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ABSTRACT

In the routing of a multilayer printed circuit board an important

phase is the via assignments. In this paper, the via assignment problem

is given a graph theoretic formulation. Some related optimization problems

are proven to belong to a particular class of hard combinatorial problem:

the class of NP-complete problems. This result suggests that the only

way to solve efficiently the optimization problems is to introduce

heuristic algorithms. Hence some heuristic algorithms are proposed and their

performances are evaluated.
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I. Introduction

With the advancement of integrated circuit technology, it is now

possible to design and fabricate complex circuits within a small chip.

Much more complex,large-scale electronic system can be designed using

semiconductor chips as basic building blocks. Multilayer printed circuit

(MPC) board is in general the vehicle and the medium for inter

connecting those building blocks. The components blocks are mounted

on top of the board where the terminals are inserted through the drilled-

through holes, called pins. Connections among blocks are made by

way of printed wires. Printed wires are either made by etching process

or by additive process on every layer of the board. In order to

connect wires on different layers, plated-through holes, called vias,

are provided for interlayer connections. The MPC routing problem

consists of the determination of vias locations and physical routes

of printed wires to satisfy the interconnection specifications of the

circuits.

There are various kinds of physical constraints associated with

the problem, typically: the size of the multilayer board, the feasible

number of layers, the minimum width of the conductor path, and the

necessary separation between two adjacent parallel conductor paths.

Therefore, a key question is whether a given problem can indeed be

realized with a specified multilayer board; and if it cannot be realized,

whether there is an optimal realization for obtaining a maximum

degree of interconnections. Or, the problem could be formulated in

another way: for a given interconnection specification, what is an

optimal design of multilayer board to facilitate one hundred percent routing?
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In this paper, we make three basic assumptions along the approach

proposed by.

(i) The geometries of the pins and vias are at fixed locations.

With standard size IC chips mounted on the board, this first

assumptions does not impose much restriction on the problem

structure.

(ii) Only points (pins and/or vias) on the same line (row or

column) can be connected directly and the physical routes

must be confined within the channels on both sides of the line.

(iii) Connections for points on a row are in one layer and

connections for points on a column are in another Layer.

In this connection, So has made an important contribution. By using

the above three assumptions, the multilayer problem can be essentially

[31reduced to several single-line, single-layer problems.

To obtain the several single-line, single-layer problems from

\ 3 41the general multilayer problem, three basic steps are involved. '

First, vias have to be assigned to form connections with pins on

the board. The connection patterns are then assigned to various layers.

Finally all the connections are realized on a single-line, single-layer

basis.

There are two main objectives in assigning vias to form connections

with pins, namely: the minimization of vias columns and the minimization

of vias usage. In fact:

a) Each addition of vias columns adds to the size of the board or

alternatively if the size of the board is kept constant then

the area for routing is decreased. It is also expensive to

make extra vias columns than it is necessary.
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b) Each via is consisted of a plated-through hole which is made

at a different period using a different process from those

of printed wires. This creates realiability problem at

the contacts of a via, especially when under mechanical or

thermal stress. Less vias usage will enhance the realiability

of the board.

In this paper, the vias assignment problem is discussed and some

efficient algorithms for its solution are proposed. In Section II,

a graph theoretical formulation of the problem is presented. The

necessary and sufficient conditions for proper connections using k

vias columns are given. Moreover, Section II discusses the complexities

of the optimization problems involved in the vias assignment.

The problems are shown to belong to a well-known class of hard

computation problems, the class of NP-complete problems. In

Section III, an alternate sufficient condition is presented, the

complexity even for this sufficient condition is still NP-complete

but the alternate condition has the advantage to suggest a heuristic

algorithm which is locally optimal. The computational complexity of

the algorithm is then discussed.

In Section IV, further research directions are suggested and some

concluding remarks are discussed.

II. Formulation and Analysis

Given a board with fixed rectangular array of pins and vias, each

pin and via can be identified by its locations, i.e., row and column.

For example, a pin pi in row A and coLumn 1 is indicated as p. = (A,l).
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A signal net or simply a net is a set of pins N^ - lp \\x

to be connected together by a continuous wire.

Figure la shows a board with one vias column and 4 nets defined

over three pins columns.

J* Some partial connections can be made according to the assumptions

mentioned in the Introduction without using any vias (o..»\. pins ol

net 2 on row C and pins of net 1 on column 1). The set of pins of

a net which can be connected without using vias are called generalized

pins. In the degenerate case, a generalized pin is simply a singleton pin.

