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LINGUISTIC CHARACTERIZATION OF PREFERENCE RELATIONS

AS A BASIS FOR CHOICE IN SOCIAL SYSTEMS

L.A. Zadeh*

1. Introduction

In assessing the applicability of the theories of choice to social

systems, one cannot escape the fact that such systems are generally much

too complex and much too ill-defined to be susceptible of analysis in pre

cise, quantitative terms. For example, as discussed in [1], [2], there is

considerable uncertainty in the valuation of interpersonal as well as indi

vidual utilities among a collection of individuals. Another complicating

factor is that the preference relations are frequently conditioned on

variables whose values are unknown or, at least, not well-defined; in addi

tion, they may be, and frequently are, interdependent in the sense that the

preference relation of an individual may be affected by his or her perception

of the preference relations of other members of the collection. Furthermore,

the underlying decision processes are, in most cases, multi-stage processes

with poor.ly defined horizons, uncertain dynamics and vague constraints.

These are but a few of the many considerations which suggest that, in their

present form, the mathematical theories of choice may well be excessively

precise in relation to the overwhelming complexity of real-world social

systems.

A less precise alternative to the conventional methods of quantitative

analysis is provided by the so-called linguistic approach [3], [4], in which

words rather than numbers are employed to characterize approximately the values of
if • '
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variables as well as the relations between them. As a matter of fact, we

frequently resort to such characterizations in everyday discourse, e.g.,

when we describe the age of an individual by a label such as young, not

young, very young, not very young, etc. rather than by a number in the set

U = {0,1,2,...,100}. In this case, the labels in question may be interpreted

as the names of fuzzy subsets of the set U = [0,100], with a fuzzy subset

such as young, characterized by its membership (or compatibility) function

u : U •+ [0,1], which associates with each numerical age u the deqree,
•young J *

u (u), to which u is subjectively compatible (in a given context)

with one's perception of the meaning of young. For example, the value of

the compatibility function yyounq at u= 20 might be 1; at u= 25: 0.9;

at u = 28: 0.7; at u = 30: 0.5, etc, meaning that the subjective compati*-

bilities of the numerical ages 20, 25, 28 and 30 with young are 1, 0.9, 0.7

and 0.5, respectively.

If Age is regarded as a linguistic variable whose linguistic values are

young, not young, yery young, etc., the meaning of each such value may be

defined by specifying its compatibility function. However, a basic assump

tion behind the concept of a linguistic variable is that the meaning of its

linguistic values may be computed in terms of the specified meaning of the

primary terms, e.g., young in the case of Age [4]. For example, if the

meaning of young is defined by its compatibility function yyounq» then the

meaning of not young, yery young, and not very young would be expressed as

y * = 1 - y (1.1)Mnot young young

y =y2 (1.2)
yery young young

v * =1-y2 (1.3)Mnot very young young

For convenience of the reader, a summary of the pertinent properties of
fuzzy sets is presented in the Appendix. More detailed discussions may be
found in the books by Kaufmann [5] and Negoita-Ralescu [6].



in which the squaring operation has its usual meaning. Thus, if

11 (28^ = 07 then u (28) = 0.3; u (28) = 0.49 andyyoungu ' ' ynot youngv ' ' Mvery young
u A (28) = 0.51.
^not yery youngv

To relate the linguistic approach to the characterization of preference

relations in social systems, let I={^,...,1^ be a collection of indi

viduals and let A = {a,,...,a } be a set of alternatives. We assume that

the preference relation for I.., i = 1,...,N, is a fuzzy relation R.. in

A whose compatibility function, y..: A*A -* [0,1], defines the "strength"

of the preference of I. for alternative ak over alternative a^,

k,Jt = 1,.. .,n.

Our basic premise is that the available information about the preference

relations R,,...,RN is fuzzy in nature and that it is expressed as a

collection of propositions exemplified by:

1. Preference of I, for ag over a3 is strong.

2. Preference of I-j for a2 over ag is not yery strong,

3. Preference of I, for a2 over a3 is weak.

4. Preference of K for ag over a4 is much stronger than the

preference of I, for a5 over a3«

5. Preference of I, for ag over a3 is very strong is more or

less true.

6. Preference of I, for a5 over a3 is yery strong,is yery

probable.

7. Preference of I, for ag over a3 is yery strong is slightly

possible.

8. Preference of most individuals for a5 over a3 is yery strong.



9. If the preference of I, for a^. over a3 is strong then the

preference of I« for a5 over a3 is yery strong.

10. If the preference of many individuals for ag over a3 is strong

then the preference of I3 for a« over a3 is weak.

Examples 1, 2 and 3 are intended to indicate that in the linguistic

characterization of preference relations the strength of preference is treated

as a linguistic variable whose values are labeled strong, not strong, yery

strong, not yery strong, weak, etc., with the understanding that each of

these values denotes a fuzzy subset of the unit interval [0,1]. Further

more, among these values strong plays the role of the primary term. Thus,

if the compatibility function of strong is ystronq: t0*1] •* [0,1], then

ynot strong " " ystrong
2

and

Vyery strong ^strong
= , 2

ynot yery strong " ystrong=1 - y2+ (1.6)

w<*> - "sW1-^ • vet0'1] (1-7)

where (1.7) signifies that weak is the reverse — rather than the negation

— of strong.

