Copyright © 1977, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

A LOW NOISE OUTPUT STAGE FOR A CCD TRANSVERSAL FILTER

by
Cynthia Ott

Memorandum No. UCB/ERL M77-2
4 January 1977

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley
94720

ACKNOWLEDGEMENT

I: would like to thank Professor Robert Brodersen for his guidance and interest.

The printing of this report was funded by the Army Research Office Grant DAAG29-76-G-0244.

OIJTLINE

I. Introduction 1
A. Transversal filters 1
B. CCD delay line 1
C. Split electrodes 3
D. Voltage input method 4
II. Choice of an Ouput Stage 6
A. Op-amp integrator 6
B. Sources of DC offset 7
C. Correlated double sampler 9
D. Single ended output stages 9
E. Noise in the discrete prototype 11
F. Calculated noise from a CCD 13
G. Calculated noise from resetting capacitors 14
III. A Low Noise Operational Amplifier 15
A. Modeling of transistors 15

1. Relationship between L and lambda 16
2. Effective transistor width 19
3. Equivalent noise sources 22
B. Analysis of Tsividis's op-amp 23
C. Methods for designing low noise op-amps 23
4. Placement of stages 28
5. Useful rules 29
6. Noise in a source follower 29
D. Effect of liaht substrate doping 30
E. Low Noise op-amp design 30
7. Input stage 33
8. Bifferential to single ended converter and main gain stage 33
9. Dominant pole 34

OUTLINE, cont.
4. Slew rate 35
a. derivation of formula 35
b. biasing for high slew rate 36
5. Biasing the rest of the op-amp 37
6. Bias chain 38
7. Results of testing on SPICE 38
8. Major design tradeoffs 44
a. current in source followers 44
b. gain of main gain stage vrs. noise of DSEC 44
c. gm of output source follower 44
IV. Noise Analysis 45
A. Description of method 45
B. Noise at output of sample and hold, not including effect of CDS 46
C. Effect of correlated double sampler on bandlimited white noise 49
D. Reduction of $\frac{l}{f}$ noise to a series of bandlimited white noise sourses 51
E. Total noise at output of sample and hold due to op-amp 54
V. Conclusion 55
Appendix A - Noise Calculations 57
Appendix B - Strange Occurances in the Discrete Prototype of the Output Stage 60
Bibliography 64

I. Introduction

A transversal filter used in discrete time signal processing has the form $V_{\text {out }}(k T)=h_{0} V_{i n}(k T)+h_{1} V_{i n}((k-1) T)+h_{2} V_{i n}((k-2) T)+\ldots+h_{m} V_{i n}((k-m) T)$, which corresponds to a series of delays and multiplying constants and a summer; as shown in Figure 1. This structure can be conveniently implemented using a CCD (charge-coupled device).

Figure 1. Block Diagram of a Transuersal Filter

A CCD is built on a substrate of p-type silicon on which a thin layer of oxide has been grown and over which a series of polysilicon or aluminum gates has been laid. The voltage on each gate can be controlled such that the charge is transferred from one gate to the next.

In Figure 2, the voltage on gates two and three $\left(G_{2}\right.$ and $\left.G_{3}\right)$ is the same as that of the substrate and therefore, gates two and three have zero volts across their oxide capacitance. But, gate one is at its maximum yoltage, $V_{\max }$ (normally 15 volts), so a charge may be introduced onto $C_{0 x}$, which can potentially be as large as $C_{0 x} V_{\max }$. In Figure 2 this is represented by a potential well depth under gate 1. The amount of charge which is actually on $C_{o x}\left(q_{s i g}\right)$ is signified by the level to which the potential well has been "filled." Now, if the voltage on gate two is raised, its charge-holding potential is increased and some of the charge on gate 1 is transferred to gate 2 (Figure 2b). When the voltage on gate 1 is reduced to zero, all the charge will have been transferred to gate 2 (Figure 2d). This then is an analog delay line.

The next stage in making a transversal filter is to tap signal in the delay line. This can be accomplished by splitting every third electrode into two parts and connecting the parts as shown in Figure 3.

Figure 3. Tap Weights on a CCD Transversal Filter

Now imagine there is some charge $q_{\text {sig }}$ under gate 1 . When that charge is transferred to gate 2, two thirds of it will go under G_{2+} and one third under G_{2-}. Meanwhile, an opposite, matching charge will be drawn through the connecting wire attached to the top side of G_{2+} and G_{2-} (Kirchoff's current law). If the output is defined as the difference between the charge in positive line, Q_{+}, and that in the negative line, Q_{-}, then in this example $Q_{\text {out }}=Q_{+}-Q_{-}=\frac{2}{3} q_{\text {sig }}-\frac{1}{3} q_{\text {sig }}=\frac{1}{3} q_{\text {sig }}$. The other tap weights shown give an output signal of $0 q_{s i g},-\frac{1}{3} q_{s i g}$, and $-1 q_{\text {sig }}$ respectively. Now define a_{i} as the fraction of the ith electrode which is connected to the Q_{-}line and ($1-\mathrm{a}_{\mathrm{i}}$) as the fraction which is connected to the Q_{+}line. Then the fact that all the gates are connected on the top side means that the total value of $Q_{\text {out }}$ is calculated by:

$$
\begin{aligned}
& Q_{-}=a_{0} q_{\text {sig }}(k T)+a_{1} q_{\text {sig }}((k-1) T)+a_{2} q_{\text {sig }}((k-2) T)+\ldots \\
& Q_{+}=\left(1-a_{0}\right) q_{\text {sig }}(k T)+\left(1-a_{1}\right) q_{\text {sig }}((k-1) T)+\left(1-a_{2}\right) q_{\text {sig }}((k-2) T)+\ldots \\
& Q_{\text {out }}=\left(1-2 a_{0}\right) q_{\text {sig }}(k T)+\left(1-2 a_{1}\right) q_{\text {sig }}((k-1) T)+\left(1-2 a_{2}\right) q_{\text {sig }}((k-2) T)+\ldots
\end{aligned}
$$

This is exactly the form needed for a discrete time transversal filter with $h_{i} \triangleq\left(1-2 a_{i}\right)$.

It is clearly desirable to introduce a $q_{\text {sig }}$ which is linearly dependent on the input voltage $\mathrm{V}_{\text {sig }}$. This can be handled most satisfactorily by using the voltage input method shown in Figure 4.

Here the input voltage is applied to an $n+$ diffusion, while the voltage on the adjacent gate ($G_{\text {switch }}$) is at $V_{\max }$ and the voltage on the next gate $\left(G_{2}\right)$ is held at $1 / 2 V_{\max }$. When the switch gate is turned off, the charge on $C_{0 x}$ will be $C_{0 x}\left(V_{i n}-1 / 2 V_{\max }\right.$) and the charge on C_{D} will be $C_{D}\left(V_{i n}\right)$. When this charge is transferred to the next gate, the charge through the output lines will be $1 / 2 C_{o x}\left(V_{\text {sig }}-1 / 2 V_{\max }\right)$. The depletion capacitance will discharge through ground. Then as long as the voltage on the following split electrodes is held at $1 / 2 \mathrm{~V}_{\max }$, the output charge will be linearly dependent on $V_{i n}$. However, if the voltage is not held at $V_{\text {max }}$, the capacitors will make up the difference by transferring some of the charge which is on $C_{0 x}$ to C_{D}. Unfortunately, C_{D} is a nonlinear capacitor, so the amount of charge transferred will not be proportional to the voltage difference and some distortion will be introduced. This effect is small, however, since $C_{D} \ll C_{o x}$ and therefore the amount of charge transferred is small. 1

Finally, the CCD needs an output stage which will convert $Q_{\text {out }}$ to $V_{\text {out }}$. That is the major topic of this paper.

II. CHOICE OF AN OUTPUT STAGE

In the specific application for which this output stage has been designed, it is not necessary to take the difference of Q_{+}and Q_{-}

1For more information on the basic operation of CCD's, see Kosonocky
and Carnes, "Basic Concepts of Charge-Coupled Devices".
since the next stage will do this automatically. It is necessary, however, that the gains and DC levels be carefully matched. Matching the gains is a simple matter of matching feedback capacitors (if an op-amp is used), but matching the $D C$ levels is not as easy. The configuration shown in Figure 5 has four problems with setting the DC level.

Figure 5. Simple CCD Output Stage

The first is the problem of amplifier offset voltage. The DC level of the output is set when the reset transistor is closed, and will have a value of $1 / 2 V_{\max }+V_{\text {offset }}$. Since offset voltages can easily differ by as much as 50 mV , and the total output signal may only be 500 mV , this can be a significant limitation to the accuracy
of the output signal. Another potential source of offset comes from the CCD and is called clock noise. It is caused by capacitive coupling of the clock transition on adjacent electrodes into the signal electrodes (Figure 6).

Figure 6. CCD Clock Noise
The size of this offset depends on the size of the coupling capacitor, but in poorly designed CCD filters, it can be two to three times larger than the signal size. However, in well designed CCD's, this clock feedthrough is balanced so that the same level is received on the two signal lines. It can then be treated as a common mode signal and rejected. On other CCD's (including the one for which this output stage has been designed), the signal is not only balanced, but also small. So even if the balance is not perfect, the total effect will be negligible.

The next problem comes with the resetting of the feedback capacitor. When the reset transistor is turned off, there is some charge transferred to the feedback capacitor due to the capacitive coupling between the gate and source of the reset transistor (Figure 7).

