.

We now give some examples of nontrivially necessary axioms for the

<M,r> appropriate to difference measurement by an interval scale. These

examples are given not merely for their own interest, but also because they

will yield examples of nontrivially necessary axioms for conjoint measure

ment, in a later section. This should not be too surprising, as represen

tation theorems for conjoint measurement are sometimes proved by reduction

to such theorems for positive difference measurement; see for example Krantz

et alii (1971), p. 260.

We fix

M = <R,..<. .>

where VabcdeR: M|= ab£cd ° <&,£,+>(= a-b<c-d

r = <ab£cd, ab_£cd>
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E-xf*mJLLe.. A-A-J.-

ip = Vx,x„3yVz -j<t> where

<j> = [[x, <x2] & proper setup

[[[y=x-, -y=x2] &x] <z<x2] - get ay^
[z =2y-x, & z<x2 & z^x,]]] walk

where 'a < b' is an abbreviation of ax, < bx,, 'a < b', 'a = b', 'a t b*

are defined in terms of 'a < b1 in the obvious manner, 'z = 2y-x' abbre

viates 'zy < yx'. The basic process in this example is

y*w, x2 (k)
—\— terminate if y > x„

y(0)...y(D.y y(HD.2

and the upper bound on the length of inductions is given by the integer

part of

'2

rx0-y
log

x2-y 1

*°-V

This is easily shown once one observes that the step size of the basic

process doubles at each step.

Example 4.3.8. ty = Vx3y,y2Vz -tcf)

<b = y}=y2 *v [z^y1 &z?*x]
&

y] ?«x --> [z<x &z>2y]-y2]

where the abbreviations are as before, and the basic process is

U (k)[— terminate when yv >_ x
y(0) y(D y(1) (1*1)
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Upper bound (achieved): Integer part of

,(0)

Example 4.3.9. i|j = 3y-j y2y3Vz-i<|>

♦ =y^sy2 v >y2=y3v y3=yi "^ ^z?lyi &Z3,£y2& z^y3^ (-3 p°ints)
&

yl <y2<y3 ~~*" ^y3"z-y2"yl &y2<Z"' ^Step and n0t t0° large'

where the abbreviations are as before, and the basic process is:

*i y2 z y3
_l 1 1 r

z-y2 = y2-y1+e» e > 0; terminate if y2-y1 > y3«y2 ,

i.e. at each stage add a new point between the second and third points of

each ordered triple y, ^0^3 available at that stage. This process

differs significantly from all the preceding ones: In the present case a

new point is eventually added between each pair of points, (except the left

most), and such that after all these additions the points are still all

well-spaced to the right. Thus an infinite <J>(3,1)-process yields a densely

ordered discrete subset of the structure.

It is clear that every (|>(3,l)-1nduction terminates in finitely many

steps. To show that there exist arbitrarily long <j>(3,1)-inductions, first

note that at any stage it suffices, in order to get to the next stage, to

add a point z(y) between any y (except the leftmost) and the next point

to the right, y, such that

y < z(y) < y

z(y) -y < y.-z(y)
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Assume, without loss of generality, that the initial configuration is

H 1 h (stage 0)
0 d y3

Executing the induction for k steps (and reaching stage k, k > 0)

by the addition of the points z(y) as just described, we would get the

configuration

o P0-d- p^., ••• p^ ••• p^ ••• P2k+1

(0) (0) ••• (2) ••• (1) ••• (2) ••• (0)

k+1with a total of 2 +1 points: 0,PQ,P,,...,P k+1; the numbers in paren

theses indicate the stage reached by adding the points with a given number.

The following selection of points will give a process of this type which

reaches stage k:

P. = 21(l+d)-l , 1=0,1,....2k+1

This example has a special property: In an infinite <J)(3,1)-process

no three elements y,, y«, y~ are commensurable, i.e. if y, <yp<yo then

Vnew: y} +n(y2-y]) <y3

Finally, we give two examples of nontrivially necessary axioms for

another variant of difference measurement. Again, this is of interest in

connection with the discussion of conjoint measurement in section 5.4.

For an arbitrary fixed d > 0, we set

M(d) = <R, xy<d, xy>d, xy <0> ,
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i.e. we are envisaging empirical operations of

— comparing a difference xy with d (i.e. y-x > d or y-x < d)

— checking the orientation of a difference xy (i.e. y > x)

r(d) = {xy<d, xyid, xy£d, xy>d, xy<0, xy£0}

For convenience later, we write the axioms in ordinary mathematical

notation (rather than in a language for difference structures); the trans

lation is obvious.

Example 4.3.10. ty = Vx3yVz-i<f>(x,y,z)

(J> = [y >x —> y-z >d & z>x]
( d

basic process: —| 1 (—

Example 4:3.11. if; =3y1y2Vz-i<J>(y1,y2,z)

(j> = [y-, =y2 -*- z t y}
&

y-[<y2~^ Cy2-Z >d &z>y!]]
t t d ]

basic process: —| 1—|
yl z y2

4.4. Restrictions on the Form of Nontrivially Necessary Sentences

In this section, methods are considered for showing that r (M)

lacks nontrivially necessary sentences of a given form; the results connect

properties of M with the nonexistence of such sentences. We will concen

trate on properties of the automorphisms of M, and more generally, the

invertible r-morphisms M -• M. Clearly these mappings must be 1-1, onto,

r*-morphisms, where r* is obtained from r by adding the negations of

all formulas in r. In all practical cases, these are exactly the automorphisms

of M. The basic insight underlying the arguments in this section is that
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invertible r-morphisms of M map ^-inductions on M to other $-inductions

with exactly the same lengths and configurations.

Let Gr be the group of invertible r-morphisms of M, and for I > 1,

se |M| ', Gr(s) the group of invertible r-morphisms of M which fix s,

i.e. take each element of s to itself. If S is an arbitrary set, and

G any group of maps S •*• S, G induces an equivalence relation on S,

namely

Vs1,s26S: s1=s2°3geG: g(s-|) =s2 •

The equivalence classes of S under this relation will be called the orbits

of S under G. The theorems in this section will deal with cases in which

the sets of such orbits are finite. Certain combinatorial counting arguments

allowing optimal use of the hypotheses of these theorems will be stated as

separate technical lemmas in order to separate the "logical" content of the

theorems from these combinatorial details.

In the following we will deal with strictly necessary axioms (i.e. c = 1

in the notation of section 4.4.2). The results can be generalized to cover

the more general case of "almost necessary" axioms. The first theorem (4.4.1)

deals with 3xVy-F-sentences, the second (4.4.3) with Vx3yVz-f-sentences.

(Note the single variable 'y'.)

Theorem 4.4.1. Let if; = 3xVy <j>(x,y), <f> a quantifierfree (m+n)-ary

f-formula, where m is the length of x, and m, n ^ 1. If [|M|] con-

sits of a single orbit under G , then

r"](M) (= * "* r-1Eq(M) (= if; ,

i.e. if; cannot be nontrivially necessary.
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Proof. Assume r (M) p" $• By Proposition 4.2.8, we only need show

that for some New, all -i<J>(m,n)-inductions on M terminate with N

steps. Let k be the smallest number of distinct elements occurring in a

terminal vector for -i<J)(m,n)-inductions on M. So 1 < k £ m. In fact,

N< k-1. For let T=<X,XQ,...,Xk>...,X > be an arbitrary (of course

finite) -i<f>(m,n)-induction on M. Then X=XQ, I >1, and therefore
R. > i+1, for all 1 < p. Otherwise there exists j such that X. = X.+1,

and Mix. H^. but Mix. eT^M). Applying this for 1=k-1. \_} >k,
and so X. , contains a k-element subset a. But now a is in the same

orbit of [|M|] under G„ as the elements of some terminal vector xQ

(with exactly k distinct elements) by combinatorial Lemma 4.4.2, stated

below. Let Xe G„ map the set of elements occurring in xQ to a. Now:

MhVy <f)(x0,y) , <f>: f-sentence, X: f-morphism eGr

so

M(= V? 4>(x(xQ),y) ,

i.e. X(xQ) is a terminal vector. But the elements of X(xQ) are in

a ex so in the fact the induction T terminates at stage k-1.

