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Abstract

When R is a fuzzy relation between the elements of a finite set X,

the fuzzy sets A of X such that R A = A (MAX-MIN composition) are

called eigen fuzzy sets. The main result of this paper is the determination

of the greatest eigen fuzzy set associated with a given fuzzy relation and

we give three methods illustrated by an example. We then state that the

greatest eigen fuzzy set associated with ft, the transitive closure of R,

is exactly the one associated with R. Finally we describe how to obtain

all fuzzy relations keeping invariant a given fuzzy set.
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1. INTRODUCTION

Let R be a fuzzy relation between the elements of a finite set X

and let A be a fuzzy set of X. The MAX-MIN composition of R and A

gives B, a fuzzy set of X. When B equals A, we say that A is an

eigen fuzzy set associated with the given relation R. Our purpose is to

find the greatest eigen fuzzy set associated with R.

Stating basic theorems, we give three algorithmic ways to obtain the

solution in a number of steps less or equal to the cardinality of X. The

results are illustrated by an example.

We then prove that the greatest eigen fuzzy set associated with R,

the transitive closure of R, is exactly the one associated with R.

From a direct application of previous results we describe the dual

problem which consists of obtaining all fuzzy relations keeping invariant

a given fuzzy set.

For.the simplicity of the presentation, we identify fuzzy sets and fuzzy

relations with their membership functions.

2. FUZZY SETS AND FUZZY RELATIONS

Let L be the closed interval [0,1] of the real line in which x~y

denotes the smaller and xvy the larger of x and y.

Definition 1. If X is a nonempty set, a fuzzy set A of X is a

function A: X -»- L. The class of all the fuzzy sets of X is denoted by

L(X) and in this paper we assume that X is a finite set.

Let us recall some properties of L:

L is a lattice in which for any given elements x and y the greatest

lower bound or meet is x~y and the least upper bound or join is x^y.



L is a complete lattice, i.e., each of its subsets M has a least

upper bound, denoted by sup M (or max M when M is finite), or VM,

and a greatest lower bound, denoted by inf M (or min M when M is

finite) or AM, in L.

By a greatest element of a partially ordered set M in L, we mean

an element b G M such that x < b for all x g M.

In L the meet operation is completely distributive on joins, so that

a*(vx.) = v(a*x.) for any set of x. and for any a.

Fuzzy sets according to Definition 1 are Zadeh's membership functions

and we now recall the following definitions.

The fuzzy set A g L(X) is contained in the fuzzy set Bgl(X)

(written A c B) whenever A(x) <_ B(x) for all x G X.

It is clear that if A and Be L(X) and if A c B, then VA <_ VB

and AA <_ AB.

The fuzzy sets A and B G L(X) are equal (written A = B) whenever

ACB and B C A, i.e., A(x) = B(x) for all x G X.

Definition 2. A fuzzy relation between two nonempty sets X and Y

is a fuzzy set R of XxY, i.e., an element of L(XxY).

Definition 3. Let Q G L(X * Y) and R G L(Y*Z) be two fuzzy rela

tions. We define T = RoQ, T G L(XxZ), the o-composite fuzzy relation

of R and Q by:

(1) (R°Q)(x,z) = V[Q(x,y)~R(y,z)]
y

where y G Y, for all (x,z) G XxZ .

This definition still holds when Q is a fuzzy set; in this case T

becomes a fuzzy set. For example if A G L(X) and if R G L(XxY), B = R°A,



B G L(Y) is defined by:

(2) (R<>A)(y) = V[A(x)-R(x,y)] where x 6 X, for all yGY
x

The o-composition is associative and it is easy to verify that

(3) if Q1 and Q2GL(Xxy) and if Q1 c Q

then R°Q] c RoQ2, where RGL(YxZ) .

3. EIGEN FUZZY SETS

Let R G L(XxX) be a given fuzzy relation. We define

(4) A = {A G L(X)|RoA = A}

and we call the elements of A, eigen fuzzy sets associated with the given

fuzzy relation R. They are the invariants of R according to the o-compo

sition (max-min).

If we think of R as a system, A is the class of the outputs equal

to the inputs; R produces no effect on the elements of A which are

invariants: R«A = A or R(A) = A.

A is a nonempty set because the null fuzzy set belongs to A: if

OG L(X) is defined by 0(x) = 0 for all x G X, then O G A.