Figure 7. Effect of Resetting C_{F}
The last problem is a culmination of the previous three, namely that even if everything is perfectly balanced and the DC levels of both the positive and negative outputs match, the circuit designer has not been able to chose that level.

All these problems can be handled by introducing a coupling capacitor and careful timing to the output stage. The circuit and timing are shown in Figure 8. The important points to notice are that the $D C$ level of $V_{\text {out }}$ is set periodically by shorting it to an arbitrary $V_{D C}$ and it is therefore not determined by $3_{2} V_{\max }$ or the offset voltage. Furthermore, $M_{D C}$ is not opened until after the resetting of the feedback capacitor is complete, so that level does not affect it either. It is affected slightly by the opening of $M_{D C}$ and $M_{\text {sample }}$, but these effects can be made sufficiently small and sufficiently predictable to cause no problem. This type of output stage is called a correlated double sampler and will be discussed in more detail later.

If a single output is desired, the circuit shown in Figure 8 can be modified to that shown in Figure 9.

Figure 8. Output Stage with Correlated Double Sampler

Figure 9. A Single-Ended Output Stage

This has the same timing as the first circuits and the same elements with the addition of one op-amp and two capacitors. The same function can also be achieved by the circuit in Figure 10, but although less complex, this has trouble with the stray capacitances in the CCD (they must be perfectly matched), has less gain than the circuit shown in Figure 9, and will introduce the distortion effect discussed earlier.

Figure 10. A Simpler, More Troublesome Single-Ended Output Stage When a discrete prototype of the output stage shown in Figure 11 was built, it was found to behave about as expected ${ }^{2}$ with one major difference it was extremely noisy. Although this noise could not be measured accurately, it appeared to have an RMS value between i and 3 mV . It was decided that the noise must be coming from the op-amp for the following. reasons:
${ }^{2}$ For more details, see Appendix B.

1. Thoroughly bypassing and low pass filtering all supplies did not help.
2. Completely separating the analog portion of the circuitry from the noisy digital clocking circuitry did not help.
3. Shielding the circuitry did not help, besides which the 60 cycle noise was frequently visible with the other noise superimposed upon it.
4. If $C_{\text {stray }}$ was increased, the noise seemed to increase.
5. If C_{F} was increased, the noise decreased proportionally.

Figure 11. Partial Output Stage, Showing Op-amp's
Equivalent Input Noise Sources

The first three points seemed to eliminate the possibility that the noise was being generated externally, the fourth point implied the noise was not coming from the CCD, and the fourth and fifth points together implied that the noise was from the op-amp since:

$$
v_{\text {out }}=\left(1+C_{C_{s t r a y}}^{C_{F}}\right) v_{n}+\frac{i_{n}}{j \omega C_{F}}
$$

Therefore, the noise of the 536 operational amplifier used was measured. and was found to have an equivalent input current noise of $i_{n}=6 \times 10^{-13} \mathrm{~A}$.

This would yield an output voltage noise of:
$v_{\text {out }}=\left[\int_{1 K H Z}^{\infty}\left(\frac{i_{n}}{2 \pi f C}\right)^{2} d f\right]^{\frac{1}{2}}=\frac{6 \times 10^{-13}}{(2 \times 3.14)\left(10^{3}\right)^{\frac{1}{2}}\left(3 \times 10^{-12}\right)}=1 \mathrm{mV}$, Where the lower limit of integration was chosen as 1 KHZ since anything lower would have looked more like a DC offset than noise. Clearly, this is about the right level and is probably the major cause of the output noise seen.

Although an MOS amplifier would not have this kind of current noise, it became clear that the amplifier was the noisiest part of the output stage, and the design goal was set of finding or designing a low-noise operational amplifier which would not significantly degrade the signal to noise ratio of the signal from the CCD.

The noise of a CCD has been analyzed by Brodersen et al ${ }^{3}$ and was found to be dominated by the surface state noise. Applying the formula developed by the authors to a bandpass filter with 32 stages and with the output stage shown in Figure 8 (with $C_{F}=3 p f, C_{\text {couple }} \gg C_{\text {hold }}$) yields an. RMS voltage noise at the output of the circuit equal to $40 \mu \mathrm{~V}$.
$3_{\text {Brodersen et al }}$ "A 500 Stage CCD Transversal Filter for Spectral Analysis," Solid State Circuits, Feb. 1976, page 78.

There is also noise associated with resetting the coupling and hold capacitors. The RMS value of this voltage noise is given by $V_{n}=\left(\frac{k T}{C}\right)^{\frac{1}{2}}$ where C is the capacitance across the switch which has been opened. In the case of $M_{D C}$, this is given by $C_{\text {couple }} \| C_{\text {hold }}=10 p f+$ $1 \mathrm{pf}=11 \mathrm{pf}$ and the noise level is $19 \mu \mathrm{~V}$. But $M_{\text {sample }}$ sees 10 pf fin series with 1pf $\cong 1 \mathrm{pf}$ with a noise level of $65 \mu \mathrm{~V}$. This is too high, but can be cut to a reasonable level by changing the output circuit slightly to that shown in Figure 12.

Figure 12. Output Stage with Extra Capacitor
Now $M_{D C}$, which sees $C_{\text {couple }}+C_{\text {hold }}=5 p f+1 p f=6 p f$, has a somewhat higher noise level of $26 \mu \mathrm{~V}$. But the capacitance seen by Msample ${ }^{\text {is }}$ approximately $C_{\text {quiet }}+C_{\text {hold }}=5 p f+1 p f=6 p f$ and $26 \mu \mathrm{~V}$. (This change has the minor side effect of changing the gain through the sample and hold from 0.9 to 0.8.) The feedback capacitor also has a noise associated with its resetting, but since the DC clamp on the output is not released until the resetting is complete, that noise will not appear at the output of the circuit.

Thus the total noise level from sources other than the op-amp is $\left[(.8 \times 40)^{2}+(26)^{2}+(26)^{2}\right]^{1 / 2} \mu V=49 \mu V$.
III. A LOW NOISE OPERATIONAL AMPLIFIER

Only one major op-amp design for enhancement mode, n-mos transistors seems to exist. It was designed by Yannis Tsividis and published in his doctorial thesis in May, 1976. It's basic properties include an AC gain of 450 , bandwidth of 5 MEGHZ , phase margin of 45° and an output voltage range equal to 60 percent of the supply range. It's major drawback is that it needs supply voltages of $\pm 15 \mathrm{~V}$, and -20 V for the substrate bias. This supply range would cause transistors which were built on the lightly-doped substrate needed for a CCD to avalanche. Therefore, before it could be decided whether to use this design or make another, the transistors which would be used had to be modeled, and then Tsividis's design had to be analyzed using this transistor model, and using supplies of +15 V and -5 V .

Photographs of the I_{D} versus $V_{D S}$ curves (with $V_{G S}$ as a parameter) for five mos transistors were supplied by Ronald Fellman. These transistors had been fabricated on a lightly-doped substrate ($\mathrm{N}_{\text {sub }}=10^{+15}$) using the U.C. Berkeley facilities. Their oxide thickness was thinner than could normally be expected ($t_{0 x}=7 \times 10^{-6} \mathrm{~cm}$ instead of $10 \times 10^{-6} \mathrm{~cm}$) but except for that, they could be considered equivalent to transistors which would be fabricated on a CCD chip.

The values for mosfet model parameters required by SPICE (version 2D.1) have been determined for transistors fabricated at U.C. Berkeley and many of these could be used without modification. These are included in Table II. The parameters which still needed defining were $N_{S S}$, U_{0}, and λ.

Lambda could be calculated based on the slope of the $I_{D}, V_{D S}$ line in the saturated region and the equation:

$$
\frac{\partial I_{D}}{\partial V_{D S}}=\frac{I_{D} \lambda}{1-\lambda V_{D S}}
$$

For each transistor, the slope of the $I_{D}, V_{D S}$ curve was measured for each value of $V_{G S}$, λ was calculated and an average value was taken.

Estimates of Uo and $N_{S S}$ were also made for each transistor. These values, together with those of λ, were used as model parameters in SPICE, graphs were generated, and the values were tweaked until the graphs matched the photographs. The results are shown in Table I and Figure 13.

Transistor	Leff*	λ	W drawn	$U_{\text {spice }}$	$N_{S S}$
\#1	. 2	. 05	2	750	5.9×10^{10}
\#2	. 3	. 04	. 3	1432	15×10^{10}
\#3	. 4	. 033	1.6	968	4.0×10^{10}
\#4	. 4	. 033	10	900	9.2×10^{10}
\#5	. 5	. 02	2.8	930	8.8×10^{10}

[^0]ACTUAL
MODEL

Transistor \#1. $L_{e f f}=.2 \mathrm{mil} W_{e f f}=2.2 \mathrm{mil}$

Transistor \#2. $L_{\text {eff }}=.3 \mathrm{mil} W_{\text {eff }}=.5 \mathrm{mil}$

Transistor \#3. $L_{e f f}=.4 \mathrm{mil} W_{e f f}=1.8 \mathrm{mil}$
Figure 13. Transistor Model

Transistor \#4. $L_{e f f}=.4 \mathrm{mil} W_{e f f}=10 \mathrm{mil}$

Transistor \#5. $L_{e f f}=.5 \mathrm{mil} W_{\text {eff }}=3.0 \mathrm{mil}$

Figure 13, continued

There are two interesting points brought out in this table. The first is that L and λ appear to be inversly proportional with $\lambda=.011$ (1/L) (Figure 14). This is a very useful relationship

Figure 14. Relationship between L and λ
for predicting the value of λ when L is not one of the values available from the test transistors.