Combinatorial Lemma 4.4.2. Let a group G act on an infinite set S;

m > I > 1. If [S] consists of a single orbit under G, so does [S] .

Proof (sketch). Let e€[S]m, and assume {0a> is the set of orbits
of [S]£, {<T} > 1. A certain finite set of orbits {0.} are represented

a i

by [e]^, but because [S]m forms one orbit under G, exactly the same

configuration of orbits is represented by any e' e [S] , hence {0a> is

finite. By Ramsey's theorem, get S' c s, §• > m, S' homogeneous for

one of the 0 . So this must have been the configuration of orbits of [S]
a
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represented by all 6 e [S]m, i.e. 0 is the unique orbit of [S] . (See
a

Ramsey (1928).)

Theorem 4.4.3. Let if; = Vx3yVz <f>(x,y,z), <J> a U+l+n)-ary quantifier-

free F-formula with I > 0, n > 0, and I is the length of x. If

(Vse|M| ) Gr(s) partitions |M| into finitely many orbits, then if;

cannot be a nontrivially necessary axiom.

Proof. Assume r" (M) |= if;. By Proposition 4.2.8, we must show that:

(3Neu>)(Vse |M| ): All -i(f)(s,l ,n)-inductions on M terminate within N steps .

Part 1: Initially, we show

(Vs e |M| )(3New): All -i(f>(s,l ,n)-inductions on M terminate within N steps .

Fix se [M| ; set G=Gf(s), and let k be the number of orbits of

|M| under G., Then in fact, N< k. For let T = <s,X,Xn,... ,X. ,... ,X >

be an arbitrary —icj>(s,1 ,n)-induction [induction, hereafter], of course finite,

Let, for i = 0,1,...,p, n(i) be the number of orbits of |M| under G

represented among the elements of X.; so for all i, n(i) < k. On the

other hand,

n(i+l) > n(i)+1 , for all i; n(0) > 0

as we will argue directly. Therefore p < k; as T was an arbitrary

induction, this implies that indeed N < k.

So assume there exists i, n(i+l) = n(i), i.e. no representatives of

new orbits are added to X.+,. Then there exists an extension of

<s,X,Xq,. .. ,X.,X.+-|> to an infinite induction on M contradicting our

initial assumption. For, given that no representatives of new orbits are
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added to X.+,, each y e X.+1 is in the same orbit under G as some

y* e X.; hence

3z' e X.+1: M(=-,<J>(s,y',z')

and so if y = X(y'), X e G, then (as X(s) = s)

MH<j>(s,y,X(z»))

hence we set X(z') = z(y) and add the elements occurring in X(z') to X.+1

to get our new X'.+2; in this manner we get to stage i+2, i.e. an induction

<S,A,Ap. ,..•,A ,,A.,-I ,A. ,n> ,

and we note that in this process no representatives of new orbits are added

to Xl+2 (which were not already represented in X.): all the elements

added to X]+2 were obtained from elements in X.+, by mappings Xe G,

hence are in "old" orbits. Therefore the process can be continued, obviously

indefinitely, giving an infinite induction on M.

This concludes part (1); if I - 0 the proof is now complete.

Otherwise we must use:

Combinatorial Lemma 4.4.4. Let the group G act on the infinite set S;

for £> 1 let for se S*: G(s) = {XeG: X(s) =s}. Then

(VseS ) G(s) partitions S into finitely many orbits

=>• G partitions S into finitely many orbits .

Proof. To assign an orbit representative in S to an arbitrary s e S

Let oQ = s. At stage n, 1 < n< A, given
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let r = X (sv " ') be a representative of the orbit of s\ ~ '
n n n n

under the action of G(r), r e S formed from exactly {r,,...,r -j)-

Let

a dtf X(a. .) d§f <r1,...,r ,a("|,...,a<n)> .
n n k-1 1 n n+1 I

a = <r,,... ,r_> is the representative of the orbit of s under G.

At each stage n, r was chosen from among finitely many candidates

(dependent on {r,,...,r ,}, however), so only finitely many different a

are possible. (Note that the argument will actually show that G partitions

S into finitely many orbits!)

Proof of Theorem 4.4.3, Part 2. Let s, s' e |M| be in the same orbit

of IM| under G . Then the maximal length of -i<f>(s,l ,n)-inductions equals

the maximal length of -i(f>(s' ,1 ,n)-inductions, as these are mapped to each

other by invertible r-morphisms. Thus there is a common maximum length per

orbit of |M| , finite by part 1. But by the combinatorial lemma, there

are only a finite number of such orbits in |M| under G; the maximum of

the associated maximal length of inductions therefore exists, and is finite;

i.e. a uniform finite bound on the length of aJ_X -i(|>(-,lsn)-1nductions on M,

as desired. O.E.D.

The reader will have noted strong similarities between the (main)

arguments for Theorems 4.4.1 and 4.4.3 (part 1). Although these arguments

are quite simple, neither the arguments nor the theorems allow generaliza

tion in any of the obvious directions. (For instance, one is tempted to

try to get results at the level of generality of Theorems 4.2.5 and 4.2.6.)

This becomes clear in examining applications; i.e. comparison with the posi

tive results of section 4.3 and section 5.4 on conjoint measurement.
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Consider, in comparison with section 4.3:

1. The structure <R,Nx,Sxy> of Example 4.3.1 has no nonldentity

invertible r-morhpisms (r = {Nx,Sxy}.) Thus neither of Theorems 4.4.1 nor

4.4.3 applies. And indeed, there is a nontrivially necessary axiom of the

form

3x Vy ( ) ,

the very simplest quantifier configuration not ruled out by Proposition 4.2.1

2. <R,<,+>; Examples 4.3.2 and 4.3.4. This structure, for any

reasonable r, has the following group of invertible r-morphisms (in fact,

exactly the automorphisms)

{x »-*• ax: a> 0, aeR} .

These partition R = [R]' into three distinct orbits; so by Lemma 4.4.2 we

see that Theorem 4.4.1 cannot apply. On the other hand, the hypothesis of

Theorem 4.4.3, for I = 0, is satisfied; thus there are no nontrivially

necessary axioms of the form

3x Vy ( ) , ( ) quantifierfree f .

Once we take I > 0, however, Gr(s), seR , is trivial, and partitions

R into uncountably many orbits. Thus again Theorem 4.4.3 does not apply.

Now Examples 4.3.2 and 4.3.4 give nontrivially necessary axioms of the forms

Vx3yVz( )

3xlX2Vy( )
( ): quantifierfree f

i.e. again the wery simplest quantifier configurations not ruled out by the

present analysis.
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4.5. NpntriviaJJx Necessary_ SenLtAnp^J^Jl^^biJbrary Ojjantifier Prefixes

In this section we outline very briefly how the preceding theory for

V3V-sentences can be generalized to arbitrary sentences.

The treatment of nontrivially necessary Q-sentences (where 'Q' is a

quantifier prefix) is based on a notion of induction processes appropriate

to Q; e.g. so far we have discussed V3V-inductions. In general, Q-induc-

tions are to have the property that if carried out without termination for

countably many steps, the set of all points accumulated forms a model of

the negation of the Q-sentence.

