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The quasi-static analysis is used to examine propagation and

instabilities in a plasma in which both the transverse bounds and the

temperature are important. A dispersion equation is derived by use

of a. dielectric tensor, which is correct within the quasi-static assump

tion, and the assumption of longitudinal velocity, only. It is found

that the dispersion curves have a smooth transition from the zero

temperature case at long wavelengths to the unbounded finite temper

ature case at short wavelengths. The stop-bands which appear in

the zero temperature analysis become propagating regions in the

more general case. Landau-type damping is calculated and it is

found that the cyclotron wave is strongly damped. The effect of

the boundaries and the magnetic field on a double humped velocity

distribution is examined. The transverse boundaries are stabilizing

with respect to space-charge waves, but the cyclotron interactions

are strengthened. The temperature always exerts a stabilizing in

fluence which is particularly marked for the interaction between

the cyclotron waves. Curves of the limiting regions of stability,

with respect to various parameters, are given, illustrating these

effects. By the use of an example it is demonstrated that a mod

erate temperature can suppress the cyclotron instability. This

result is in agreement with the experimental observation that

a plasma, predicted to be unstable with respect to the cyclotron-

wave interaction, was actually stable.

-11-



Propagation and Instabilities in Bounded Finite Temperature Plasmas

by

A. J. Lichtenberg and J. S. Jayson

I. INTRODUCTION

The problem of the propagation of waves on a cold plasma column

within a waveguide has been analyzed utilizing both the complete set
12 3.4of Maxwell's equations ' and the quasi-static approximation. ' In

the former case a coupled set of equations is obtained leading to hybrid

modes consisting of mixed transverse magnetic (TM) and transverse

electric (TE) type solutions. In the limits of the dc magnetic field,

B , going either to zero or to infinity, the equations decouple and the

solutions are pure TE or TM. In the general case of finite B , there

are four types of modes present, the perturbed TE and TM waveguide

modes, modes associated primarily with space-charge forces, and

modes arising primarily from magnetic forces associated with the

cyclotron motion of the particles. We will be concerned with the

"space-charge" and "cyclotron" modes and with propagation at fre

quencies below the cutoff of the waveguide modes. In this regime one

mode always has a velocity less than the speed of light, while the

other has both slow and fast wave regions. In the region of slow-wave
2

propagation, both modes are predominately TM. For slow, TM

modes the quasi-static approximation, Vx E = 0, may be used. With

the introduction of this approximation the problem is considerably

simplified, the solution for the space-charge and cyclotron modes

being found in terms of a scalar potential. Using this approximation

several workers have studied the interactions in beam-plasma sys-
5-8

terns with finite dimensions. Harrison has solved the warm

plasma problem assuming an infinite magnetic field. Briggs and
Bers assume a finite magnetic field and have included thermal effects

in their analysis using a resonance velocity distribution;
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2 2f (u) = vT/ir(u + v™ ) where u is the velocity directed along the dc
magnetic field. The present work will introduce temperature into the

problem assuming a Maxwellian distribution.

Much work has been devoted to the study of longitudinal plasma
9 10

oscillations and cyclotron waves in a warm plasma in an infinite

media. An equivalent dielectric tensor has been derived for warm
11 12plasmas in a magnetic field, ' and utilizing this tensor the disper

sion relation for plasma waves can be found. For the special case

of propagation along the magnetic field the dispersion relations for

the space-charge and cyclotron modes decouple. For the space-charge

mode in one dimension limiting values for streaming instabilities
13-15

have been found as functions of the product k D and the ratio
r z

u/vrp where k is the propagation constant, D is the Debye length,
j. z

u the relative drift velocity between two streams (assumed along B )
1/2 °and vT = (kT/m) ' the thermal velocity. A similar treatment

will be used in this work to find instability limits in a finite system.

In addition to the interactions between the space-charge waves of

the two streams the cyclotron cyclotron and space-charge cyclotron

interactions are also considered. The latter interaction occurs in a

plasma with transverse bounds because the cyclotron mode has a

longitudinal component and the space-charge mode transverse com

ponents; the two modes therefore couple.

In Section II a dispersion relation will be derived, within

the quasi-static approximation, which includes longitudinal temper

ature and transverse boundaries. In Section III propagation in a

stationary plasma will be discussed and in Section IV the limits of

instability for a two-stream system are determined.