The other interesting fact appears in the relationship between W and Uo. With the exception of transistor \#1 (where Uo has starting dropping as a result of the short channel), the larger W is, the smaller Uo appears to be. This could be explained if the effective value of W in the device was larger than the value of W which is drawn on the mask. This in turn might be caused by the fact that the electric field between the drain and source is not perfectly straight, but bows out slightly at the edges. (See Figure 15.)

Figure 15. Possible Source of Extra Transistor Width

If this is the case, then the value of Uo given by SPICE is related to the true value of Uo by the equation:

$$
U_{\text {spice }}=\text { Uo } \frac{W_{\text {effective }}}{W_{\text {drawn }}}=\text { Uo } \frac{W_{\text {drawn }}+\Delta W}{W_{\text {drawn }}}
$$

or,

$$
\Delta W=\left(U_{\text {spice }}\right)\left(W_{\text {drawn }}\right)\left(\frac{1}{U 0}\right)-W_{\text {drawn }}
$$

The actual value of ΔW and Uo could be found by graphing the lines given by the above equation for each transistor, and finding their interaction. This is shown in Figure 16.

Figure 16. Relationship between W and Uo
The lines for models 2, 3, and 4 intersect nearly perfectly, and forcing \#4 to fit will only change its output current by 3 percent. Therefore, the final results are that $U 0=868$ and $W_{\text {effective }}=W_{d r a w n}+.2 \mathrm{mil}$. The final results for the model are shown in Table II.

TABLE II

MOSFET MODEL PARAMETERS FOR SPICE

Parameter	Value	Description
$N_{\text {sub }}$	1×10^{15}	Substrate doping
$t_{0 x}$	1×10^{-5}	Oxide thickness: in cm
$\mathrm{N}_{\text {SS }}$	8.65×10^{10}	Surface state density
Uo	868	Surface mobility
λ	. 011 (1/Leff $)$	Channel length modulation parameter
$\Delta \mathrm{W}$. 2 mil	Channel width modulation parameter
PHI	. 58	Surface potential at strong inversion
XJ	2.95×10^{-4}	Metallurgical junction depth
LD	. 83	Latural diffusion coefficient
$U_{\text {crit }}$	4.9×10^{4}	Critical field for mobility degradation
$U_{\text {exp }}$. 1	Critical field exponent
$U_{\text {tra }}$	0	Transfield factor
CGD	2.1×10^{-11}	Gate-drain overlap capacitance per cm channel width
CGS CGB	2.1×10^{-11} 1×10^{-12}	Gate source overlap capacitance per cm channel width Gate bulk overlap capacitance per cm channel length
CBD	1.2×10^{-8}	Zero bias B-D junction cap per cm^{2} junction area
CBS	1.2×10^{-8}	Zero bias B-S junction cap per cm^{2} junction area

TABLE II, cont.
MOSFET MODEL EQUATIONS USED IN SPICE
Linear: $I_{D}=U_{e f f} C_{o x} \frac{W_{\text {eff }}}{L_{e f f}\left(1-\lambda V_{D S}\right)}\left(V_{G S}-V_{b i}-\frac{V_{D S}}{2}\right)\left(V_{D S}\right)-\frac{2}{3} \gamma_{d}\left(\left(V_{D S}+P H I-V_{B S}\right)^{\frac{3}{2}}-\left(P H I-V_{B S}\right)^{\frac{3}{2}}\right)$

Saturation: $I_{D}=U_{\text {eff }} C_{o x} \frac{W_{\text {eff }}}{L_{e f f}\left(1-\lambda V_{D S}\right)} \frac{1}{2}\left(V_{G S}-V_{b i}\right)^{2}-\frac{1}{4} \gamma_{d}^{4} f^{2}\left(V_{G S}, V_{B S}\right)$

$$
-\frac{2}{3} \gamma_{d}\left(\left(V_{G S}-V_{b i}+\frac{1}{2} \gamma_{d} f\left(V_{G S}, V_{B S}\right)+P H I-V_{B S}\right)^{\frac{3}{2}}-\left(P H I-V_{B S}\right)^{\frac{3}{2}}\right)
$$

where:

$$
\begin{aligned}
& U_{\text {eff }}=U_{o}\left(\frac{U_{\text {crit }} \cdot t_{o x}}{V_{G S}-V_{b i}-U_{t r a} \cdot V_{D S}}\right)^{U_{\exp }} \\
& C_{o x}=\frac{\varepsilon_{0 x} \varepsilon_{0}}{t_{o x}} \\
& W_{\text {eff }}=W_{\text {drawn }}+\Delta W \\
& L_{\text {eff }}=L_{\text {drawn }}-2 \cdot X J \cdot L D \\
& V_{b i}=\Phi_{M S}-\frac{q \cdot N_{S S}}{C_{o x}}+P H I \\
& \gamma_{d}=\frac{\sqrt{2 \varepsilon_{s i} \varepsilon_{0} q N_{s u b}}}{C_{o x}}\left(1+\frac{X J}{L_{d r a w n}}-\frac{X J}{L_{d r a w n}}\left(1+\frac{2 \sqrt{2 \varepsilon_{s i} \varepsilon_{0} / q N_{\text {sub }}} \sqrt{P H I-V_{B S}}}{X J}\right)^{\frac{1}{2}}\right) \\
& f\left(V_{G S}, V_{B S}\right)=1-\left(1+4\left(\frac{V_{G S}-V_{b i}+P H I-V_{B S}}{\gamma_{d}{ }^{2}}\right)\right)^{1 / 2}
\end{aligned}
$$

Since a noise analysis is going to be undertaken for the op-amp chosen, it is necessary to model the noise of the mos transistors. This consists of two parts, thermal noise and $\frac{1}{f}$ noise. Both types can be modeled as a noise current between the drain and source or as a voltage noise in series with the gate as shown in Figure 17.

Figure 17. Transistor Equivalent Noise Sources Thermal noise is given by the equation $i_{n}{ }^{2}=4 \mathrm{kT}\left(\frac{2}{3} g m\right)$ and $\frac{1}{f}$ noise by the equation:

$$
i_{n}{ }^{2}=\frac{K I_{D}}{C_{G} f^{b}} \quad \text { where } a \cong 1 \text { and } b \cong 1
$$

Warren Ong 4 analyzed the parameters a, b, and $\frac{K}{C_{G}}$ for $\frac{1}{f}$ noise. Unfortunately, he did not report the value of C_{G}, but based on the information given, we were able to predict that it was the gate capacitance of a transistor made at Berkeley and having a $W=3.5 \mathrm{mil}$ and an $\mathrm{L}_{\mathrm{eff}}=.8 \mathrm{mil}$. Using the numbers he developed, the total noise in a mosfet can be modeled as $i_{n}{ }^{2}=4 k T\left(\frac{2}{3} \mathrm{gm}\right)+\frac{\left(9.5 \times 10^{-15}\right) I_{D}{ }^{1.2}}{\left(W_{\text {eff }} \times L_{\text {eff }}\right) f^{.88}}$
or $\quad v_{n}{ }^{2}=4 k T\left(-\frac{2}{3 g m}\right)+\left(9.5 \times 10^{-15}\right) I_{D}^{1.2} /\left(W_{\text {eff }} \times L_{e f f}\right)\left(\mathrm{gm}^{2}\right)\left(f^{.88}\right)$
$=\left[\frac{1.38}{\sqrt{W / L} V_{I_{D}}}+\frac{1.34 \times 10^{8}}{f .88}\left(\frac{I_{D} .^{2}}{W^{2}}\right)\right]^{1 / 2} \mathrm{mV} / \mathrm{VHZ}^{5}$.
${ }^{4}$ Ong; "Noise Characterization of MOSFETS," page 27.
${ }^{5}$ This equation is obtained from the one before it by using the expression $g m=\left(2 K^{2} I_{D} W / L\right)^{1 / 2}$

Tsividis had measured his op-amp as having $60 \mu V$ equivalent input noise between 10 Hz and 10 KHz . So to test the validity of the noise model, I analyzed the noise of his circuit (with the aid of Spice, by a method described in detail later) and obtained an equivalent input noise of $40 \mu \mathrm{~V}$. Clearly the agreement is not perfect, but it is probably satisfactory when working with noise.

It was now time to see if the existing op-amp design would be satisfactory in this application. The circuit is shown in Figure 18 and Table III. With the output approximately centered between the supplies $\left(V_{\text {out }}=8.5 \mathrm{~V}\right)$ the circuit had an AC gain of 200, unity gain bandwidth of 8 MEGHz ($\mathrm{C}_{\text {comp }}=40 \mathrm{pf}$) and phase margin 45°. But as the DC transfer curve (Figure 19) shows, the circuit could not maintain that gain through much of its range. The range was also rather limited since, although the highest ouput voltage was a good 13.5 volts, the lowest output voltage was only 5 volts. And finally, the output noise through the previously designed output stage was 180 1 V (see Appendix A). This is significantly higher than the desired result of about $60 \mu \mathrm{~V}$, so it was decided to design a lower noise op-amp which would work well when built on lightly doped substrates.

In general, an operational amplifier can be broken up into four stages - a differential input stage, a differential to single ended converter, a gain stage (with a capacitor across it), and an output stage, as shown in Figure 20.

