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Abstract

The theory of possibility, recently introduced by L.A. Zadeh, is

explored in the particular subject of possibility-qualified propositions as

a basis for approximate reasoning. The concept of e-possibility related to

fuzzy sets has a formulation that verifies some criteria of minimal uncer

tainty. It is shown how to derive possibility-qualified propositions from

the classical translation rules in fuzzy logic.
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1. INTRODUCTION

The purpose of this study is to explore possibility-qualified proposi

tions introduced by Zadeh in [10], a concept different from that of modal

logic [3].

In [11] Zadeh describes a theory of possibility distributions related

to fuzzy sets in order to interpret the meaning, rather than the measure,

of the information conveyed by a proposition, arguing that "the imprecision

that is intrinsic in natural languages is, in the main, possibilistic rather

than probabilistic in nature."

Based on these premises, in section 2, we introduce the dual notion of

impossibility and we give the properties of possibility, impossibility and

e-possibility qualified propositions related to non fuzzy sets. We finally

introduce a notion of e-lower and e-upper possibility along with their

properties.

Remark that the formulation of the e-possibility is different from that

of Zadeh given in [11], in this sense that its extension to fuzzy sets is

chosen in order to verify some criteria of "minimal uncertainty." This is

discussed in section 3 which is also devoted to the different kinds of possi

bility qualified propositions related to fuzzy sets.

In section 4 we relate interval-valued fuzzy sets to possibilistic

sub-propositions via the notion of linguistic intervals.

In section 5, possibilistic propositions are related to fuzzy relations:

projections, compositional rule of inference, extension principle.

Finally in section 6 and as a main interest for applications possi

bilistic propositions are related to the rule of conditional composition,

IF...THEN...ELSE..., and to the rule of compositional modus ponens.



2. POSSIBILISTIC PROPOSITIONS

Fuzzy Sets - Notation and Terminology

A fuzzy subset F of a universe of discourse U is characterized by

acompatibility function up: U•*- [0,1], where yp(u) is interpreted as

the degree of compatibility, or possibility, of the element u in U with

the concept represented by F.

The support of F is the set of points in U at which yp(u) is

positive. The height of F is the supremum of yp over U. F is said

normal if its height is unity.

To simplify the representation of fuzzy sets we shall employ the

following notation.

A non fuzzy finite set such as U = {u,,...,u } will be expressed as
n ' n

ui + ,*'+un or u = I u,* Wltn tne understanding that + denotes the
1 n i=l n

U =

union rather than the arithmetic sum. A fuzzy subset of U will be expressed

as

F = VV"*+yn/un (2J)

where p., i = l,...,n is the degree of compatibility of u. in F.

When the support of a fuzzy set is a continuum we shall write

F =

U

vF(u)/u (2.2)

with the understanding that yp(u) is the degree of compatibility of u in

F and the integral denotes the union of the fuzzy singletons u.(u)/u,

u e U.

A fuzzy set is of type n, n = 2,3,..., if its compatibility function

ranges over fuzzy sets of type n-1. The compatibility function of a fuzzy

set of type 1 ranges over the interval [0,1].



Fuzzy sets of type 2 are also called $-fuzzy sets, see [5,7].

Intervals in [0,1]

Let $ be the set of the intervals such as [a,b] c [0,1], with [a,a]

identified with a. Each operation on [0,1] induces a corresponding

operation on $, provided that the result is an element of $. This is

made possible by using the extension principle.

If f is a mapping from a universe of discourse U to a universe of

discourse V and F is a fuzzy subset of U expressed as F = y,/u, + ••• +y /u
II n n

then the extension principle asserts that

f(F) =ffy^ +'-.+y^ig =Ul/f(U]) +...+ un/f(un) . (2.3)

If the support of F is acontinuum, that is F=fyF(u)/u, then the
formulation for the extension principle is

f(F) = f yF(u)/u
U r

yF(u)/f(u) (2.4)

with the understanding that f(u) is a point in V and yp(u) is its

grade of membership in f(F), which is a fuzzy subset of V.

If [a-pb-j] and [a2,b,>] are elements of $ and if * is an opera

tion on [0,1], it follows that

[a1,b1]*[a2,b2] = [a^ag.b^bg] iff a.,*a2 <b^bg . (2.5)

(2.5) holds for example when * is replaced by one of the following

operations

minimum: a ~ b

maximum: a v b



product: ab

bounded sum: a © b = 1a (a+b), where + is the arithmetic sum

bounded difference: a e b = 0* (a-b), where - is the arithmetic

difference

In (2.5), when the condition a.j*a2 <_ b..*b2 is not satisfied, one can define
for example

[a1,b1]*[a2,b2] = [(a.j*a2) (̂b-j^hb^bJ .