Example 4 illustrates a linguistic characterization of a relative

strength of preference for the same individual, with the understanding that
2

similar comparisons may be made for different individuals.

Examples 5, 6 and 7 illustrate, respectively, the truth qualification,

probability qualification and possibility qualification of the proposition

"Preference of I, for a5 over a3 is very strong."

The troublesome aspects of interpersonal comparisons are not at issue
here [24].



Example 8 illustrates the.use of linguistic quantifiers (e.g., most,

few, many, all, some, not yery many, etc.) to characterize the proportion of

individuals who have a particular preference.

Example 9 illustrates the conditional composition of two propositions,

namely, "Preference of I, for a5 over a3 is strong," and "Preference of I«

for a5 over a3 is yery strong."

Example 10, like Example 9, illustrates the conditional composition of

two propositions, the first of which involves an assertion concerning the

preference profile {R..,... ,RN>.

In aggregate, the above examples illustrate the manner in which the

imprecise information concerning the preference relations of a collection of

individuals may be expressed in the form of a set of linguistic propositions.

The question, then, is: What is the meaning of such propositions and how

can one infer other propositions from them?

To answer this question in general terms, it is necessary to specify,

first, a grammar which can generate syntactically correct propositions of

the type exemplified above. Second, a system of semantic rules for trans

lating any proposition which can be generated by the grammar into a procedure

for computing the compatibility function of the proposition in question.

And third, a set of inference rules for deriving a consequent proposition

from a set of premises.

In what follows, we shall employ a less formal approach which is ade

quate for the purposes of our analysis. As will be seen in the sequel, a

key to the interpretation of linguistic propositions concerning preference

relations and, more generally, fuzzy orderings, is provided by the concept

of a possibility distribution of a fuzzy variable. We shall discuss this



concept in Section 3, following a brief review of those aspects of fuzzy

relations which will be needed in later sections.

The present paper has the limited objective of suggesting the possibility

of applying the linguistic approach to the characterization of preference

relations when the information about such relations is incomplete, imprecise

and unreliable. We do not address ourselves to the important issue of how

to derive a social preference relation from an imprecisely defined collection

of linguistic preference relations, for this would require an extensive

reformulation of the axiomatic basis of the theory of choice and collective

behavior in the setting of the conceptual framework of fuzzy — rather than

two-valued — logic [7],

2. Fuzzy Orderings

Our concern in this section is restricted to those aspects of fuzzy order

ings which are of relevance to the linguistic characterization of preference

relations. A more detailed discussion of the properties of various types of

fuzzy orderings may be found in [8].

A fuzzy relation, R, in U is a fuzzy subset of U*U. The member

ship (or compatibility) function of R is a mapping yR: UxU •*• [0,1],

with yR(u,v), (u,v) eUxU, representing the strength of the relation

between u and v. In the following definitions, the symbols V and A

denote max (or Sup) and min (or Inf), respectively, and & stands for

"is defined to be" or "is equal by definition."

The height of R is defined by

Height(R) ft V V.yD(u,v) . (2.1)
u v K

A fuzzy relation, R, is subnormal if Height(R) < 1 and normal if

Height(R) = 1.



If R and Q are fuzzy relations in U, their composition, or more

specifically, max-min composition is denoted by RoQ and is defined by

yRoQ(u,w) =V (yR(u,v)-yQ(v,w)) , u,v,w e U. (2.2)

Thus, if U is afinite set, U={^,...,1^} (e.g., Uft A=afinite set
of alternatives) and R and Q are represented by their relation matrices

in which the ijth elements are y^u^u..) and u(u^u..), respectively,
then the relation matrix for R°Q is the max-min product of the relation

matrices for R and Q. An n-fold composition of R with itself is

denoted by Rn.

In some cases it is desirable to employ an operation * other than ~

in the definition of the composition. Assuming that * is associative and

monotone nondecreasing in each of its arguments, the definition of max-star

composition becomes

yReq(u,w) =V(yR(u,v)*yQ(v,w)) (2.3)

and, in particular, if * is taken to be the product, we have

uRoq(u,w) =V (yR(u,v) •yqCv.w)) . (2.4)

Unless stated to the contrary, it will be assumed that ° is defined by

(2.2).

A fuzzy relation is transitive iff

RDRoR (2.5)

where the containment of fuzzy relations is defined by (A27). In more intui

tive terms, R is transitive iff for any u, v, w in U



Strength of the relation between u and w
(2.6)

:> Strength of the relation between u and v or v and w.

In the case of max-product transitivity, however, (2.6) becomes

Strength of the relation between u and w

>^ Product of the strength of the relation between u (2.7)

and v and the strength of the relation between v and w.

Note that (2.7) is implied by (2.6).

The transitive closure, R, of R is the smallest transitive relation

which contains R. Equivalently, R may be expressed as

R= R+ R2 + ••• + Rn (2.8)

where + denotes the union. The well-known Warshall's algorithm for the

computation of the transitive closure of a nonfuzzy relation may readily be

extended to the computation of the right-hand member of (2.8) [9], [10].