Figure 18. Tsividis's Op-Amp

TABLE III
DEVICE SIZES FOR TSIVIDIS'S OP-AMP

Device	$\mathrm{W}_{\text {drawn }}$ in mils	$\underline{L_{\text {drawn }} \text { inmils }}$	W/L Expected
M1	3.500	1.000	4.38
M2	. 500	10.500	. 0667
M3	3.500	1.00	4.38
M4	. 500	4.125	. 170
M5	3.725	. 500	12.46
M6	1.750	1.000	2.19
M7	18.000	. 500	60.20
M8	3.500	1.000	4.38
M9	1.750	1.000	2.19
M10	18.000	. 500	60.20
M11	. 500	4.125	. 170
M12	3.725	. 500	12.46
M13	5.500	. 500	19.23
M14	5.750	. 500	18.39
M15	. 500	8.175	. 0856
M16	2.250	. 500	7.525
M17	2.250	. 500	7.525
M18	. 500	1.775	. 596
M19	8.750	. 500	29.26
M20	8.750	. 500	29.26

TABLE III (Cont)

Device	$W_{\text {drawn }}$	$L_{\text {drawn }}$	W/L Expected
M21	8.500	.500	28.43
M22	8.750	.500	29.26
M23	.750	1.500	.731
M24	15.250	.500	48.49
M25	1.500	1.675	1.15
M26	12.250	1.000	22.18

Figure 19. DC Transfer Curve for Tsividis's Op-Amp

Figure 20. A Four Stage Amplifier with Noise Sources

Now imagine each stage has an input voltage noise associated with it. The total equivalent noise at the input to the amplifier can be calculated by finding the noise gain from each source to the output, then dividing by the gain from input to output. Thus:

$$
\begin{aligned}
v_{\text {out }}^{2}= & v_{n 1}{ }^{2} \cdot\left(A_{1} A_{2} A_{3}(\omega) A_{4}(\omega)\right)^{2}+v_{n 2}{ }^{2}\left(A_{2} A_{3}(\omega) A_{4}(\omega)\right)^{2}+ \\
& v_{n 3}{ }^{2}\left(A_{3}(\omega) A_{4}(\omega)\right)+v_{n 4}{ }^{2}\left(A_{4}(\omega)\right)^{2} \\
v_{\text {eq }}^{2}= & v_{n 1}{ }^{2}+\frac{v_{n 2}{ }^{2}}{A_{1}{ }^{2}}+\frac{v_{n 3}{ }^{2}}{\left(A_{1} A_{2}\right)^{2}}+\frac{v_{n 4}{ }^{2}}{\left(A_{2} A_{2} A_{3}(\omega)\right)^{2}}
\end{aligned}
$$

Notice that each noise source appears at the input, divided by the gain that preceeded it, so if the gains at the front of the op-amp are large, the total noise will be correspondingly small. But also notice that at high frequencies where $A_{3}(\omega)$ is small, $v_{n 4}$ may easily become the dominate noise source. Therefore, there are at least four useful rules in designing a low noise amplifier:

1. Use low noise transistors
2. Do not use any more bandwidth than necessary
3. If a stage is inherently noisy, preceed it with as much gain as possible
4. Follow the main gain stage with the quietest possible output stage, preferably one having unity gain

Transistors can be designed to have low thermal noise by giving them a large current and a large W/L. This does, however, require large devices and high power consumption, which is a disadvantage.

By far the noisiest stage which will be used in this op-amp is a source follower which is designed to drop a large voltage. This is because the signal gain from input to output is about one, but the noise gain from the current source transistor to the output is equal to the gm ratio of the two transistors. Thus, referring to Figure 21 , $I=\frac{K^{\prime}}{2}\left(\frac{W}{L}\right)_{2}\left(V_{G S 2}-V_{T}\right)^{2}=\frac{K^{\prime}}{2}\left(\frac{W}{E}\right)_{1}\left(V_{G S 1}-V_{T}\right)^{2}$

$$
V_{W / L}^{2}\left(V_{G S 2}-V_{T}\right)=V W / L_{1}\left(V_{G S 1}-V_{T}\right)
$$

$$
\frac{V_{G S 2}-V_{T}}{V_{G S 1}-V_{T}}=\frac{V_{W / L_{1}}}{V_{W / L_{2}}}
$$

Figure 21. Noise in a Source Follower

However, the output noise is:
$v_{\text {noise out }}^{2}=v_{n 1}{ }^{2}\left(\frac{g m_{1}}{g m_{2}}\right)^{2}+v_{n 2}{ }^{2}=v_{n 1}{ }^{2} \quad\left(\frac{W / L 1}{W / L}\right)+v_{n 2}{ }^{2}$
which can be significantly larger than just $v_{n 1}{ }^{2}+v_{n 2}{ }^{2}$ if $V_{G S 2}$ is significantly larger than $\mathrm{V}_{\mathrm{GS}}{ }^{-}$

The light substrate doping meant that the maximum difference between the most positive and most negative supply could be only 20V. Anything larger could cause avalanche breakdowns in the transistors. It also meant that the transistors' threshold voltage was not very dependent on the backgate bias voltage. Since the zero bias threshold voltage is very near zero this meant the circuit had to be designed for very small $V_{\text {T's }}$. Furthermore, on short channel devices ($L \leq .5 \mathrm{mil}$) the effect of $V_{B S}$ was even less than on devices with longer channels. It was determined using SPICE that in order to achieve a $V_{T H}$ of . 4 V or greater with 5 volts backgate bias, the channel length had to be .7 mil or wider. Finally, transistors fabricated on light substrates have a much lower drain-source impedance when the device is in saturation than those built on heavy substrates. This effect became noticeable when $L \leq .4$ mil.

Keeping these facts about noise and threshold voltage in mind, the circuit shown in Figure 22 and Table IV was developed.

Figure 22. Low Noise Operational Amplifier

Table IV

device sizes and operating point of the low-noise op-amp

	$W_{\text {drawn }}$	$L_{\text {drawn }}$	$W / L_{\text {eff }}$	I_{D}	gm	${ }^{9}$ DS
M1	3.4 mil	. 7 mil	7.2	231×10^{-6}	290×10^{-6}	4.81×10^{-6}
M2	6.0	. 4	30.0	231	551	12.1
M3	6.0	. 4	30.0	231	552	12.1
M26	. 5	2.5	. 30	231	56.1	12.1
M27	3.4	. 7	7.2	231	296	4.87
M4	3.4	. 7	7.2	236	295	4.99
M5	3.4	. 7	7.2	259	325	6.05
M6	30.0	. 4	150.0	130	1090	8.84
M7	30.0	. 4	150.0	130	1090	8.84
M8	1.6	. 7	3.6	130	156	2.74
M9	1.6	. 7	3.6	130	156	2.74
M70	1.2	3.2	. 467	360	87.3	1.96
M11	1.2	3.2	. 467	360	87.3	1.91
M12	5.2	. 7	10.4	360	451	7.77
M13	5.2	. 7	10.4	360	451	7.77
M14	2.8	. 4	15.0	118	311	7.66
M15	2.8	. 4	15.0	118	311	7.66
M16	. 5	3.2	. 167	118	35.0	. 239
M17	. 5	3.2	. 167	118	35.0	. 239
M18	. 5	8.0	. 0625	39.6	12.6	. 081
M19	. 5	8.0	. 0625	39.6	12.6	. 081
M20	8.0	. 7	16.4	39.6	187	. 804
M21	8.0	. 7	16.4	39.6	187	. 804
M22	20.0	. 7	40.0	115	543	2.73
M23	. 5	3	. 179	115	36.3	. 598
M24	30.0	. 5	100.0	515	2030	30.7
M25	7.0	. 7	1.36	515	644	11.9

Transistors M5 - M9 form the input differential stage. Its differen-
 is given by $\frac{V_{\text {out, }} \mathrm{cm}}{v_{i n}, \mathrm{~cm}}=\frac{g_{\mathrm{DS5}}}{2\left(\mathrm{gm}_{8}\right)}$. The values of gm_{6} and gm_{8} were mostly set by external considerations. M_{6} and M_{7} were given the largest W/L that device size constraints would permit $(W=30 \mathrm{mil})$, $L=.4 \mathrm{mil})$. the current through M5 was set high enough ($256 \mu \mathrm{~A}$) to insure that the input transistors were not too noisy, but low enough to avoid dropping excessive voltage across M8 and M9. The W/L ratio of M8 and M9 was then set so the transistors would drop 2.5 V . This yielded $W=1.6 \mathrm{mi}$, $L=.7 \mathrm{mil}$, so the differential gain of the stage was $\frac{\mathrm{gm}_{6}}{\mathrm{gm}_{8}}=\frac{\sqrt{W / L} \mathrm{~L}_{6}}{\sqrt{W / L_{8}}}=6$.

The first stage is then followed by some level shifting sources followers with a gain $G_{S F}$ of .95, and the next stage is another differential amplifier. Its main purpose is to provide the rest of the gain, external to the main gain stage, for which the op-amp can be compensated.

The next stage consisting of M18-M21, is the differential to singleended converter. It was put this far from the input stage because it is very noisy. Its design was strongly related to the design of the high gain stage which follows it, so they will be discussed together.