Both net 3 and net 4 contain one generalized pin each, thus no via

is needed for either net. We call such a net a trivial net. Nets 1

and 2 are of a different kind in that each net has at least two

distinct generalized pins. In order to connect either net, some vias

will have to be selected. It is in dealing with this kind of non-

trivial nets that the vias selection process becomes important.

Figure lb shows a case where the vias on row C and row D are selected

by net 1. Net 2 can not be connected because it requires a via on

row C while there is none available. However, an alternative selection

shown in Figure lc reveals that both nets can be connected.

We begin our analysis of the vias selection problem for the non-

trivial nets with a simple case with one vias column on the board.

In particular, we introduce a bipartite graph representation of

*• the problem as follows:
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Definition II.1:

Let L = {N,,...,N } be the set of nets to be connected. Let
1 p

N. l'J2'""'"'p represent the set of pins on rows J1»J2»...»j

associated with net N. forming one generalized pin. Let v. represent

the via on row k belonging to vias column i. Let G = (S,T,E) be a

bipartite graph associated with L and one vias column as follows:

(i) Each S-node in G1 repsents a generalized pin N. Jl,'#',Jp
associated with nontrivial net N..

1

(ii) Each T-node in G- represents a via v on the vias column.

(iii) e= (N^ Jl'"*,,Jp ,v.) is an edge in graph G if there is

a pin in N. Jl'**,,Jp on the same row as the via v. (i.e.

there is j £ (j,,...,j ) such that j = k).
m a. p m

Remark II. 1:

Graph G^ actually contains all possible connection patterns between

generalized pins and the vias. To connect all nets is equivalent to

finding a matching in G- such that all S-nodes in G.. are covered.

Figure 2a shows such a bipartite graph associated with the example

in Figure la. Figures 2b, 2c show bipartite matchlngs representing

the connection patterns of the nontrivial nets in Figures lb, lc respectively.

Theorem II.1:

Given a set of nets L, called the net list, and one vias column

on the board, then the net list can be properly connected using one

vias column if and only if in G_ corresponding to L and one vias column,

there is a matching M which covers all S-nodes of G .
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Proof:

It is direct to check that if all nets can be properly connected

then a matching M. exists. On the other hand, if a matching M.

exists, since the vias are all on the same column, connections among

vias are direct and all nets can be connected. Q.E.D.

As a corollary of Theorem II.1, we can state a sufficient condition

as follows.

Corollary II.1:

A net list L can be connected using k vias columns if two

conditions are satisfied.

k

(i) L = Ui=i l± such that L± H L = <J> for all i^ j.

(ii) For each G^ corresponding to L and one vias column, there

exists amatching M1 covering all S-nodes in G* for

i S (l,...,k).

Proof:

By Theorem II. 1, if amatching ^ exists in G* then the nets
in Li can be connected using one vias column. Since this is true

for all i € {l,...,k}, k vias columns are sufficient to connect all

nets in L.
Q.E.D.

The crucial part of Corollary II.1 is to find a proper partition

of net list L into k disjoint parts. Since the number of vias columns

are to be minimized, k should be minimized. However, finding a

partition which minimized k in Corollary II.1 is an NP complete problem.

This problem is a hard computational problem in the sense that no present

known algorithms with polynomial-time can be used to solve it.
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rq -I -j-
Karp has listed a few of the known NP complete problems. In

order to show that a problem A is NP complete, two criteria are to be

satisfied:

(NP-1) A is NP.

(NP-2) Satisfiability is polynomial-time transformable to A.

The first (NP-1) criterion is generally easy to show. Either the

Backtrack Criterion or the Existence Criterion in [8] suffices to check

whether a problem is NP. In [8] Karp also indicated that it suffices

to show that any NP complete problem is transformable to A instead of

showing (NP-2). We shall follow the above discussion in the proof of

NP completeness of a problem.

Theorem II.2:

Finding minimum k in Corollary II.1 is NP complete.

Proof:

We can show (NP-1) using the Backtrack Criterion. For each

partition of k sets of nets we can verify whether each set of nets

along with one vias column contains a matching in 0(p ) steps ^ where

p is the number of generalized pins in the set of nets plus the vias

+ ~~ ~~~~~ f81
In a fundamental paper » Karp showed that many important combinatorial

problems» such as finding the chromatic number of graph, determining the
solution of an integer programming problem, finding the maximum
independent set in a graph, testing if a graph admits an Hamiltonian
circuit, are "equivalent" from a computational complexity point of
view.