Such a formula is suitable for the resolution of composite <S>-fuzzy relational

equations, see [4(V)] and [6].

Let us remark that a given structure on [0,1] does not necessarily

induce the same structure on $. For example, [0,1] is a totally ordered

set for the usual order relation on real numbers, but the induced relation

in <3> is not a total one.

[a^b-j] < [a2,b2] iff a] <a2 and b1 < b2 (2.6)

Finally, the "complement" of [a,b] in $ is defined by

[a,b]' = [b',a'] = [l-b,l-a] (2.7)

where the symbol prime (•) stands for complement.

From the definitions of e , ', © , it follows that

[0,1] e a = [0,1-a] = [0,a'] (2.8)

[0,1] e a = [a,l]' (2.9)

a © [0,1] = [a,l] (2.10)



Let us give now some properties derived from the © and e operators which

will be useful in the sequel. They are easy to verify.

av b < a© b (2.11)

a1 < a„ => a,©b£a2©b (2.12)

aeb1 = (a-b)eb' (2.13)

where a, b, a^ a2 are elements of [0,1].

aeb<a~b' (2.14)

a'eb' = bea (2.15)

aeb = ae(a 4) = (a- b)eb (2.16)

a] 1 a2 "* a1eb<a2eb (2.17)

b1 1 b2 ^ aeb2<aeb.. (2.18)

(a©b)' = a'eb = b'ea (2.19)

(aeb)1 = a'eb (2.20)

where a, b, a^, a2, b,, b2 are elements of [0,1].

Possibility-Qualified Propositions

In the sequel, the examples chosen to illustrate the propositions will

be based on:

the universe of discourse U = IR, the real line (2.21)

and

the subset F = [a,b] of U (2.22)



Let U be a universe of discourse, X, a variable that takes values

in U and F a subset of U, the proposition

X is in F—• R(X) = F (2.23)

where F is a subset of U which is assigned to the restriction R(X) on

the values that may be assigned to X [9],

For example,

yF(u) =1 for a<u<b (2.24)

= 0 elsewhere

X is in F is possible —+ R(X) = F+ '. '; (2.25)

where F is a fuzzy subset of U interval-valued, i.e., of type 2, which

is assigned to R(X) and defined by, see [10,11]

F+ =F©n (2.26)
where

In other words,

n=f [0,l]/u (2.27)

U+(u) =yp(u)©yn(u) =yp(u)© [0,1]
= [yp(u),l] . (2.28)

A more general definition should require

H=JL/u (2.29)
and

y +(u) =yp(u)©L , (2.30)

where L is the range of the compatibility functions under study. L = {0,1}

in this case, so that yp+(u) ={yp(u),l}, L= [0,1] in the case of fuzzy
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sets of type 1, etc. But here we are merely interested in fuzzy possibilistic

propositions related to at most fuzzy sets of type 1 and (2.28) will serve,

in the same form, for the generalization when F is a fuzzy subset of U.

For example,

yp+(u) = 1 for a <_ u <_ b (2.31)

= [0,1] elsewhere

Intuitively, (2.31) means that, whereas "X is in F" implies that the degree

of possibility that X is outside F is zero, "X is in F is possible" implies

that there is total uncertainty outside F, i.e., the degree of possibility

that X is outside F is unknown, which gives the total interval [0,1]

as a representation.

Impossibility-Qualified Propositions

We define impossibility-qualified propositions by the following trans

lation rule.

X is in F is impossible—• R(X) = F" (2.32)

where F" is a fuzzy subset of U, interval-valued, which is assigned to

R(X). F" is defined by

F" = n e F (2.33)

where II is defined in (2.27). In other words,

yp.(u) = [0,l]eyp(u) = [0,ypl(u)] . (2.34)

For example,
yp_(u) =0 for a<u£b (2.35)

= [0,11 elsewhere



Let us now indicate some properties related to possibility and impossi

bility qualified propositions.

1) FCF+ (2.36)

whereas, in general, F" <(: F.

