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1. Introduction. We consider the situation in which an observer

sequentially makes observations, each of T seconds duration, of a

zero-mean gaussian (normal) process, W(t). We assume here that

successive observations are identically distributed and statistically

independent of one another- We consider the case in which the

covariance function of the process is of a known form which depends

upon the values of M unknown scalar parameters, a.,a~, • • • , o\ ,.
c 1 2 M

The observers objective is to use the known functional form of the

covariance function and the sequence of observations to estimate

the values of the ^-parameters which pertain to the process being
observed

In many applications, the amount of data to be processed is

extraordinarily large, and the computational aspects of an estimation

method become crucially important. A situation which falls within

this setting (and indeed was the motivation for this work) is one in

radar (or radio) astronomy. Here a signal is periodically scattered

(or continuously radiated) from a target such as a planet. Due to the

scattering (or radiating) properties of the target, a zero-mean

gaussian process is a good model for the received signal. One of

the objectives of such a procedure is to estimate some of the

This research was sponsored by the National Aeronautics and Space
Administration under grant NsG-354.
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target's parameters (e. g. , the range and rate of rotation of a planet).

In this situation the total duration of observation ranges from ten to

several hundred hours, yet even for the longer observation times,

the quality of the estimates of some of the parameters of interest is

never any more than satisfactory. Thus in this situation, both

computational simplicity and asymptotic efficiency are of paramount

importance, and one is led to find estimation methods having both of

these qualities.

Stochastic approximation methods such as the Robbins-Munro |_10J
and Kiefer-Wolfowitz [8] methods, being recursive, are inherently
computationally convenient. If one uses the original methods with

fixed gain sequences, a , the fastest rate of convergence is obtained

with a sequence of the form a = A/n, providing A is sufficiently

large. However, the asymptotic variance of the estimates is of the

form

A2/n(2AG - 1)

in which G depends upon the unknown value of the parameter to be

estimated [llj . Thus proper choice of A is quite important in
obtaining the smallest possible variance, yet is difficult because of

the dependence of G upon the unknown parameter, value. Gardner [5J
and Alberts |lj improve on this situation by considering nonfixed
sequences of the form

n

a = A v / > h
n Tn ^-. n

m=l

for a variety of choices of the y and h . Their work is still in
7 *n n

flux, but at present their methods do not yield asymptotically

efficient estimates when applied to the problem considered here

A joint publication is in the process of preparation.
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(Gardner has one method that is asymptotically efficient but whose

computational complexity increases with the iteration number). For

this reason, we consider here a modified Robbins-Munro method

(which is essentially a stochastic Newton-Raphson method) in which

the gain sequence is of the form

a = g/n
n &

in which g is a function only of the previous estimate. This method

requires more in the way of regularity conditions than the work of

Albert and Gardner. However, for application to the problem

considered here, these conditions are in general justified, and the

method leads to estimates that are asymptotically efficient.

We proceed as follows. In Section 2 we present a modified

Robbins-Munro procedure and prove that the mean-square error in

the sequence of estimates tends to a certain limiting value. In

Section 3, we return to the problem of specific interest, estimating

the parameters of a covariance function, and derive explicit expres

sions for the partial derivatives of the log liklihood function and for

the elements appearing in the Cramer-Rao inequality. We then

discuss sufficient conditions under which the method described in

Section 2 is applicable and point out that, when the method is

applicable, it leads to estimates that are asymptotically efficient.

2. A modified Robbins-Munro method. Let a. denote an unknown

M-dimensional vector parameter and let JY Ca)» n = 1» 2, 3, • • • , denote

a sequence of M-dimensional vector valued random variables which

are identically distributed and conditionally independent. We assume

that each observation in the sequence, Jf , can be evaluated for any

choice, a , of the parameter a. Let m.(a) denote the expected
~T1 ~~ 1

value of Y .(a) , the i-th component of Y (a) , i = 1, 2, • • • ,M, and
n, ix—' r —n*—'
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(2-1) mjjgr) = E {Yn(*)} .

We assume there is a value of the a parameter, say 0, for which

(2. 2) m(9) = 0

and we assume further that 9 is known to lie in the interior of some

bounded rectangular subset A of RM; i.e. . 0- € (a.,b.)(a. and b.
finite). We wish to use the sequence of observations, Y (a ), to

7 x ~~n ~n

determine 9-

We denote by G(q) a suitably chosen M by M matrix whose

properties will be described later, and we consider the modified

M-dimensional Robbins-Munro procedure described by the two

equations

(2. 3) r\ ^ = a +- G(<* )Y (a )
v ; Jn+1 ~n n ^n'-n^'-n'

and

%+i,iif %+i,i€Cai'bi]
(2.4) „n+1(. = a. if nn+1>i<a. i=l,2,--,M.

b. if r| ,, . *> b.
l 'n+1,1^ i

We now state formally our assumptions on the structure of Y(<*)- We

denote the transpose of a matrix by a prime and use the usual notation

for the Euclidean inner product and norm.

ASSUMPTION 1. The Y (g) are identically distributed and

conditionally independent for all n and the components of the Y {a)

have bounded moments of all finite order for all or € A-
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ASSUMPTION 2. There exists an e ^> 0 such that

9. e fa. +€,b. -€*1 - oo< a < a.<C b. < b <
1 L_ 1 iJ \ li ^

00

i = 1,2, ' * • ,M.