II. DERIVATION OF THE DISPERSION RELATION

The configuration we will consider here is that of a circular

waveguide with a finite magnetic field along the axis of the guide,

(the z direction). The guide is either completely or partially filled
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with one or more uniform plasma columns positioned concentric to the

guide axis. Collisions will be neglected. An exp[*j(k z - ojt)J varia
tion will be assumed with k taken as real; a>, as determined from

z

the dispersion relation will in general be complex and an exp(jn0)

variation will be taken for the azimuthal dependence.

The basic equations are Maxwell's

VxE = jcoB (1)

VxH = - j u£oE + J (2)

and the equation of motion

9v. e. e.
—l-i +v..W.=-J-E+(v.xB)-i (3)
t —l —l m. — —l — m.

l l

where the subscript refers to species i. Assuming no drift motion

and linearizing the equation of motion we may use the resulting ex

pression to express J_ in terms of E. The right-hand side (RHS) of

(2) can thus be written in terms of a dielectric tensor,

VxH=-jco6E (4)
— «£—

taking the divergence of (4) we obtain,

V-€ E = 0 . (5)

Assuming the constitutive relation

D = 9 E , (6)
— fe4 —

D and E can be transformed to a moving coordinate system and

provided (u. x B) « E (u. being the drift velocity), an G is
—i — j. ± —i &,
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obtained in the new coordinate system in which Eqs. (5) and (6) are
16

satisfied simultaneously. For TM type waves it can be shown that

(u. x B ) is of the order of (v , /c)
—l — j. ph '

E and hence for slow-wave

propagation the inequality holds. The requirements of TM-type

slow waves are identical to those necessary for the quasi-static

approximation. The dielectric tensor for the drifting plasma in

cylindrical coordinates is,

where,

err Jer6 °

€ = €
«^» o

-\e
re fcee

CO

zz

•r =£88 =1+ Ii coci2 - (co - W.)2

CO .

=1-1 —£i
i (co - kzut)

G.fl =X
i (co - k u.)(co . - (co - k u.) )

z i' ci z i' '

CO . CO •
ci pi

(7)

(8)

This tensor differs somewhat from that derived from the equation of

motion including drift velocity but both lead to the same result when

substituted in Eq. (5).16
Consider each species to have an unperturbed velocity distri

bution in the longitudinal direction. (In this analysis transverse tem

perature is not included. The transverse temperature would not be

expected to have a large effect except in circumstances where
17T » T in which case the system is unstable. ) Each species is

in

divided into an infinity of streams each with an infinitesimal density,
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dp oc to . f. (u) du
r pi 1 ' (9)

such that the sum, obtained by integrating over the infinitesimal

streams, gives the total density for each species. Taking such a

summation within the dielectric tensor and integrating by parts leads

t« 16to,

=1+1*.2
2co . (co + co . - k u)

_ ci ci z '

2co .(co - co . - k u)
ci ci z

f. (u) du
l '

r6 <T P1 J-oo 2co . (co + co . - k u) 2co . (co - co . - k u)
_ ci ci z ci ci z '

zz

coci(co - kzu)

=l-x
CO

r
-co

f.(u) du
l '

co- k u
z _

9 Lin)
du (10)

As a result of having chosen an expfj (k z - cot)] variation rather
than using an initial value approach, the above integrals are singular

for real co. However, this difficulty is easily overcome by following
18Landau's prescription for an infinite medium. For a transformation

of the time co is located in the upper half of the co-plane. The resulting

integrals are then analytically continued so as to be defined on the

real co-axis and in the lower half of the co-plane. Introducing a Max-

wellian distribution,
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f(u) =
'UZtr vr

exp
(u - u)2

2v
T —J

(11)

the dielectric tensor may be expressed in terms of the plasma disper
19sion function tabulated by Fried and Conte,

where,

co

=i + I
rr .i S^T*/2*.

[z(?2i)-z(?u)]

r6 =2 2a .y.jy k [* Z«3j> -2(S21) -Z(CU)]
1 ci Try z l- j ->

€ = 1 +
zz

2 r n
1 vm. k "— J —'

Ti z

z,n _ 1 J exp(- u )
du

-co

(12)

(13)

in the upper half of the £ plane. We can also express Z(£) and its
19analytic continuation, valid over the entire £ plane, as

with

Z(?)
2 fj?