A can have numerous elements and our purpose is to set an algorithm

in order to find the greatest element of A (in the fuzzy inclusion sense)

Let us verify that

(5) If AQ G L(X) is defined by AQ(x) =aQ for all xe X,

where an = A V R(x,x'), then An G A.
u x'GX xGX u



For all x' e X,

(RoA0)(x') =V[A0(x)-R(x,x')]

=V[a0-R(x,x')]

= an-VR(x,x')
o x

= ^0 = 0 *

Defining now A, G L(X) by:

(6) Vx' G X, An(x') = V R(x,x') ,
1 xGX

we can note that:

(7) VxGX, AQ(x) =aQ = AA^x') , then AQCA] .

In Appendix I, we prove the following necessary and sufficient condi

tion for A1 to be the greatest element in A.

Theorem 1. A, G A iff Vx'GX, A,(x')< V A,(x), where
] ] " xGF(x') ]

F(x') = {xGX|R(x,x') =A1(x')}; moreover when A] e A, then it is the

greatest element in A.

Defining now the sequence (A ) of fuzzy sets

A2 =RoA1 =R1oA]

(8) A3.=.R;A? *r2;ai
A ,n = RoA = RnoA, for all integers n > 0
n+1 n l

let us prove that

(9) An c A _,, c A c A, for all integers n > 0 .



For all x' e X, (R«A,)(x') = V[A,(x) - R(x,x')] < VR(x.x') but
1 x i ~ x

A-jU') =VR(x,x'). Hence A2 = R°A, c A,. From AQ CA, we deduce

R°A0 C RoA1 C A1 or AQ c A2 c A^ so that (9) holds with n= 1.

Let us assume that (9) holds with n and let us prove that (9) holds

with n+1; by induction, (9) will hold with all integers n > 0.

A0 C An+1 c An C A,

implies R«An c RoA ., c R«A c RoA, ,
0 — n+1 — n — 1

1-e" AQ C An+2 C An+1 C A2 .

But A2 c A]. Hence AQ c A(n+])+1 c An+1 c A, .

The results (10) and (11) which we shall now state will be of great

use in the algorithms hereafter described.

(10) If 3k, k integer >0, and3x'GX such that Ak(x') = aQ,

hence for all integers n > k we have A (x') = an.
— n 0

Let k be an integer > 0 and x' g X such that A.(x') = aQ; from

(9) for all integers n > k we deduce An c ••• c A c ••• c A, c ••. CA,
3 — 0— — n— — k— — 1

and AQ(x') < ••• <An(x') < ••• <Ak(x'), i.e., aQ < ••• <A (x1) < •••

< aQ, hence An(x') = aQ.

(11) If 3n, n integer > 0, such that A GA then A„ is
n n

the greatest element in A; moreover A . = A for all

integers k >_ 0.

Let n be an integer > 0 such that A G A and let A be an element
n

of A, i.e., R°A = A. It is evident that for all integers k > 0,

Rk«A = A.



For all x' G X, A(x') = (R°A)(x') = V[A(x) -R(x,x')] < vR(x,x'),
x ~ x

hence ACA,.

ACA, implies R^oACR^oL, i.e., ACA.
— 1 r — 1 — n

k
Moreover A,,,, = RoA^ = A„ implies A__. = R °A = A„ for all

n+l n n r n+k n n

integers k >_ 0.

Let us define according to (7):

(12) X] = {xGX|A1(x)=aQ}

(13) Y] = X-X1 = {xGX|A1(x)>aQ} .

Let R' G L(Y, xY,) denote the restriction of R to Y1 xY] and,

for all integers n > 0, A* e L(Y,) denote the restriction of A to Y-j

We define S1 G L(Y] xY-j) by:

(14) V(x,x') G Y]xY1, S^x.x') * R'(xfx') vaQ .

In Appendix I, we prove the following theorem helpful to reduce R.

Theorem 2. For all integers n >0 and for all x1 G Y^ we have:

(15) Vi(x,) = (RoV(x,) = ^°^){x>) '

Defining:

(16) anl = A V Sn(x,x')
Ul x' GY] xGY1 '

(17) a, = A A?(x')
1 x'GY] c

let us prove that

(18) aQ1 = a, .