Figure 23. Differential to Single-Ended Converter and Gain Stage

Referring to Figure 23, the voltage gain through the differential to single-ended converter is given by:

$$
\begin{aligned}
v_{\text {outDSEC }} & =v_{i n}\left(\frac{g m_{18}}{g m_{20}+g m_{18}}\right)\left(\frac{g m_{21}}{g m_{19}+g_{D S 21}}\right)+v_{i n}\left(\frac{g m_{19}}{g_{D S} 21+g m_{19}}\right) \\
& =\left(v_{i n+}-v_{i n-}\right)\left(\frac{g m_{19}}{2\left(g_{D S 21}+g m_{19}\right.}\right)\left(1+\frac{g m_{18} g^{g m_{21}}}{g m_{19}\left(g m_{20}+g m_{18}\right)}\right) \\
& +\frac{v_{i n+} v_{i n-}}{2}\left(\frac{g m_{19}}{g_{D S 21}+g m_{19}}\right)\left(1-\frac{g m_{18} g m_{21}}{g m_{19}\left(g m_{20}+g m_{18}\right.}\right)
\end{aligned}
$$

assuming $\mathrm{gm}_{21}=\mathrm{gm}_{20}, \mathrm{gm}_{19}=\mathrm{gm}_{18}$ and $\mathrm{g}_{\mathrm{DS} 21} \ll \mathrm{gm}_{19}$,
$v_{\text {outDSEC }}=\left(v_{i n+}-v_{i n-}\right)\left(\frac{1}{2}\right)\left(1+\frac{g m_{18}}{g m_{18}+g m_{20}}\right)+\left(v_{i n+}+v_{i n-}\right)\left(\frac{1}{2}\right)\left(1-\frac{g m_{18}}{g m_{18}+g m_{20}}\right)$
therefore, by making $\mathrm{gm}_{20} \gg \mathrm{gm}_{18}$, the differential gain $G_{\text {DSEC }}$ will approach one and the common mode gain will approach zero. Now if in the next stage, $\mathrm{gm}_{22} / \mathrm{gm}_{23}$ is made equal to $\mathrm{gm}_{20} / \mathrm{gm}_{18}, \mathrm{gm}_{22} \gg \mathrm{gm}_{23}$ and the condition for high gain will be met for that stage.

The dominant pote of this system is to be given by $\frac{g m_{19}}{\mathrm{C}_{\text {comp }}\left(1+G_{G}\right)}$, where G_{G} is the gain of the main gain stage. Therefore, the smaller gm_{19} is made, the smaller $\mathrm{C}_{\text {comp }}$ can be, or the greater the gain in the previous stages can be for a given bandwidth. For instance, in this particular case, the desired bandwidth is 2.5 MEGHz . The gain through the entire circuit is $G(\omega)=G_{\text {diff }_{1}} G_{\text {SF }} G_{\text {diff }_{2}} \quad G_{D S E C} \quad G_{G} / 1+j \omega\left(\frac{G_{G} C \text { comp }}{g_{19}}\right)$ $\cong \frac{G_{\text {Diff }}{ }^{G}{ }^{\text {SF }}{ }^{G_{\text {Diff }}}{ }_{2}{ }^{\text {DSEC }}}{\omega C_{\text {comp }}{ }^{\prime \mathrm{gm}_{19}}}$ at high frequencies

At $\omega=2 \pi \times 2.5 \mathrm{MEGHz}$ we want $G(\omega)=1$, therefore,

$$
G_{\text {Diff }_{2}}=\frac{(2 \pi)\left(2.5 \times 10^{6}\right)\left(C_{\text {comp }} / \mathrm{gm}_{19}\right)}{G_{\text {Diff } 2} G_{S F} G_{D S E C}}
$$

For this circuit $C_{\text {comp }}=30 \mathrm{pf}, \mathrm{gm}_{19}=1.3 \times 10^{-5}, G_{\text {Diff } 1}=6$,
$G_{S F}=.95, G_{D S E C}=.92$, so $G_{\text {Diff } 2}$ may be given a value of:

$$
\frac{2 \times 3.14 \times 2.5 \times 10^{6} \times 30 \times 10^{-12} / 1.3 \times 10^{-5}}{6 \times .95 \times .92}=7
$$

The output stage is a simple source follower, designed with high current and high W / L so its transistors will be quiet and it will be able to supply a large current without dropping much voltage. The compensation capacitor is connected to the output of the source follower, rather than directly across M_{22} in order to avoid the zero at $\frac{g m_{22}}{C_{\text {comp }}}$ which that configuration would exhibit. ${ }^{6}$

The major problem with this circuit was achieving a reasonably large slew rate while keeping gm_{19} small. Look again at Figure 23 . When the op-amp is slewing, $V_{i n}$ will be at its most negative value $\left(V_{\min }\right)$ and the current in $M_{21}\left(I_{\min }\right)$ will $\frac{K^{\prime}}{}{ }^{\prime}(W / L)_{18}\left(V_{\min }-V_{T}\right)^{2}$. Similarly, the current in $M_{19}\left(I_{\max }\right)$ will be $\frac{K^{\prime}}{2}(W / L)\left(V_{19} \max -V_{T}\right)^{2}$. So if the quiescent current I_{Q} is defined as $\frac{K^{\prime}}{2}(W / L)\left(V_{Q}-V_{T}\right)^{2}$, then the current available to charge $C_{\text {comp }}\left(I_{\text {slew }}\right.$) is the difference between $I_{\text {min }}$ and $I_{\max }$ and $I_{\text {slew }}=I_{Q}\left[\left(\frac{V_{\max }-V_{T}}{V_{Q}-V_{T}}\right)-\left(\frac{V_{\min }-\dot{V}_{T}}{V_{Q}-V_{T}}\right)^{2}\right]$.
${ }^{6}$ For more information on this zero, and all stages used in this op-amp, see Tsividis, "Nonuniform Pulse Code Modulation Encoding Using Integrated Circuit Techniques," chapter 5.

Cearly, it is desirable to have I_{Q} as large as possible, but that level is basically determined by the gm needed for compensating the amplifier. The other option is to make $\frac{V_{\text {in max }}}{V_{\text {in } Q}}$ as large as possible. Obviously, if $V_{\text {in max }}$ can be made twice as large as $V_{\text {in }}$, a slew current of three to four times the quiescent current will be available. This is the method which was used, but is required careful biasing of the entire circuit. The voltages and currents resulting from this biasing are shown in Figure 22 and their rational is as follows.

Since it is desirable to have the voltage level into the differential to single ended converter as low as possible, it is desirable to have the voltage at the gates of M_{14} and M_{15} as low as possible. This voltage was chosen to be 4 volts, which allows $V_{G S 14}$ and $V_{G S 15}$ to be one volt and $V_{D S 4}$ to be one volt greater than $V_{G S 4}$, thus insuring that M_{4} is in saturation. Unfortunately achieving this voltage requires a large voltage drop across M_{10} and M_{11} compared with M_{12} and M_{13}, making this an inherently noisy stage. Therefore, the current was set very high (350 HV) to reduce the noise. (This high current was also necessary in order to reduce the gm of $M_{10} \& M_{11}$ since they were driving the Miller multiplied gate-drain capacitance of M_{14} and M_{15}.)

Now the voltage which could be dropped across M_{16} and M_{17} had to be determined. To do this, imagine the voltage at the gate to M_{6} is much lower than the voltage at M_{7} (the condition which exists while slewing downward). Then all the current from M_{5} will be flowing through M_{9}, so M_{8} will be off, so the voltage across M_{8} will be $V_{\text {T8 }}$, which means
the voltage at the gate of M_{10} will be $4 V+1.5 V=5.5 \mathrm{~V}$. Similarly, the voltage at the gate of M_{15} will be about 3 V , so all the current from M_{4} will be flowing through M_{14} and M_{16}, as long as M_{14} is saturated. Therefore, the gate-source voltage of M_{16} should be $15-5.5=$ 9.5V when all the current is flowing through it. Therefore, when half the current is flowing the voltage across M_{16} should be $\left(9.5 \mathrm{~V}-V_{T H}\right) \frac{1}{\sqrt{2}}$ $+V_{T H}=7.2 \mathrm{~V}$. Therefore, the quiescent voltage at the gates of M_{18} and M_{19} should be $15-7.2 \mathrm{~V}=7.8 \mathrm{~V}$. The desire to have $\mathrm{gm}_{19} \cong$ 1×10^{-5} plus the knowledge that they would be dropping about 7 V , yielded a W/L for M_{18} and M_{19} of $\frac{.7}{8}$ which yielded a current of $40 \mu \mathrm{~A}$. This in turn meant the slew current would equal about
$\left.40\left[\left(\frac{12-.6}{6.6-.6}\right)^{2}-\frac{4-.6}{6.6-.6}\right)^{2}\right]=130 \mu \mathrm{~A}$ and the slew rate would be $130 \mu \mathrm{~A} /$ $30 \mathrm{pf}=4.3 \mathrm{~V} / \mathrm{hsec}$.
M_{20} and M_{21} were then given a W / L of $8 / .7$ because for this value, their effect on the thermal noise of the op-amp would be about the same as the effect of the input transistors. L was chosen to equal .7 volts, because that value would yield a threshold voltage of . 4 V , and increasing L further would not increase the threshold much. It was important to have a high threshold because it was neccessary that M_{21} stay in saturation when $V_{\text {out }}$ was at its most positive value. The W / L of M_{22} was made three times that of M_{21} in order to keep down the noise of the device, and M_{23} was likewise scaled, giving this stage a gain of 13. Since M_{23} ought to drop about the same voltage as M_{19}, it ought to drop about 7 V . Transistors M_{24}
and M_{25} form a source follower, with M_{24} dropping about one volt. Therefore, the output of the op-amp has been biased to sit at 7 V , very near the center of the supply range, by use of a simple symmetry.