2) An equivalent definition of F" is the following one:

F~ =F+QF (2.37)

3) One can define F+ from F" by

F+ s F®F~ (2.38)

4) F=F+eF" (2.39)

5) From (2.7) one deduces

F" = (F+)' (2.40)
and

F+ =(F")' (2.41)

6) If F and G are subsets of U:

FCG iff F+ C G+ (2.42)

F C G iff G" C F" (2.43)

7) For all subsets F and G of U,

F" CG+ (2.44)

(FUG)+ =F+UG+ =F+UG =FUG+ (2.45)

(FOG)+ =F+OG+ (2.46)
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(FUG)" = F~OG" = F"OG' = F'HG"

(FnG)" = F"UG"

(FG)+ = F+G+

(FG)" = F~ +G

F"G" = (F$G)" ,

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

where in (2.50) and (2.51), the symbol + stands for the algebraic sum;

a +b = a +b-ab for a and b in [0,1], [4(1)].

(F©G) = F ©G = F ©G = F©G+

(F©G)" = F'eG = G"eF

F"©G~ = (FeG«)' = (GeF')

(FeG)" = F~©(G')

F"eG" = (FeG')" = F'eG

Extremal Cases

Let 6 denote the empty set

0 = 0/u

X is in 6 —>• R(X) = 6

U=[1/u

X is in U —> R(X) = U

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)
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X is in 0 is possible—• R(X) = 0+ (2.60)

0 =0©n = n

0 and n correspond to the truth-value interpreted as unknown and denoted

by ?, see [9(H)],

0 = n = ?

X is in Uis possible—• R(X) = U+

U = U©n = U

X is in 0 is impossible—• R(X) = 0*

0 = ne0 = n

0 =0 = n = ?

X is in U is impossible—• R(X) = U'

U" = neU = 0

2.61)

2.62)

2.63)

2.64)

2.65)

2.66)

2.67)

2.68)

e-Possibility Qualified Propositions

Let e be a point in [0,1]. We define e-possibility qualified pro

positions by the following translation rule.

X is in F is c-possible—• R(X) = F(e) (2.69)

where F(e) is a fuzzy subset of U, interval-valued, which is assigned

to R(X). F(e) is defined by

yF(e)(u) = [e-yp(u), e-ypl(u)] , ueU (2.70)
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The concept of e-possibility is due to Zadeh who gives the following

expression corresponding to the right-hand member of (2.70).

[e-yp(u), eeypl(u)] , uGU (2.71)

Recalling that we deal with non fuzzy subsets F of U, when yp(u) = 0

or when yp(u) = 1, the expressions given by (2.70) and (2.71) coincide for

when yp(u) e {0,1}, e^ ypl(u) = e©ypl (u) for all e in [0,1],

When yp(u) e [0,1], e~yp,(u) < e©yp,(u), see (2.11). Hence for

all u in U, (2.71) is included (set inclusion or inclusion in the sense

of (2.6)) in the right-hand member of (2.70). The choice of (2.70) is

discussed in the next section. From (2.70),

F(0) = F" (2.72)

F(l) = F+ (2.73)

F" C F(e) C F+ , e G [0,1] (2.74)

yp(e)(u) =e for ue F (2.75)
= [0,1] for u $ F

For example,

yp/ Au) =e for a<u£b (2.76)

= [0,1] elsewhere

When e increases from 0 to 1, the e-possibility increases from the impos

sibility, formulated in (2.32), to the possibility, formulated in (2.25).

Intuitively, from (2.75), we can say that the subset F of U is

evenly spread to a degree e and there is total uncertainty outside it.

For all e in [0,1], we define the fuzzy subset e of U by

e = e/u , (2.77)
U
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that is, we identify a "constant fuzzy set" with the unique value taken by

its compatibility function. In particular 0=0 and U = 1.

From (2.70) it is easy to verify that

F(e) = (efiF+)uF" (2.78)
or

F(e) = (eUF")OF+ . (2.79)

When F is non fuzzy, one can easily find many equivalent formulations

for F(e), for example

F(e) = (efiF)©F" (2.80)

F(e) = F+e(e'OF) , (2.81)

and many other expressions, replacing the intersections by products, the

bounded sums by unions, etc. They are all equivalent formulations for

yp(u) G {0,1} for all u in U, but when F is a fuzzy set this result

is no longer true.

Remark that the expression (2.80) is the same as (2.71), given by

Zadeh, according to (2.13).