-00

co - u.k + co .
1 z ci

*us
^i^

-6-
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2i

3i

co - u. k - co .
1 z ci

k V^.fT
z Ti'

co - u. k
1 z

kz vTilf^
(15)

In the quasi-static approximation E is derivable from a scalar

potential (E = - V<|>) which upon substituting in Eq. (5) gives,

v. (ev<t>) = o (16)

Using the dielectric tensor for the warm plasma Eq. (16) is solved

subject to the boundary conditions that tangential E and normal D

are continuous. For the configuration with guide radius b and beam
3

radius a the result is,

where,

J' (T a)
e T a —-—- + ng A

rr c T /rp oX r6„
c J (T a) c

n c '

e T b
rr, d

d

+ n6
rG

J'n(Tda)Nn(Tdb) - Jn(Tdb)N-n(Tdb)

Jn(Tda)Nn(Tdb) - Jn(Tdb)Nn(Tda)

(Tap = - a
2 , 2 zz

k —z
rr

(17)

(18)

J and N are the Bessel functions of the first and second kind n-th
n n

order. The subscript c denotes summation over all beams within
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radius a and subscript d denotes summation over all beams outside

of radius a. We first consider the simpler dispersion relation of a

completely filled waveguide for which the dispersion relation reduces to.,

hence.

J (T ) = 0
n a'

Ta = p
nv

and from Eq. (18),

2 2. 2 zz
p = - a k -—

rr

Substituting from Eq. (12) the dispersion relation:is,

^^+kD^=-I
2 z 1 .

a i

n Z 2 iDp 1
1 rnv

a* 2^2 k D. —
Z 1 CO

P1

D,

D

2 (1 +?tZ(?.))

(Z«2.) - z«u))

where we have normalized to the Debye length of stream one

_ VTl
D =

1 co
1 PI

If the radius, a, is increased indefinitely (22) reduces to,

2
D

i D
kz2Di2 =-? -V a+c3i z«3i»

(19)

(20)

(21)

(22)

(23)

(24)

the dispersion relation for longitudinal oscillations in a warm,

unbounded plasma. We also recover another mode which for a cold
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plasma would be, co = co . If the full set of coupled equations had been

used taking the limit a—•oo would have led to the right- and left-hand

polarized cyclotron modes. Since these modes are transverse, the

quasi-static analysis could not be expected to give an accurate result

in this limit. For the longitudinal mode on the other hand, Vx E = 0,

identically, and the quasi-static approximation is no longer an approxi

mation.

For small D we can perform an asymptotic expansion in £,

and keeping only terms to order 1/? we obtain the cold plasma dis

persion relation,

.k i -1 \,
p 2 \ i (co- k u.)
*nv \ z i'

2 2
a <r- w«i

1+1 —T-21i coci2 - (co-kzu.)2

(25)

which valid to first order in D.

III. PROPAGATION IN A STATIONARY PLASMA

A stationary plasma will now be considered with ions of in

finite mass. The summation in Eq. (22) is thus taken over only one

species. With the aid of the IBM 7090 the dispersion relation was

solved for several sets of parameters. In Figs. 1 and 2 this relation

is plotted in bold lines, for co /co =2.0 and .5 along with plots, in
c p

light lines, of the dispersion relations for longitudinal oscillations in

a warm unbounded plasma (from Eq. (24)), and a bounded cold plasma

(from Eq. (25)). For low values of k where the guide wavelength
z

\ is much greater than D, the temperature effects are unimpor-
8

tant compared to the effects of the guide walls and the dispersion

relation approximates the cold plasma relation. With larger values

of k where X is small compared to the guide dimensions, the

-9-



finite geometry is of little influence and the dispersion relation ap

proaches that of the infinite medium. It should be noted that, for

finite temperature plasma columns propagation exists for frequencies

that are forbidden regions in the zero temperature approximation.