ASSUMPTION 3

dm. (a)
l -'

da.
J

= - E (y .(9) Y .(9)} = - b..(9) i,j =1,2,'• •,M
a=Q

the matrix G(or) is symetric and has an inverse, H(or), for all

a € A and

H(9) =G~1(9) =B(9) = [b..(9)] .

ASSUMPTION 4. There exists a KQ and Kg, 0<Kq<.Kq<
such that

K0||g - 0||2< -(a - 0)'G(a)mW < Kjj \\a - 9||2

for all a e A.

ASSUMPTION 5,

with

and

with

G(a)rn{a) = -(a - 0) + I

Ull< xKl US-fill2'" *1< oo

N

k^l
eIy^G'^G^Y^)} = J_ gkk(9) + t

|t|< kJ|a- 0 11 , K,< oo

(note that Assumption 3 is requisite for the two statements of this

assumption to hold at a = 9).

-5-
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The main result of this section is the following:

THEOREM 1. Assumptions 1-5 imply

Mll2„-?H2}4 1 Skk<§> +°<n~(1+Y)>- v>o.
k=l

We now give the proof of Theorem 1; at the conclusion of the proof we

give a slight extension, Theorem 2, which concerns the convergence

of the components , a

PROOF OF THEOREM 1. Subtracting 9 from both sides of

Equation (2- 3), taking the norm of both sides of the resulting equation,

andnoting that G is symetric, yields

(2.5) Mr, ,, - 9||2 = \\a - 911 2 +- {a - 9)' G(a )Y (a )
x ' ''-Jn+1 ~" '' ~n ~" n *~n -' v~n'~nx~n'

+i- Y* (a )G'(a ) G{a ) Y (a )
n

Note that Assumption 2 implies that with certainty

(2.6) h ,. . - 9. I > \a ,, . - 9. |
* ' 'n+1,1 l1 ' n+l,i l1

using this inequality in Equation (2. 5) and taking E | • |a } of
both sides of the resulting equation gives

(2.7) E ( lU _,, - 011 21 or ) ^ 11 or - 911 2 - 2 (or - 9)'G(Qf )m(a )
x ' I '' ~n+l ~M ' ~n i *— M ~n ~M n ~n ~' ~n7 — x~n7

+J- e ( Y1 (a )G(a )G(a )Y (a )\a }
n

Applying Assumption 5, this inequality weakens to

-6-



(2.8) e {||«n+1- e||2|*n} < (i-|)llan-Sll2 +(Kl/»)llsn-Sll

n k=l

For brevity we will denote

M ?
(2.9) P=2gkk(8). |Xn | = ||«n- 0||, b=E\||2-g|r}

k=l

Taking expected values on both sides of inequality (2. 8) and using the

Schwartz inequality on the last term, we have

<210> bn+l - V1-|>+^/n) E ( lXn!3} tl+<¥"2)bn

Now the only situation of interest is the one in which

E {Yln{a)G\a)G{a)Yn[a) }

is strictly greater than zero in an a neighborhood about 9- We will

show later that

than 1/n; thus

show later that under this condition b cannot approach zero faster

(2.11) (K^/n2)^/2 ^ K3/n3/2bn, K3<

Now, the H6lder inequality implies

-7-

oo.



1/m IY i(3m-l)/mE (|X |3} =E {|X |1/m |X }

E(q/q+l){|x |(q+l)/mj E(l/q+l) f|x |(q+l)(3m-l)/m }

setting (q+l)/qm = 2

(2.12) E{|XJ3}< E^^{\Xn\Z}^'^{\Xn\^}

Substituting inequalities (2.12) and (2.11) into (2.10) yields

3/2
<2-13> Vl^nS1"! +K3/n +K/n)

^{l^nlq+3} (i/q+i)

n

n

Our task is now to find a bound for the last term inside the brackets

in inequality (2. 13). Applying inequality (2- 6) to Equation (2.5 ), raising

both sides of the resulting equation to the p-th power (p an integer), taking

E {' I2 J on both sides of this equation, and applying Assumption 1
yields

(2.14) E{|Xj2P|Sn}^ |Xn|2P. |̂Xn|2<P-1)(2n-0)'G<Sn)m(2n,
2p-i

2p

£*="2

For convenience we will denote

X
n

i a
n

C^oo, SL =2,3, ' *' , 2p.

(2-15) PP= E {IXJP} =E {||2n-0||P}
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Applying Assumption 4 to inequality (2.14) and taking expected values

yields

(2-16) f&, * d-4-^) P?P +7 C,p2P-i/ni .