A fuzzy relation, R, is reflexive if

uR(u,u) =1, ueu ; (2.9)

it is symmetric if

uR(u,v) =yR(v,u) , u,v eu ; (2.10)

and antisymmetric if

yR(u,v) >0 and yR(v,u) >0 => u=v, u,v eU. (2.11)

A fuzzy relation, R, is a fuzzy ordering if it is transitive. In

particular, R is a fuzzy preordering if it is reflexive and transitive,

and a fuzzy partial ordering if it is reflexive, transitive and antisymmetric.



A fuzzy ordering is a similarity relation if it is reflexive, transitive and

symmetric. A similarity relation may be viewed as a generalization to fuzzy

relations of the concept of an equivalence relation.

It should be noted that if transitivity is interpreted in the max-product

sense, a similarity relation may serve as an indifference relation without

entailing the usual difficulties associated with the notion of transitivity

of indifference relations [11], [12], [13], For example, if U is the

real line, a transitive indifference relation may be defined by [8]

UR(u,v) - e^M (2.12)

where 3 is a positive constant.

In Section 3, our concern will be with preference relations in which

the membership function ranges over the fuzzy subsets of [0,1], that is,

over fuzzy sets of Type 2 (see Appendix). Such subsets will be identified

by the labels strong, not strong, yery strong, not very strong, etc. and

will be regarded as the values of the linguistic variable Strength. A simple

example of a linguistic relation of this type is shown in Table 1.

R
al a2 a3

al
1 strong yery strong

a2 0 1 strong

a3 0 0 1

Table 1. Relation matrix for a linguistic relation.

In this example, the entry in (1,2) signifies that the strength of

preference for a« over a, is strong. Similarly, the strength of pre

ference for a3 over a-, is yery strong.
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In what sense can a relation of this type be said to be transitive?

To extend the definition of transitivity to linguistic relations it is con

venient to employ the extension principle (see Appendix), which allows the

domain of definition of a function or a relation to be extended to the set

of fuzzy subsets of the space on which they are defined. For example, if

U = '{u-.,...,u > is a subset of points on the real line, and F and G are

fuzzy subsets of U defined by

F=y1/u] + .- +uk/uk (2.13)

G=v1/u1 + ••• +vk/uk (2.14)

where the y. and v. are the grades of membership of u. in F and G,

respectively, then the extensions of A (min) and V (max) to the fuzzy

subsets of U may be expressed as

F~G = I y.. *v. /u.j ~u. (2.15)
i »J

F-G= I y.. -v. /u. -u. . (2.16)
i,j J n 3

These definitions entail the extension of the inequality > which is

expressed by

F > G iff F-G = G . (2.17)

In terms of (2.15) and (2.16), the composition of linguistic relations

may be expressed, as before, by (2.2), with the understanding that the y's

in (2.2) are fuzzy sets and that - and - are defined by (2.15) and (2.16),

respectively. Likewise, the definitions of transitivity, (2.5) and (2.6),

remain unchanged on the understanding that > is defined by (2.17),
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As a simple example, in the case of the linguistic relation defined by

Table 1, it is easy to verify that (see (3.20) for the expression for very

strong)

strong~yery strong = strong (2.18)

and hence

strong < yery strong . (2,19)

Using (2.18) and (2.19) in forming the composition of R with itself,
2

we find that R = R and hence that R, as defined by Table 1, is transitive,

In a "similar fashion, it is possible to extend to linguistic relations

many of the other basic concepts pertaining to fuzzy relations in which the

membership function takes values in the interval [0,1]. We shall not dwell

upon this subject, however, and, in the next section, will turn our attention

to another important issue, namely, the translation of linguistic propositions

concerning preference relations and their aggregates.

3. Translation Rules for Linguistic Propositions

Our main concern in this section is with the interpretation of linguistic

propositions relating to a collection of fuzzy orderings. As was stated in

the Introduction, a concept that plays a basic role in the translation of

linguistic propositions is that of the possibility distribution of a fuzzy
3

variable. More specifically, let X be a variable which takes values in

U = {u} and let F be a fuzzy subset of U whose membership function is

given by yp: U -*• [0,1]. Then, a proposition, p, of the form

X is F (3.1)

3 ~ ~ ~ -
A more detailed discussion of the concept of a possibility distribution
may be found in [14].
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has the effect of associating with X a possibility distribution il. which

is equal to F, that is,

nx =F, (3.2)

and a possibility distribution function ir„ which is given by

irx =yp . (3.3)

Thus, the proposition p ft X is F implies that the possibility that X can

take avalue ue U is yF(u), and, more generally, that the possibility

that X e G, where G is a subset of U, is given by

Poss(XGG} = Sup yc(u) . (3.4)
u€G r

When G is a fuzzy subset of U, it is not meaningful to speak of the

possibility of X belonging to G. In this case, XGG is replaced by

the proposition X is G, and (3.4) becomes

Poss{X is G} = Sup yP(u)-yr(u) (3.5)
uGU F G

where y~ is the membership function of G. Thus, we have

X is F => Poss{X is G} = Sup yF(u)-yP(u) (3.6)
u£U

= Height(FHG) .