From (2.32), (2.40) and (2.72) we can write

X is in F is impossible ,

X is in F is not possible and (2.82)

X is in F is 0-possible

have the same translation rule given by

R(X) = F" = (F+)' = F(0) .
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For all e in [0,1],

6(e) = n (2.83)
and

U(e) = e (2.84)

where 0 and U are considered as functions of e, and e in the right-

hand member of (2.84) stands for a constant fuzzy set, see (2.77).

e-Lower-Possibility Qualified Propositions

Let e be a point in [0,1]. We define e-lower-possibility qualified

propositions by the following translation rule

X is in F is e-lower-possible —• R(X) = F(e)* (2.85)

where F(e)* is a fuzzy subset of U, interval-valued, which is assigned

to R(X). F(e)* is defined by

yF(e) ^ =yF^ ® [0,e] (2*86)
= [yF(u)»uF(u)©e]

where [0,e] can be considered as a "lower subset" of n,. see (2.26) and

(2.27).

When e increases from 0 to 1, the e-lower-possibility increases from

the certainty in F, formulated in (2.23), to the possibility, formulated

in (2.25)

F(0)* = F (2.87)

and

F(1)*=F+ (2.88)

FC F(eL C F+ , eG [0,1] (2.89)



For example,
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yF(e) ^ =] for uGF (2.90)
= [0,e] for u $ F

pF(e) ^ =1 for a£u<b (2.91)
= [0,e] elsewhere

Intuitively, from (2.90), we can say that, whereas "X is in F" implies that

the degree of possibility that X is outside F is zero, "X is in F is

e-lower-possible" implies that there is a "lower uncertainty" bounded by e,

outside F.

e-Upper-Possibility Qualified Propositions

This notion is the dual of the previous one.

X is in F is e-upper-possible —>• R(X) = F(e)* (2.92)

where e is a point in [0,1] and

yF(£)*(u) = [e,l]eyp(u) (2.93)
= [eeyp(u), yF,(u)]

[e,l] can be considered as an "upper subset" of n, see (2.33) and (2.27).

When e increases from 0 to 1, the e-upper-possibility increases from

the impossibility, formulated in (2.32) to the certainty in not F.

F(0)* = F" (2.94)
and

F(l)* = F' (2.95)

F" C F(e)* C F' , e G [0,1] (2.96)



For example,
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yF(e)*(u) =0 for uGF (2.97)
= [e,l] for uf F

yF(e)*(u) =0 for a<u<b (2.98)

= [e,l] elsewhere

Intuitively, from (2.97), we can say that, whereas "X is in not F" implies

that the degree of possibility that X is outside F is one, "X is in F

is e-upper-possible" implies that there is an "upper uncertainty" bounded

by e, outside F.

One can easily verify that

6(1)* = 0(0)* =n (2.99)

F(e)* = F©0(e)* (2.100)

F(e)* » 0(e)*eF (2.101)

(F(e)J' = F(e')* (2.102)
and

(F(e)*)' = F(e')* (2.103)

3. POSSIBILISTIC PROPOSITIONS RELATED TO FUZZY SETS

In the sequel, the examples chosen to illustrate the propositions are

based on:

— the universe of discourse U equal to the set of the non negative

real numbers,

— the fuzzy subset of U, F = small defined by 0 < a < b and

yF(u) =1-S(u;a,^,b) (3.1)
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where S is the S-function [10] whose parameters may be adjusted to fit a

specified compatibility function related to the concept small. In other

terms,

yF(u) =1 for u < a (3.2)

_ i «/U-a\2 . a+b
" tar a- u-^~

_ 0/U-b\2 j. a+b ^ .2tar for -y- <u <_ b

= 0 for u >^ b

The shape of yF is illustrated in Figure 1.

Possibility-Qualified Propositions Related to Fuzzy Sets

Let U be a universe of discourse, X a variable that takes values

in U and F a fuzzy subset of U, the proposition

X is F—* R(A(X)) = F (3.3)

where A is an implied attribute of X, A(X) a fuzzy variable which

takes values in U, R(A(X)) a fuzzy restriction on the values that may be

assigned to A(X) and F is a unary fuzzy relation which is assigned to

R(A(X)). For example,

John is small —• R(Height(John)) = small (3.4)

Extending now (2.25) with F being a fuzzy subset of U,

X is F is possible—• R(A(X)) = F+ (3.5)

where, see [10,11],

F+ = F© n (3.6)
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yF+(u) = [yF(u),l] =yp(u)©[0,l] . (3.7)

For example, see Figure 1,

yF+(u) =[l-s(u;a,^,b),l] (3.8)
or

ysman+(u) = [tJsmall(u)'1] (3.9)