We now need a recursion inequality in the opposite direction for b ;

unfortunately, the fact that our search procedure is confined to a

bounded interval will here entail an undue amount of unpleasant

manipulation. Let

(2. 17) Zn (*) = G(or) Y(or)

and I denote the identity matrix. Then the recursion procedure can

be defined by the single equation

(2.18) a ,, = a -- [i - I (a , Z )"] Z(c*J
x ' ~n+l ~n n L nv~n n'J ~nv~n'

in which I is a diagonal matrix whose k-th entry is

(2.19) ln_k =0 if -|Vk-akln^ Zn,k(an)^nlbk- Vkl

between 0 and 1 otherwise-

Now subtract 9 from both sides of Equation (2.18) and take the norm of

both sides; if we then take E ^E y \a }} and use Assumption 4, we
obtain

(2.20) E {||«n+1- §H2}^ E { ||«n- 9||2} (1- 2Kj/n)

--e{(« - 9)'E { I (a, Z )Z (a )|a U+~iR>
n
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We must investigate the second term in this inequality. Let

<2- 21> Jk<V k> =x if ak +</2<%, k< bk -c /2

0 otherwise.

Now when J, (a , ) = 0, we can write

(2.22) |E (i ,Z , \a )K E { |Z . I Ia ) < K. .
x ' ' l n,k n.k'-nl1— I ' n,k' ' ~n y — 4, k

in which we have used Assumption 1. Now if J\(or , ) is one
j& n, k

<223> lE^n.k^.kl^n}!^ / lZn,kldP^- f lZn,k|2<iP
|Zn;k|>n,/2 n£ |Zn>k|in./2

^ K5,k/n
and

(2.24) |E{(Vk-9k)E{lnkZn)kl2n}}|

" I£{ <«n,k " ^f1 " VVk'^n.kZn.klSn}} I

+lEi<Vk" V««n.k)EtIn.kZn.klal}}l

£E{IVk-9kK1-Jk<<'n,k))K4,k}

+E{lan,k-eklK5.k/n)

^ El/2 ( <«n. k" 8k>2 }tK4. kEl/2 {<* " Jk<"n. k»2 }+K5, k/n3
in which we have used the Scwhartz inequality. Now using Assumption 2

and the Tchebyshev inequality

-10-



(2.25) E{(l-Jk(Vk))2}=E{(l-Jk(ank))}

^P{k,k-9kl*6/2H-2 E{<an.k- V2} •
Letting

K. = max [4/e } K. , , K. = max K. ,
* k=l,2,'",M *'K D k=l,2,"\M D,K

we have, combining inequalities (2. 24) and (2. 25)

(2.26) |E {(«n,k-9k)E{ln,k Zn.kl2n}}

^M(\k - v2 }+<Vn>El/2{«Vk - V2}

If we substitute inequality (2. 26) into inequality (2. 20), we obtain

(2.27) bn+1>bn [l-2{Kj,+ K4)/n]

+ij [R-(2K5/n) f E1/2{(Vk-9k)2}].
n k=l

But Assumptions 1 and 4 are sufficient to show via the usual arguements

that

E {ll2n-?||2}iKM n-P; p>0, kM<oo.

Thus there is an N_ such that for n>Nn the last term in inequality

(2. 27) is positive and

(2. 28) bn+1> bn Q- 2(Kjj +K4)/n] +R/2n2, n >NQ.
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This inequality, together with Chung's second Lemma [zj implies that b
cannot approach zero faster than 1/n. We will use this to weaken inequality

(2.26) to

(2.29) |E{(«n>k-9k) E{lnk Zn:.k|.n}}|̂ K6E{(Vk-9k)2}.

Substituting this result into inequality (2- 20) and omitting the positive term,

we finally obtain

(2. 30) bn+1 > bn [1 - 2(Kq +K6)/n] .

Now

[l - 2C/n] _1 = [1 +3C/n] [l +C/n - 6 (C/n)2] "1.

Thus, if we let N, be the smallest integer such that

6<K0 + K6> - Nl

then for n > N1 we can invert inequality (2. 30) to yield

(2. 31) l/bn+1£ (l/bn) [1 +3(Kj, +K6)/nJ n> Ny

Combining inequalities (2-16) and (2-31) yields for n^N.^

(2. 32) P^/b^ < (1 - 2pK0/n) [l +3(K^ +K^/n] p2p/bn.

+[1 +3(K; +K6)/Nj 22 CiP2P-</bn„'.

Noting that \\a - 9|| is bounded and that b cannot go to zero

faster than 1/n, this can be weakened to

-12-



<2'33> PnP+l/bn +l < <X" C2PK0 " 3<K0 + KoO/n> PnP/bn

+ K?(p)/n2

for n > N,. The constants K , K' and K^ are all independent.of p;

we thus let pn be the smallest integer such that 2pQKQ - 3(Kq + K,) > 2
and set K?(p0) =K_. Then applying Chung's first Lemma £2] to the
resulting recursive inequality

(2. 34) PnP°/bn - K7/n + 0(1/n2) < K8/n for n - Nl *

We now return to inequality (2.13) and set q + 3 = 2pQ and

y =[2(pn - 1)1 , where 0 < y < 1/2 since 2pQ > 4. Then sub
stituting inequality (2.3.4) into (2.13)

(2.35) b ,. < b l~l - 2/n + KQ/n1 +Y]+ P/n2
x ' n + 1 — n L 9 J

n _> N, Kq < 00 .