An expression for small damping can be derived from Eq. (22)

by expanding Z(£) to first order in terms of £. ,
lm

z(?) =z(£R)+j eimZ'(?R)

' =^R+^im (26)

The following expressions are utilized in obtaining the result,

Z'(?) = - 2(1 + £ Z«»

Z(£R)= jxr1/2 exp(- £R2) - 2fR Y(?R) (27)

R

Y(?R)= exp(- SR2)/?R J exp(t2) dt

Upon separating real and imaginary terms we solve for £. and

obtain,

-IT
2 ^P 2

^eXpK3*)+7#- J—expf-^-expf-^)
KD&

— (28)
co

co _ lm

213R
(24-l)Ytf3R)-l D P.nv 1

+ 4

Z CO

p

4y(W-^ry^ir)

If a—^oo and Y(£~R) is expanded in an asymptotic series in l/£ the
familiar Landau damping expression is recovered.

co.
C^ IT CO

im 3 3

T z
Z<[2vl,\fL

exp(- co

2kz VT
(29)
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For the parameters used in Figs. 1 and 2 the damping associated with

the space-charge mode (lower branch for co > co and upper branch

for co < co ) corresponds closely to the Landau damping.

IV. INSTABILITIES

If, instead of one stream, we consider the situation of two streams

with a relative drift velocity, there is then a possibility of growing

waves or instability. (The question of whether these instabilities are

convective or nonconvective has been determined elsewhere and will not

be considered here). ' If Eq. (22) has a solution with positive

imaginary co the plasma is unstable. In searching for such solutions
13-15

we follow the approach used by several authors for unbounded plasmas.

A contour is traced over a semi-circle in the upper half of the co-plane.

Defining H(£) to be the RHS of Eq. (22) we trace the corresponding

contour in the H(£) plane. This contour bounds all values of H(£)

corresponding to positive imaginary co. Since the LHS of Eq. (22) is

always positive real an unstable solution will exist only if the curve in

the H(£) plane intersects the positive real axis. If only two streams

are present graphical means may be used to locate the limiting values of

k D for which instability exists and also the limiting ratios of relative
z

drift velocity to thermal velocity. Eq. (22) is written in the form,

D 2 2
1 ^nv +k 2D 2- H,(e(1)) =H9(£(2)) (30)

Ct Z 1 1 Cm
a

where £ and £ are assumed to vary independently in the £-plane.

Contours of the RHS and LHS of Eq. (30) corresponding to the contour in

the co-plane are mapped in the complex H-plane. If the two curves

intersect there is a solution and by requiring that £ and £ have

the same value of co we can solve for the limiting values of the drift

velocity. The value of k at which the two curves first intersect is
3 z

the maximum value of k for which instability is possible. Fig. 3 is
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a typical plot. Before discussing these plots in greater detail, certain

limiting cases will be examined.

For a plasma with infinite transverse dimensions the dispersion

relation reduces to Eq. (24). In this case the contours retain the same

size and shape for all values of k , and for two streams with equal
z 13Debye lengths, D, the criteria for instability can be written

k 2D2 < .570 (31)
z

In the limit of infinite magnetic field Eq. (22) reduces to,

D 2 2 D 2

Dl\Z + l ^ =" ^ ~h (1 +?3i Z(?3i)} (32)
a i D.

i

which for equal Debye lengths results in the limit for instability,

r*2 2
7 7 Dp

D^k * + ££_ < . 570 (33)
Z Cm

a

Q

the result obtained by Harrison. From this result we see the pos

sibility of attaining a stable plasma for all k if the condition,

D p
jp- > .570 (34)

a

is satisfied. Hence, we investigate the limit k K) in the general
z

case, when co is finite, to determine whether a similar condition
c

exists. In the limit k •O, Z(£..) and Z(£_.) can be expanded in

an asymptotic series when | co - k u. | ^ co . For identical streams
z 1 c

the dispersion relation reduces to,

2 2v 2 2
%- (D2 +-^y") =- Zd +C3i Z(£3.)) (35)
a co i=l

c

and comparing this expression with Eq. (24) and Eq. (32) it follows that

the condition,

2 •> 2P o 2V™J2L. (Dd + 1- ) <.570 (36)
a co

c

-12-



2 2must be satisfied for instability. The additional term 2vT /co
acts to enhance the Debye wavelength.

