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AN ALGEBRAIC CHARACTERIZATION OF CONTROLLABILITY*

A. Chang *#

The purpose of this note is to establish an algebraic character

ization of complete controllability for linear differential systems, We

shall consider systems whose state at time t is described by an n-dimen-

sional vector x(t) that satisfies the differential equation

x (t) - A(t)x(t) + B(t)u(t). (1)

The function u(t). called the control, is assumed to be an

r-dimensional vector, and A(t) and B (t) are nxn and nxr matrices

respectively, A comprehensive discussion of the controllability of the

system (1);, hereafter called S< maybe found in Ref. 1. The criteria

for controllability of 2 presented there involve the solution of the matrix

differential equation

<£> (t, t ) - A it) fc (t- t )
— o — — o

with initial condition $(t t ) - I, the identity matrix. However, it
— ^ uf o —

is seldom possible to obtain an analytic expression for $ , unless A (t)

is a constant or periodic in t, The content of this note, stated in Theorem

.!. is an algebraic criterion for controllability involving only the matrices

A (t) and B(t)

Before proceeding to Theorem 1, let us recall, the definition of

complete controllability. The general solution of (1) with initial con

dition x (t ) - x is given by
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x(t, u) = « (t, t) x + P 4<t, s) B(s) u (s) dsfc> *(>> *o +P *<t'8> B(s) u
^'t

If u(t) lB a control defined over the interval t < t < t. and

x (tj, u) = 0, u (t) is said to transfer x to the origin. Following

Kalman, we shall say Sis completely controllable at time t if

there exists a t. > t such that for every initial state x there is
1 o ' —o

some control u (t), t < t < L, which transfers x to the origin. In

the sequel, t will be considered a constant, and for brevity the phrase

"at time t " will often be omitted,
o

Theorem l;Suppose A (t) and B (t) are (n-2) and (n-1) times contin

uously differentiable, respectively, Let

Bj (t) = B (t)

dB. .
B. (t) = >A (t) B (t) + l'1 , i = 2, 3, . . .
~i - ~i-l dt

Let

Q(t) = [By (t), B2(t), ... . Bn(t) ] .

Then

(i) A sufficient condition for 2 to be completely controllable

at time t is for rank Q (t) - n for some t > t .
o — o

(ii) If the elements of A (t) and B (t) are analytic functions,

then the latter condition is also necessary,

The proof of theorem 1 is based on the following result due to
LaSalle.

Lemma 1 : A necessary and sufficient condition for S to be completely

controllable at time t is that for every ^€ R , ^r ^ 0, the r-vector

y . * (t , t) B (t) 4 0 for some t > t ,
— — o — o
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We note that the row vector y . $ (t , t) is the solution to the

differential equation

z (t) = -z (t) A (t) (2)

which satisfies the initial condition z (t ) = y .

Proof of Theorem 1:

(i) Suppose rank Q (t) = n for some t > t but 2 is not

completely contollable. Then, by Lemma 1, there exists y ^ 0

such that

y . $ (t , t) . B (t) = 0 t > t
-i-o — x o — o

or putting * (*> ZQ) = IQ ' 5 (fc0» fc) »

z (t, yQ) . B (t) = 0 t > tQ . (3)

Differentiating (3) and using (2) and the definition of the B. ,

0=zB + zB=-zAB + zB=zB. (4)

Repeated differentiation of (4) yields,

z (t, yQ ) • B. (t) = 0 t > tQ, i = 1, 2, . . . , n, (5)

But for all t > t , z (t, y ) 4 0; so (5) contradicts the assumption

rank Q (t) = n for some t > t . This proves (i).

(ii) In order to prove (ii), we shall need

Lemma 2: Suppose A (t) and B (t) are analytic, let

Qj M=["ii M> B2 (t), -.• B. (t) j = 1, 2, ...
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Then there exists k < n, and nonempty open set OC(t , oo) such

that for each t € O,

rank Qk(t) = rank Q (t), j = 1, 2, ...

Let us observe that Q (t) = Q(t). Lemma 2 implies that the

columns of B. (t) for all j > n are, for every t € O, expressible as

linear combinations of the columns of Q(t).

Assuming Lemma 2 for the moment, let us prove (ii). Suppose

rank Q(t) <n for all t > t ; it then suffices to show 2 is not completely

controllable. Let O be the set in Lemma 2. Choose L e O and let

b,, b_, ... b, be a maximal set of linearly independent column vectors

of Q(t,). Then, choose y 4 0 such that y • $(t , t.) = z (t., y ) is

orthogonal to b., b~, . . . , _b, (this is possible since j&(t , t.) has an

inverse). Then at t,, in view of Lemma 2,

dJ0 =-^— (z . B) ^(•v ^^j+i {\]> j = °* l» ••• (6)
t = t.

Since A (t) is analytic, z (t, v ) and therefore z (t, _y_). B (t), are

also analytic. From (6), it then follows that z (t, _y_ ). B(t) = 0 for all

t> t , and therefore, in view of Lemma i, 2 is not completely control

lable at time t .
o

It remains to prove Lemma 2. For simplicity, let B (t) = b(t), a

column vector. The proof in the general case is analogous. For nota-

tional convenience we define the operator

L = - A(t) +^-

Then

S|(t) = b (t), Lb(t), ..., Lj_1 b (t)

-4-



Let O^ CI (fcQ oo) be the set of points for which rank Q, (t) = I.

O^ is evidently open. "* Consider Q_ (t). There are two possibilities:
either rank Q^O^l for all t or rank Q (t) = 2 for some t. If

the first alternative holds, L_b (t) e M (t) for every t € O., where

M^ (t) is the linear manifold (in Rn) spanned by b(t). In this case, using
the linearity ofL, it is easy to show LJ b (t) e M. (t) for j = 1, 2, . . . and
all t e O., and there is nothing more to prove. If the second alternative

arises, let O^Qt , oo) be the set of points for which rank Q (t) = 2.
O^ is open. It follows that we find ourselves in the same situation but

with O^ instead of O.. Repeating this argument, let k be the smallest
integer for which

rank Q (t) = k t e 0

(7)

rank Qk+1 (t)^ k tc (tQ, oo)

Evidently k ^n. Denoting by M, (t) the linear manifold spanned by

b (t), Lb (t), . . . , L b (t), it follows from (7) that L b (t) e M (t)

for every t e O, a nonempty open set using the linearity of L, we then

can show, by induction, L? b (t) e M, (t), j = k, k +1, ... for all t € O.
This proves Lemma 2, and completes the proof of the theorem.

Comments: The sequence B. (t) was used by Gamkrelidze in discussing

the time optimal control of 2(Ref. 3). When A_(t) and B_(t) are constant,

B. (t) = (-1) A_ B^ and Theorem 1 reduces to the well known criterion

for controllability of constant coefficient systems. If A(t) and B(t) are

analytic, then rank Q(t) achieves its maximum value except possibly on

an isolated set of points. In this case, practically speaking, it suffices

to check rank Q(t) for a single value of t, and not all t>t .

Since b(t) is analytic, the values of t for which b(t) = 0 are isolated
points. We assume b(t) is not identically zero.
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