Definition 4.5.1. Let if; = Q-|<J>( )» <f> quantifierfree.

(i) The Q,(f)-induct ion process (from a^ given initial set, on a^ given

structure) is defined by:

Stage k, k > 0.

Extend the list (available at this point) of instances of <f> over the

set S of points accumulated by the beginning of this stage to form a complete

verification of "MlS |= -iif;" except that new points from M may be accumulated

into S to satisfy existential quantifiers in —iQ.

If this succeeds, go to stage k+1. Otherwise, terminate at stage k_.

Remark. 'Extension' of the list is intended in the following strong

sense: If se |M| is chosen at stage k to satisfy 3x 9(x^—) (i.e.

3x Vy e'(x,y,—)), then at all stages > k we must continue to use s to form

the instances of the quantifierfree formula <f> making up the verification

of 3x 0(x1 ). For example, consider the V3V-inductions defined above,



68

where the initial existential instance t is chosen at stage 0 and maintained

from then on, yielding the concept of a <J>(f,m,n)-induction.

(ii) A Q,<f>-induction is of length new if and only if it reaches

stage n and then terminates; it is infinite if it reaches stage n for all

n e a).

This definition yields:

Theorem 4.5.2. Let if; = Q-i<f>, <J> quantifierfree.

(i) r_1(M) f= if; «» all Q,^-inductions in r" (M) terminate at a

finite stage

(ii) r'̂ ThfM)) |= if; * 3neu): all Q,<j>-inductions In r-1(M) terminate
by stage n

The proof of Theorem 4.5.2 is entirely analogous to that of Theorems

4.2.5-4.2.6. If if; is a f-sentence, then we obtain a characterization of

whether if; is nontrivially necessary which involves only Q,<j>-inductions in

M, as above in Theorems 4.2.7-4.2.8:

Theorem 4.5.3. Let if; = Q-i<j>, <f> quantifierfree, ip: f-sentence.

(i) The image of a Q,<f>- induction by a r-morphism is a Q,<j>-induction.

(ii) r'^M) (= if; o all Q,(f>- inductions on Mterminate at afinite stage,

(iii) r'^ThfM)) |= if; #> 3nea): all Q,^-inductions on Mterminate by stage n,

4.6. Meaning and Testing of Nontrivially Necessary V3V-sentences

In usual first-order logic, a 3V-sentence 3yVz-i<f>(y,z) asserts the

existence of a (not necessarily definable) constant or constant vector with

a certain universal property. On the basis of this, it has been felt that

such axioms for measurement would be of "little practical value": "...if an
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axiomatization in first-order logic,..., involves a combination of several

universal and existential quantifiers, then the confirmation of this axiom

may be highly contingent on the relatively arbitrary selection of the par

ticular domain of objects. From the empirical standpoint, aside from the

possible requirement of a fixed minimal number of objects, results ought to

be independent of an exact specification of the extent of the domain" (Scott

and Suppes, 1958). In the case of 3V-sentence, the outcome of a test would

depend, among other things, on whether we happened to look in the right place

for the constant vector. Because of this, it has been felt that nonuniversa!

axioms for measurement would be of little interest.

Let us consider this situation a bit more closely for a nontrivially

necessary 3V-axiom if; = 3yVz -i<(>(y,z). This sentence does indeed assert that

there is a terminal vector y« for <j>(m,n)-inductions in M: M^ Vz-i(j>(yQ,z).

It would thus seem that testing this axiom in an empirical structure E

which we hope is in r" (M) would in fact depend upon |E| in the way

described above. But if if; is in fact nontrivially necessary, then

E e r" (M) => r" (E) (= if;. Thus in this case all (}>(m,n)-inductions on E

encounter a terminal vector; in this sense such terminal vectors are dense

in E and its substructures. Therefore, we would expect to find a terminal

vector wherever we look in E, or for that matter, in r" (M). For non

trivially necessary axioms, results are independent of an exact specification

of the extent of the domain. Certainly for 3V-axioms, and in fact similarly

for V3V-axioms we can see clearly that Scott and Suppes' criticisms do not

quite apply to nontrivially necessary axioms. In the case of V3V-axioms

the induction processes differ only by the fixing of an initial vector,

which does not materially affect the arguments. Once the initial vector is

fixed, we have essentially an 3V-sentence back again.
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Specifically, a test of a nontrivially necessary 3V-axiom if; as above

would proceed as follows: Execute a <j>(m,n)-induction. Regardless of the

exact choice of points within an experimental domain E in executing the

induction, it must terminate within a finite number of steps if E = r" (M).

Confirmation of termination amounts to confirmation of E|= Vz-i<j>(yn,z) for

a yQ obtained at the previous stage; this confirmation problem is logically

the same as confirmation of a universal sentence. Once a yQ has been

found for which Vz-Kf>(yQ,z) has been confirmed, if; has been confirmed;

clearly this is independent of the exact choice of points made in executing

the induction, as well as the choice of experimental domain E subject to

the restriction that E e r (M).

On the other hand, refutation of if; does seem to involve essentially

verification of the V3-sentence -nf;. If if; is nontrivially necessary for

<M,r>-measurement, and we are really out to show E $ r" (M) rather than

E (=-nf;, it will in fact be sufficient to show that some substructure of E

satisfies -nf;, i.e. that there is a non-terminating <j>(m,n)-induction on E

(strictly speaking, in V (E) would be sufficient). Intuitively, this

would seem easier than verifying -nf; on E, and somewhat less dependent on

the exact choice of experimental domain E, but still has the logical

strength of verification of an V3-sentence.

A somewhat stronger version of the confirmation problem might be con

sidered: confirmation of "All <f>(m,n)-inductions on E terminate in finitely

many steps" instead of *E |= 3yVz-i<f>'. The assertion to be confirmed is

analogous to an archimedian axiom, and the methodological analysis of this

confirmation problem would seem to be analogous to that for the archimedian

axiom.
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The analogy between the infinitary principle associated with the non-

trivial necessity of any axiom Q-i(f>: 'all Q,<f>-inductions terminate within

finitely many steps', and archimedian axioms is suggestive in another respect.

We might hope to use these infinitary principles in proving representation

theorems much as archimedian axioms are used. In fact, our "induction

processes" are suggestive of the processes underlying measurement procedures.

Thus, proper generalization of these "inductions" may yield a formalism

appropriate for a metatheory of measurement procedures. As special value is

placed on proofs of representation theorems in measurement theory which give

measurement procedures, this could be quite useful.

Certain new questions are also raised by these principles. We can

ask whether there are such principles of varying strength for a given type

<M,r> of measurement. An example of this can be found in Examples 4.3.7-

4.3.9. If we consider counterexamples in r" Eq(M) to the nontrivially

necessary axioms given, we find in Examples 4.3.7 and 4.3.8 that there exist

such counterexamples which can be embedded into structures in Eq(M) based

on a nonstandard model of <R,£,+> with only two incommensurable orders of

quantities, i.e. finite reals and one order of infinitesimal reals and their

sums. On the other hand, the counterexample structures in Examples 4.3.9

can only be embedded into structures in Eq(M) based on a nonstandard model

of <R,<,+> with infinitesimals of at least a countable densely ordered set

of orders of infinitesimality. (This follows from the fact that in a counter

example to these axioms, no three individuals can be commensurable.) Thus

the sentences of Examples 4.3.7 and 4.3.8 assert essentially "all numbers

are commensurable," and Example 4.3.9 makes a much weaker assertion, more

like "there is no countable densely ordered set of orders of infinitesimality."
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5. More General Measurement Models

5.1. Introduction

The model of Simple Measurement applies to many specific kinds of

measurement studied in measurement theory, especially to "classical" forms

such as extensive measurement.