Every solution method so far obtained for these problems is
computationally explosive in the sense that its computational complexity
(computation time and storage requirements) is bounded by an exponential
in the size of the intput. The fundamental contribution due to Karp is
that the existence of an algorithm for the solution of any of them with
a complexity bounded by a polynomial in the size of the input would
imply the existence of a polynomial algorithm for each of them. Thus
there is a strong conjecture that none of these problems could be
solved with an algorithm whose complexity is bounded by a polynomial
in the size of the input. These "equivalent" problems are called
NP-complete.
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from one vias column. Thus our problem here is NP. It remains

to show (NP-2) in order to prove that our problem is NP complete.

We shall use the graph coloring problem as the known NP complete

problem and show that it is transformable to our problem.

Let G be an arbitrary undirected graph and M the associated
G

incidence matrix. We define a simple transformation as follows:

For every node n. in G, there corresponds a net N. and for every

edge e. in G, there corresponds a row R. on the board. A net N has

a generalized pin on row R. if node n. is incident with edge e. in G.

Furthermore, we may increase the size of some of the generalized pins

by adding pins to those generalized pins in an arbitrary manner.

We now claim that the chromatic number of graph G is k if and

only if the corresponding set of nets can be connected according to

Corollary II.1 using a minimum of k vias columns.

Suppose that the chromatic number of G is less than k, e.g.

k-1. Then the nodes of G can be partitioned into k-1 disjoining parts

such that none of the nodes in each part has any edge in common.

By transformation introduced above, the corresponding nets of each

partitioned group of nodes has the property that a matching satisfying

Theorem II. 1 exists between the generalized pins of the nets and

one vias column. By Theorem II.1, this set of nets can be connected

using only one vias column. Since there are k-1 such disjoint groups

of nets, k-1 vias columns are sufficient to connect all the nets

instead of k vias columns. Conversely, if the chromatic number of

G is k, then a minimum of k vias columns is sufficient to connect all

the nets associated with G. Otherwise, suppose k-1 vias columns are

sufficient to connect all the nets, then the nets can be partitioned
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into k-1 disjoint groups such that each group of nets can be connected

using one vias column. In graph G, each set of nodes corresponding

to each partitioned group of nets has the property that none of the

nodes share an edge in common. Since there are k-1 such disjoint

groups, the graph G can be k-1 colored. This is a contradiction.

Thus we conclude that our problem is NP complete.
Q.E.D.

Remark II.2:

In [8] Karp stated the list of NP complete problems as decision

problems. It is worthwhile for us to state the problem of Theorem II.2

in a similar fashion:

Net List Partitioning.

Input: Net list L, integer k.

Property: There is a partition of nets in L into k or less disjoint

parts such that the nets in each part can be connected using one vias

column.

If we allow all possible connections as long as the unidirectional

connection constraints are satisfied, a solution for the problem in

Theorem II.2 may not give the minimum number of vias columns. We

have excluded the possibility that a net may be connected using vias

from more than one vias column. As a consequence, a solution for the

problem in Theorem II.2 is only sufficient. Figure 3 shows an example

where net 1 is connected using vias from both vias columns. In

fast, if we insist on the formulation of Theorem II.2, we can readily

check that minimum number of vias columns is 3 instead of 2 in Figure

3. Thus further considerations must be made when we allow selection

of vias from more than on column in connecting one net.
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To have a better appreciation of the problem at hand, let us

consider a connection pattern associated with a net in Figure 4a.

If all the vias are available for selection, then the choice of

connection pattern for net 1 is not unique. The graph in Figure 4b

contains all possible connections for net 1 in that any tree which

contains all the pins of net 1 is a permissible connection pattern.

If there are other nets present on the board, the selection of

trees for all the nets is more complicated. Each tree must be disjoint

from others and each tree must contain all the pins of the net it

associates with. A procedure capable of finding trees for all the

nets must have the ability of avoiding two nets competing for the

same via.

We shall introduce the graph in Figure 4b as follows:

Definition II.2;

We let Gfc be a forest bipartite- graph associated with a set of

nets and k vias columns as follows:

(i) Excluding trivial nets, for every generalized pin of a

net, there is an S-node in G, ,denoted by N. ^1*' ***^p^#
K 1

(ii) For every via in any of the k columns, there is a T-node

in G, denoted by v^.