Impossibility-Qualified Propositions Related to Fuzzy Sets

Extending (2.32) with F being a fuzzy subset of U,

X is F is impossible —* R(A(X)) = F" , (3.10)
where

F" = neF (3#11)

yF-(u) = [0,yp,(u)] =[0,l]-yp(u) (3.12)

For example, see Figure 2,

yF-(u) =[0,S(u;a,^,b)] (3.13)
or

ysmali-(u> = [0>ynot small(u» (3-14)

One can note that properties from (2.36) to (2.68), that is the pro

perties related to F, F+ and F", still hold when F is afuzzy set.

e-Possibility-Qualified Propositions Related to Fuzzy Sets

When e increases from 0 to 1, one may expect the e-possibility to

express all the variations of possibility from the impossibility, formulated

in (3.10), to the possibility, formulated in (3.5).

As we already noted it, in the case of non fuzzy sets, one can find

many different, but equivalent, expressions for the e-possibility.
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Unfortunately, the extensions of all expressions to fuzzy sets don't give

equivalent formulations. Considering, for example, (2.80) and (2.81) with

e = 0.7 and yF(u) =0.4, we derive

from (2.80): (0.7 -0.4)© [0,0.6] = [0.4,1]

and

from (2.81): [0.4,1]e(0.3 -0.4) = [0.1,0.7] .

Let us denote by F^(e) the left-hand member of (2.81) and by F2(e) the

left-hand member of (2.80), where F2(e) corresponds to the expression given

by Zadeh for the concept of e-possibility.

F^e) =F+e(e'OF) (3.15)

F2(e) = (enF)©F" (3.16)

The two following properties holds for all e in [0,1]

F^e) C F2(e) (3.17)
and

F^e') = (F2(e))' (3.18)

The illustrations for F^e) and F2(e) based on F= small are given in

Figure 3.

In order to study F(e) when F is a fuzzy set, let u be an element

of U and let us denote by f the quantity yF(u). Then

yF(e)(u) = [a(e,f),b(e,f)] (3.19)

As a first consideration for the extension of F(e), we require the

following extremal conditions:

C.l a(0,f) =0



20

and

C2 b(0,f) = f» ,

that is, when e= 0, (3.19) should stand for the impossibility, see (3.12).

C3 a(l,f) = f

and

C-4 b(l.f) = 1 ,

that is, when e = 1, (3.19) should stand for the possibility, see (3.7).

C5 a(e,0) = 0

C6 b(e,0) = 1

and

C7 a(e,l) = e

C8 b(e,l) = e ,

that is, when F is non fuzzy, (3.19) should coincide with the e-possibility,

see (2.69) and (2.75), which was described in the previous section.

In order to reduce fuzziness in the possibility, one should require for

F(e) the minimal uncertainty, in the sense that for all u in U,

b(e,f) -a(e,f) should be minimal for the expressions of a and b verify

ing C.l to C.8. In other words, for all u in U, yp, v(u) should be

contained (in the set inclusion sense) in the expressions for the e-possi-

bilities verifying the extremal conditions.

For a given f, when e increases from 0 to 1, that is when we pass

from the impossibility to the possibility, it is natural to require from

C.l, C.3 and C.2, C.4



21

0 < a(e,f) < f (3.20)

and

f < b(e,f) < 1 (3.21)

Now, for a given e and a given u, for the f's closer to 0 or 1,

that is for the less fuzzy f's, one should require less uncertainty, i.e.,

a should increase and b should decrease, so that C.5, C.7 and C.6, C.8

imply

0 < a(e,f) < e (3.22)

and

e < b(e,f) < 1 (3.23)

Requiring now a "minimal uncertainty" for F(e), from (3.20) and (3.22)

we derive

a(e,f) <_ greatest lower bound of f and e ,

that is,

a(e,f) < erf (3.24)

and from (3.21) and (3.23) we derive

b(e,f) >_ least upper bound of e and f ,

that is,

b(e,f) > evf» . (3.25)

So that under the above considerations, we choose

yP(e)(u) = [e-yp(u), evuF,(u)] , uGU (3.26)

which may be interpreted in our example by

F(e) = [ensmall, eUnot small] , (3.27)

see Figure 4 and section 4.
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(3.27) is an extension of (2.70) with F being a fuzzy set. We define,
for e in [0,1],

X is F is e-possible —• R(A(X)) = F(e) (3.28)

where F(e) is defined in (3.27).