As a simple illustration, let U be the universe of positive integers

and let F be the fuzzy subset of small integers defined by

small integer = 1/1 + 1/2 + 0.8/3 + 0.6/4 + 0.4/5 + 0.2/6 . (3.7)
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Then, the proposition p 4 X is a small integer associates with X the

possibility distribution

X = 1/1 + 1/2 + 0.8/3 + 0.6/4 + 0.4/5 + 0,2/6 (3.8)

in which a term such as 0.8/3 signifies that the possibility that X is 3,

given that X is a small integer, is 0.8. Furthermore, the possibility

that X £ {4,5} is 0.6 and the possibility that X is a yery small integer

is 1.

In essence, the possibility distribution, nx, which is associated

with X may be interpreted as an elastic restraint on the values that may

be assigned to X, with irx(u) representing the degree of ease with which

X can take the value u. In this sense, a variable which is associated

with a possibility distribution is a fuzzy variable, with nx playing the

role of a fuzzy restriction on the values of X.

To clarify the distinction between possibility and probability distribu

tions, assume that X is the number of passengers that can be put in a given

car, say a VW. Then, by some specified or unspecified criterion, the possi

bilities associated with the values of X might be as follows:

TTX(1) =TTX(2) =7TX(3) = TTX(4) =1 ;

ttx(5) = 0.8 ;

ttx(6) = 0.4 ;

ttx(7) = 0.2 .

In general, the probability that X passengers might be carried in the

car in question would be quite different from the possibility that X passen<

gers could be put in it. For example, the probability that four passengers

might be carried could be quite small, say 0.05, whereas the corresponding

possibility is 1.



14

What is important about the concept of a possibility distribution is

that much of human decision-making appears to be based on possibilistic

rather than probabilistic information. In particular, as is pointed out in

[14], the imprecision of natural languages is, for the most part, possibilistic

in origin. Indeed, this is the main reason why the concept of a possibility

distribution plays a basic role in the translation of linguistic propositions.

Translation Rules for Linguistic Propositions

Let X be a variable taking values in U = {u}, and let F be a

fuzzy subset of U. By the translation of the proposition p ft X is F is

meant the relation

X is F-*nx =F (3.9)

whose right-hand member is the possibility association equation (3.2). Thus,

the translation of a proposition has the form of a possibility association

equation or, more generally, a set of such equations.

As an illustration, consider the proposition

pft Preference of I, for a3 over ag is yery strong (3.10)

which for simplicity will be abbreviated to

p ft Strength is very strong (3.11)

with Strength playing the role of a linguistic variable. Then by (3.9) the

translation of p may be expressed as

Strength is very strong -»• n$tren th = very strong (3.12)

where yery strong is a fuzzy subset of the unit interval U = [0,1].



15

The translation rules of interest to us are conditional in nature in

the sense that they are of the form

If p— nx = F (3.13)

then M(p) -* M+(nx =F)

where M(p) is a modification of p and M is a corresponding modifica

tion of the possibility association equation nx = F.

A basic rule of this type is the modifier rule [7], which may be stated

as follows.

Modifier Rule

If Strength is F- n$trength =F (3.14)

then Strength is mF - nstrongth =F+

where m is a modifier such as not, very, more or less, etc., and F+ is a

modification of F induced by m. More specifically,

If m = not, then F = F' ft complement of F (3.15)

If m=very, then F+ =F2 (3.16)

If m = more or less, then F = Jf . - (3.17)

As an illustration, assume that strong is a fuzzy subset of [0,1]

which is characterized by

Strong =S(0'7> °-8' °'9) (3«18>

where the S-function (with its argument suppressed) is defined by (A17).

Then, by (3.16), we have

A more detailed discussion of the effect of modifiers (or hedges) may be
found in [15], [16], [17] and [18].
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If Strength is strong —»• ncfren(rth = stron9 (3.190
2

then Strength is very strong —• nctrenqtn = strong

where

y 2=(S(0.7, 0.8, 0.9))2 . (3.20)
strong

The implication of this translation of the proposition p ft Strength

is yery strong is the following. On evaluating the right-hand member of

(3.20) for, say, v = 0.85, we find

^strong*0-85* =°'88 <3-21>

which implies that the possibility that the strength of preference of I,

for a- over ac is 0.85 is 0.88. It is in this sense, then, that the pro-

position in question translates into a possibility distribution over the

numerical values of the strength of preference of I, for a3 over a,-.

In a similar fashion, it is readily seen that in virtue of (1.7), we

have

If Strength is strong -»• n$tr th = strong (3.22)

then Strength is weak —»• nstr th = strong

where

y + = 1 - S(0.1, 0.2, 0.3) . (3.23)
strong

Thus, in this case the possibility that the strength of preference of I,

for a3 over a5 is 0.85 is zero.
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Compositional Rules

Compositional rules apply to the translation of a proposition p which

is a composition of propositions q and r. The most commonly employed

modes of composition are: conjunction, disjunction and implication. The

translation rules for these modes of composition are as follows.

Let X and Y be variables taking values in U and V, respectively,

and let F and G be fuzzy subsets of U and V. If

X is F -* nx =F (3.24)

and

Y is G ->• ny =G (3.25)

then

(a) X is Fand Y is G -* n(x y) = FxG (3.26)

(b) X is F or Y is G -+ II/X yx = F+G (3.27)

and

(c) If Xis Fthen Y is G -* Ln) =F'®§ (3.28)

where II/X Y\ is the possibility distribution of the binary variable (X,Y).