From (15) with n = 1, for all x' G Y,:

A2(x') =(S^A-jMx') = V [AjM-S^x.x')] < V S^x.x') ,

hence

xGY] ' ' ~xGY1

A A9(x') < A V S,(x,x') ,
x,GY] c x'GY] xGY] '

i.e., a.j <aQ1. Moreover, for all x* ey,:

V S,(x,x,)=an [ V R"(x,x')] from (14)
xGY] ' ° xGY]

< an [ V R(x,x')] = V R(x,x') = A,(x') from (6) and (7)
u xGX xGX '

But x' g Y, hence A,(x') = A' (x1) and for all x'ey., V S,(x,x')
xGY, '

<A'(x'). ]

anl = A V S^x.x') < A A'(x') .
Ul x'GY] xGY] ' X,SY1 1

Hence: For all x G Y,, A'(x) - S^x.x') > [ A A'(x')] - S, (x,x').
1 ' ' x'̂ Y1 ' '

AiCxJ-S^x.x') > [ A V SJx.x'll-SJx^') = am-S1(x,x') .
1 ' x'GY1 xGY1 ' ' 0I ]

For all x' G Y] and from (15):

A?(x') = v [A'(x)-St(x,x')] > V [am-S,(x,x')]
C xGY1 ' ' ~xGY1 01 ]

= art1 *

xGY
01" vv si(x'x,) =a01

because anl <_ V Sn(x,x') for all x'ey,, from (16).
Ul xGY1 ' ]



al =X.^Y A2(x')ia01 •

Hence a, = aQ1.

Defining

(19) Z2 =(xGY1|A2(x)=a1}

(20) V2 ={xGY1|(S1oAp(x)=a01}
={xGY1|A2(x) =aQ1} from (15) with n =1 ;

from (18) we deduce:

(2D Z2 =Z2'

The following basic theorem, in which |X| denotes the cardinality

or number of elements (finite case) of the set X, proves the existence of

a greatest element in A. The proof is in Appendix I.

Theorem 3. There exists nG (1,2,3,...,|X|} such that A is the
n

greatest element in A; moreover An c A c A,.
u — n — 1

In Appendix II we illustrate Theorems 2 and 3 by an example and we

derive algorithms for the determination of the greatest eigen fuzzy set

associated with a given fuzzy relation.

We can obtain the same result by application of the following theorem.

It is not very easy to handle but it is a source of further development

related to the transitive closure relation of R. An application is also

described by an example in Appendix II.
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Theorem 4. For all integers n > 0 and Vx1 G X,

(22) V Rn(x,x') =(R^oA,)^') =A(x') .
xGX ' n

Proof. For all integers n > 0, Vx' G X,

(R^oAJU') = v *Ay)*Rnm\yX)

=V{[VR(x,y)l -Rn"](y,x')} from (6)
y x

=VV[R(x,y)-Rn"1(y,x,)l
y x

=VV[R(x,y)-Rn"1(y,x')]
x y

= y(Rn'}oR)(xX)
X

= VRn(x,x') .
X

Remark. In general A is an upper semi-lattice, but not a lattice.

Let us assume that A and B G A, RoA = A and RoB = B.

Ro(AUB) = (RoA)u(RoB) = AUB

Hence AUBeA.

On the other hand, we have AnB c A and AnB c B, hence

Ro(AOB)CRoA or R»(AnB) CA, and Ro(Ar»B)CB, which implies

Ro(AHB) CAOB.

The following counterexample shows that the inclusion can be a strict

one.

Let X= {x1,x2,x3} and R, A, B defined by their matrix represen

tations:



A =

B =

AOB =

R = x,

xl X2 X3

.6 .3 .4

.3 .7 .5

.3 .3 .4

11

.6 .2 .4

.3 1. .5

.3 .3 .2

.6 .3 .4

.3 .7 .5

.3 .3 .3

= RoA = A

= RoB = B

= Ro(AOB) C AOB

We can note that A, is the greatest eigen fuzzy set associated with R,

in our example.

Xl x2 x3

Al = .6 1. .5

4. EIGEN FUZZY SETS AND TRANSITIVE CLOSURES

Given a fuzzy relation R, from Theorem 3 we know that there exists

an integer n, nG{l,2,...,|X|}, such that A is the greatest element

in A. Moreover, from (11), A . = A for all integers k >^ 0. In the

sequel we call n the smallest integer such that A is the greatest

element in A.

Let R be the transitive closure of R. We recall, see [3], that

(23) R = R U RL U U R
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u

If A G A, then for all integers k >_ 1, R oA = A.

RoA =(RUR2U..-UrIXI)oA =(RoA)u(R2oA)u---u(rIXIoA)

= AUAU--- UA = A .

Hence

(24) If RoA = A, then RoA = A .