Now for a recursion relation of the form

(2.36) xk+1 < (1 - ak) ^ + «k

it is well known that if 1 - a, is positive for all k > N, then

n-1

<2'37> xn < XN^N-1, n-1 + £ €kPfc, N-1

in which

n

(2. 38) (3mn = 77 (1 - a ) N < m < n
j =m+l J

m = n

-13-



Using the convexity of log x we have for 0 < a. < 1 that log (1 - a.)

< -a., thus
- J

(239) ^-exp{-jLi ai} •
Let N be the smallest integer such that 0 < + 2/n - Kq /nY < 1
for all n > N? and let N = max N,, N~ . For the recursive
inequality (2. 35) we thus have

<2-40> Pm,n-1 <exp{" X+l <2/k" VkV+1>}n'm> N-
Bounding the sum by appropriate integrals and setting C = Kg/y,-
yields

(2.41) (3 _l < (m +l/n)2{exp C/mYj m, n > N .

Substituting the appropriate quantities from inequalities (2. 35) and

(2. 41) into inequality (2. 37) yields

(2.42) bn < bN (N/n)2 exp(C/NV)

+ (P/n2) Ss ll +2/k +1/k2) GXP (C/k7)
k=fr

n > N

The sum appearing in this inequality can be bounded by

rn-1

(2.43) 2 < n - N + / fexp (C/tY) - l] dt
JN-1

_ fn-1 7
+ exp[c/(N-l)\J (2/t +l/Odt .

JN-1

-14-



In the range of intereset for the integral, we can use the bound

expjc/tY j -1 <t"Y (exp[C/(N-l)7] -1 )(N -1)V/C .

Using this bound to evaluate an upper bound for the first integral in

inequality (2.43), and evaluating the second integral directly, we can

substitute the result into inequality (2.42) to yield finally

(2.44) bn < P/n + K1Q/n1 +Y n > N .

This completes the proof of Theorem 1.

We now seek bounds on the individual terms E ya , - 0k) J,
k = 1, 2, . . . , M. We could obtain such a bound for the k = q term

by subtracting the Cramer-Rao bounds for the terms k £ q from the

right-hand side of the bound of Theorem 1. However, since the a ,

are not unbiased, these Cramer-Rao bounds would require the evaluation

of the partials of the bias terms. This is an unpleasant prospect, and

we consider another approach.

Consider defining the unknown a parameters by the new set of

variables

(2.45) g = C a

in which C is a non-singular matrix. In terms of the (3 variables,

the pertinent quantities are

H(a) = C'H(g)C, G(a) = C"1 G(g) (C1)"1
(2.46)

Y {a) = C Y (g) and m {a) = C m (g)

in which ' denotes transpose. These expressions follow directly from

the definitions of the quantities involved and the relation

-V ^ a/Aft i = 1, 2, . . . , M•/**i = A cji 9/9Pj
J =1 J J
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Using the relations (2. 45) and (2. 46) one can verify directly

that the first recursion relation for the 6 is identical in form to
~n

Eq. (2.3). Also, if (and only if) C is diagonal, then the second

recursion relation for the |3 is identical in form to Eq. (2. 4).

Direct evaluation using Eqs. (2.45) and (2.46) also shows that

Assumptions (1), (2), (3), and (5) hold either directly or in suitably

equivalent form for the g variables when C is symetric (and hence

in particular when C is diagonal). Regarding Assumption (4), let

C be diagonal and let 0fi = Cfi . Then

-1(2.47) (g - ep)' G(g) m (0) = (a - §)» C C G(a) C C m (a)

M

• x
JVl 7

X, (ckk>2 («k -V C°(«) S (2)]-k

But by Assumption (4) each individual term in this sum is non-negative,

thus

(2.47)

in v/hich

Similarly

Cmin(2 " ?)' G(«) m (a) < (g - §p)'G(g) m (g)

mm
= min

k = 1, 2, . . , M

< C {a - 0)' G(a) m(a)
— max » -' ~ — ~

2 • C2 = max c2kk ' max , , 0 . , kk
k = 1, 2, . . , M

(2.48) (i/c£av) II g - ep II2 < II « - e ||2 < (i/c2 . ) || p - eft ||
II — N mm' ' ' !_ ~B ' 'max'

-16-



Combining inequalities (2.47) and (2.48) shows that Assumption (4)
2 2

again holds in the 6 coordinates with KA replaced by K_ (C . /C )
° z _ 0 0 mm max

and K_ replaced by Krt (C /C . ).
0 r ' 0 x max mm'

We can now state

THEOREM 2. Assumptions (1) - (5) imply

E{("n,i "6i)2j - gii (§)/n +(°(n"<1 +Y} Y>1 i =l,2,...,M.
PROOF OF THEOREM 2. From the above discussion, it follows

that Theorem 1 still holds for any nonsingular diagonal transformation of

the original coordinates; thus

(2'49) £ ct E (^i-6.)' < (1/n) £ cigii<0) +K(C)(l/n1 +Y).