In the vicinity of | co - k u. | = co , the asymptotic expansion
z 1 c

is not valid; the term in H(£) that is dependent upon co leads to

another loop in the contour. This loop appears in Fig. 3 but does

not lead to any further interactions in that particular case. The

co dependent terms are inversely proportional to k as exami-
c z

nation of Eq. (22) reveals. For small k the contours are as

shown in Fig. 4. We now have two additional interactions . The

stability previously considered was the interaction between space-

charge waves, and the limit of stability found in Eq. (36) referred

to this interaction. The stability limits for the cyclotron cyclotron

and the cyclotron space-charge interactions are found, respec

tively, from the intersection of the additional loops with each

other or from the intersection of the additional loop of one stream

with the contour that exists at infinite magnetic field of the other

stream.

In Figs. 5 and 6 the limiting values of k D for instability
z

are plotted against the limiting values of u /^/^Tv— where u
is the relative drift velocity, for values of co /co of 2, and

' . c p
1/2 respectively. Unstable regions lie below the curve in question

and within the cross-hatched areas. The plots display some

results known from the cold plasma theory; the space-charge

interaction is weakened as the radius of the beam decreases, while

the cyclotron interactions are strengthened. For co /co =2
c p

points A and B in Fig. 3 correspond to points A and B in

Fig. 5 and represent the minimum and maximum values of u

for instability. Similarly points C, D and E, in Fig. 4 give

the minimum values of u for the space-charge, cyclotron, and

cyclotron space-charge instabilities, respectively.

As an example we consider the dispersion characteristic
5

presented in Fig. 7a for two cold counter streaming beams.

The parameters for the cold plasma were selected to give the
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critical condition (limit of stability) for coupling of the space-charge

waves. The cyclotron cyclotron and space-charge cyclotron inter

actions lead to the presence of growing waves. The counterpart of

the two growing modes with temperature included is presented in

Fig. 7b. With the addition of temperature the slow cyclotron wave

that previously was a growing wave is now a decaying wave. These

results are further illustrated in Fig. 8 where the limiting values

for instability are plotted. The vertical dashed line indicates the

value of TI /2V2^vrn in Fig. 7b. (We note that the dashed line
o 1

intersects only the cyclotron space-charge region of instability. )

Typical values of the physical quantities corresponding to this

example are co f&4 x 10 rad/sec, a «^1 cm, B $5^450 gauss,
P ° _

V* corresponds to a temperature of 4 eV, and u corresponds

to a voltage of 1000 volts.

The limits of instability, found above, correspond to a

filled waveguide. For this configuration both the cyclotron and

the space-charge modes disappear when co—>0 and hence the

critical dependence of Eq. (36) on co . In an unfilled waveguide

the space-charge wave becomes a surface wave when co goes

to zero and the presence or absence of instabilities would not

be expected to be strongly dependent on co . To verify this

postulate we consider two beams of radius a in a waveguide

of radius b. In the limit of k b « 1, Eq. (17) becomes,
z

Jn (Ta) .
6 Ta—- =—T- <37)

" J0 <Ta> ln I

(for the axially symmetrical mode). If b » a the LHS may be

expanded and we obtain,

€ (Ta)2=-4- (38)
zz , b

ln —
a
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and from Eq. (12) and Eq. (18), for identical streams

2

2D +kzD2 =- Z (1 +C3. Z« .)) (39)
2. b i

am —
a

with k small.
z

Hence,

2 D
2

2. b
am —

a

> . 570 (40)

is the condition for stability as k —frO. This result has been obtained
8 zfor an infinite magnetic field; here we find that it is valid indepen

dently of the value of co and in particular for co —>0.

CONCLUSIONS

The propagation of space-charge waves in a warm bounded

plasma were shown to have a smooth transition from the character

istics of a bounded zero temperature plasma to an unbounded finite

temperature plasma as k increases. The inclusion of tempera

ture leads to the possibility of propagation between the plasma

frequency and the cyclotron frequency, as well as above the upper
2 2 1/2frequency limit, (co + co ) , of the cold plasma theory. Experi-

P *-
mental results indicate that the dispersion relation follows the

3 22 23cold plasma theoretical curve ' ' closely to as large a k

as points have been obtained, but these measurements did not in

clude the transition region. Presumably data is difficult to obtain

where the curve deviates from the cold plasma curve because it

is in this region that attenuation becomes significant. The cyclo

tron mode is especially difficult to measure experimentally as has
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3
been noted in the literature. The high attenuation which we have

calculated for this mode, even at comparably small values of the

wave number, can well account for the experimental difficulties.