One can verify that

F(e) =(eOF+)UF" (3.29)
and

F(e) = (eUF")OF+ (3.30)

F(e') = (F(e))« (3.31)

Considering F as a function of e, when e increases from 0 to 1, F

increases from F" to F in the fuzzy inclusion sense.

F" C F(e) C F+ , eG [0,1] (3.32)

With F^e) and F2(e) defined in (3.15) and (3.16), respectively,

— in the set inclusion sense:

and '

^F(e)(u) ^yF (e)(u) > ueU (3.33)

yF(e)(u) £yF (ej(u) , uGU (3.34)
2

— in fact, in the set intersection sense:

>WU> m\(t)^nvru)M 0.35)
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e-Lower-Possibility Qualified Propositions Related to Fuzzy Sets

Let e be a point in [0,1], extending (2.85) and (2.86) with F

being a fuzzy subset of U. We define

X is F is e-lower-possible —• R(A(X)) = F(e)* (3.36)

where

MF(e) (u) =yF(u) e [0,e] ' (3,37)

see Figure 5(a) for an illustration with F being the fuzzy set labelled

smal1.

When e increases from 0 to 1, the e-lower-possibility increases from

the certainty in F, F(0)* = F, to the possibility, F(l)* = F+.

e-Upper-Possibility Qualified Propositions Related to Fuzzy Sets

Let e be a point in [0,1], extending (2.92) and (2.93) with F

being a fuzzy subset of U. We define

X is F is e-upper-possible—• R(A(X)) = F(e)* (3.38)

where

yF(e)*(u) = [e,l] e yp(u) , (3.39)

see Figure 5(b) for an illustration.

When e increases from 0 to 1, the e-upper-possibility increases from

the impossibility, F(0)* = F", to the certainty in not F, F(l)* = F1.

The properties expressed from (2.99) to (2.103) still hold when the

e-lower (or upper) -possibilistic propositions are related to fuzzy sets.
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4. INTERVAL-VALUED FUZZY SETS AND POSSIBILISTIC SUB-PROPOSITIONS

Let U be a universe of discourse and C a fuzzy subset of U interval

valued. Let us denote by

yc(u) = [a(u),b(u)] , uG U , (4.1)

where a(u) and b(u) are elements of [0,1] and a(u)<b(u). Let us

define the fuzzy subsets A and B of U by

A=[ (inf yr(u))/u =[a(u)/u (4.2)
JU L Ju

and

B =

Then,

r

(sup yr(u))/u =
U L J

b(u)/u . (4.3)
U

yc(u) = [yA(u),yB(u)] , (4.4)

which we denote symbolically by

C = [A,B] (4.5)

C is interpreted as a linguistic interval whose bounds are fuzzy sets.

For example, see (3.9),

small = [small,U] , (4.6)

which denotes all the fuzzy subsets of U containing, in the fuzzy sense

the fuzzy subset of U labelled small, or, see (3.14),

small" = [0,not small] , (4.7)

which denotes all the fuzzy subsets of U included, in the fuzzy sense,

into the fuzzy subset of U labelled not small.
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One easily shows that

C= [A,B] iff C=A+eB" (4.8)

"X is C, C=[A,B]" (4.9)

= "x is A is possible" e "X is B is impossible"

(4.8) relates interval-valued fuzzy sets to the possibilistic sub-proposi

tions A and B". For example, see (3.27),

From (4.8):

small (e) = [e nsmall, eUnot small] . (4.10)

small(e) = (efismall) e (eunot small)" (4.11)

small(0) = 0 e (not small)"

= [0,U] e [0, not not small]

= [0, not smal1]

= small"

small(1) = small e U"

= small e 0

= small

5. POSSIBILISTIC PROPOSITIONS RELATED TO FUZZY RELATIONS

The basic translation rules in fuzzy logic of this section and the next

one are referred to in [1].

In section 3, we were concerned by translation rules of Type I, that

is translation rules for operations that involve attribute modification.

They apply to fuzzy propositions of the form
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p£ X is mF (5.1)

where F is a fuzzy subset of a universe of discourse U, m is a modifier

and either X or A(X), where A is an implied attribute of X, is a

fuzzy variable that takes values in U.

The modifier rule asserts that the translation of a fuzzy proposition

of the form (5.1) is expressed by

X is mF —• R(A(X)) = mF (5.2)

where m is interpreted as an operator which transforms the fuzzy set F

into the fuzzy set mF.