Furthermore, in the conjunctive rule expressed by (a) F*G denotes the

cartesian product of F and G (see (A56)); in the disjunctive rule expressed

by (b), F and G are the cylindrical extensions (see (A59)) of F and G,

respectively, and + denotes the union; and in the conditional rule, expressed

by (c) F1 is the cylindrical extension of the complement of F and ©

denotes the bounded sum (see (A30)).

As an illustration, by applying the modifier rule and the conjunctive

rule in combination, we obtain the following result.
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If Strength is strong -*• Strength =strong (3.29)
and

then

Strength is weak —*• IU. - ^ = weak (3.30)

Strength is not very strong and not very weak

-"* nStrength= (st™92)' "(weak2)'
(3.31)

where weak is the reverse of strong (see (1.7)) and n denotes the

intersection.

As a further illustration, consider the proposition "If the preference

of I, for a3 over a5 is strong then the preference of I« for a« over a3 is

yery strong." On abbreviating this proposition to "If Strength, is strong

then Strengths is yery strong," and applying (3.28), we deduce as its trans

lation the possibility association equation

n(Strength],Strength^(vl,v2) (3*32)

=(1-Sfv^O.y.O.S.O.Q)) ©(S(v2;0.7,0.8,0.9))2

where v,, v? e [0,1], the S-function is defined by (A17), and

^fSt enath Strenath ) denotes the possibility distribution function of the

linguistic variables Strength1 and Strengthg.

Quantifier Rule

The quantifier rule applies to propositions of the general form

p = QX are F (3.33)

where Q is a linguistic quantifier (e.g., most, many, few, etc.), X is

a variable taking values in U, and F is a fuzzy subset of U. In the
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context of preference relations, a typical instance of (3.33) might be:

p ft Most individuals have yery strong preference for ag over a3 (3.34)

which for simplicity will be abbreviated to

p ft Most Strengths are yery strong . (3.35)

In general terms, let yQ be the membership function of Q and let

yF be that of F. It should be observed that when Q relates to a propor

tion, as in the case of most, yQ is a mapping from [0,1] to [0,1],

while yF is a mapping from U to [0,1]. In the case of preference rela

tions, however, U = [0,1] and thus yF, like yQ, is a mapping from

[0,1] to [0,1].

Since a fuzzy set does not have sharply defined boundaries, the concept

of the cardinality of a fuzzy set does not have a unique natural meaning.

For many purposes, however, the concept of the power of a fuzzy set [19]

may be used as a suitable measure of the number of elements in such a set.

Thus, if U = {iu,...,uN>, then the power of F is defined by

N

|F| ft I yF(u.) (3.36)
i=l h 1

where yp(u.), i= 1,...,N, is the grade of membership of u. in F. For

example, if

F= 0.8/u1 + 0.9/u2 + 0.6/u3 + 0.8/u4 (3.37)

then

|F| =3.1 . (3.38)
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For some applications, it is necessary to eliminate from the count

those elements of F whose grade of membership falls below a specified

threshold (which may be fuzzy). This is equivalent to replacing F in

(3.36) with For, where r is a fuzzy or nonfuzzy set which induces the

desired threshold.

Using (3.36), for simplicity, the quantifier rule may be expressed as

follows.

If U= {u.j,...,uN} and X is F -»• nx = F (3.39)

then QX are F-»• nip. = Q ;

and if Q is a proportional quantifier

QX are F -*• H|f|/n =Q' (3'40)

As a simple illustration, consider the proposition

p ft Most Strengths are very strong (3.41)

where

ymost = S(0.6, 0.7, 0.8) (3.42)

and

Strong =S(0'7' °'8' °'9) ' (3'43)

On applying (3.40), (3.36) and (3.20), we obtain as the translation of

(3.41)

n 7 7 (3.44)
(S':(v1;0.7,0.8,0.9) +---+S':(vN;0.7,0.8,0.9))/N

= S(0.6, 0.7, 0.8)
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where S (v.;0.7,0.8,0.9) is the compatibility of the strength of preference

of I. with yery strong, S(0.6, 0.7, 0.8) is the membership function of

most, and the argument of n is the number of individuals whose preference

is yery strong.

Truth Qualification, Probability Qualification and Possibility Qualification

In natural languages, an important mechanism for the modification of

the meaning of a proposition is provided by the adjunction of three types of

qualifiers: (i) is t, where t is a linguistic truth-value, e.g., true,

very true, more or less true, false, etc.; (ii) is X, where X is a lin

guistic probability-value (or likelihood), e.g., probable, yery probable,

very improbable, etc.; and (iii) is it, where tt is a linguistic possibility-

value, e.g., possible, quite possible, slightly possible, impossible, etc.

The rules governing these qualifications may be stated as follows.