Now pick M sets of the c. with

(2.50) CJ = 1cl j - 1, 2, . ., , M

ci = 1
1

i * j

1 + 60
i = j 0 < 6q < 1

i = 2, 3, ...,M; j = 1,2,... ,M

Then the relations of inequality (2.49) for these M choices of the C

matrix are expressed

(2.51) X, <Ci>2[E{<«n,i- V2} " «ii <?>'*] =f(C3-)

with

0 < f(C.) < K(C.)/n1 +Y
J J

-17-
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But the M x M matrix of c. appearing in the set of M linear

Equations (2. 51) is nonsingular; this set may be solved to yield

M

E {<«n.i "6i>2} =Bii<8>/»+ Xj V(CJ}
in which the q.'s are all bounded. Thus Theorem 2.

3. Th^lojr^lkeHhpp^

lor^ibg^oj^^O^^PEQfeLejiu We turn in this section to the problem of

direct interest; estimation of the parameters of a covariance function.

Our goal is two-fold: to obtain expressions for the partial derivatives

of the covariance function and the matrix appearing in the Cramer-

Rao bound, and to determine conditions which are sufficient to

guranatee that the theorems of Section 2 are applicable here.

We begin by introducing the model that we consider and the

necessary notation. We assume that our observed process W(t)

is the sum of the information bearing signal S(t) which depends

on the parameters a,, a?, . . . , ffw, plus an interfering "white"

gaussian noise process N(t), specifically.

Condition (i). W(t) = S(t) + N(t) in which S and N

are independent zero-mean gaussian processes. The process N

is "white" in the sense that for any square integrable f(t) and g(t)

N(t) N(s) g(t) f(s) dt ds L= N/ g(t) f(t) dt
'o J Jo

and, for all square integrable h(s,t)

f rT rT N

E IJ "J TJ N(ti} N(Si) h(ti' Si) dtl' *'dtN dsr..dsN

2N times

-T N

=2 L ••• L 77" h(.,.)dtr..dtN
Jo -»0 1 = 1

N times

-18-



in which the sum is over all ways in which N variables can occur

as 2N arguments.

As before, we let a be the M dimensional vector whose com

ponents represent the possible values of the parameters a,, a?, . . . , #>,,

and 0 denote the value of a that actually pertains to the process being

observed. The process W(t) is observed on the disjoint time intervals

I,, L, I,,'. . . , each of duration T. We denote the functional dependence

of the covariance function of S(t) on a? by <J> (t, s,a), t, sc |0,tj. Thus

(3.1) E{wtWs} = 4>s(t- V s - rn, 0) + N6(t- s)

t, s, e I ; t the initial point of I ; n = 1, 2, 3, . . .
n n n

in which the dirac-delta function is to be regarded as a distribution

on the space of continuous functions.

Let i|j (t, a) and X. (a) be the Karhunen-Loeve expansion

corresponding to <|> (t, s, a); i. e. , the ijj (t, a) and \ (a) are the

normalized eigenfunctions and eigenvalues of the integral equation

rT(3.2) K (a) i|) (r, a) = 4 (r, s, a) i|< (s, ar) ds 0<r<T
11 ^* n *** i-^ o *+* 11 ***

n = 1, 2. . .

We take the likelihood function of a based on an observation

W(t), t€ [0, T] , to be the ratio of the "probability density for W(t)"
under the hypothesis that the observation was at level a to the

"probability density for W(t)" under the hypothesis that W(t) was

noise alone. It is shown[6,9 that the natural log of this likelihood
function is given by

-19-



(3.3) I

in which

(a) = (1/2N) £ Wn2rKn(a)/Vn(2) +N
n =1 l— -J

[ft [V*- 1/2 In r) + N/N

(3.4) Wj = J ^n(t'2> W(t) dt

(we will shortly make an assumption sufficient to guarantee the con

vergence in the mean square of the sum in Equation (3. 3)). If we

define the function

(3.5) h(s,t, or) = £ rKn(^)/^n(«) +NUn(t, a)4;n(s, ^)
n =lL~ —»

which is the solution of the integral equation

(3.6) Nh(r,t, a) + / <b(r, s, a) h(s, t, a) ds = 6(r, t, or);r, t € [o, t]JQ s ~ s

Then £(a) can be written

-T rT(3.7) 1(a) =(1/2N) / f h(stt,a)W(t)W(s)dtds-l/Z\rfjJ[T(a) +N/N]
Jq JO ~ Ln = 1 J

We will use the following convenient notation for certain partial

derivatives

(3.8) (j)1 (t,s,a) = d/da. <j> (t, s, a) hX(t, s, or) = d/da. h(t, s, a)
S ^* X S *** *** i

h1J (t, s, a) = d Ida. 9a.[h(t, s, aj~\
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Our attention will be confined to situations satisfying the

following conditions:

Condition (ii). 0 is known a-priori to lie in the interior

of a bounded rectangle A (in RM)-
Condition (iii). Samples of W(t) on each of the intervals

L, I?, L, . . . are all identically distributed and samples

from distinct intervals are statistically independent.

Condition (iv). For all or € A, the functions h(t, s, a),

h (t, s, a), and <|> (t, s, a) are continuous in t and s

on [b, T_) xfo, t] and the functions <{> (t, s, a) and
h1J (t, s, a) are L2 on Q), t] x[o, t] for i, j =1, 2, . . . ,M.
Having stated the above conditions, we can proceed with ob

taining concise expressions for the partial derivatives of 1(a)

and the second moments of these quantities. These will be of

interest in their own right and in showing that Si(a) possess certain

regularity properties. Following this, we describe a set of var

iables which will relate our problem at hand to the recursive

estimation method of the second section. Lastly, we state the

remainder of the conditions required to guarantee that the statements

of Theorems 1 and 2 apply to the present situation.