Furthermore from (8), we associated the sequence (A ) with R. In

a similar way, we associate the sequence (A^ ') to R for all integers

k > 1.

(25) AJk)(x') =VRk(x,x') Vx' GX

4k> -Rk.A{k>

A^ -Rk.A<«

A;kj =RkoA;k)

A^'(x') =VRk(x,x') Vx' GX
1 X

= Ak(x») from (22)

Hence AJk^ =AR .

n(k) D^ofl' ' = R oA = A = AA2 K •A1 K oA|< Ak+|< A2R

ft' ' = R ofl' ' = R oA = A = A
A3 K A2 K A2k A2k+k A3k

By induction we have

(26) A^k' =A. x(< for all integers k>1 and i>1
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(k)
Let n. be the smallest integer such that Av ' is the greatest

k "keigen fuzzy set associated with R . In particular n1 = n.

From Theorem 3 we have

(27) RkoA(k) =A(k) .
nk nk

Theorem 5.

(28) For all integers k>1, A^k' =Ap .
K

k
In other words, for all integers k ^ 1, every fuzzy relation R has

the same greatest eigen fuzzy set; it is the one associated with R.

If k=1, A^]) =A„ v, =A =A.
nn n^xi n, n
1,1 (k)

Let us assume that there exists k > 1 such that Ax ' f A . We know
n. n

(k) (k) K
that for all integers i, i > n., A: ' = Av , hence

3 — k i n.

3k >1 such that Vi >n. , A^ f A. or A. .t An
k i n ixk n

from (26).

Let j = MAX(nk,n). We have

Elk > 1 such that A. . f A . since j > n, .
J xk n K

But jxk > n since j > n and k>l. jxk > n implies A. . = A .
— jxk n

which gives the desired contradiction.

Theorem 6.

(29) For all integers k _> 1, n. is the smallest integer i

such that kxi > n. In particular for all k^ n, nk = 1.



From (26) and (28) we have:

for all integers k >_ 1, A. = A .
Kxn. n

From the definition of n we deduce that kxn, > n. If we define a.

as the smallest integer i such that kxi > n, we have a. <_ n..

kxak>n, hence kxak = n+j, j integer > 0, and from (11) we deduce

that A. =An, or A^k) =A. From (28), A(k) =A, hence
(k) (Ji k nk n

K = Ai '» which implies a. > n. from the definition of n, . Finally
au n. k - k k J

we have a. = n. .
k "k

ve a

As a consequence of Theorem 6, we can show that

(30) nk is a decreasing function of k

(31) In particular, for all integers k_> 1, n. <_ n .

Let us prove that p > q implies n < n . From (29), we have
— p — q

qxn > n, and from p>q we deduce that pxn > qxn >_n. From (29)
' MM

and from Pxn > n we deduce n < n . In particular from n, = n we

deduce n, < n for all integers k >_ 1.

Theorem 7. The greatest eigen fuzzy set associated with R, the

transitive closure of R, is exactly the one associated with R.

In other words, A is the greatest eigen fuzzy set associated with R,

As a consequence of (24) we have RoA = A . From (8), we associated

the sequence (Ak)k with R. In a similar way, we can associate a sequence

(Bk)k with R. By induction, one easily shows that

Vk, 1< k< |X|, Bk =AR .
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Applying now Theorem 3 to R and (Bk)k, let m be the smallest k such

that Bk is the greatest eigen fuzzy set associated with ft and let us

assume that Bm f A .
m n

Let j = MAX(m,n).

j > m =* B. = B , hence B. f A
— J m j n

j > n - A. = An .

But we have proved that B. = A. and from this contradiction we derive
j \)

B = A .
m n

5. FUZZY RELATIONS KEEPING INVARIANT A GIVEN FUZZY SET

Let A G L(X) be a given fuzzy set; we define:

(32) R = {RGL(XxX)|RoA =A} .

R is the set of all the fuzzy relations keeping invariant, according

to the max-min or ©-composition a given fuzzy set. In terms of system theory,

we are describing now all the systems which produce no effect on a given

input.

R is a non empty set because if we define R G L(X xX) by:

V(x,x') G XxX, R(x,x') = R(x') ,

then R G R as one can verify.

Vx' G X, (RoA)(x') = V A(x) ~R(x,x') = V A(x) - A(x')
X X

= A(x')-V A(x) = A(x') ,
x

hence RoA = A and R G R.
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Let us note that in [5] and in [6] when L, defining fuzzy sets, is a

complete Brouwerian lattice, X being not necessarily a finite set, we find

the resolution of {R|RoQ =T} and {Q|RoQ =T} in which R, Q and T are

fuzzy relations, giving when it exists the greatest element of solutions.