In the following sections, we consider extensions of the model of

Simple Measurement to more general models applicable to certain important

kinds of measurement not directly covered by the model of Simple Measurement,

notably additive binary conjoint measurement. We attempt to show how cer

tain kinds of measurement initially not formalizable as Simple Measurement

can, after reformulation, nevertheless be treated in this way. (Alterna

tively, one could attempt to adapt the preceding theory of Simple Measurement

to more complicated models. To a slight extent, this is done below for the

conjoint measurement case.) The material in this section is Intended to

suggest ways of dealing with various situations, rather than to provide a

completely general theory.

5.2. Representability in a Class of Structures

Class measurement is the model of measurement obtained from simple

measurement by allowing a class K of measurement structures instead of

a single measurement structure M; so a type of class measurement is

characterized by a pair <K,r>. A structure E is said to be <K,r>-

representable if and only if there is a r-morphism E* M for some M e K.

Thus if <M,r> is a type of simple measurement, the <Eq(M),r>-representable

structures are exactly the members of r" Eq(M). In general, r (K)

denotes the class of all <K,r>-representable structures. Class measurement

is not a model of independent importance in the sense that important
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problems in measurement theory are formulated directly in terms of class

measurement models. Rather, this is an important model because, on the one

hand, many important questions and theories which initially seem to require

more general models for their formulization can be shown to be formulable

in terms of class measurement, and, on the other hand, much of the theory

of simple measurement has a natural generalization to class measurement.

There is a conceptual difficulty in discussing necessary axioms for

class measurement. For (given <K,r>),

r_1(K) =U{r_1(M): MeK} (1)

and so Th(r-1(K)) =n{Th r"](M): MeK} (2)

but this theory may be excessively weak, and certainly need not reflect the

requirements for r-morphic representability of even finite structures in

some MeK. This will especially be the case when the structures in K

have little to do with each other. In such cases, it seems more appropriate

to specify the "necessary axioms for <K,r>-representability" as

{<M, Th r"](M)>: MeK} . (3)

This type of specification is of course unwieldy, thouqh accurate; if the

class K is infinite, it seems unreasonable to expect such a disjunctive

agglommeration of theories to be tested. On the other hand, if the members

of K are sufficiently closely related, as is usually the case in applica

tions, there will be strong agreement between Th r" (M), for different

MeK; then most of the information about necessary conditions for repre

sentability will be given the shared axioms Th r~ (K).

Subject to these considerations, formulas (1), (2) and (3) show that

the theory of necessary axioms for <K,r>-representability is reduced to the
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theory of necessary axioms for simple measurement. Sometimes, <K,r>-repre-

sentability itself can be reduced to <M,r>-representabil1ty. In fact we have

Theorem 5.2.1. 3M: r'V) =r"](K) if and only 1f 3M e K: all struc

tures in K can be r-morphically represented in M.

The proof is trivial. The condition for full reduction of the theory

of necessary axioms is slightly weaker than the condition of Theorem 5.2.1,

namely

3M: Th r_1(M) =Th r"](K) .

It is not clear what value either of these reducibilitles might have

in cases where the structure M involved was not explicitly known and

accessible to study. In the examples in later sections we will not have

this problem.

5.3. The Two-Language Model

By far the most important step in generalizing simple measurement to

obtain a model of measurement naturally embracing most concepts of measure

ment studied in measurement theory (i.e. as judged from Krantz et al. (1971))

is to consider a two-language model of measurement. This model reflects a

situation which arises naturally in the current state of measurement theory:

One is confronted with certain empirical relations on a domain; that is,

an empirical structure. One would like to find a representation of this

empirical structure in some well known structure, preserving the empirical

relations. To find a measure structure, one looks for a numerical structure

with continuity and dimensionality properties which appear appropriate to

the empirical structure under consideration; then one searches for relations
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in this numerical structure which seem appropriate for representing the

empirical relations. The role of measurement theory in this process is in

making the notion of appropriateness more concrete.

If we consider the concept of measurement obtained from this process

from the viewpoint of first-order logic, we find 1) a language Lr appro

priate for discussing the empirical structure, namely the first-order lan

guage with symbols for the empirical relations as its only nonlogical

symbols; 2) the numerical structure, which is described in some standard

first-order language LM with symbols for the relations and operations on

this structure; and 3) a representation requirement, namely that represen

tations map empirical objects which stand in any empirical relation to numbers

which are in a corresponding designated relation.

More precisely, and slightly more generally, we consider <M,r>-measure-

ment, where

(i) L„ is an arbitrary first-order language, and M is an LM-struc-

ture (i.e. LM may contain operation symbols!)

LE is a first-order language with as its nonlogical symbols a

finite set of relation symbols, and the same variables as LM

r = <rE»rM>, where

IV is a sequence «f>, (x),...,<f>n(x)> of existential or quantifier-

free LE-formulas

rM is a sequence <iK(x),... ,if; (x)> of arbitrary LM-formulas

containing the same number of formulas as IV, and

exactly the same variables occur in if;, as in <f>., for

(11

(iii

(iv

(v

(vi

i = l,...,n.

An LE-structure E is <M,r>-representable if and only if there exists

a map f: \E\ -*• |M|, satisfying
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Vx from |E|: Eh^(x) => Mh^.(f(x)) , i=l,...,n.

We will denote the set of <M,r>-representable (LE)-structures by r" (M).

It is easily seen that extensive measurement and most forms of

difference measurement and probability representations discussed in Krantz

et al. (1971) have natural formulations in the two-language model. In the

next subsection this will be shown for (binary) additive conjoint measure

ment; polynomial conjoint measurement can be treated entirely analogously.

In these cases, and most cases of practical interest, the two-language

model can be replaced by an equivalent simple measurement model.

Theorem 5.3.1. Let <M,r> be a two-language model, r = <rE,rM>.

If IV consists of atomic LE-formulas and negations of atomic L^-formulas,

and if for each such <b (x), <b (x) e IV with
n>i Tin L.

<J>„ (x) = Rx , <J>„ (x) =-iRx

we have

nl n2

M M„ (x) ~ -i ^n (x)
nl n2

then there is an L^-structure M' such that

r"](M) =r"V)

and in fact, if <(>,,... ,<f>k e IV are the atomic formulas occurring in r£

and <J>.+,,... ,<f> e IV are the negations of atomic formulae which do not

occur in IV, then

M' =<|M|,^(x).....^
where

cf)^(x) ={x from |M|: Mf= ^(x)}
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and atomic LF-formulas which occur neither negated nor unnegated in IV

are assigned arbitrary interpretations in M'; such formulas are irrelevant

to the measurement problem.

The proof of the theorem is obvious from the statement.

5.4. Binary Additive Conjoint Measurement

The model of additive conjoint measurement was introduced in a pioneer

ing paper by Luce and Tukey (1964). This model allows the measurement of

a quantity q (such as momentum in classical physics) which is hypothesized

to be related to two other attributes of objects (such as mass and velocity)

as q = a, +a? (or q = a,-a«, in our example, which is obtained from

the additive relation by exponentiation) using empirical operations of

adjustment and ordinal comparison of attribute pairs <a,,a«>. The only

operations involving q itself, rather than a, or a«, which are needed

are ordinal comparisons. An overview of the representation theory of this

model and generalizations is given in Krantz et al. (1971).