Truth qualification: If

X is F -* nx = F (3.45)
then

Xis F -»- nx =F+
where

y +(u) = yT(yF(u)) , u e U ; (3.46)
F

y and yF are the membership functions of t and F, respectively, and

U is the universe of discourse associated with X. As an illustration, if

strong is defined by (3.18); t ft yery true is defined by

yery true = S2(0.6, 0.8, 1) (3.47)
and

Strength is strong —*• IU.ren(]tn = strong (3.48)
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strong
(u) = S^(l -S(u; 0.7, 0.8, 0.9); 0.6, 0.8, 1) , u e U

Probability qualification: If

X is F ~v nx =F (3.49)
then

X is F is X -* n = X (3.50)
/ p(u)yF(u)du
U r

where p(u)du is the probability that the value of X falls in the interval

(u,u+du); the integral

fp(u)yF(u)du (3.51)
JU Y

is the probability of the fuzzy event F [20]; and X is a linguistic

probability-value. Thus, (3.50) defines a possibility distribution of

probability distributions, with the possibility of a probability density

p(0 given by

ir(p(0) =yjf p(u)yF(u)du) . (3.52)
A Ju

As an illustration, consider the proposition p ft Strength is strong

is very probable, in which strong is defined by (3.18) and

y u ki„ =S2(0.6, 0.8, 1) . (3.53)
Mvery probable v ' '

Then

•100

0

9>rl00 ^
ir(p(-)) =S*( p(u)(l -S(u; 0.7, 0.8, 0.9)) du; 0.6, 0.8, 1j. (3.54)



23

Possibility qualification: If

X is F -* nx = F (3.55)
then

X is F is possible —*• nx = F
in which

F+ = F© n (3.56)

where II is a fuzzy set of Type 2 defined by

yn(u) = [0,1] , ueU , (3.57)

and © is the bounded sum defined by (A30). Equivalently,

y .(u) = [yF(u),l] , uGU , (3.58)
F+ F

which defines y . as an interval-valued membership function.
F

In effect, the rule in question signifies that possibility qualification

has the effect of weakening the proposition which it qualifies through the

addition to F of a possibility distribution n which represents total

indeterminacy in the sense that the degree of possibility which it associates

with each point in U may be any number in the interval [0,1].

The rules formulated above may be applied in combination, thus making

it possible to translate fairly complex propositions regarding preference

relations and their aggregates. More importantly, however, the translation

of a linguistic proposition into a possibility association equation or a set

of such equations provides a basis for inference from such propositions as

well as the formulation of fuzzy algorithms or programs for the characteriza-?

tion of social welfare functions. These issues lie beyond the scope of the

present paper and will not be considered here.
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Appendix

Fuzzy Sets — Notation., Terminology and Basic Properties

The symbols U,V,W,..., with or without subscripts, are generally

used to denote specific universes of discourse, which may be arbitrary

collections of objects, concepts or mathematical constructs. For example,

U may denote the set of all real numbers; the set of all residents in a

city, the set of all sentences in a book; the set of all colors that can

be perceived by the human eye, etc.

Conventionally, if A is a fuzzy subset of U whose elements are

u,,...,u , then A is expressed as
I n

A=(u,,...,un> . (Al)

For our purposes, however, it is more convenient to express A as

A=u1 +•••+% (A2)

or

A = I u, (A3)
i=l 1

with the understanding that, for all i, j,

u. + u. = u. + u. (A4)

and

u. + u^ =u. . (A5)

As an extension of this notation, a finite fuzzy subset of U is

expressed as

F=y]u1 +--.+unun (A6)

or, equivalently, as

F=y1/u1 +--*+yn/un <A7)
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where the y., i = l,...,n, represent the grades of membership of the u.

in F. Unless stated to the contrary, the yi are assumed to lie in the

interval [0,1], with 0 and 1 denoting no membership and fujn. member

ship, respectively.

Consistent with the representation of a finite fuzzy set as a linear

form in the u., an arbitrary fuzzy subset of U may be expressed in the

form of an integral

F = vF(u)/u (A8)
U r

in which yp: U+ [0,1] is the membership or, equivalents, the compa-

tibility function of F; and the integral denotes the union (defined
JU

by (A28)) of fuzzy singletons yF(u)/u over the universe of discourse U.

The points in U at which yp(u) >0 constitute the support of F.

The points at which yp(u) =0.5 are the crossover points of F.

Example A9. Assume

U = a+ b+ c+d . (A10)

Then, we may have

A = a + b + d (All)

and

F = 0.3a + 0.9b + d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U = 0 + 0.1 + 0.2 + ••• + 1 (AT3)

then a fuzzy subset of U would be expressed as, say,

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1 . (A14)
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If U = [0,1], then F might be expressed as

F =
1

0 1 +u'
r/u (A15)

which means that F is a fuzzy subset of the unit interval [0,1] whose

membership function is defined by

yp(u) = p . (A16)

In many cases, it is convenient to express the membership function of

a fuzzy subset of the real line in terms of a standard function whose para

meters may be adjusted to fit a specified membership function in an approxi

mate fashion. Two such functions are defined below.

S(u;a,0,y) = 0

, 2M
lY-aJ

=1 - zM
VY-a

= 1

for u £ a

for a < u < 3

for 6 < u < y

for u > y

(A17)

tt(u;6,y) =S(u;y-6,y-|»y) for u<y (A18)

=1- S(u;y,Y+|»Y+6) for u>y .

In S(u;a,0,Y), the parameter 8, 8=^r-, is the crossover point.
In tt(u;8,y), 8 is the bandwidth, that is the separation between the

crossover points of tt, while y is the point at which it is unity.