We start somewhat obliquely by multiplying both sides of

Equation (3. 5) by l|j (s, a), integrating both sides of the resulting

equation with respect to s over [0, tJ , and noting that (since
the iJj (s,a) are L_ on 0, T ) we can interchange integration

XX ^ c*

and summation; thus

(3.09) h(s,t, or) ifm(s,2)ds = ^ . . N >p (t.a)
J° " m' ~U [0, T] .
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Let us now take the partial of both sides of this equation with

respect to a. and assume for the moment that the derivative of

the integrand exists and that interchange of integration and dif

ferentiation is justified. This yields, upon rearrangement of

terms

<3'10> 4- Um(«T+"N ) ^'^ "J Mr,t,.)V(r,.)d:

X. (or) • rT
O*'^ + I h(r,t, a) ^(r, a)dr.

\ (a) + N
m ~

If we regard this as an integral equation in the unknown function

\\> X(t, of), the properties of h(r,t, a) assumed in Condition (iv)
guarantee that \\i l (t, a) is L on [o, t] for all at A. Thus,
since ijj , h, h\ and i|^ are all L£ on [o, T] x [o, t] for all
o; € A, the function

i

is L, on fo, TJ x [o, t] and the interchange of differentiation and
integration was justified [3]]. Now multiply both sides of Equation
(3.10) by ip (t, a) and integrate with respect to t over [0, TJ .
Noting by Condition (iv) and our comments above that h(r,t)i|i (r, a)

\\) (t, a) is L.. on [0, t] x [0, t] , we can apply Fubini's Theorem
to the second term on the right-hand side of the equation and interchange

order of integration. By Equation (3. 09) the two terms on the right-

hand side of the resulting equation cancel and

<3-U> 4- Xt^N =r rThi(r.t.a)+m(r,a)+m(t.or)dtdr .
1 mx~' •'O -'O
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Carrying out the indicated differentiation, multiplying both sides of

the resulting equation by \ (a) + N/N, and summing yields
m ~'

oo d \ (a) I -, oo
<3-12> E, —dfT= / [\n<«> +N] ="F 2, Sn<«>+N

m = l 1 / m=l

j I h^r.t, a) 4im(r, a) i^m(t, a) dtdr .

The function h (r,t, or) is assumed continuous in r and t for all

are A; thus

oo d\ (a) /r n , r£ rT .<313) nSl -^-/[^>+N]= NJ0 J0 Mr...f,
•T /T[N6(t-r)+ <|>s(t,r, a)]dtdr =-j— j j hX(r, t, a) <J> w(t, r, a)dt dr

Now return to Equation (3.7) and take the partial derivative with

respect to a.:

-T rT . i oo

n =1
<3-14> -r^~ =4r fi /0T hi<s.t,«> w(t)w(s) -4

0\ (or)

-ET— /[V«> +N]

We have interchanged differentiation and integration since, by the

continuity of h (s,t, a) and the structure of W imposed by Condi

tion (i), the random variable
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-£— \ W(t) W(s) h(s,t, or) dtds - / / W(t) W(s) h^s, t, a) dt ds
dai Jo Jo ~ Jo Jo

has all moments of finite order equal to zero. The sum in Equation

(3.14) converges by virtue of Equation (3.13). Combining Equations

(3.13) and (3.14), we have finally

(3.15) d^] =-^ f J h^s.t, a)[W(t)W(s) -<J>w(tfsfa)]dtds .

We now wish to evaluate the matrix appearing in the Cramer-

Rao bound. Let

(3.16) BW -[byW] ; bij(aJ =E{^)_ -gfeL-} .
Using Equation (3.15) and Condition (i), we have

rri

(3.17) b..(a) =—^T fffj hX(t, s,*)hj(u,v, a)

[cj>w(t,u, 0) 4>w(s, v, 0) + c|>w(t,v, 0) <t>w(s,u, 0) <|)w(t, s,0) <t>w(u, v, 0)

- <|) (t, s,a) cj) (u, v, of] dt ds du dv

in which we have used <j> symbolically. Using the symmetry of

the functions involved, this reduces, for a = 0, to

rp

(3.18) b..(0) =-^-T \\ \\ hV, s,0) hj(u,v, 0) <|> (t,u, 0) cb (s,v, 0) dtds dudv.
J " 2N JJoJ-) ~

We seek a simpler form for this expression. To minimize the manip

ulation we use the (symbolic) form
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<j) (t, s,a) = N6(t-s) + <j> (t, s, a)

and will formally interchange operations. These interchanges could

be justified by lengthier operations, for example, we rewrite Equa

tion (3. 6) as

i(3.19) / 4>w(r,sf a) h(s,t, or) ds = 4>8 (r, t, a)

multiply both sides of this equation by h (r, q, 0) <J> (q, t, 0), take

the partial d/da., and evaluate at a = 0 . This yields

rT .
(3.20) h^r.q, 0) <|) (q,t, 0) hJ(s, t, 0) <f> (r, s, 0) dsw ~ jQ w

+ h^r.q, 0) * (qft,e) / h(s, t, 0) (j>^ (r, s, 0) dt
~ w ~ JQ ~ s

= cj>sJ(r,t,0) hX(r,q, 0) <t>w(q,t, 0)