In section 3, replacing F by mF, one has possibilistic propositions

related to translation rules of Type I. For example,

X is very small is possible—• R(Height(X)) = {very small)* (5.3)

= (small2)"1" .

With small defined in (3.1), very small = mF = F2

V(U) =yyer^ small(u) =0-S(u;a,^,b))2 (5.4)

y(very small)+(u) = Kery small(u)> 1] (5-5>

(very small)* = [very small, U] . (5.6)

An n-ary fuzzy relation R is a fuzzy subset of a cartesian product of n

universes of discourse; hence one can apply the results of section 3 and 4.

Our purpose is now to develop some results which are specific to fuzzy rela

tions. For the simplicity of the presentation we shall deal with 2-ary

fuzzy relations.

and

or
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Translation rules of Type II apply to composite fuzzy propositions

which are generated from fuzzy propositions of the form "X is F" through

the use of various kinds of binary connectives such as the conjunction and,

the disjunction or, the conditional if...then..., etc.

Possibilistic Propositions and Projections of Fuzzy Relations

Let U and V be two possibly different universes of discourse, X

a variable that takes values in U, Y a variable that takes values in V

and S a fuzzy relation from U to V.

X and Y are S —-* R(A(X),B(Y)) = S (5.7)

where A and B are implied attributes of X and Y, respectively.

We recall that the projection (shadow) of S on U is a 1-ary fuzzy

relation (i.e., a fuzzy set) S, on U which is defined by

51 6 Proj S on U4 P^ (5.8)
•

4 sup yQ(u,v)/u
" JU vGV b

Similarly, the projection of S on V is a fuzzy subset S2 of V which

is defined by

52 4 Proj Son V4 P2s (5.9)
t

4 sup y~(u,v)/v
JV uGU 3

One can show that projections commute with possibility,

(S+)] =(S.,)+ (5.10)
and

(S+)0 = (S9)+ (5.11)
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Possibilistic Propositions and the Compositional Rule of Inference

Let F be a fuzzy subset of U and the proposition

X is F —i- R(C(X)) = F , (5.12)

where C is an implied attribute of X.

The compositional rule of inference asserts that the solution of the

two above relational equations, say (5.7) and (5.12), is given by

Y is G —• R(D(Y)) = G , (5.13)

where D is an implied attribute of Y and G = F©S.

Considering now possibilistic propositions, one can show that

(FoS)+ = F+oS+ , (5.14)

Fo (s+) = (FoS)+ iff F is normal , (5.15)

i.e., iff sup yF(u) = 1
uGU r

F+°s =(F°S)+ iff S2 =V, (5.16)

where S2 is the projection of S on V, see (5.9).

As a simple illustration of these results, (5.16) for example, let us

assume that (see Notation for fuzzy sets in section 2)

U = V = 1+2 + 3+ 4 (5.17)

We recall that if R is a fuzzy relation from U to V (or, equivalently,
a fuzzy subset of UxV) and if S is a fuzzy relation from V to W,
then the composition of R and S is a fuzzy relation from U to W
denoted by RoS and defined by

RoS =

Remark that the notation SoR replaces in some papers the notation RoS.

sup (yR(u,v) -y~(v,w))/(u,w) .
UxV vGV K b
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F= small =0.9/1 +0.6/2 + 0.2/3 (5.13)

S = approximately equa]_ (5.19)

S = V[(l,D +(2,2) +(3,3) +(4,4)]

+ 0.5/[(lf2)+(2,1)+(2,3)+ (3,2)+ (3,4) +(4,3)]

S verifies sup y$(u,v) =1 for all v in V, that is S2 =V. Hence,
as one can verify

(FoS)+ =F+oS =[0.9,1]/1 +[0.6,11/2 +[0.5,l]/3 +[0.2,l]/4 (5.20)

Finally,

X is small is possible (5.21)

X and Y are approximately equal

Y is more or less small is possible

where more or less small is possible is a linguistic term that may approxi

mate (FoS) , see [1] in which a linguistic approximation of

(small) o(approximately equal)

is given by (5.22)

more or less small .

Possibilistic Propositions and the Extension Principle

Let U and V be two possibly different universes of discourse, F

a fuzzy subset of U and f a mapping from U to V, then the extension

principle, see (2.4), asserts that

f(F) = VF(u)/f(u) (5.23)
V h
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or, equivalently,

yf/F}(v) = SUD yF(u) , VGV . (5.24)
nN uGf-l(v) F

Let X be a variable that takes values in U and f(X) a variable that

takes values in V. One can show that

if X is F is possible, then f(X) is f(F) is possible . (5.25)

In other terms,

f(F+) = (f(F))+ , (5.26)

where f(F ) is defined by the extension principle.