(iii) All the T-nodes in G. associated with a vias column form

aclique (i.e. (v^,v*) is an edge in Gfc for all i=l,2,...,k;
<l>r = l,...,m where m is the number of rows on the board q ^ r)

All the T-nodes in G^ associated with a vias row form a

clique {i.e. (v*,^) is an edge in Gfc for all s=l,...,m
and i,j = l,...,k where i # j).
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iv) e= (N^ Jl,*'*,Jp ,v)is an edge in G if the corresponding

generalized pin has a pin on the same row as the via in

question (i.e. there exists j in (j-,...,j ) such that j = r).
tip t

Figure 4b is a graph (L associated with one net and two vias

columns. The graph G^ is important because it is both necessary and

sufficient to set up conditions for a set of nets to be properly

connected. We first state a lemma, then we shall give the necessary

and sufficient condition under which nets can be properly connected.

Lemma II.1:

A net N can be connected using vias from k vias columns if and

only if there is a tree <J containing all S-nodes associated with net

N in graph G representing the net N and k vias columns.

Proof:

Each edge in Gfc represents a permissible connection on the board.

Thus a tree <J containing all the S-nodes associated with net N forms

a proper connection pattern for net N. Conversely, a proper connection

pattern for net N is simply a tree in G, .
k Q.E.D.

Theorem II.3:

A net list L can be connected using k vias columns if and only if

there is a forest with |l| disjoint trees in G such that each tree

contains all S-nodes associated with exactly one net in L.

Proof:

If we have a forest as stated, then by Lemma II.1, each tree

represents a proper connection pattern for one distinct net. Since

there are |l| disjoint trees in the forest, each one representing a net

in L, thus all nets can be connected. Conversely, if all nets are
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connected, it is easy to check that there is a forest as stated

k Q.E.D.

Remark II.3:

Let us digress for a moment to Theorem II.2. In the context of

graph G, of Definition II.2, we can see that the connection patterns

desired by the problem formulation in Theorem II.2 is a forest discussed

in Theorem II.3 with a special property. Namely that none of the

nets selected vias from more than one vias column to make connection.

To see more clearly the relations between the forest of Theorem II.3

and the "special" forest implied in Theorem II.2 we shall introduce

the following definition.

Definition II.3:

An overlap function OV associated with a forest F in G,k

satisfying Theorem II.3, OV(F), is the sum of the number of vias that

each tree in F is associated with, minus the number of S-nodes in the

tree.

Remark II.4:

It is now easy to interpret Theorem II.2. The solution for the

problem of Theorem II.2 is nothing but a forest satisfying Theorem II.3

such that the value of the overlap function, OV(F), is zero. In view

of the discussion in Remark II.2, we shall restate Theorem II.2 as

follows.

Simple Forest Problem.

Input:

Gk associated with net list L and k vias columns.
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Property:

A forest F satisfying Theorem II.3 exists in G such that OV(F) = 0,

We have shown that the problem of Theorem II.2 is NP

complete, we may expect that if we want to minimize the vias in the

solution for the problem of Theorem II.3, the minimization problem

will be NP complete. For the sake of clarity, we shall state this
roi

minimization problem as a decision problem.

Complex Forest Problem.

Input:

Gfc associated with net list L and k vias columns, integer p.

Property:

A forest F satisfying Theorem II.3 exists in G, such that 0V(F) £ p.

Theorem II.4:

The Complex Forest Problem in Remark II.4 is NP complete.

Proof:

The proof of this theorem is now simple. Since we have shown that

the Simple Forest Problem in Remark II.4 is NP complete because it

is just a restatement of Net List Partitioning Problem. The Simple

Forest Problem is directly transformable to the Complex Forest Problem

in that if we set integer p of the Complex Forest Problem equal to zero,

then the two problems are identical.
Q.E.D.

The objectives in the vias assignment problem are minimization of

vias columns and minimization of vias usage as stated in Section I.

In light of Theorem II.4, we can easily guess that the problem is

NP-complete. In fact, we can state the problem as a decision problem.
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Minimum Forest Problem.

Input:

Gk associated with net list L and k vias columns, integer P.

Property:

A forest F satisfying Theorem II.3 exists in G such that q < k and
q —

OV(F) <_ p.

We have investigated into the nature of connection patterns for

a set of nets and explored the vias requirement condition within the

framework of our problem formulation. We have shown that the problem

we encountered is NP complete. It is not computationally feasible

to solve the problem as it stands. Instead, some sufficient condition

should be developed to offer a more computationally efficient approach

to solve the vias assignment problem.

11J- Solutions: Preprocessing Criteria and Heuristics

Due to the complexity of the vias assignment problem, we have

to be contented with a less ambitious approach to a solution of our

problem. One intuitive idea is to construct or select a tree in graph

Gk for one net at a time- Instead of anticipating future vias

selections by other nets as we must in the global formulation, we may

limit the scope to anticipate vias selection for the next net only.