The resolution of (32) is a direct application of results from [7].

Let us recall the definition of the a and a operators and the

definition of the @ and © compositions.

If a and b are elements of L = [0,1], we define a a b and a a b,

elements of L, by:

1 if a < b
(33)

a > b

M if

U if

0 if a < b
(34)

a > b

fO if
ob =

Lb if

If A G L(X) and BG L(Y) are two fuzzy sets, we define A® B and

A@B, elements of L(XxY), by:

(35) V(x,y) G XxY, (A@B)(x,y) = A(x) a B(y)

(36) V(x,y) G XxY, (A®B)(x,y) = A(x) a B(y) .

Let us note that the definitions (35) and (36) are enlarged when A

and B are fuzzy relations.

The following results hold:

— A® A and A® A are elements of R

-- ft = A©A is the greatest element of R

-- The minimal elements R. of R are defined by: for all x' G X,

the only possible element R.(x,x') f 0 is just R.(x.,x') = A(x')

for some' x. G X such that A(x.) _> A(x').
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-- The fuzzy union of all minimal elements of R is equal to A® A.

— For all RGL(XxX) such that A@ACRCA@A, we have RGR.

xl x2 x3 x4
Example. Let X={xrx2,x3,x4} and A= [ .1 .4 .1 .5], Ae L(X)

X-1 X2 X3 X4

1 1. 1. 1.

•
1 1. 1. 1.

•
1 .4 1. .5

•
1 .4 1. 1.

x1 x2 X3 XA

•'1 .0 .0 .0

•
1 .4 .0 .0

•
I .4 1. .5

1 .4 .0 .5

ft = AfoftA A® A

Example of a minimal element (it is sufficient to keep here a non zero

element in each column of A©A):

xl x2 X3 X4

.0 .0 .0 .0

.1 .4 .0 .0

.0 .0 1. .5

.0 .0 .0 .0
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APPENDIX I

Proof of Theorem 1. For all x' G X, F(x') ={xGX|R(x,x') =A] (x«)},

hence from (6), for all x^F(x'), R(x,x') < Ajx'), i.e., V R(x,x')
, , x$F(x')

< A,(x1) and we deduce:

(1.1) V A,(x)-R(x,x») < V R(x,x') < A,(x') .
x^F(x') ' "x$F(x') ]

Let us assume that A] G A, i.e., RoA, = A,.

Vx' G X, A,(x') = (RoAj(x') = V A^M-R^x')
1 ' xGX '

[ V A^xJ-Rfx.x')]-[ V A,(x) -R(x,x')]
xGF(x') ' xfF(x') '

V An(x) -R(x,x') from (1,1)
xGF(x') '

' A^xJ-A^x') = A,(x')-[ V A,(x)]
(x1) ' ] ] xGF(x') ]
V

XGF

Hence, Vx' e X, A,(x') < v An(x).
1 ~xGF(x') ]

Let us now assume that Vx' g X, A,(x1) < v A..(x).
1 "xGF(x') ]

Vx' G X, (RoA )(X') = V AJxl-Rlx.x')
1 xGX '

= [AJx')- V A,(x)]-[ V A1(x)-R(x,x')]
1 xGF(x') ] x^F(x') ]

= A,(x')-[ v AtM-R^.x')]
1 x^F(x') ]

=A^x') from (1.1)

Hence RoA.. = A,, i.e., A, G A,

VA G A, RoA = A

Vx' G X, A(x') = (RoA)(x>) = V A,(x) ~R(x,x') < VR(x.x');
xGX ' xGX
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hence from (6), A(x') <_ A1 (x'), i.e., Ac A, and when A, GA, then it

is the greatest element in A.

Proof of Theorem 2. From (10) and (12) we deduce:

(1.2) For all integers n>0, Vx G X,, A (x) = aQ .

From (9) we deduce:

(1.3) For all integers n> 0, Vx G X, A (x) >_ an .