The most troublesome part of this design so far, is in making sure that M_{4} stays biased in the saturated region when the device parameters (especially $V_{T H}$) are changed. To insure that this would be alright, the bias chain of $M_{1}-M_{27}$ was constructed. It works on the following principle. Notice that the $V_{G D}$ of M_{4} (the voltage which must be kept positive) is equal to $V_{D D}-V_{G S 8}-V_{G S 10}-V_{G S 14}-V_{G S 4}$. If the bias chain can be designed so that $V_{G S 27}=V_{G S 8}, V_{G S 26}=V_{G S 10}, V_{G S 3}=$ $V_{G S 14}$, and $V_{G S 1}=V_{G S 4}$, then $V_{G D 4}$ will equal $V_{G S 2}$, by default. This can be achieved by using the fact that $V_{G S a}=V_{G S b}$ if $I_{a} /(W / L)_{a}=I_{b} /$ $(W / L)_{b}$, assuming $V_{T H a}=V_{T H b}$. Therefore, every current in the first three stages was made proportional to the current in the bias string by using $V_{G S 1}$ as the gate voltage for all the current sources. Then the W/L'sin the bias chain were scaled to those whose voltage they were supposed to drop using the equation $(W / L)_{b}=I_{b} / I_{a} \cdot(W / L)_{a}$. The validity of this method was tested by doubling the substrate doping given to SPICE and checking the new operating point and the new ac characteristics. The circuit behaved as expected with the voltages along the bias string changing somewhat due to the changed threshold voltages but with the other bias points mirroring them almost perfectly, and with the other ac characteristics essentially unchanged.

The op-amps entire performance was then tested on SPICE and the results agreed well with the hand calculations. They are shown in Figures 24 - 26.

Figure 24. AC Gain and Phase for Low Noise Op-Amp

Figure 25. DC Transfer Curve for Low Noise Op-Amp

Notice in Figure 24 that the op-amp has small signal gain of 380 , a phase margin of 79° and a bandwidth of 2.5 MHz . It also has a common mode gain at DC of 7.5×10^{-4}, yielding a CMRR of 114 db . Its $D C$ output range is .3 V to 12.5 V . It slews at $3.5 \mathrm{~V} / \mathrm{H}_{\mathrm{sec}}$ and it settles to $.05 \%$ from a 5 volt step in $2.0 \mu s e c$. It draws a total current of 2.2 mA and dissipates 32 mW . The total gate area is $118 \mathrm{mi} \mathrm{T}^{2}$.

As a final test the op-amp was hooked up as it would be used in the circuit and the waveforms out of the op-amp and out of the sample and hold were plotted. The results are shown in Figure 27. The crucial test of the op-amp in this configuration is in whether the gain from the input to the output of the op-amp has been linear. If so, then:

$$
\begin{aligned}
\Delta V_{\text {out }} & \left.=-\Delta V_{\text {sig }} \frac{C_{\text {sig }}}{C_{F}+C_{\text {sig }}{ }^{+C_{F Z}+C_{\text {stray }}+C_{F}}} \frac{A}{A}-\Delta V_{F Z} \frac{C_{F Z}}{C_{F}+C_{\text {sig }}{ }^{+C_{F Z}+C_{\text {stray }}+C_{F}}} \frac{A}{3+\frac{.3+6+7.6(3.5)+3}{400}}\right)+1\left(\frac{6}{3+\frac{.3+6+7.6(3.5)+3}{400}}\right) \\
& =4\left(\frac{.3}{3+1}\right. \\
& =2.371 \mathrm{~V}
\end{aligned}
$$

SPICE gave an answer of $\Delta V_{\text {out }}=2.368 \pm .005$. The op-amp has therefore, behaved in a perfectly linear fashion and should work fine on the output stage of a CCD filter. ,

Figure 27. Circuit Transient Response

The major tradeoffs made in this design were in:

1. the choice of the current in the source followers ($M_{10}-M_{13}$), which had to be high enough to keep them relatively quiet, but low enough to avoid excessive power dissipation,
2. the choice of size for $M_{20}-M_{22}$, since making these devices larger would have increased their contribution to the noise at the input to the op-amp, but also would have increased the overall gain of the op-amp,
3. choosing the size of M_{24} and M_{25}. This involved four factors, namely, the voltage across M_{24}, the current in the output stage, the size of M_{24}, and the $g m$ of M_{24}. The voltage across M_{24} should not be large since it subtracts directly from the maximum dc voltage which the output can achieve, and the current should be high in order to provide good drive capability to the output. The gm should be high in order to provide low output impedance, but also in order to provide as perfect a buffer as possible for the compensation capacitor. This is important because the op-amp's open loop response has a zero at $\omega=\frac{\mathrm{gm}_{24}}{C_{\text {comp }}}$. This zero is presently out a 10 MHGHz , but if gm_{24} were reduced (i.e., I_{24} is reduced or $\mathrm{V}_{\mathrm{GS} 24}$ is increased) the zero would move to a lower frequency and could start causing excessive phase shift and a flattening of the gain before the gain has reached unity.

IV. NOISE ANALYSIS

In order to predict the noise at the output of the op-amp, both inputs were connected to 7.5 volts, and a low pass filter consisting of $M_{\text {sample }}$ and a $6 p f$ capacitor were placed on the output (since this is equivalent to the load the op-amp will see when operating). Then a IPA sinusoidal current source was placed across the source and drain of each transistor, and the voltage this produced on the output of the low pass filter was calculated and plotted as the source's frequency was varied from 100 Hz to 1 GHz . This arrangement is shown in Figure 28 , where the noise source for M_{8} has been included as an example.

Figure 28. Arrangement for Measuring Each Transistor's Noise Transimpedance
The value of the thermal noise was calculated for each transistor using the expression ${ }^{i}{ }_{n}{ }^{2}=4 k T\left(\frac{2}{3} g m\right)$. This value was then multiplied by the transimpedance of the circuit at several selected frequencies. The total noise at the output of the sample and hold due to thermal noise was calculated by taking the square root of the sum of the square of each term at each frequency. Similarly, for $\frac{1}{f}$ noise, the value of
each noise source was calculated for $f=1 \mathrm{~Hz}$, multiplied by its gain at lHz , and summed in quadature with the other $\frac{l}{f}$ sources to get the output value at 1 Hz . Its value at all other frequencies (up to the frequency where the gain breaks) could then be found by multiplying the value at one hertz by $\left(\frac{1}{f} .88\right)^{\frac{1}{2}}=\frac{1}{f} .44$. The details of all these calculations are shown in Appendix A. The total noise found in this way was then divided by the circuit gain to get the equivalent input noise, and the remaining problem was to determine the noise gain from the op-amp input to the output when the feedback loop is closed and the correlated double sampler is operating.

Referring to Figure 29, notice that when the DC reset switch is closed, the output is essentially shorted to a DC voltage, and no signal from the op-amp will appear there. Similarly, when the sampling switch is open, no signal will appear. Therefore, let us look at the signal gain when the $D C$ switch and feedback reset switch are open and the sampler is closed. Then V_{n} sees a non-inverting amplifier followed by a low pass filter and a divider.

$$
\left.\begin{array}{rl}
v_{\text {out }} & =v_{n}\left(-\frac{C_{F}+C_{\text {stray }}}{C_{F}+\frac{C_{F}+C_{\text {stray }}}{A(\omega)}}\right)\left(\frac{1}{1+j \omega \frac{C_{\text {hold }}+C_{\text {quiet }}}{g_{D S}, \text { sample }}}\right)\left(\frac{C_{\text {couple }}}{C_{\text {couple }}+C_{\text {hold }}}\right.
\end{array}\right)
$$

Figure 29. Circuit for Calculating Noise Gain

The break between high and low frequencies occurs where $A(\omega)$, the open loop amplifier gain equals $1+\frac{C_{F}+C_{\text {stray }}}{C_{F}}$, the closed loop amplifier gain. The total op-amp noise at the output, through the circuit gain just derived is plotted in Figure 30. This total noise can be broken into three separate components, also plotted in Figure 30. The first component is due to $\frac{1}{f}$ noise and can be modeled as falling at a rate of $\frac{l}{f} .44$ between OHz and 600 KHz , and as dropping at a rate of $\frac{1}{f}$ from there on. The second component is the thermal noise from those transistors which reach the output of the op-amp through the dominant pole, and which therefore has the shape of white noise, limited by a single pole filter with a break frequency of 600 KHz . The last component is the thermal noise generated by those transistors whose noise is not attenuated by the dominant pole of the op-amp (namely, $M_{22}, M_{23}, M_{24}, M_{25}$, and the transistors in the bias chain). Their summed response is flat out to 10 MHz , at which point it is attenuated by the low pass filtering affect of the sample and hold circuit. These components are shown in Figure 30.

Figure 30. Op-Amp Noise as it Appears at the Output of the Sample and Hold with $M_{D C}$ Open and Msample . Closed

The noise circuit can now be reduced to that shown in Figure 31.

Figure 31

The noise voltage source v_{n} is composed of the three components discussed above. The remaining question is - what effect do the switches have on the noise into this stage? We will look at this qualitatively first, then derive the result mathematically. Imagine v_{n} is a white noise source, bandlimited at a very low frequency. Let $S_{D C}$ and S_{S} be closed, then open $S_{D C}$. Once $S_{D C}$ is open, the low frequency components of v_{n} will start charging C_{H}, but because they are low frequency, they will not have changed the output level very much before S_{S} is opened and their effect on the output is stopped. When $S_{D C}$ is closed, the charge they added will be removed. But as the bandwidth of the noise gets closer and closer to $\frac{1}{\Delta t}$ (where Δt is the time between when $S_{D C}$ is opened and S_{S} is opened) more and more of the total signal amplitude gets passed. At very wide bandwidths, very little of the noise will actually be attenuated by the sampler so the sampler will essentially be taking the difference between two points on a random waveform. This will yield an RMS output voltage greater than what it would be without the correlated double sampler. Thus the sampler will
strongly attenuate low frequency noise, but it will magnify high frequency noise. Brodersen and Emmons ${ }^{7}$ analyzed the effect of correlated double sampling on bandlimited white noise, and their derivation is repeated here.