In the present subsection, we apply the preceding theory of necessary

sentences for measurement to this model. Specifically, we determine the

complete list of minimal V3V quantifier prefixes for nontrivially necessary

axioms for binary additive conjoint measurement. This allows full use of

the exclusion principles developed in subsection 4.4, as well as the

development of further techniques. We assume that there are further minimal

quantifier prefixes of nontrivially necessary sentences, of 3V3-quantifier

form, but these have as yet not been determined.

As has been remarked by Adams (1975), it is natural to study axiomatiza-

tion of binary conjoint measurement in a two-sorted logical language; namely,

allowing a distinct sort of variable to range over each attribute (much as

we speak of masses and velocities, in physics). This is a first-order
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language which has two sorts of variables

n i *9 * • • •

o* i* 9»•••

which we shall call the unprimed and primed variables, respectively; further

relation parameters, which now come equipped with a specification not only

of the number of variable positions, but also of the type of variable appro

priate in each position. The atomic formulas are the formulas of the form

KX^ XaXqX«

where R is a relation parameter followed by an appropriate sequence of

primed and unprimed variables. Further formulas and sentences of the lan

guage are built up from this atomic formula as 1n regular, single-sorted

first-order languages.

If L is a two-sorted language, then an L-structure

<DUD'; R,...>

•has two disjoint sets D and D' as "domain"; the unprimed variables refer

to the objects in the unprimed domain and the primed variables refer to the

objects in the primed domain. The relations are appropriate subsets of the

cartesian product of the domains; thus 1n our example

RCDxD' x D * D' •

Quantifiers range over the domain corresponding to the type of variable they

bind; thus 'Vx'3y( )' means: "for each primed object there 1s an unprimed

object...".
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Now a two-language model for conjoint measurement can be formulated:

LF: the two-sorted first-order languaqe (without equality) with

as sole relation symbol R, to be used as in Rx,x2x^x^

which we will abbrevate as x,x« < x~xi

LM: the ordinary language in mathematics for <R,+,<>, with '+' as

a binary operation symbol, and '<' as a binary relation symbol,

M = <R,+,<>

1r- • iX-iXq^XqX*, X^ J\n y X^Ay| J

FM: {xl+x2-x3+x4' xl+x2ix3+x4}

(Alternatively, we could have taken LM with '+' as a ternary relation, as

in extensive measurement, and

if;, = 3z,z2[z, =x,+x2 & z2 =x3+x« & z1 £Z2] .

This description is clearly less natural, but allowed by the definition of

the two-language model.)

In order to analyze the necessary axioms for conjoint measurement, the

two-language model will be converted to a Simple Measurement model. This

can be done essentially according to the procedure of Theorem 5.3.1, except

that we must deal with the fact that LE is two-sorted. As in the theorem,

we wish to find an LE-structure M', such that

rE](M') =r_1(M) , (r =<rE,rM>) .

Examination of the situation, especially of TV, shows that a <M',re

presentation f of an LE-structure E = <D,D';R> must

(i) map the unprimed domain to an unprimed domain of M', which

"looks just like" <R,+,<>,
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(ii) map the primed domain D' to a primed domain of M', which

again looks just like <R,+,<>,

(iii) all this in such a way that R on E 1s transformed Into

X,+Xp < x. +xi

on M\ i.e. M' must be M' = <RUR'; R>, where R is the

quaternary relation defined by

(Vx1,x3eR)(Vx^,x^eR*): M' =Rx^x^ «> <R,<,+> \* x^x^x^x^ .

The right-hand side of this definition makes sense, once we realize

that all of x,, x«, x3, xi represent real numbers.

Comparison with Theorem 5,3.1 will show that the above is 1n fact a

natural generalization of the procedure suggested there. It is clear that

we have

Proposition 5.4.1. Let M and M' be as defined above,

(a) For any LE-structure E, there is a 1-1 correspondence between

(i) the <M,^-representations f: E + M

(ii) the <M*,IV>-representations g: E

E
(b) IV1(M1) = r"](M) .

Thus we have found a Simple Measurement model <M',IV> for binary

additive conjoint measurement. In the following, we will denote this model

by <M,r>, dropping the prime and the subscript 'E\ We procede to analyze

the necessary axioms for binary additive conjoint measurement. The trivially

necessary axioms are well-known in the literature, see Krantz et al, (1971).

They can be given as a countable sequence of so-called cancellation axioms

(Adams (1975); Krantz et al. (1971), §6.2.1). In order to determine the



81

minimal quantifier prefixes of nontrivially necessary axioms, we formulate

two-sorted analogs of the exclusion principles Theorems 4.4.1 and 4.4.3.

Theorem 5.4.2. Let if; = 3x3x'VyVy' (}>(x,x',y,y'), cf) a quantifierfree

(m+m'+n+n')-ary f-formula, and |M|=DUD'. If [D]mx [D']m' consists

of a single orbit under G„, then

r'V) M =» V'\qW |= if; ,

i.e. if; cannot be nontrivially necessary.

Besides Theorem 5.4.2, there is another two-sorted analogue of

Theorem 4.4.1:

Theorem 5.4.3. Let if; = Vx3y'VzVz' <J>(x,y',z,z'), <f> a quantifierfree

U+m'+n+n')-ary f-formula, and M=DUD', if, for all seD£, Gr(s)
partitions [D']m into a single orbit, then if; cannot be nontrivially

necessary.

An analogous assertion holds if if; = Vx'3yVzVz' <f>(x',y,z,z').

Theorem 5.4.4. Let if; = VxVx'3y3y'VzVz' (J>(x,x',y,y',z,z'), where (J)

is a U+£'+l+l+n+n')-ary quantifierfree f-formula, and |M| = D^D'. If,

for all se D x(D') , Gr(s) partitions DxD' into finitely many

orbits, and

either (i) one of 3y or 3y' is missing

or (ii) VpeGr(s): Vx eD 37reGr(s): tt(x) =x & Vx' eD' irpfx') =x' (*)

then if; cannot be nontrivially necessary.
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Remark. The condition (*) 1s a weak Independence condition for the

actions of Gp(s) restricted to D respectively D'. It is equivalent

to either of the following conditions: for any orbit o of DxD':

VpeG Vxe D Vx' eD': <x,x'> eo => <x,p(x')> e o

VpeG VxeD Vx' eD': <x,x'>6o =»<p(x),x'> e o .

The proofs of these theorems are analogous to those of Theorems 4.4.1

and 4.4.2. The condition (*) in Theorem 5.4.4, which is shown by the

remark to be symmetrical in primed and unprimed variables, is used to show

that no new orbits of DxD' occur in the construction in part (1) of

the proof.

We now apply these theorems, using the fact that the invertible r-mor

phisms of M are exactly the automorphisms of M and are given by

G = {X: X(x)=a,x+a2> X(x') =a,x'+a3; a, ,a2,a3eR, a, >0} .