This strategy has the advantage that we can localize the selection

process. Hence we can expect an algorithm with a more acceptable

computation time. The price we have to pay is to require more vias

columns on the board and use more vias for making connections.
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The size of the graph G, is extremely large especially when there

is a large number of vias columns. There are some redundancies in

the structure of G with respect to the cliques associated with each of

the vias columns on the board. It is necessary to reduce the size

of the graph G, in our (local) problem consideration to have

a more computationally economical algorithm for the tree selection.

We can make two observations. If there are some nets already

connected, then all the edges and nodes associated with those connection

patterns in G, can no longer be a part for future tree construction.

The second observation is that in selecting vias for the current net

the S-nodes associated with other nets in G, can never be a part of the

tree being constructed. Thus none of the edges incident with those

S-nodes can be a part of the tree either. However, the size of the

remaining graph is still large due to the structure of T-nodes

associated with the vias. We shall attempt to further reduce the

size of G, .
k

There are two types of vias columns in the tree selection process

in G, . A vias column in which some vias are already used is called

an old vias column. A vias column in which none of the vias is yet

chosen is called a new vias column. In selecting a tree for a net

in G, , the choice of vias is not unique. Vias can be chosen from

a new vias column, an old vias column or even from both types of columns.

In order to consider all the possibilities, we have to look at a large

portion of the graph G, . Large storage and computation will be

required to do this. We shall now introduce two criteria to reduce

the size of G, we have to consider. Figure 5a shows a board with two

nets, two old vias columns and one new vias column. If net 1 is
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connected using vias from the new vias column, then net 2 can not

be connected as shown in Figure 5a. Figure 5b shows a case where if

net 1 is connected using vias from both the old and the new vias

columns, net 2 can not be connected. On the other hand, Figure 5c

shows a case where both nets can be connected if net 1 is connected

using vias from old vias columns only. The crux of this example if

that in selecting a tree, it is always better to select vias from the

old vias columns so far as the next net is concerned. We shall state

this idea as an observation.

Observation III.l:

If a net can be connected using available vias from old vias

columns, then it is always better or as good to do so.

When it is determined that a net can not be connected using

vias from the old vias columns, we will give the next selection

criterion as an observation.

Observation III.2:

If a net can not be connected using vias from old vias columns

alone, then it is always better or as good to use a new vias column

for the connection.

Figure 6 shows that using a new vias column yields a better result

in the sense that the next net has a better chance of getting connected.

Remark III.l:

The two seemingly simple observations provide some extremely

effective guidelines in the local selection of a tree in G, . Instead
k

of looking at graph Gfc as a whole, Observation III.l says we look at

a small subgraph of G, induced by the S-nodes associated with the net
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and the T-nodes associated with the unused vias from the old vias

columns. If the tree selection is not unique, we may select a tree

according to some optimization criteria. If it is determined that a

tree does not exist in the induced graph discussed above, then

Observation III.2 says that we can simply use a new vias column to

connect the net. These two guidelines give two locally optimum criteria

in the sense that the selection rules enhance the possibility of

tree selection for the next net. The added advantage of these schemes

is the reduction of the size of G^ to a small induced graph.

For clarity purpose, we shall denote by GqO y g as the induced

subgraph of G associated with net N±. S± denotes the set of S-nodes

associated with the generalized pins of net N. and^L denotes the

T nodes associated with the set of unused vias from the old vias

columns. Thus GCfy g is the induced subgraph of G by nodes in gt

and S.. The problem then is to find atree (xj± in Gqpy g such that
all S-nodes are covered. If no such tree exists, then we use a new

vias column to connect the net.

Suppose that atree xf. exists in GCP \j g»we still have to

decide the many choices we have facing us. Let us recall for a moment

the formulation in Remark II. 4 for the Complex Forest Problem.

Apparently the function value 0V(F) is to be minimized with respect

to the forest F. In the context of present discussion, we are only

dealing with the selection of a single tree instead of a forest.

However, the function OV is still well defined with respect to a tree.

Minimizing the value of function OV means to minimize the number of vias

selected in a tree and is equivalent to minimize the number of vias

columns associated with the tree. However, this problem will be shown
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to be NP complete. We shall state the problem as a decision problem

as in [8], then we shall show that the problem is NP complete.

Minimum Tree Problem.

Input:

GCpy „ associated with S. and a set of vias columns ^i., integer p.