The RMS output voltage of the correlated double sampler is the RMS difference between the input voltage, $v(t)$, at two points in time separated by the time interval Δt. This can be calculated by the formula:

$$
\begin{aligned}
v_{\text {out }}^{2}= & \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}(v(t)-v(t+\Delta t))^{2} d t \\
= & \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} i v^{2}(t)-2 v(t) v(t+\Delta t)+v^{2}(t+\Delta t) d t \\
= & \lim _{T \rightarrow \infty} \frac{2}{T} \int_{0}^{T} v^{2}(t)-1 i m \frac{2}{T} \int_{0}^{T} v(t) v(t+\Delta t) d t
\end{aligned}
$$

Notice that the second term is the convolution in time of $v(t)$ with itself, evaluated at time Δt, and the first term is the same thing, evaluated at time zero. Furthermore, a convolution in time can be calculated by taking the inverse Fourier transform of the time function's Fourier transform and the Fourier transform of bandlimited white noise is:

7 Brodersen and Emmons, "The Measurement of Noise in Buried Channel
Charge Coupled Devices, Appendix A.

$$
\frac{v_{n}}{1+\frac{j \omega}{\omega_{c}}}
$$

Thus, $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} v(\tau) v(\tau+t) d \tau$

$$
=\frac{1}{2 \pi} \int_{0}^{\infty} e j \omega t \frac{\left|v_{n}\right|^{2}}{\left(1+j \frac{\omega}{\omega_{c}}\right)\left(1-j \frac{\omega}{\omega_{c}}\right)} d \omega
$$

$$
=\frac{1}{2} \pi \int_{0}^{\infty} e^{j \omega t} \frac{\left|v_{n}\right|^{2}}{1+\left(\frac{\omega}{\omega_{c}}\right)^{2}} d \omega
$$

$$
=\left|v_{n}\right|^{2} \frac{1}{4 R C} \quad e^{-|t| / R C} \text { where } R C=\frac{1}{\omega_{c}}
$$

Therefore $v_{\text {out }}{ }^{2}=\frac{2\left|v_{n}\right|^{2}}{4 R C}\left(e^{0}-e^{-\Delta t / R C}\right)$

$$
v_{\text {out }}^{2}=\frac{2\left|v_{n}\right|^{2}}{4 R C} \quad\left(1-e^{-\Delta t / R C}\right)
$$

Since the effect of the correlated double sampler on bandlimited white noise can be calculated, it would be desirable to approximate $\frac{1}{f}$ noise as a series of bandlimited white noise sources, summed in quaduature. This can be done to a reaonable degree of accuracy by using the series of noise sources listed below.

1) $v(600 \mathrm{KHz}) \times .82 \times 4.44 \times \frac{\sqrt{2}}{1+j \frac{4 f}{600 \mathrm{KHz}}}=v(600 \mathrm{~K}) \frac{2.13}{1+j \frac{f}{150 \mathrm{~K}}}$
2) $v(600 \mathrm{KHz}) \times .82 \times\left[16^{.88}-2.13^{2}\right]^{\frac{1}{2}} \times \frac{\sqrt{2}}{1+j \frac{1.6 f}{600 K}}=v(600 K) \frac{3.05}{1+j \frac{f}{37.5 K}}$
3) $v(600 \mathrm{~K}) \times .82 \times\left[64.88-3.05^{2}-2.13^{2}\right]^{\frac{1}{2}} \times \frac{\sqrt{2}}{1+j \frac{64 f}{600 \mathrm{~K}}}=v(600 \mathrm{~K}) \frac{5.80}{1+j \frac{f}{9375}}$
4) $v(600 \mathrm{~K}) \times .82 \times\left[256.88-5.80^{2}-3.05^{2}-2.13^{2}\right]^{\frac{1}{2}} \times \frac{v \frac{2}{1+j \frac{256 f}{600 \mathrm{~K}}}=v(600 \mathrm{~K}) \frac{10.64}{1+j \frac{4}{2343}}}{\text { 年 }}$
5) $v(600 \mathrm{~K}) \times .82 \times\left[1024.88-10.64^{2}-5.80^{2}-3.05^{2}-2.13^{2}\right]^{\frac{1}{2}} \times \frac{\sqrt{2}}{1+j \frac{1024 f}{600 \mathrm{~K}}}=v(600 \mathrm{~K}) \frac{19.6}{1+j \frac{f}{586}}$

These noise sources and their summed result are shown in Figure 32.

Figure 32. Approximation of $\frac{1}{f}$ Noise as a Series of Bandimited White Noise Sources

From Figure 27, it can be seen that the output needs $1.3 \mu \mathrm{sec}$ to settle after the DC switch has been released, and $3 \mu \mathrm{sec}$ to settle after the signal has arrived, therefore, the minimum time which can be allowed between the opening of $M_{D C}$ and the opening of $M_{\text {sample }}$ is $5 \mu \mathrm{sec}$. Therefore, the noise at the output due to the op-amp can be calculated:

$$
\begin{aligned}
v_{n}^{2} & =\frac{(16 n V)^{2}(2.13)^{2}(2 \pi \times 150 \mathrm{KHz})}{2}\left(1-\mathrm{e}^{\left.-\left(5 \times 10^{-6}\right)(2 \pi)(150 \mathrm{KHz})\right)}\right. \\
& +\frac{(16 \mathrm{nV})^{2}(3.05)^{2}(2 \pi \times 37.5 \mathrm{~K})}{2}\left(1-\mathrm{e}^{\left.-\left(5 \times 10^{-6}\right)(2 \pi)(37.5 \mathrm{~K})\right)}\right. \\
& +\frac{(16 \mathrm{nV})^{2}(5.80)^{2}(2 \pi \times 9375)}{2}\left(1-\mathrm{e}^{\left.-\left(5 \times .10^{-6}\right)(2 \pi)(9375)\right)}\right. \\
& +\frac{(16 \mathrm{nV})^{2}(10.64)^{2}(2 \pi \times 2344)}{2}\left(1-\mathrm{e}^{\left.-\left(5 \times 10^{-6}\right)(2 \pi)(2344)\right)}\right. \\
& +\frac{(16 \mathrm{nV})^{2}(19.6)^{2}(2 \pi \times 586)}{2}\left(1-\mathrm{e}^{\left.-\left(5 \times 10^{-6}\right)(2 \pi)(586)\right)}\right. \\
& +\frac{\left(25.2 \times 10^{-9}\right)^{2}(2 \pi \times 600 \mathrm{KHz})\left(1-e^{\left.-\left(5 \times 10^{-6}\right)(2 \pi)(600 \mathrm{KHz})\right)}\right.}{2} \\
& +\frac{\left(3.8 \times 10^{-9}\right)^{2}(2 \pi \times 10 \mathrm{MEGHz})}{2}\left(1-\mathrm{e}^{\left.-\left(5 \times 10^{-6}\right)(2 \pi)(10 \mathrm{MEGHz})\right)}\right. \\
& =(31 \mu V)^{2} \text { due to } \frac{1}{\mathrm{f}} \text { noise } \\
& +(36 \mu V)^{2} \text { due to thermal noise } 1 \text { imited at } 600 \mathrm{KHz} \\
& +(22 \mu V)^{2} \cdot \text { due to thermal noise } 1 \text { imited at } 10 \mathrm{MEGHz} \\
& =(52 \mu V)^{2}
\end{aligned}
$$

This $52 \mu V$ from the op-amp coupled with the $49 \mu V$ from the CCD and from reseting the capacitors, yields a total RMS voltage noise at the output of the stage of $71 \mu \mathrm{~V}$. When looking at the impulse response of a CCD transversal filter with this output stage, the peak output voltage will equal $v_{\text {in, max }} \cdot \frac{C_{0 x}}{C_{F}} \quad \frac{C_{\text {couple }}}{C_{\text {couple }} C_{\text {hold }}}=5 \times \frac{.3}{3} \times .8=.4 V$, so the signal to noise ratio on the output of the CCD will be 75 db .

v. CONCLUSION

In summary, a CCD output stage has been proposed which uses a pair of op-amps as a charge integrater, followed by coupling capacitors and correlated double samplers. This stage has the advantage of being independent of amplifier offset and of the noise caused by resetting the feedback capacitor. It doesn't cause signal distortion and it severely attenuates low frequency $\frac{1}{f}$ noise from the amplifier. Its disadvantages are that it amplifies high frequency noise by a factor of $\sqrt{2}$, and it is a somewhat complex circuit. The RMS value of the noise at its output is $71 \mu V$, and the amount of noise contributed by each component is listed in Table V. The total output signal to noise ratio is 75 db .

Table V

Source	Cause	Value at Output
CCD	Surface States	$32 \mu \mathrm{~V}$
$M_{\text {sample }}$	Thermal	$26 \mu \mathrm{~V}$
$M_{\text {DC }}$	Thermal	$26 \mu \mathrm{~V}$
Op-Amp	$\frac{1}{\mathrm{f}}$	
Op-Amp	Thermal, 600 KHz	$31 \mu \mathrm{~V}$
Op-Amp	Thermal, TOMEGHz	$36 \mu \mathrm{~V}$
		$22 \mu \mathrm{~V}$
		Total

Tables VII and VIII show the detailed noise calculations for Tsividis's op-amp, and the low noise op-amp, respectively. Column one shows the transistor which is generating the noise. Column two gives the RMS value of the thermal current noise for that transistor. Columns three through eleven give the value of each noise source, multiplied by the transimpedance from the source to the output of the low pass filter. The next columns show the $\frac{1}{f}$ noise of each transistor at lHz , and its value at the output of the circuit.