The following table indicates the conclusions to be drawn from Theorem'5.4.2•

5.4.4 and an analysis of the action of G on M = <RUR',R>; note that

for the present r = IV, any formula <f> is a f-formula.
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Table 5.4. 5

Group Acting on Orbits

(#)

Quantifier Prefi
--VzVz' *(—,z,z')

xes excluded by
Theorem (#)

1. a. G DR]?xR\ RxpR']? 1 3y]y23y', 3y3y^y' 5.4.2

b.
3

[F] xR', + symm CD — —

c. CK]2 * CR]2 OO — —

2. a. G(x); CR']2 1 Vx3y^y^ 5.4.3

b. x eR RxR1 < 3(*) Vx3y3y' 5.4.4(ii)

c. DR']3 CO — —

d.
9

[R] x]R', + symm 00 —
-—

3. a. G(x'); DR]2 1 Vx'3y13y2 5.4.3

b. x' eR' RxR' < 3(*) Vx'3y3y' 5.4.4(ii)

c,d as 2c,d — —

4. a. G(x,x'); R, R' < 3 VxVx'3y, VxVx'3y' 5.4.4(i)

b. x eR, x' eR' DR]2, RxR', [R«]2 00 — —

5. G(R) R' 1 Vx3y' 5.4.4(i) or 5.4.3

RxR', [R']2 CO — —

6. G(R') R 1 Vx'3y 5.4.4(i) or 5.4.3

RxR', [R]2 00 — —

7. G(x1,x2) [R']2 00 — —

X-i ,X« 6JK

8. G(x*,xp as 7 — —
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These results (excepting 5 and 6, which are stronger) can be summarized

as:

Proposition 5.4.6. No nontrivially necessary axiom for conjoint

measurement is of the form VxVx^^y'VzVz' <j>(---)» (JjU+fc'+m+m'+n+n1)-ary

quantifierfree, with

' %+V +m +m' > 3

Jl + m > 1

V +m' > 1

Thus the simplest quantifier prefixes not excluded by the results of

Table 5.4.5 are the following: (We specify only what is to be filled in

in — VzVz' <(>(—,z,z'); we give only one of each two forms obtainable

from each other by interchanging primed and unprimed variables.)

A. three variables of a kind:

1. Vx.jX23y

2. Vx3yiy2

3. 3yiy2y3

B. two variables of each kind:

4. Vx^Vx'Sy'

5. Vx.|X23y^y2

6. VxVx'3y3y'

7. Vx3y3yiy'

8. ^y-[y21y\y,2
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So far our analysis has paid no attention to the extent of final universal

quantifiers, indicated by n+ n' in Proposition 5.4.6. Using the considera

tions of Remark 4.2.10, one obtains the following two-sorted analogue of

Theorem 3.2.6 (formulated for general <M,r>-measurement, M two-sorted).

Theorem 5.4.7. Let if; = VxVx'3y3y'VzVz' <J>(x,x' ,y,y' ,z,z'), $ a quan

tifierfree (£+&'+m+m'+n+n')-ary F-formula, m > 0.

(i) If n = 0, I f 0, then if; is nontrivially necessary if and only if

V = VxVx'3y'Vz' tfx.x'.y'.z')

is also, where <J>' is obtained from <\> by the procedure of

Remark 4.2.10 (X = 0) (or equivalently, as in Theorem 3.2.6(2)).

(ii) If n = 0 and I = 0, then

.->-. _•>.. .-*•

r = VxVx'3y'Vz' fix,?,?,?)

where <f>" is obtained from cf> by the procedure of Remark 4.2.10,

for the case I = 0, X = 1.

(iii) Analogously for the primed variables.

Thus we obtain a drastic simplification of if; if the final universal

quantifiers are omitted. The difference with the single-sorted case of

Theorem 3.2.6 is that there the simplification always yields a trivially

necessary axiom, whereas in the two-sorted case the simplification may

apply only to one of the sorts and the axiom may remain nontrivially

necessary.

Now applying Theorem 5.4.7 to our list of minimal nonexcluded quantifier

prefixes for nontrivially necessary axioms for conjoint measurement, we find:

(a) In cases (l)-(3), the final universal quantifiers Vz over unprimed

variables may not be omitted (on pain of trivial necessity).
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(b) In cases (4)-(5), the final universal quantifiers Vz' over

primed variables may not be omitted (on pain of trivial necessity).

(c) In cases (6)-(8), neither type of final universal quantifier may

be omitted (on pain of trivial necessity).

In all cases the conclusion follows because omission of the quantifiers

would make the sentence equivalent (as far as the possibility of being

nontrivially necessary) to a sentence with a quantifier prefix which is

excluded by the arguments summarized in Table 5.4.5. Moreover, we find that

if we allow more variables preceding the final universal quantifiers, the

omissions of types (a)-(c) still result 1n either a quantifier prefix extend

ing (4) or (5) without the omissions, or in a quantifier prefix to be

excluded by case (2) of the definability analysis below: Vx'Vx3yVz .

This leaves undecided the minimum extent of the final universal

quantification in

— primed variables in (l)-(3)

— unprimed variables in (4)-(5)

These situations have a common feature: the variables of the sort in ques

tion are not essentially involved in the induction processes associated with

the quantifier prefixes: If we omit the final universal quantification in

these cases, the induction process is carried out entirely on the domain of

the other sort. As there are no atomic relations on M among elements of

a single sort, it follows directly that <{> may not omit variables of one

sort altogether, so that in cases (l)-(3), the final universal quantifica

tion over primed variables may not be omitted.

In order to settle the question in cases (4)-(5) and to get more precise

information about cases (l)-(3), we will now study induction processes which

are carried out entirely on the domain of a single sort, with only occasional
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reference to elements of the other sort. This is of independent interest

because it will also shed light on the possibilities of conjoint measurement

using mainly manipulations of a single kind; for this involves similar

processes.

We study inductions which are essentially on the domain of one sort

(say the unprimed sort) by a method called definability analysis. Defina

bility analysis is a method of relating the induction processes (on a two-

sorted structure M with domain DOD') relevant to Vx'Vx3yVzVz'-sentences

to the induction processes relevant to certain Vx3yVz-sentences, transla

tions of the original sentences, on a reduced single-sorted structure M

on the unprimed domain D of M. The definability analysis is used to

determine M and the language into which the original sentence is to be

translated. There is also an inverse application, in which a sentence in

a single-sorted language L of which we know the relevant induction pro

cesses on an L -structure M , is shown to be translatable into L, such

that the translation of the sentence has corresponding induction processes

on M.

To see the basic idea, let if; = Vx'Vx3yVzVz'-i<f), <j> an (I' +£+m+n+n')-

ary quantifierfree L-formula. To determine whether if; is nontrivally

necessary, we must consider <J)(x' ,x,m,n+n' )-inductions on M for all

x' e (D')£ , xe D£. If we take a particular s' e (D')r , and instan

tiate if; to s', we get if;(s' )= Vx3yVzVz'-,<f>(s',—) = Vx3yVz-,3z» <j>(s',—)

r">. •*-*--»•» _-K . ,-K -»•-»•-»-If we define 4>r(s\—) by ^(s' ,x,y,z) =3z' <f>(s' ,x,y,z,z') we see that

4>r defines an U+m+n)-ary relation on D, and that the nontri vial-necessity

of if; can be determined by considering (f> (s* ,x,m,n)-inductions on D,

endowed with a relation p(s'), with a definition of the form
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p(s') = {u: M (= 3z» 6(s',u,z')}

0(s',u,z') quantifierfree, z' = <zi ,z£,... ,z',>
(*)

Definability analysis answers the question: Given V, n' and a two-sorted

measurement structure, what relations p can be defined on the unprimed

domain of M by formulas of the form as in (*)?

The information so obtained can be used in two ways:

(i) Let {p.: ie1} be the set of all such definable relations. Let

M = <D,p.: i e I>. Then any induction on M agrees with one on M , so

if we can show that, on M = <D,p., i eI> all inductions are bounded

(independently of ?') or some must be infinite, we may infer that the same

is true for any <f>(s' ,x,m,n+n' )-induct1on on M. (For examples, see cases

1 and 2 below.)

(ii) If there is a <j> in terms of some of the {p.: iel} such that

there are arbitrarily long (J) -inductions on Mr but no infinite ones, then

by substituting the defining L-formulas for the p. into <f> we obtain an

L-formula <J> such that there are arbitrarily long finite (^-inductions on M

but no infinite ones. This may yield nontrivially necessary axioms in L.

(For examples, see cases 3 and 4 below.)