Property:

There is a tree \J. containing S. in Gcf y « such that 0V(<~J\) <_ p,

Theorem III.l:

The Minimum Tree Problem is NP complete.

Proof:

Checking whether a tree y covers S. and calculating 0V( Qf.) can

be done in 0(p) steps where p is the size of the graph GqO y q Thus

we can easily verify that the problem is NP.

We shall use the set covering problem to show that our problem

is NP complete. We state the set covering problem as a decision problem:

Set Covering Problem.

Input:

S is a set, F = {S1>S2,...,S } is a family of sets; integer k.

Property:

There is a subset Ff C F such that S C U t and cardinality of
T€f'

F1 £ k.

In order to show that our problem is NP complete, we need to show that

the set covering problem is transformable to our problem.
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* /*• f\ isLet Si denote a set to be covered by a family of sets gt in a

set covering problem. Hence we are looking for asubset^*' CC£*

such that S± C ^U c ana cardinality of ^P* <k. If we insert

•jf c C\ it it

element {a} to every c e ^ where {a} £ S. and we then add {a} to

set S±, the solution of the set covering problem will remain unchanged.

We then identify S with S,gP* with ££, and each c* with c as an
11 3 3

old vias column, graph Gq^y g can be constructed. If we identify k

as equal to p + 1 then we see that an input of the set covering

problem can be transformed into an input of our problem. It remains

to show that with this transformation, the properties in both problems

are equivalent. We shall prove it by contradiction.

Suppose that a solution exists for the set covering problem, but

in the corresponding minimum tree problem we have 0V(^T ) > p = k-1.

This is impossible because if the cardinality of the cover for set S*
i

is <_ k, at most \s±\ + k-1 vias are sufficient to connect the net

represented by S±. Hence the value 0V( ^f±) £ k-1 =pwhich is

acontradiction. Conversely, if 0V((3Ti) 1pis satisfied in our

problem, then the cardinality of the cover is at most p+1 = k. Thus

we conclude that our problem is NP complete.
Q.E.D.

We have seen that even a local problem dealing with GqQ u > a

i

small induced subgraph of G^ is an NP complete problem. A sensible

approach at this point is to look for a simple heuristic which can

simulate the objective of Minimum Tree Problem.

As a first step, we may try to connect the most number of S-nodes in

S± by selecting one old vias column (the T-nodes associated with the

old vias column) in Gcf y . We may repeat this selection procedure
i
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for the remaining S-nodes in S± until a tree Cf covering S. is

constructed. This procedure will locally minimize the function OV

because at each selection step, vias are chosen from one column with the

maximum connection to the remaining S-nodes in S . We shall use an

example in Figure 7 to illustrate the selection process.

Figure 7a shows a net with 6 generalized pins and 5 old vias

columns on aboard. Vias column C3 is the best initial choice because

the net has 4 generalized pins in common rows with vias column C .

The others have at most 3 such nonempty intersections. With C as

the initial selection, the pins of net 1 on rows R R R R and R
•^ £ j f JLU

can be connected using 4vias from Cr The connection is shown in Figure

7b. The next step is to select another vias column which can connect

the most number of remaining generalized pins of the net. Considering

the partially connected pattern in Figure 7b, the most economical way

of reaching a new pin is through a shortest path from the set of

already connected points (pins and vias) to one of the reamining pins.

Dijkstra's breadth first expansion method [U] examplifies such a

scheme. There are two possible shortest paths from the set of connected
points to a net pin:

(i) via(R1,C3)-via(R1,C5)-via(R5,C5)-new pin on row R
and

(li) via(R3>C3)-via(R3,C1)-via(R5,C1)-new pin on row R.
As aconsequence, two vias columns are available for selection, namely
Cx and C5. Cl can connect only one generalized pin (pins on R,.,R6, and
R7) as compared to C.. connecting two generalized pins (pins on rows

R5,R6,R7 and pins on row Rg). Local greedv selection rule pref(jrs ^

selection of ^ in this case. Figure 7c shows atree thus constructed.
Essentially the strategies can be summarized into three parts. First
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an initial selection of old vias column is performed such that the

most number of generalized pins can be connected using just one vias

column. The second and the third parts form an iterative process.

A breadth first search is performed to find a shortest path from the

set of already connected points to a new pin. A backtrack procedure

is then performed to select a vias column which can connect most

number of remaining generalized pins. The iterative process continues

till all pins of the net are connected. In case a tree <9T. can not

be constructed using the old vias columns alone, a new vias column is

used to construct the tree.

Remark III.2:

In spite of the simplicity of the procedure described above, both

Observation III.l and Observation III.2 are adopted. Moreover, the

minimization of OV function is done implicitly on a local scale.