Let us define: For all integers n > 0, G = R'oA', G G L(Y,), i.e.,
a ' n n' n 1'

(1.4) Vx'SY,, Gn(x') = V A'(x)-R'(x,x') = V An(x) - R(x.x') .
1 n xGY] n xGY] n

Let n be an integer > 0; Vx' g y, we

An+1(x') = V A(x)~R(x,x')
n ' xGX n

have:

= [ V An(x) -R(x,x')]-G (x') from (1.4)
xGX1 n n

= [ V an-R(x,x')] -G(x') from (1.2)
xGX] u n

= [an- V R(x,x')]-Gn(x') .
u xGX] n

On the other hand, Vx' g Y, we have:

(S1 A')(x') = V A^xJ-S^x.x')
xGY1

V [A'(x) - (R'(x,x') ~ an)] from (14)
xGY1 n u

V [(A'(x)~R'(x,x')) v (A'(x)-an)lxGY] n n u
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a G (x') v[ V (A'(x)-an)] from (1.4)
n xGY] n u

= G (x1) v[an- V A'(x)] .
n u xGY] n

From (1.3) we deduce:

VxGY]9 A^(x) =An(x) >aQ, hence V A^(x) >aQ .
X ^— T^

Let us recall that our purpose is to prove that for all integers n > 0

and for all x' G Y], An+](x') = (S^A^Mx'); but our present result is

(1.5) Vx'GYr An+1(x') = [a0- V R(x,x')] v̂ (x1)
X t A,

(S1oAi;)(x1) =a0-Gn(x«) .

Let us now define:

(1.6) Vx'GY^ H(x') ={xGY^R'U.x'J^ag} .

If there exists x' G Y] such that H(x')=0, then Vx e Y,, R'(x,x')<a(

an = A V R(x,x'), hence V R(x,x') > an so that we deduce: there
u x" GX xGX xGX ~ u
exists x.. G X such that Rfx^x') > aQ. From H(x') =0 we can now

deduce: there exists x. G X1 such that R(x.,x') >_ aQ and therefore

V R(x,x') >_ an, which implies:
xGX] u

Vl(x') =aOvGn(x,) =(S^A^fx') .

Let us now assume that Vx' G Y,, H(x') f 0, i.e., there exists x. G Y,

such that R'(x.,x') >_ a«.

G(x') = V A'(x)-R'(x,x') > V A'(x)-R'(x,x')
n xGY1 n ~xGH(x') n

>A^XjJ-R'tXj.x') >A^XjJ-aQ =aQ from (1.3).
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Moreover, an- V R(x,x') < an < G(x'), hence:
u xGXt u n

An+1(x')=Gn(x')=SloA;(x') .

Proof of Theorem 3. Let us point out that if A.. = AQ, then from (5)

and (11) with n = 1, A, is the greatest element in A.

Moreover, if A, G A (see Theorem 1), from (11) with n = 1, A. is

the greatest element in A.

The interesting result of this theorem is when A, ^ A.

Let us assume that A, $ A. It is sufficient to prove that there exists

nG {2,3,...,|X|} such that A^A; from (11) An will be the greatest

element in A; AflCA CA, is given by (9).

From (12) and (1.2) we have: for all integers n > 0, Vx G X such

that A-j(x) = aQ, we deduce A (x) = a0.

From A, $ A we deduce Y, i 0 or |Y,| < |X|.

For all integers n > 0, we know the values A (x) when x G X,.

Our purpose is to evaluate A (x) on Y, or on a subset of Y,.

From Theorem 2, on Y,, S.. gives the same results that R, and aQ,

defined in (16) will enjoy the same properties with S-. that a« with R;

hence the analogous property of (1.2) is:

For all integers n > 1, Vx G X«, A (x) = a0,, where

X2 = {xGY1|A2(x)=a01}.

This property holds because X« = Z„ = 11 (see (21)).

If Y2 = Yn-X2?<0 or |Y2| < IYtJ and if S^GL(Y2xY2) denotes

the restriction of S, to Y2xY2» for a^ integers n> 1, A" G L(Y2)

denotes the restriction of A' to Y2, we define S2 G L(Y2xY2) by:

V(x,x') G Y2xY2, S2(x,x') = S'(x,x')~a01 .
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Then we have the analogous property of (15):

for all integers n > 1 and for all x'GY^,

/Wx'>-vA;;<x,) •

We then define a
02 x'GY2 xGY2

V S0(x,x') and a0 = A A-(x');
X'GY,

we have (xGY2|A2(x) =a2) =X3 ={xGY2|(S2 Ap(x) =aQ2} and for all

integers n >2, Vx G X3? A (x) =aQ2.