In application (i), where it is crucial that we know the full strength

of the entire set of definable relations {p..: 1el}, it will generally

occur that most of the p. are quantifierfree definable in terms of a small

subset {p^ ieIQ}, IQ c I. in that case it is clearly sufficient to

analyze inductions in <D,p..: 1eIQ>. Specifically we note that disjunctions

of (variable substitution instances of) p.'s are again p-j's, by the theorem

of logic — 3z' 9(s',u,z') ^ 3z'—e(s',u,z'). Hence {p.-.ielg} need

only contain p. whose defining L-formula 9 in (*) is disjunctionfree.
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Returning to conjoint measurement, we execute the definability analysis

for several values of £', n':

Case 1. «,' = 0, n' = 1 (will exclude Vx3yVzVz'-axioms)

Recalling that in this case D=R, abbreviate p0(x,y) by x< y.

This is a definable relation on R (in the form of (*)):

R |= x < y o <ROR', Rxx'yy'> (= 3z' Rxz'yz'

Any other (*)-definable relation is definable in terms of '<': Let the

disjunctionfree L-formula 6(x,z') be [>*Rx. z'x. z']^[^-iRx. z'x. z'].
i-, 3} i2 J2

Then:

<RUR, Rxx'yy'> |= 3z' 6(x,z') <> R (= [—x. <x. ]-|>~x. £x. ] .
'l Jl *2 J2

Hence any L-formula (with V = 0, n' = 1) (j> can be replaced by a formula

4> of the language L appropriate to <R,<> such that ^-inductions on

<RUR', Rxx'yy'> correspond exactly to <{> -inductions on <R,<>.

However, Th(<R,<>) has exactly one countable model, up to isomorphism,

so Theorem 4.1.1 applies to this situation, as was noted in section 4.1.

There are no arbitrarily long (f> -inductions on <R,<> unless some <f> -

induction on <R,<> is infinite. As the same must then be true of ^-induc

tions on M, we find there are no nontrivially necessary axioms for conjoint

measurement of the form Vx3yVzVz'.

Case 2. V = 1, n' = 0 (excludes Vx'Vx3yVz-axioms)

As in Case 1, fixing s' e R':

R r* x < y «• <RUR', Rxx'yy'> |= Rxs'ys'

<RUR, Rxx'yy'> (= e(s',x) = 0~Rx. s'x. s']-[—-.Rx. s'x. s'] <>
•\} J-, i2 J2

R |= [>~x. <x. ]-[—x. £x. ] .
nl Jl ^ J2
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So again we get M = <R,£>, independent of s*. As in Case 1 it follows

that there are no nontrivially necessary axioms for conjoint measurement

of the form Vx'Vx3yVz. Note that this result agrees in part with the

result of the exclusion argument 4a of Table 5.4.5.

Case 3: V - 0, n' = 2. Transfer of nontrivially necessary axioms

for difference measurement by an interval scale to minimal Vx3yVzVz*-

nontrivially necessary axioms, covering prefixes (l)-(3).

Consider the single-sorted structure R =<R, x<y, x,-x2£y,-y2>,

for the language L with one binary and one quaternary relation symbol.

We note that relations on R of the form <j>
r r

vV[[—x, <x. ]-[—x. £x. ]-[—x. <x. ]-[>-x. {x. ]*[x1-x;?<y1-y,)]]
M Jl n2 J2 n3 J3 n4 J4 i*i*

can be defined in M = <RUR', Rxx'yy'> by a formula of the form:

3z»z^[[^RxiiZ'x.iZ^].[^Rx^z'x.^].[^Rx.^x^z'] «[-Rx^z'x.^z']

-Rx^x^-Ry^^z']] .

It follows that if an axiom of the form Vx3yVz <f>r where <j>r is of

the special form given above is nontrivially necessary for measurement

<Rf,rr>, rr ={x<y, x£y, x-j-x^y^, x^iy^h then its trans

lation is a nontrivially necessary axioms for conjoint measurement. Thus,

from Examples 4.3.7-4.3.9, we find such axioms of the forms

(1) Vx]x23yVzVz]z' ; (2) Vx3yiy2VzVz^ ; and (3) Sy^y^zVz^ .

It follows from earlier considerations that these quantifier forms are

minimal.
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Case 4: V = 2, n' = 0. Transfer of the axioms Examples 4.3.10-4.3.11

to minimal nontrivially necessary axioms covering prefixes (4)-(5).

Consider the single-sorted structure <R, y-x<d, y-x>d, x£y>, d > 0,

for the language with three binary relation parameters. We note that rela

tions on this structure of the form <f> (see Case 3 above) can be defined

on M = <RUR', Rxx'yy'> by a formula of the form

Rx0slx0s2 "~lRx0s2x0sl " vvC["Rxi s^x. s£] -Rx1s^x2s^-Ry2s^y1sp

where the first two clauses insure that d = s?~s\ > ®' &ecause °^ this*

we can translate the sentences of Examples 4.3.10-4.3.11 into L, and find

nontrivially necessary axioms for conjoint measurement of the prefix forms

(4) Vx^x£Vx3yVz ; (5) Vxjx^y-^Vz . Again it follows from earlier

considerations that these forms are minimal.

We conclude the analysis of minimal V3V-nontrivially necessary axioms

by giving three minimal examples.

Example 5.4.8. if; =VxVx'3y3y'VzVz' -tcf)(x,x',y,y' ,z,z')

<f) = [x=y-*z>y

&

x' =y* —• z' >y'

&

[x<y & y-x=y'-x'] -> x' <z' <y'

&

[y'-x* <y-x & y' ^x'] —> z-x =y'-x' & y'-z' =y-z & z* >x'] (step)

basic process
~kt~ z'

> (proper initial relations)
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Example 5.4.9. if; = Vx3y3y'y£VzVz' -i<fr(x,y,y^ ,y£,z,z')

0 = ly\ =y2 -• z* iy (two distinct y' s)
&

lyi<y\ &yj-y^iy-x] -• z-x>yj-y£ (step sufficiently small)
&

\.y2<y\ & y\-y2<y-*\ -* [y-z =y|-y2& y^-y^z-x]] (step)

basic process

R'
y2 ^

z y

Example 5.4.10. if; =By^y^VzVz' ^{y}9y2iy\ ,y2,z,z')

* = \.y\=y2 — z' *y£
& I (four distinct points)

yl =y2 ~~" z?ty2
&

[y^y] &^2<yl^ ""* ^1^2 <yl"z &y2<z^ ^fil1 holes on K^

basic process

d

R' £±] -
y2 yi d

F 1 £d^L
y2 z yl

Remark. In this process, points are inserted between an^ pair on R

until some pair has distance less than d. In the limit this generates a

dense subset of R. This example is a slightly simpler version of Example

4.3.9; the phenomenon is discussed in more detail there.
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The proof that the sentences if; in Examples 5.4.8-5.4.10 are non

trivially necessary is left to the reader. The exclusion arguments proceding

the definability analysis together with the case V = 0, n' = 1 of the

definability analysis, on the one hand, and on the other hand the arguments

in the cases V = 0, n' = 2 and V = 2, n' = 0 of the definability

analysis, together with Examples 4.3.7-4.3.11 and Examples 5.4.8-5.4.10

finally show:

Theorem 5.4.11. The minimal V3V-quantifier forms of nontrivially

necessary axioms for conjoint measurement are (up to exchange of primed and

unprimed variables):

(1) Vx^yVzVz' (4) Vx]x£Vx3yVz

(2) Vx3yiy2VzVz' (5) Vx^y^Vz

(3) 3yiy2y3VzVz' (6) VxVx'3y3y'VzVz'

(7) Vx3y3y^y£VzVz'

(8) 3Vly23y^y'VzVz'

Of course this may not be a complete list of minimal quantifier forms:

The theory does not give any information about 3V3-quantifier forms; also

no example of an 3V3-nontrivially necessary axiom which is not V3V seems

to be known at present. It seems that Theorems 4.4.3 and hence 5.4.2 and

5.4.3, as well as the definability analysis, can be applied to 3V3-sentences;

thus we would expect to obtain exclusions analogous to those summarized in

Table 5.4.5, as well as by definability analysis. (Theorem 4.4.1 and hence

5.4.4 seem not to generalize appropriately.) All this would still seem

insufficient to settle the complete list of 3V3-minimal quantifier forms,

especially as long as examples are lacking. We will therefore not pursue

the matter further.
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5.5. Representation in Expanded Structures. Ordinal Measurement with a

Constant Threshold

A wide range of problems in measurement theory have the following

structure:

"Given a specific L; L-structure S

LE (empirical language)

To find: axioms A£ on LE-structures, such that (or which are necessary if...)