Now integrating both sides with respect to r, q, and t, inter

changing order of integration in the second term, using Equation

(3. 19)to cancel terms and comparing with Equation (3.18) yields

finally

(3.21) b..(0) =-—, J J h^r.t.G) cj>Js(r,t, 0)

Now let us make the definition

(3. 22) m. (a) = E / a*(g) I
I dai J

-25-

dr dt



From Equation (3.15) and Condition (i) we have

(3.23) 111.(2)=^- Jf h^s.t.ajQ^t, s, 0) -+w(tf s.or)] dtds
rp

=~m~ [J ^(s.t.ar^+^t.s.e) - 4»s(t. s, a)] dtds .

Let us now take the partial derivative of both sides of this equation,

noting that Condition (iv) justifies the interchange of operations [3j .

(3.24) -^Lm.(a) =-^ f f hlj(s,t,a) [<j> g(t, 8,6) - +g(t, s,«)] dt ds
j JoJ

2N
i i ii \s>, t, an

and hence

(3. 25) -
d

da.
J

m. (a)
l x~'

a

=̂ ~ JoJ
= 9

= b.. (0)

A^- f f hX(s,t,0) cj>Js(s,t,0) dt di

Equations (3.15) and (3. 25) constitute the principal results of

this section. The equality of d/da. m. and -b.. will be of interest

in considering the recursive estimation procedure. The expressions

for the b.. (0) are of interest in that they appear in the Cramer-Rao

inequality: if 0 is any unbiased estimate of 0 based on W(t),

te 0, T , then

(3. 26) c' E{(8 - 9) (d - 0)'} c > c1 B_1(0) c
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in which prime denotes transpose and c is an arbitrary column

vector. Our expressions above have been obtained for an obser

vation on an arbitrary time interval. If the time interval in these

expressions is taken to be a composite of n subintervals, each

of length T; W(t) on one subinterval is taken to be statistically

independent of W(t) on the other subintervals; and 0 taken to

represent an arbitrary unbiased estimate of 0 based on W(t) on

the composite interval, then Equation (3. 26) becomes

(3.27) c' E {(^n - 0) (fn - 0)«} c > 4" S' B"1(?) £

in which the elements of B(0) are given by Equation (3. 25),

the integration being over a single subinterval of length T.

We now turn to applying the recursive method of Section 2

to the problem of interest. We will take Y (a) to be the M-dimen

sional vector-valued observation whose i-th component is dl/dxx.

evaluated on the interval I at the level a; i. e. ,
n

(3. 28) Y . (a) =
x ' n,l *-' ^ Jo Jo hl(t'8,s) [W(t +Tn) W(S +Tn)

- <|>w(t, s,a)] dt ds .

As in Section 2, we denote

rn(a) = E {YJa)} .

Note that by Equation (3. 23) m(0) = 0

Let H(a) be the M x M matrix whose i-jth element is

(3.29) h{.(a) = "^ I I h1 (t, a, a) ct>Jg(t, a, a) dt ds
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and let g.. (a) denote the elements of G(a) = H~ (a). This matrix

G will be the G matrix of Section 2. Note that, comparing Equa

tions (3. 25) and (3. 29)

(3. 30) G(0) = B_1(0)

Thus, when the assumptions of Theorem 1 are satisfied for the above

choice of H(a) and Y (a), Theorem 2 and inequality (3. 27) show

that the estimates, a . , generated by the method of Section2 have
n, l to 7

a mean square error equal to that of the "best possible" unbiased

estimate.

Three remaining conditions are sufficient to guarantee that

the Y (a) and G(a) defined above satisfy the assumptions of

Section 2 and thus guarantee that the statements of Theorems 1 and

2 are applicable here. These are,

Condition (v). H(a) is invertible and the elements g. .(a), of

the inverse are uniformly bounded for all a e A .

Condition (vi). For all a€ A

and

8akdai j4i
g. .(a) m.(a)
ij - J ~

for i, k, £ = 1, 2, . . . , M ,

K,

^[M

9aI i,jTk =l
bik(°> 8ji(«) gjk(«)

for I = 1, 2, . . . , M

< oo

K.

v^
< oo

Condition (vii). We assume that Assumption (iv) of Section 2

holds directly for G(or) and m(a) as defined here.
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Condition (vi) could be reudced to a more basic condition on the

higher-order partial derivatives of h(t, s,a) and c}> (t, s,a);

however, this seems of dubious value. Regarding Condition (vii),

note that by Equations (3. 25) and (3. 30)

lim (a - 0)' G(a) m(a) = lim \\a - 0

a —• 0 a —> 0

so that Condition (vii) always holds in some region about a - 0 .

That it hold throughout A requires that G(a) m (a) represent the

gradient of a convex surface. We will consider this condition

relative to an example in Section 4.

We now proceed to show that Assumptions 1-3 and 5 of

Section 2 are satisfied.