In some cases, the assumption that yp is a mapping from U to

[0,1] may be too restrictive, and it may be desirable to allow yp to

take values in a lattice or, more particularly, in a Boolean algebra. For

most purposes, however, it is sufficient to deal with the first two of the



27

following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of Type 1 if its membership

function, yp, is a mapping from U to [0,1]; and F is of Type n,

n = 2,3,..., if yp is a mapping from U to the set of fuzzy subsets of

Type n-1. For simplicity, it will always be understood that F is of

Type 1 if it is not specified to be of a higher type.

Example A20. Suppose that U is the set of all nonnegative integers and

F is a fuzzy subset of U labeled small integers. Then F is of Type 1

if the grade of membership of a generic element u in F is a number in

the interval [0,1], e.g.,

"sin integers^ -t^^2)"1 • "=0,1,2,.... (A21)

On the other hand, F is of Type 2 if for each u in U, yp(u) is a

fuzzy subset of [0,1] of Type 1, e.g., for u = 10,

"small integers*10* =M <A22)

where low is a fuzzy subset of [0,1] whose membership function is defined

by, say,

y1ow(v) = 1- S(v;0,0.25,0.5) , ve [0,1] (A23)

which implies that

,1

low = (1 -S(v;0,0.25,0.5))/v . (A24)
0

If F is a fuzzy subset of U, then its g-level-set, F , is a

nonfuzzy subset of U defined by
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Fa = (u| yp(u)>a} (A25)

for 0 < a < 1.

If U is a linear vector space, the F is convex if and only if for

all Xe [0,1] and all u-j, u2 in U,

ypOu-j +(l-y)u2) >min(yp(u1),yp(u2)) . (A26)

In terms of the level-sets of F, F is convex if and only if the F^ are

convex for all a e (0,1],

The relation Of containment for fuzzy subsets F and 6 of U is

defined by

FCG <» yp(u) <yQ(u) , u e U . (A27)

Thus, F is a fuzzy subset of 6 if (A27) holds for all u in U.

Operations on Fuzzy Sets

If F and G are fuzzy subsets of U, their union, FUG,

intersection, F n G, bounded-sum, F e G, and bounded-difference, F G G,

are fuzzy subsets of U defined by

F u-G £

F 0 G 4

up(u)~ur(u)/u (A28)
J r d

FHG £| yp(u)-yQ(u)/u (A29)

Fe 6^ [1- (yp(u)+yG(u))/u (A30)

(N.(uF(u)-uG(u))/u (A3!)

5This definition of convexity can readily be extended to fuzzy sets of
Type 2 by applying the extension principle (see (A70)) to (A26).
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where - and ~ denote max and min, respectively. The complement of F

is defined by

or, equivalently,

F' = (l-vF(u))/u (A32)
JU ' ^

F' = U 0 F . (A33)

It can readily be shown that F and G satisfy the identities

(F OG)' = F' UG1 (A34)

(F UG)' =F' OG' (A35)

(F©G)' =F'9G (A36)

(F© G)' = F' ® G (A37)

and that F satisfies the resolution identity

rl
F = <>F (A38)

0 a

where F is the a-level-set of F; aF is a set whose membership func-
a t a

•I

tion is y c = ayc , and
<*F *T «n

a a •'0

a e (0,1].

denotes the union of the aF, with

Although it is traditional to use the symbol u to denote the union

of nonfuzzy sets, in the case of fuzzy sets it is advantageous to use the

symbol + in place of u where no confusion with the arithmetic sum can

result. This convention is employed in the following example, which is

intended to illustrate (A28), (A29), (A30), (A3!) and (A32).
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Example A39. For U defined by (A10) and F and G expressed by

F = 0.4a + 0.9b + d (A40)

G = 0.6a + 0.5b (A41)

we have

F + G = 0.6a + 0.9b + d (A42)

F n G = 0.4a + 0.5b (A43)

F.©G = a + b + d (A44)

F9G = 0.4b + d (A45)

F' = 0.6a + 0.1b + c (A46)

The linguistic connectives anjd (conjunction) and or (disjunction) are

identified with n and +, respectively. Thus,

F and G A F n G (A47)

and

For'GjF + G. (A48)

As defined by (A47) and (A48), and and or are implied to be noninter-

active in the sense that there is no "trade-off" between their operands.

When this is not the case, and and or are denoted by and* and or* respec

tively, and are defined in a way that reflects the nature of the trade-off.