We shall first introduce some notations then we shall formalize

the tree construction algorithm.

Definition III.l:

We denote by A(c ,S) an operation between the set of generalized

pins in S, a subset of S , and an old vias column c inSf. The
1 j

value of A(c^.,S) is the number of generalized pins S has in common

rows with the available vias in c We denote by T(c ,S) the set of

generalized pins associated with the operation A(c.,S) and 6(c.,S)

the set of vias associated with the operation A(c ,S).

The cardinalities of r(cjSS) and 6(c ,S) are identical and are

equal to A(c ,S). Referring to Figure 7a, if we let S = S, and c = C ,
J 1 j 5

then r(C5,Si) =[(pins on R^), (pins on R^R^), (pin on Rg)l
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and 0(C5,S.) = [(vias on R.,R2), (vias on R ,R ), (via on Rg)] where

A(c,.»S.) is simply equal to 3. We shall now present the algorithm.

Algorithm Tree.

Initial Selection:

Step 1: Select an old vias column c G^such that A(c,S.) = max ^A(c.,S.)
— i c ecP 3 i

Step 2: S+- S± - T(c9S±)9 V( Cf±) + r(c,S±) U e(c,S±),

Mark(x) = 0 for all x in V(Cf ),

E((3Ti) «- {(u,v): u in T(c,S ), v in 0(c,S ) such that u,v

share a row on the board} U {(w »w^-): 0(c,S ) = (wl9...,w.)9

p = 1,...,k-l},

T«- V(<3fi), Lab(x) for all x in V(<3f.).

Phase 1:

Step 1: j -«- 0.

Step 2: If V(<3Ti) DS±, go to Step 7.

Else,

Step 3: j «- j+1, If Adj(T) = <|>, go to Step 8.

Else,

*Adj(T) is the set of nodes adjacent to T in GqQ y « •

Step 4: Mark(x) = j for all x in Adj(T).

Step 5: If Adj(T) Hs^f, then pick s in Adj(T) O S, go to Phase 2.

Else,

Step 6: T «- T U Adj(T), go to Step 2.

Step 7: End of Algorithm.

Step 8: Tree \) can not be constructed using old vias columns. Connect

the net using a new vias column, end of algorithm
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Phase 2:

it

Step 1; T •«- {s}, k •«- j, Mark(s) = 0,

T -*- T , Lab(s), y «- s.

Step 2: If k = 0, go to Step 6.

Else,

Step 3: k -*- k - 1.

it

Step 4: Pick n in Adj(T ) such that Mark(n) = k and n in vias column c

such that A(c,S) = max A(c ,S).
c ec£ p
p «••

Mark(n) «- 0, I + lU {n}, Lab(n),

E(gr±) + E((9Ti) u Uy,n)}, y-f n.
Step 5: T •«- {n>, go to Step 2.

Step 6: Go to Phase 1.

Note:

There are several notations which need to be explained in the

algorithm above. V(^jT.) is the vertex set of the tree \J. under

construction, it contains both pins and vias. E(<3f.) is the edge set

for the tree. Mark(.) is used to denote distance of a node from the

set of already connected points. Lab(.) indicates the node is in

the tree.

The complexity of the algorithm can be analyzed as follows.

In the Initial Selection, operation A( , ) is simply a logical "and"

operation. It is linear with respect to the number of nodes in

GCP y g . In Phase 1, it takes at most m steps to reach a new target

where m is the number of edges in Gq)y _ . In Phase 2, q|s| comparisons

in Step 4 are required to select a vias column where q is the number of

vias columns having vias adjacent to the target pin determined in

Phase 1 and S is the remaining generalized pins in S.. It then takes at
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most n-1 steps to backtrack where n is bounded by the number of nodes

in Ggpy g. At most \s±\ -1 iterations are needed for Phase 1 and

Phase 2. Thus the complexity is in the order of 0[n + (|s.| - 1)

(m + (n-1) + qlS-J)]. In general q is bounded by \<£\ and is small;

both |Si| and n are small compared to m. Thus we may say roughly

that the complexity of the algorithm is linear with respect to the

size of the graph G<j) y g . We shall now analyze how the algorithm

performs with respect to the function OV.

Definition III.2:

Let c* be the number of old vias columns in GqO .. in tree^T
i

according to Theorem III.l. Let the total number of vias 9J"* be V*

and let k* be the number of vias rows associated withOf such that

net NA has no pins on those rows. We denote similarly, c,V,k with

respect to tree \J constructed by the tree algorithm.