First we remark that Assumption 1 follows directly from

Conditions (iii) and Conditions (i) and (iv). Assumption 2 has been

directly restated as Condition (ii). Assumption 3 follows immed

iately from Equation (3. 25) and Condition (v).

Assumption 5, requires a little manipulation. Noting that

m(0) = 0 , we have

M

k-ek>
M et r a "I

• 5 r
2 j,k,i=lL

a = 0

92
T5—5 g..(z)m.(z)

kv
K ~ Wa£ ~ V

z = 0 + |3(a - 0)

0 < p < 1 .
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Upon applying Equations (3. 25) and (3. 30) and Condition (vi) we

have

M

(3.32) V g..(a) m.(a) = - (a{ - 0.) + &.

U. < (K1/2Vm")in which a - 0

whence

(3. 33) G(a) m(a) = -(a - 0) + £,

with UI < (Ki/2)| a - 0

Lastly, using Equation (3. 30)

(3. 34) E{Y' (a) G'(a) G(a) Y(a)\ = f E{Y (a) Y(a)} g..(a)g.,(a)

M

= S bik(Qf) gii(^) gik(Qf)i,^k=l lk~ 1J Jk~

M

= X bik(0) gik(9) gii(e)i,T":k=i lk~ Jk~ 1J -

M p M —
+ £ "Bi- £ bik(z) gii<5> gik{5) («! - V

in which I r\

-30-
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Thus our functions G(a), m(or), and B(a) satisfy Assumption 5.

Although the set of conditions set forth in this section makes

certain stringent requirements on the existence of higher order

derivatives, the first six conditions are essentially regularity

conditions which can reasonably be assumed to hold for models

representing those physical problems of greatest interest. Con

dition (vii), however, is another matter; it essentially deliniates

which situations can be handled by the modified Robbins-Munro

method. To show that the class of problems satisfying this con

dition is not vacuous, we consider a simple example in the next

section.

4. Computational aspects; an example. In this section we wish to

briefly comment on some of the computations required by the recur

sive estimation procedure and give consideration to Condition (vii)

relative to a simple example.

The recursive procedure requires computation of the quantities

(3.28) Yni(a) =(-2-)f [ dtdshV, a, a) |w(t +tJ W(s +xn)

"4>w<t'8.«)J
i = 1, 2, ... , M .

Each of these quantities can be separated in the obvious way into

two terms, only one of which depends on the received signal, W(t).

Using the fact that hX(t, s,a) is symetric in t and s (which
follows from the symmetry of the covariance function), this term

can be expressed in the form [6j, \_9j
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Ljf dtW(t) f dsW(s)h1(s,t,ff) i =1, 2, ...,M

and thus can be computed in real time as the signal, W(t), is

received.

Note that our procedure depends upon being able to solve the

integral Equation (3. 6) for h(r,t,ar). In the case in which S(t) is

a sample of a stationary process with a rational spectral density,

the solution to this equation is known [4J, j_12J . Moreover, our
procedure is particularly useful in the case when the noise is

much stronger than the signal (since then "good" estimation requires

the processing of large amounts of data). In this case, it is usually

true that

(4.1) \{<x) << N

in which \-.(a) is the largest of the eigenvalues associated with

<J> (t, s,«). Thus in this situation, h(t, a, a) is given to a good

approximation by

(4.2) h(t, s.or) =Uj-J 4>8(t,sfa) .

Lastly we consider an example, and investigate Condition

(vii) relative to this example. Let S(t) be a gaussian Markoff

process of zero-mean and unknown variance and time constant.

This process is observed in the presence of gaussian zero-mean

"white" noise, so that

(4.3) 4>w(t, a, a) = 6(t - s) +cj>s(t, s, a) =6(t - s) +o^ exp{-a2 |t - s|}

in which we have taken N = 1 for convenience. Our objective is to

measure 0, and 0?, the values of a-, and a, actually pertaining

-32-



to the process being observed. For this case the function h(t, a, a)

is known explicitly [7], [9] . However, in most cases of physical
interest, the noise is much stronger than the signal; i.e.,

<*i
(4.4) —— << 1

aZ

and the observation interval T is usually long compared to the

correlation time of the process; i.e.,

(4.5) <*2T >> 1 .

The conditions expressed by inequalities (4.4) and (4.5) imply

that the condition stated by inequality (4.1) holds, and hence that

the approximation given by Equation (4. 2) is good. For compu

tational convenience, we assume that these two conditions are met

and use the approximation of Equation (4. 2) in investigating Con

dition (vii).

Using this approximation, we obtain (after much calculation)

the approximate relation

<91 " «1> 92 +Ce2<*2 " 92>] " al(or2 " 62>

(4.6) G(a)m(or) =

so that
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(4. 7) -(a - 0) G(a) m(a) =(^ - ty2 02<*2 p2 +(«2 - 02)/2~| "2

+(az - O^p^*-,)2/^ +a^- 9^/4]

' [62 +<«2 "92)/2]"2 '
Thus (noting that by assumption <x?/a, >> 1) as long, as the search
is confined to strictly positive values

0 < e 1 < a^ ; 0 < e 2 < a^

Condition (vii) will be satisfied.
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