The decrease in the strength of cyclotron space-charge
5

interaction in experiments, from that predicted from the zero

temperature theory, can at least partly be explained by introducing

a finite temperature. More striking is the complete suppression

of the cyclotron cyclotron instability for our representative example.

This interaction has not yet been experimentally observed. It has
24

also been pointed out by several investigators that oscillations

have been observed for frequencies at which waves would not

propagate in the absence of temperature effects. Despite the fact

that attenuation for propagating waves is usually high in these

regions it is possible to have instabilities if the interaction is

strong enough.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the use of the cold

temperature dispersion curves of Maxum and Trivelpiece. Assis

tance in programming was given by Gail Nirdlinger.

The research reported herein is made possible in part

through support received from the Joint Services Electronics Pro

gram (Air Force Office of Scientific Research, Army Research

Office, Office of Naval Research) under Grant AF-AFOSR-139-64,

and in part by the computer center. One of the authors (J. S. Jayson)

had an NSF predoctoral fellowship during the course of this work.

-16-



REFERENCES

1. W. C. Hahn, G. E. Review 42: 258 (1939).

2. V. Bevc and T. E. Everhart, J. Electronics and Control 13:185

(1962).

3. A. W. Trivelpiece and R. W. Gould, J. A. P. 30:1784 (1959).

4. L. D. Smullin and P. Chorney, Proc. Symp. on Electronic Wave

guides, Brooklyn Polytechnic Press, N. Y. , p. 229 (1958).

5. B. J. Maxum and A. W. Trivelpiece, J. of App. Phys. (to be

published).

6. B. Vural, RCA Rev. ZZ} 753 (1961).

7. R. J. Briggs and A. Bers, MIT Res. Lab. of Elec. , Quarterly

Progress Reports 70: 129 and 71: 131 (1963).

8. E. R. Harrison, Proc. Phys. Soc. , 79, Part 2: 317 (1962)

9. J. D. Jackson, J. Nucl. Energy Part C: Plasma Physics, 1: 171

(1960).

10. T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, (1962)

11. J. E. Drummond, Phys. Rev., 110: 293 (1958).

12. K. N. Stepanev, S. P. , JETP, 7: 892 (1958).

13. O. Buneman, Phys. Rev., 115: 503 (1959).

14. O. Penrose, Phys. Fluids, l\ 258 (I960).

15. E. A. Jackson, Phys. Fluids, 3: 786 (I960.

16. A. J. Lichtenberg, IEEE Trans, of PTG on Elec. Devices,

ED-11: 62 (1963).

17. E. G. Harris, J. Nuclear Energy Part C: Plasma Physics, 2: 138

(1961).

18. L. D. Landau, Journal of Physics U. S. S. R. , 10: 25 (1946).

-17-



REFERENCES (cont. )

19. B. D. Fried and S. D. Conte "The Plasma Dispersion Function"

Academic Press, N. Y., (1961).

20. P. A. Sturrock, Phys. Rev., 112: 1488 (1958)

21. R. J. Briggs and A. Bers, MIT Res. Lab. of Elec. Quarterly

Progress Report^ 122 (1963)

22. G. D. Boyd, R. W. Gould, L. M. Field, Proc. IRE, 49: 1906

(1961).

23. R. N. Carlile, University of California, Elec. Res. Lab.,

TM-30 (1963).

24. C. Etievant, G. Kino, L. D. Smullin, private communications.

-18-



LIST OF ILLUSTRATIONS

Fig. 1. Dispersion relation for filled waveguide comparing finite and

zero temperature with co /co =2.

Dispersion relation as in Fig. 1 with co /co = . 5 .
^ ° c p

Solution to Eq. (30) for real co .

Solution as in Fig. 3 for smaller value of k„ .

Stable and unstable regions as functions of the parameter

Dp /z co /co = 2.
rnv c p

Stable and unstable regions as in Fig. 5 with co /co = . 5 .
c p

The dispersion curve for two identical counter-streaming

beams in a filled waveguide. A. with zero temperature.

B. with finite temperature for modes which in the absence

of temperature have regions of growth.

Fig. 8. Stable and unstable regions corresponding to Fig. 7b.
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Fig. 7a. The dispersion curve for two identical counter-
streaming beams in a filled waveguide with zero
temperature.
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