For example, we may have

Fand* GAfUjr(u)yG(u)/u (A49)

For* Gjf (yp(u) +yQ(u) -yp(u)yG(u))/u (A50)

whose + denotes the arithmetic sum. In general, the interactive versions

of and and or do not possess the simplifying properties of the connectives
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defined by (A47) and (A48), e.g., associativity, distributivity, etc

If a is a real number, then Fa is defined by

F°^ J(yF(n))°7u . (A51)

For example, for the fuzzy set defined by (A40), we have

F2 =0.16a +0.81b +d (A52)

and

F1/2 =0.63a +0.95b +d . (A53)

These operations may be used to approximate, very roughly, the effect of

the linguistic modifiers very and more or less. Thus,

very F4 F2 (A54)

and

more or less F4 F1/2 . (A55)

If F, ,...,F are fuzzy subsets of U,,...,U,, then the cartesian
in I (l .

product of F,,... ,F is a fuzzy subset of U-, x • • • x u defined by

FlXv-xFn" (yp (uj - •-• -yF (un)]/(u,,...,uj . (A56)
rl l rr\ n r n

Unx.-.xU
1 n

As an illustration, for the fuzzy sets defined by (A40) and (A41), we have

FxG = (0.4a +0.9b + d) x (0.6a + 0.5b) (A57)

= 0.4/(a,a) + 0.4/(a,b) + 0.6/(b,a)

+ 0.5/(b,b) + 0.6/(d,a) + 0.5/(d,b)

which is a fuzzy subset of (a + b+ c +d)x(a + b + c + d).
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Fuzzy Relations

An n-ary fuzzy relation R in u\j * ••• x.U is a fuzzy subset of

U,x"-xU . The projection of R on U. x-.-xH, , where (i..,...,i.)
1 n — — i-i ij^ • *

is a subsequence of (l,...,n), is a relation in U. x---xU. defined by

Proj Ron U. x-.xu. A Vu# ,... 5U. yR("i >• ••^n)/("1 >•• •>un) (A58)
1 'k J1 3Z

U. x...xu. .

Ti h

where (j,,...,jj is the sequence complementary to (i-j,.. .,i*k) (e.g.,

if n = 6 then (1,3,6) is complementary to (2,4,5)), and V
u. ,...,u.
J-j j£

denotes the supremum over U. x..-xu. .
Jl 'J£

If R is a fuzzy subset of U. ,...,U. , then its cylindrical exten-
1T \

sion in .U, *••• *U is a fuzzy subset of U^ x••• xu defined by

R=fyR(U. ,...,U. )/(ur...,un) . (A59)
U1x...xUn

In terms of their cylindrical extensions, the composition of two

binary relations R and S (in U1 xu2 and U2xU3, respectively) is

expressed by

RoS =Proj RHS on U1 xU3 (A60)

where R and S are the cylindrical extensions of R and S in

U xU2xUr Similarly, if R is a binary relation in U-j xU2 and S is

a unary relation in U2, their composition is given by

RoS =Proj RHS on U-j . (A61)
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Example A62. Let R be defined by the right-hand member of (A57) and

S = 0.4a + b + 0.8d . (A63)

Then

Proj R on U, (4 a+b+c+d) = 0.4a + 0.6b + 0.6d (A64)

and

RoS = 0.4a + 0.5b + 0.5d . (A65)

Linguistic Variables

Infbrmally,a linguistic variable, x> is a variable whose values are

words or sentences in a natural or artificial language. For example, if

age is interpreted as a linguistic variable, then its term-set, T(x)»

that is, the set of linguistic values, might be

T(age) = young + old + very young + not young (A66)

+ very old + yery very young

+ rather young + more or less young + •••

where each of the terms in T(age) is a label of a fuzzy subset of a

universe of discourse, say U = [0,100].

A linguistic variable is associated with two rules: (a) a syntactic

rule, which defines the well-formed sentences in T(x); and (b) a semantic

rule, by which the meaning of the terms in T(x) may be determined. If

X is a term in T(x)> then its meaning (in a denotational sense) is a

subset of U. A primary term in T(x) is a term whose meaning is a primary

fuzzy set, that is, a term whose meaning must be defined a priori, and

which serves as a basis for the computation of the meaning of the non-primary

terms in T(x)- For example, the primary terms in (A66) are young and

old, whose meaning might be defined by their respective compatibility
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functions y,ounq and yQld. From these, then, the meaning — or, equiva
lents, the compatibility functions -- of the non-primary terms in (A66)

may be computed by the application of a semantic rule. For example, employ

ing (A54) and (A55) we have

=(y )2 (A67)^very young ""young

= ( )1/2*\nore or less old ~ ^ old'
(A68)

y x =1-(y )2 • (A69)niot very young VKyoungy

The Extension Principle

Let g be a mapping from U to V. Thus,

v = g(u) (A70)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F=y]u1 +••• +yn% (A7D

or, more generally,

F=fyF(u)/u . (A72)
JU h

By the extension principle, the image of F under g is given by

g(F) =y1g(u1) + ••• +yng(un) (A73)

or, more generally,

g(F) =[yF(u)/g(u) . (A74)
-U

Similarly, if g is a mapping from UxV to W, and. F and G are

fuzzy subsets of U and V, respectively, then
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9(F,G) =
W

(yp(u) ~yQ(v))/g(u,v) . (A75)

Example A76. Assume that g is the operation of squaring. Then, for the

set defined by (A14), we have

g(0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1) (A77)

= 0.3/0.25 + 0.6/0.49 + 0.8/0.81 + 1/1 .

Similarly, for the binary operation - (4 max), we have

(0.9/0.1+0.2/0.5 + 1/1) - (0.3/0.2 + 0.8/0.6) (A78)

= 0.3/0.2 + 0.2/0.5 + 0.8/1 + 0.8/0.6 + 0.2/0.6 .

It should be noted that the operation of squaring in (A77) is different

from that of (A51) and (A52).
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