If Y3 =Y2-X3 i 0 or |Y3| <|Y2|, we continue, but X being a

finite set, there exists n g {2,3,...,|X|} such that Yn =Y^ - XR =0,

*•*- Xn =Yn-l and IVll^^^l^-^l^l^^l-

X = u x. and X.nx. = 0 if i f j ;
i=1 i i J

Vx GX, 3i G{l,2,...,n} such that x g x1 and for all integers k >i,

Vx G X.,

AR(x) =a01-1

( a„ if xGX.

An(x) -<
aQ, if x g X2

aQ2 if xGX3

an« i if x G 1
v.On-1 n

Vl(x) =An(x) '

i.e., (R«A )(x) =An(x) and An e A.
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APPENDIX II

Let X= {x1,x2,x3,x4,x5>, |X| =5 and let us consider the given

fuzzy relation R G L(XxX):

R = x.

Xl X2 X3 x4 X5

.1 .7 .2 <3> 0

.0 .6 .4 .3 .5

0 © .0 .1 .4

Q .3 © .1 .0

.0 .0 .7 .5 .0

The encircled elements are the greatest ones in each column. They allow

us to define A, and AQ. From Theorem 3 we know that there exists

n G {1,2,3,4,5} such that A is the greatest fuzzy set A verifying

R A = A; moreover An c A CL.
u — n — 1

First Determination of A

an = .3-1. - .8- .8- .7 = .3

xl x2 x3 x4 X5
A, =1 L ^[,3 1. .8 .8 .7 ]

[ .3 .3 .3 .3 .3 ]A„ =

An g A (it is easy to verify it) and An c A,.
*0 0 1

A, ^ Aj we can verify that RoA, f A, or apply Theorem 1 to x'

for example:

A^x') =A^) = .8

F(x') = F(x4) = {xGX|R(x,x4) =.8} = {X]}

= x,
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V A,(x) = A,(x,) = .3 and we don't have A,(xJ < V A,(x),x£F(x4) " I .1 14 -X(EF(X4) 1
hence A, $ A.

From (12), (13) and (1.2) we have: X] ={x^, Y] ={x2,x3,x4>x5) and

Vn > 1, An(x.j) = .3. So we underline .3 in position x, in A,; it is

the first invariant element.

xl x2 x3 x4 x5
A2 = R»A1 = [^3 .8 .8 ^5 .5 ]C A]

a01 = al = ,A A2(x^ =A2(x2) -A2(x3) -A2(x4) -A2(xg) = .5
X G Y,

X2 ={x^Yi |A2(x) =aQ1 >={x4,x5}, Y2 ={x2,x3} ,

Vn 2l 2, Vx G X2, A (x) = .5. So we underline .5 in positions x4 and

x5 in A2; they are invariant in the following compositions:

xl x2 x3 x4 x5
A3 = R°A2 = [J3 .8 J> J5 J5J C A?

a02 = a2 = A A3(x'^ = A3(x2)-A3(x3) = .5
X 'o

X3 = {xGY2|A3(x)=aQ2} ={x3}, Y3 ={x2} ,

Vn ^3, Vx G X3, A (x) = .5. So we underline .5 in position x3 in A3<

xl x2 x3 x4 x5
A4 = R°A3 =[^1^.^A^1^.]-A3

aQ3 = a3 = .6 , X4 = {x2} , Y4 =0 ;

Vn >_ 4, Vx G X4, A (x) = .6 and we underline .6 in position x2 in A4<

A , with n = 4, is now completely determined. Y4 = 0 implies that

A4 G A, as one can easily verify R°A4 = A,.
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Summary of the First Method

— Encircle the greatest elements in each column of R and set them in

A, in their corresponding positions.

— Underline in A, the smallest of its elements (it is not necessarily

in a unique position). It (or they) will be invariant after the next

compositions.

— Compute R°A, = A« and underline in A« the smallest of the non

underlined elements.

— Compute RoA« = A3, RoA3 = A4, etc., underlining at each step the

smallest of the non underlined elements. When all elements are under

lined, we get A the greatest eigen fuzzy set. We know that n <_ |X|,

so that convergence is fairly fast.

Second Determination of A
n̂

In the following method we need not evaluate MAX-MIN or o-composition

to obtain A . The idea is to get the underlined elements of the first
n

method replacing R of order |X| by S, of order |Y,| < |X|, etc.

The results are derived from direct application of (14), (15), (18) and (21).

Let us now describe the different steps, R being given in a tabulated form.

-- Encircle the greatest elements in each column of R. The smallest of

these elements is equal to aQ. It is .3 in the x,'th column in our

example.