Remark III.3:

The example in Figure 8 shows a case where |s.| = 4, c = 3 and

k = 2. There are a total of 8 vias in the tree thus V = 8. rn the

next theorem we shall give the relations among c,k,S. and V.

Theorem III.2:

V* - c* +k* +|si| - 1 (III.l)
V= c+k+ |S±| -1 (III<2)

Proof: It suffices to show just one case, the other one is similar.

We shall show Eq. (III.2).
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In tree ^J., all the generalized pins are represented by S .

In order to connect all the nodes in S. at least |S.| vias, one for

each generalized pin are necessary. Moreover, there are OV(*£)*.)

additional vias. The value 0V( ^J ) can be accounted as follows:

There are k rows on the board where no pin of the net is present and

vias are chosen into the tree from those rows. Thus an additional k

vias are in tree u±• Furthermore, c vias columns are involved in

tjTf* In order to connect the vias from c columns, an additional

c-1 vias are needed. Thus we have 0V(£J.) = c+ k - 1 and

V = c + k + |S.I - 1.
1 l1 Q.E.D.

Johnson showed that the set covering problem is NP complete,

moreover, there is no heuristic that can give an approximated solution

within a constant bound. Therefore, we can expect that our tree

algorithm behaves similarly with respect to Minimum Tree Problem.

We shall briefly sketch this aspect as an observation.

Observation III.3:

Use the notation of Definition II.5, we can easily check that

|S±| + k >c (III.3)

Since the total number of rows tree XJ. containing vias is |S. | + k and

by algorithm tree, c is at most |s.| + k - 1. Hence we have

|S±| + k-1 >_ c which is equivalent to Eq, (III.3). Now if we consider

the ratio r = V/V*, then by Eqs. (III.l), (III.2) and (III.3) we have

S±| + c - 1 + k
r=~* =T^" K"—7 (HI.4)

v i^i -r U- X-r * 21S^| + 2k - 1

V \S±\ + c* -1+k* |S±| + k* + c* -1
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We see that the ratio of Eq. (III.4) is not bounded by any constant

because there is no relation between k and k*. Instead, it is problem

structure dependent. However, there is a special case when k = 0.

In this case, Eq. (III.4) is bounded by 2 because c < |s |.

IV. Concluding Remarks

In this paper, we have discussed the formulation and complexity

of the vias assignment problem in the routing of multilayer printed

circuit boards. The formulation of the problem has been given using

graph theory. The complexity of the problem has been derived using

the NP complete problem theory. The discussion of the complexity of

of the vias assignment procedure has led naturally to the introduction

of a heuristic algorithm.

The performances of this algorithm have been evaluated.

The obtained results can be incorporated in a general procedure for

the routing process of a multilayer printed circuit board. In fact

at the end of this assignment stage, all the connections are defined

unidirectionally in the sense that no direct connection exists for two

points which are neither on the same row nor on the same column. This

effectively reduces the routing problem into several single line routing

problems. Hence we can realize each single line connections with

the algorithms presented in [3]. Much work remains to be done in the

vias assignment problem.

In particular, the complexity of the optimization problem involving

the minimization of the via columns used for the connections of a net

list L, regardless of the number of vias used is not known, even though

it is strongly conjectured that it belongs to the NP-complete problem class.
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Another open problem is the formulation and analysis of the following

extension of the vias assignment problem. Suppose we are given a board

with 17 equal sized chips and some input-output (I/O) terminals on

the edge of the board (Figure 9a). If the vias appear only columnwise

as shown in Figure 9b, then a very low routing space utilization will

result in area A and in the shaded areas because very few pins are

present on the rows in those areas. Vias distribution is unbalanced

and connections will be congested in the unshaded areas besides area A.

To have a more balanced vias distribution, vias must appear in both area

A and shaded areas of Figure 9b. Figure 9c shows a scheme where vias

appear columnwise as well as row wise. Since the procedure we developed

can not be applied to this case, the problem is: How to assign vias

when they appear rowwise as well as columnwise.

A possible approach is to divide the board into several sections as in

Figure 9c. Then the vias assignment procedure presented in this

paper can be applied to each section independently. In fact within

each section the only change required is the orientation of the vias

and of the pins (for example from vertical to horizontal in Section I).

The assigned vias are then treated as pins, and the iteration loop

can be applied again to the whole board where this time the vias will

appear columnwise. However, the sectioning of the boards requires human

judgement at the present time and it is not clear whether this approach

is effective in dealing with very large sized problems.
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