— there exists an expansion of Sto an L^-structure §, by

adding relations R1"--Rn (LT =LU{R1.. -Rn>)» satisfying

LT-axioms A , such that

— there exists a mapping a from L£ structures T satisfying A£

to an LT-structure S satisfying Ar which is an expansion of

the original given S, such that a "preserves specified

empirical structural characteristics," I.e.

— there exists a pair r = <IV,r->

rE = {(J>1(X1---Xk),...,(j)n(X1"-Xk)}: quantifierfree LE-formulas

rT ={*1(X1---Xk)f...,*n(X1---Xk)> " LT-formulas

such that, for i = l,2,...,n:

(Vt1---tke |T|) TM^VV * ^ValV..-^))"

Thus our model involves:

1) two languages L£, L? (E =empirical, T=theoretical)

2) a class of measurement structures K (rather than a single one,

as before)

3) a pair of r-sets: <rr»rT>» otherwise used as before.

Occasionally, a problem initially formulated in this framework will allow

simplification to the previous case of "Simple Measurement."
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Example 5.5.1. Utility Measurement with Constant Threshold e > 0

(See Luce (1956), Scott and Suppes (1958).)

(a) LE: {<}; L= {<,+}; Ly = {<,+,d

AT =ThL(<R,<,+>) U {e>0}

K: models of A^ which are expansions (by e) of <R,£,+>

rE = {<,-»<}, i.e. {x1 <x2;-ix1 <x2}

iy = {x^fx^eJ-.-ix <(x2+£)}

i.e. Ap is to concern whether

3a,e: e >0 & a <b <> a(a)+e <a(b)

a: <D,<> -* <R,+ ,<>

(b) First simplification: (VSeK) (3!T: LE structure)

(i) |S| = |T|, and the identity map |T| ->• |S| is a r-morphism

(in the r = ^psIV* sense of our more general model)

(ii) (VE: L£-structure): Eer_1(S) <> Eer"1^)
namely: T is the reduct of <R,+,<,e> to <R,R> where

Vx,yeR: Rxy ++ x+e£y

So we are effectively back to a 1-language model, with a class K'

of target structures.

(c) Second simplification: Any two structures in K' are isomorphic;

the isomorphism T, + T„ is induced by the automorphism of <R,+,£>

taking e, > 0 to e« > 0. Hence: VE: LE-structure: VT,,T2e K':

Eer"1^) o Eer"1^) ,

i.e. r"1^') =rE](T) for any TeK'. So we are back to "Simple
Measurement," taking a fixed Te K'.
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(d) To axiomatize vl (T), first get trivially necessary axioms:

(1) Thv(T) in LE

(ii) For nontrivially necessary axioms: Note that

invertible r-morphisms of T are automorphisms of T

all quantifierfree formulas of L£ are fE-formulas

The automorphisms of T: all translations: {x «-»• x+8, 6eR} = Gp.

So by our Theorem 4.4.3, there are no nontrivially necessary

axioms of the form

3x Vy^-'-y if; , if; quantifierfree LE-formula

(because Gr partitions |T| into one orbit) and this is

the best we get from Theorem 4.4.3: Gr(s) partitions |T|

into °° orbits, for any nontrivial s.

(iii) Example of a nontrivially necessary axiom:

Vx3yVz-i(y<z<x)

(e) Corollary to d(iii): IV (T) is not a first-order class, for any

r£ containing at least ,x1 <x2'. But r~ (T) =r" (K), for the

original formulation of the problem; hence r (K) is not first-

order axiomatizable (using Proposition 4.1.0).
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6. Open Problems

1. For which simple measurement models with nontrivially necessary sentences

is the set of nontrivially necessary sentences recursively enumerable?

Or the set of necessary sentences? Does decidability of Th(M) help?

2. Consider extensive measurement <M0,r>, M~ = <R,£,+>. Let M be

elementarily equivalent to Mfl. Which sets of sentences of L are

Th r_1(M)

for such M? Clearly we have Th r" (MQ) and by Theorem 4.1.2, also

Thu=(Mj, which are distinct by Examples 4.3.2 and 4.3.4. Are there
vl U

any other possibilities? (Example 4.3.9 is in a different language,

but might be converted.)

3. In Problem 2, let MQ and r be arbitrary. Consider the class of sets

{Th r (M): M elementarily equivalent to MQ} ,

ordered under set inclusion. Which partially ordered sets can be so

realized?

4. Decide the following conjecture: For any <M,r> (Simple measurement

model): If there is a nontrivially necessary sentence in Th r" (M),

there is an 3V nontrivially necessary sentence in Th r.~ (M).

5. Let <r,M> be a Simple Measurement model, and let r" (M) be a

nonelementary class (for example, assume there are nontrivially neces

sary sentences). Can there be subclasses of r" (M) which are ele

mentary, and contain an infinite structure? (By Theorem 2.3.2, one

may assume that any such class is Vf and-satisfies at least one Vf-

sentence false in M.) Can this occur in interesting situations?

(Note that if r-morphisms are 1-1, the answer is no, as the cardinality
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of M is bounded and an elementary class with an infinite structure

has infinite structures of every cardinality.)

6. Is there any extension of Theorem 4.4.1 to 3V3-sentences which is of

use in practical cases (e.g. conjoint measurement; see the final

comments of section 5.4)?

7. Theorems 4.2.8 and 4.5.3 give a characterization in terms of intrinsic

properties of M, of nontrivial necessity of f-sentences; we can thus

obtain results such as Theorems 4.4.1 and 4.4.3 for f-sentences. Is

there any way of extending these results to sentences which are not

f-sentences?

8. For, say, extensive measurement (see section 2.2), not every sentence

is a f-sentence. By Theorem 4.4.3, there 1s no nontrivially necessary

f-sentence for extensive measurement of the form

3xVy-i<j> , <J> quantifierfree .

Is there any nontrivially necessary sentence of this form (non-f) for

extensive measurement? If not, why not?

9. Consider the two-language model of section 5.3. When all elements of

rE are either atomic formulas or their negations, Theorem 5.3.1

sometimes gives reduction to a simple measurement (i.e. single language)

model. Find conditions for this result to generalize to more general

sets r£ of quantifierfree formulas. If that is not possible, can the

preceding theory of nontrivially necessary axioms be generalized to

apply to the two-language model?

10. Assume that (in a Simple Measurement model <M,r>) not all L-structures

are considered as candidates for "empirical structures," but only those

satisfying a first-order theory T. Thus we now enquire about the
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axiomatization of

Thfr^WnMdfr))

How much of the preceding theory relativizes tothis situation?
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