— Delete from R the columns containing the smallest of the greatest

elements, and the same rows, say the column x, and the row x,. We

have got R', the first reduction of R.

It is important to remark that we don't delete the rows passing through

the positions of the value a« = .3, say the row x3 and the row x4.
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Set in A (n is not known yet) the value of a«, in the position

of the deleted columns, say x,.

Return to the first step with R' instead of R, but with the

following restriction: aQ, denoting the smallest of the greatest

elements in each column of R, set in the appropriate position of A :

a01 if a01 - a0
an lf am < an > according to (14) and (15)
l0 l01 "0

From R' we derive .5 in positions x. and x5 and .5 is greater

than .3. So we insert .5 in the positions x- and x, of A .
r 4 5 n

For the k'th reduction, this restriction becomes: Set in A ,

a0k if a0k-a0,k-l

a0,k-l if a0k <a0,k-l
From R" we derive .4 which is smaller than .5; thus we set .5,

instead of .4 in the position x, of A ,
o n

— Return to the first step until all reductions are exhausted.

Illustration of the Second Method

— From R we first get:

x2 x3 X4 X5
An=[ .3 * ] aQ= .3

We delete from R the column and the row corresponding to x, and we

get R', reduction of R:

R' =

x2 X3 X4 x5
.6 .4 .3 <3>

© .0 .1 .4

.3 CD .1 .0

.0 .7 © .0
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We deduce a0-j = .5 in positions x4 and x5 and A becomes

xl x2 x3 x4 x5
An - [ .3 X X .5 .5 ]

because aQ, is greater than an.

We delete from R' the columns and the rows corresponding to x. and

x5 and we get R", reduction of R':

R" =

x2 x3

.6 ®

© .0

We deduce aQ2 = .4 in position x3 but we insert, in position x3

of A , .5 instead of .4 because ano < am and A„ becomes:
n OZ Oi n

xl x2 x3 x4 x5
An = [ .3 x .5 .5 .5 ]

We delete from R" the column and the row corresponding to x3 and

we get R"' , reduction of R":

R"' = x, .6

a03 = .6 in position x2 and we get the final expression of A

xl x2 x3 x4 x5
A = [ .3 .6 .5 .5 .5

because aQ3 is greater than aQ2.
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Third Determination of A
n

This third method is based on a direct application of Theorems 3 and 4.

— Determine first A, with the elements corresponding to the greatest

element in each column of R.

-- Evaluate R = R°R and encircle the greatest elements in each column
p

of R to determine A2 according to:

Vx'GX, V R2(x,x') =A9(x') (see (22))
x c

3 2— Compare A2 to A,; if they are different, evaluate R = R°R to

get A3 according to:

Vx' GX, V R3(x,x') = A-(x')
x *

4 2— Compare A3 to A2; if they are different, evaluate R = RoR to

get A4, etc. Stop when you find n such that An+1 = Ap, i.e.,

R°A„ = A .
n n

This method is not very easy to handle but it can be interesting if in
2 3

a problem under study one has already evaluated R , R , etc.

In our example, we get:

Rc = x.

xl x2 x3 X4 X5

0 .6 0 0 0

© .6 .5 0 0

.1 .6 .4 .4 0

0 ® .3 .3 .4

0 .7 .5 .1 .4
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and we deduce:

xl X2 X3 x4 X5
A2 =••••[ .3 .8 .8 .5 .5 ], etc
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CONCLUDING REMARKS

We believe that an eigen fuzzy set theory deserves to be developed

thinking of its potential applied areas such as belief systems, transpor

tation problems, fuzzy clustering, human decision processes, pattern recog

nition, medical diagnosis assistance.

We are now inserting the results of this paper in already proposed

applied models in medical diagnosis [5], [7], [8]. They are based on

max-min composite equations [6], [7] derived from fuzzy meta-implications

[3], conditioned fuzzy set [11]. In fuzzy logic it is the rule of inference

stated by Zadeh [12], [1], One can infer diagnosis or prognosis from observed

symptoms by means of a specific medical knowledge.

The model of eigen fuzzy sets provides a methodology for searching

invariants in therapeutic recommendations. Such assistance proposed to

physicians aims to avoid non optimal treatments in health programs.

The inference rules involved in medical diagnosis problems can be viewed

in terms of belief functions. Based on relevant data (or evidence) expressed

by observed symptoms, one can assign degrees of belief on diagnosis or

diseases. We plan to investigate the role played by fuzzy relations in such

problems.
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