More generally, let * be a binary operation defined on UxV with

values in W. Thus, if u G U and v G V, then

w = u*v, wGW . (5.27)

Suppose now that F and G are fuzzy subsets of U and V, respec

tively. Then, by using the extension principle, one may define

F*G =

W

W

and it is easily shown that

(uF(u) -yG(v))/u*v (5.28)

=LyFxG(u'v)/u*v

(A*B)+ =A+*B+ . (5.29)

Let us note that we already used the fact that the notion of possibility

is universal, in the sense that we can compare, in terms of possibility,

fuzzy subsets of different universes of discourse.
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6- POSSIBILISTIC PROPOSITIONS RELATED TO THE CONDITIONAL COMPOSITION

AND THE COMPOSITIONAL MODUS PONENS

Possibilistic Propositions and the Rule of Conditional Composition

Let U and V be two possibly different universes of discourse, X

and Y be variables that take values in U and V, respectively, and let

F and G be fuzzy subsets of U and V, respectively.

Conditional fuzzy propositions of Type II of the form "If X is F then

Y is G" have a translation rule, referred to as the rule of conditional

composition, which may be expressed as

If X is F, then Y is G —> R(A(X),B(Y)) = (F)'eg , (6.1)

where © denotes the bounded sum, and F and G denote the cylindrical

extensions of F and G, respectively.

r

F =

and

G =

uF(u)/(u,v) (6.2)
UxV r

ufi(v)/(u,v) . (6.3)
UxV b

That is, F is the projection of F on U and G is the projection of G

on V.

One can show that the operator of cylindrical extension commutes with

the operator of possibility. For example, in the case of 2-ary fuzzy rela

tions for simplicity, and with the notations of "Possibilistic propositions

and projections of fuzzy relations" in section 5,

(S^^Ts^y, (6.4)

It is tacitly understood that this rule is non interactive in nature. In
the form defined by (6.1), it is consistent with the definition of impli
cation in Laiephi logic, see [8].
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where S, is the cylindrical extension of S,, with S, constituting the

base of S,.

Moreover,

(F)'eG+ = ((F)'©G)+ (6.5)

which can be interpreted as

If (X is F) then (Y is G is possible) (6.6)

= (if (X is F) then (Y is G)) is possible

Let us consider now the conditional fuzzy proposition

If X is F then Y is G else Y is H (6.7)

which is interpreted as the conjunction of the propositions

If X is F then Y is G (6.8)

and

If X is not F then Y is H (6.9)

has the following translation rule:

R(A(X),B(Y)) = (F'©G)n(F©H) • (6.10)

From (6.5) and (2.46) we derive

(F'©G+)n(F©H+) =((F'©G)n(F©H))+ (6.11)

which is interpreted as

If (X is F) then (Y is G is possible) else (Y is H is possible) (6.12)

= (If (X is F) then (Y is G) else (Y is H)) is possible
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Possibilistic Propositions and the Rule of Compositional Modus Ponens

From (6.1) and (5.13), we obtain the rule of compositional modus ponens,

which reads

X is F (6.13)

If X is G then Y is H

Y is F° (B'eH)

Combining now (5.14), (5.15), (5.16) and (6.5), one can show that

F+° (G'©H+) = (F° (G'sfl))"1" (6.14)

Fo(G'©H+) = (Fo(G'©R))+ iff F is normal (6.15)

F+o (G'efl) = (Fo (G'©H))+ (6.16)

iff the height of H' is less or equal than the height of G' ,

i.e.,

iff sup yr,(u) > sup yHi(v) . (6.17)
uGU b vGV "

Let us note that if U = V, the condition G c H implies (6.17). Moreover,

if H' and G" are normal (U possibly different from V), then (6.17)

is verified.
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Figure 1. "X 1s small is possible"



Figure 2. "X is small is impossible"



(a)

(b)

Figure 3. Illustrations from the fuzzy set small of
(a) F^e), (b) F2(e)



ysmall Yynot small

ysmall(e)

Figure 4. "X is small is e-possible"



ysmall (e).

(a)

ysmall(e)*

(b)

Figure 5. (a) "X is small is e-lower-possible"

(b) "X is small is e-upper-possible"
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