The row below the last transistor shows the sum of all the components at each frequency. The row titled "input referred" gives the value of the noise, divided by the gain of the op-amp. The last row gives the value of the noise at the output of the sample and hold. It assumes $C_{\text {stray }}=6 p f+C_{i n}$ (the input capacitance of the op-amp), $C_{F}=3 p f$, and $\frac{C_{\text {couple }}}{C_{\text {couple }}+C_{\text {hold }}}=.8$.

The thermal noise out of the circuit which is caused by Tsividis's op-amp (not including the effects of the correlated double sampler) is $126 \mu \mathrm{~V}$. The $\frac{1}{\mathrm{f}}$ noise contributes $560 \mu \mathrm{~V}$. When the sampler is added, the entire noise equals $V \overline{ } \times 126 \mu V=180 \mu V$.

The total thermal noise out of the circuit caused by the low noise amplifier is $32 \mu \mathrm{~V}$ and the $\frac{1}{\mathrm{f}}$ noise out is $230 \mu \mathrm{~V}$. When the correlated double sampler is included, the total noise out is $52 \mu \mathrm{~V}$.

$\begin{array}{r} \text { + } \\ \stackrel{\rightharpoonup}{3} \\ \geqq \end{array}$	M	$\underset{\infty}{\infty}$	$\underset{+}{\underset{+}{+}}$	$\stackrel{m}{\sim}$
$\frac{N}{\mathbf{N}}$	 			
$\begin{aligned} & \text { S } \\ & \sum_{0} \\ & \hline \end{aligned}$		\xrightarrow{N}		O
C		∞ 0 0 \sim		\%
E	$.02 n V$ 	$\begin{aligned} & 8 \\ & \hline \end{aligned}$		\sim \pm
$\sum_{N}^{\mathbb{N}}$	خ 	$\stackrel{m}{\substack{0 \\ 0}}$		¢
N	\geq 	m $\stackrel{y}{*}$ $\%$	\pm \sim \sim	$\stackrel{+}{\circ}$
등	\gtreqless N MホNM	$\begin{aligned} & N \\ & \stackrel{1}{\circ} \end{aligned}$	5	$\stackrel{\square}{\div}$
ㅡㅡㄹ	릈ㅆㄴ N	$\begin{aligned} & \text { H } \\ & \underset{\sim}{\infty} \end{aligned}$	-	\cdots
$\underline{\square}$	き	¢	$\stackrel{\infty}{+}$	F
응		¢	$\stackrel{\infty}{+}$	$\stackrel{\leftarrow}{5}$
$\stackrel{N}{2}$	 $\frac{0}{\Sigma} \frac{0}{\Sigma}$ 	+		¢

	$\mathrm{pA} / V_{\mathrm{Hz}}$	100
M1	1.78	13 nV
M2	2.47	1
M3	2.47	1
M26	.79	4
M27	1.81	2
M4	1.81	18
M5	1.89	0
M6,7	4.92	1695
M8,9	1.85	637
M10,11	1.39	952
M12,13	3.16	2164
M14,15	2.62	595
M16	.62	134
M17	.62	147
M18	.38	298
M19	.38	321
M20	1.44	1128
M21	1.44	1217
M22	2.46	56
M23	.636	14
M24	4.72	2
M25	2.66	1
Total Out		3494
600KHz part	3494	
10MEGHz part		
input referred	9.28	
total out thru gain	26.2	

APPENDIX B - STRANGE OCCURRENCES IN THE DISCRETE PROTOTYPE OF THE OUTPUT STAGE

The discrete prototype of the output stage behaved basically as expected, with three exceptions. The most obvious problem was that the signal was very noisy, and that is discussed in the main body of the text. The other two problems involved an apparent signal distortion, and an uncertainty in the signal gain.

The CCD which was used in this prototype performed the function of a Hilbert transform, which has an impulse response of $\frac{1}{t}$. Therefore the signals out of the CCD and output stage should have looked like those in Figure 33a. Instead, they looked like those in Figure 33b, except that the effect has been exaggerated to make it more obvious.

Figure 33. Expected and Actual Output From Hilbert Transform CCD

Notice that the DC level out doesn't sit midway between the peaks, as it should. Also notice that in the second half of the CCD, the ratio of the highest peak to the rest of the peaks in its half is correct, but in the first half, the highest peak is too small, although all the other peaks appear to be correct. This waveform could be explained if the CCD channel was narrower than expected, and the mask had been aligned against one edge of it, as shown in Figure 34.

Figure 34. Mask Which Could Cause Output Waveform

Unfortunately, a microscopic examination of the CCD did not support this theory - the center of the tap weights appeared to be in the center of the channel, so we have no defendable explanation for the problem.

The other problem was even stranger. The gain of the circuit seemed to vary from day to day and was never as large as expected. To investigate this further, the peak to peak output voltage was measured as the value of the feedback capacitor was varied, the value of the input voltage was varied, and the day during which the measurements were taken was varied. The output voltage was then compared with the expected output voltage. The results are shown in Table IX. The closest thing to a conclusion that can be drawn from this data is that the long term gain variations seem much more pronounced than the short term ones. The proportion of the expected charge that is actually flowing onto C_{F} does not seem to depend on the input voltage, and probably does not depend on the value of C_{F}. In another experiment, the clock rate was slowed by a factor of 10 , but the gain did not improve, so the problem does not seem to be caused by insufficient charging time. Cooling the circuit caused too many side effects to measure the effect on gain. So although we have some idea of what the cause is not, we still do not know what the cause is. We can only hope that it is a function of being a discrete prototype and will not appear on the integrated version.

Table IX - Circuit Output Voltage

${ }^{\text {CCCD }}$	$V_{\text {in }}$	C_{f}	$V_{\text {out, }}$ Expected	Day\#1	$V_{\text {out }}$ Day\#2	Day\#3		$\begin{aligned} & \text { IV expe } \\ & \text { Day\# } \\ & \hline \end{aligned}$	Day\#3
. 48	3	1	1.17		. 440	. 580		. 38	. 50
		1.5	. 78	. 520			. 67		
		3	. 39	. 330	. 177	. 250	. 85	. 45	. 64
		4	. 29	. 210	. 111	. 148	. 72	. 38	. 51
		5	. 23	. 140	. 077	. 091	. 61	. 33	. 40
		6	. 19	. 110	. 066	. 073	. 58	. 35	. 38
		7	. 17	. 092	. 060	. 064	. 54	. 35	. 38
		8	. 15	. 085	. 055	. 058	. 57	. 37	. 39
		10	. 12		. 045	. 045		. 38	. 38
		15	. 078		. 032	. 030		. 41	. 38
. 16	3	1.5	. 26	. 175			. 67		
		3	. 13	. 115			. 88		
		4	. 10	. 080			. 80		
		5	. 078	. 050			. 64		
		6	. 065	. 040			. 62		
		7	. 065	. 035			. 63		
		8	. 049	. 032			. 65		
. 48	1	1	. 39		. 190	. 300		. 49	. 77
		3	. 13		. 050	. 070		. 26	. 54
		4	. 10		. 030	. 025		. 30	. 25
		6	. 065		. 015	. 010		. 23	. 23
Average:							. 67	. 36	. 44

1. Baertsch, R. D., et al, "The Design and Operation of Practical Charge - Transfer Transversal Filters," IEEE Journal of Solid State Circuits, volume SC-11, No 1, pp 65-74, Feb. 1976.
2. Brodersen, R.W., and S.P. Emmons, The Measurement of Noise in Buried Channel Charge Coupled Devices, Texas Instruments, Inc., Dallas, Texas, 1976.
3. Brodersen, R.W., C.R. Hewes and D.D. Buss, " A 500-Stage CCD Transversal Filter for Spectral Analysis, IEEE Journal of Solid State Circuits, volume SC-11 No. 1, pp 75-83, Feb. 1976.
4. Carr, William and Jack Mize, MOS/LSI Design and Application, McGraw-Hill, 1972.
5. Das, M.B., and J.N. Moore, "Measurements and Interpretation of Low-Frequency Noise in FET's," IEEE Transactions on Electron Devices; volume ED-21, No. 4, pp 247-257, April 1974.
6. Klassen, Francois, M., "Characterization of Low 1/f Noise in MOS Transistors, " IEEE Transactions on Electron Devices, volume ED-18, No. 10, pp 887-891, October, 1971.
7. Kosonocky, W.F., and J.E. Carnes, "Basic Concepts of Charge Coupled Devices," RCA Review, volume 36, pp 566-593, September 1975.
8. Ong, Warren R., Noise Characterization of MOSFET's, Master's project, Robert E. Meyer, advisor, June 1976.
9. Ronen, R.S., "Low-Frequency 1/f Noise in MOSFET's," RCA Review, volume 34, pp 280-307, June 1973.
10. Tsividis, Yannis P., Nonuniform Pulse Code Modulation Encoding Using Integrated Circuit Techniques, College of Engineering; University of California, Berkeley, Memorandum \#ERL-N587, 1976.

[^0]: ${ }^{*} \mathrm{~L}_{\text {eff }}$ is the effective channel length after diffusion.
 **W $W_{\text {drawn }}$ is the value of the channel width which was drawn on the mask.
 TABLE I - Intermediate Model Parameters for SPICE

